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CR Categories: 5.16, 5.5 
Language: Algol 

Description 
This procedure evaluates the n-dimensional integral 

iv f? v(x) dx . . . .  v(xl , x2, . * . ,  x , )  dx ,  . . .  dx.z dXl 
(a,b)  c a l  ~a 2  n 

by the Monte Carlo method. The variance reduction scheme used 
here is a form of stratified sampling. 

The advantages of stratified sampling are well known [I], and 
the concept of optimum stratification is discussed in most text books 
on Monte Carlo methods [2, 3, 4]. The advantages of adaptive 
quadrature are also well known, and many such algorithms have 
been published in Communications and elsewhere [5, 6, 7]. Com- 
bining adaptive quadrature with stratified sampling is a straight- 
forward process [8, 9]. 

The workings of this procedure are somewhat similar to 
Algorithm 303 I6]. Algorithm 303 is one-dimensional, and while 
it can be used for multidimension integrals by recursive calls, for 
more than approximately six dimensions the number of evaluations 
of the integrand becomes intolerable. The goal of the algorithm 
given here is to try to overcome this defect of Algorithm 303 and 
other algorithms like it. 

The procedure works as follows: 
1. A set of samples is taken, uniformly stratified throughout the 
entire volume being integrated. 
2. Based on the variance in these samples, a decision is made as 
to whether more samples are needed. 
3. If more samples are needed, the volume is cut in half and the 
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entire procedure (but with fewer samples) is repeated on each 
half, recursively, the halvings being repeated as required. The 
choice of axis for the halving is based on samples of the gradient. 

The result of this process is that the overall stratification is not 
uniform, but approaches optimum as more and more samples are 
taken, since more halvings (thus more samples) are taken in the re- 
gions of high variance. 

A certain amount of caution must be used in the choice of the 
input parameter m (m + n is the number of samples taken initially). 
If the function being integrated is reasonably smooth, relatively low 
values of m (say 5 to 10) are satisfactory. If v(x) is known to have 
sharp peaks, ridges, valleys, or pits, then large values of m will be 
necessary in order to avoid missing these high and low spots. A 
rough rule is that m should be inversely proportional to the error 
tolerance and proportional to the logarithm of volume of anoma- 
lous regions. If Va is the fractional volume of the anomalous re- 
gions and E, is the relative error tolerance, then the empirical rule 
m ~ ( - 2  ln (Va) ) /Er  has proved satisfactory. For this quadrature 
algorithm tc be useful, the results should be insensitive to the users 
choice of m, and this has been observed provided m is not chosen 
too small. (This difficulty about the occasional need to choose m 
shrewdly is characteristic of all adaptive quadrature schemes, 
whether Monte Carlo or "exact" methods such as Romberg, 
Simpson, or others.) 

As a test of this procedure, 100 evaluations were made of the 
volume of 1/32 of a hypersphere in five dimensions (in rectangular 
coordinates), i.e. 

for .n . R , n  ( i f  ~ x ? > R  2then0] 
/ / I ~ 1 < i < _ 4  ~dxidx~dx3dx,, 
ao ao .Io ~else (R ~ -- ~'~ x?) 1/2 

t 1 ( i < 4  J 

with 3% accuracy requested. A histogram is given below of the 
values obtained. 

Number  of  
o c c u r r e n c e s  

Iob , / lezact  

4 0 8 14 18 16 20 14 5 I 
0.94 0 .95  ' I i i 0.96 0.98 0.99 097 i.l~ ,.hi ,.'oz ,.I~3 i . ~  

Here Iob° is the value observed, l,~ct is the correct value. The initial 
value of m was 120, and the average number of function evaluations 
per integral was 1427. The standard error for the 100 evaluations 
was approximately 2%. For corresponding accuracy, about 4.5 
times as many samples would have been needed by unstratified uni- 
form sampling. 

Finally it should be pointed out that the results given by adap- 
tive stratification are not entirely unbiased in the usual sense of the 
Monte Carlo method. There is, in fact, a biasing in favor of regions 
having low values of the magnitude of the gradient. However, this 
bias should normally be expected to be much smaller than the re- 
quested error tolerance. 

Acceptable random number generators for this algorithm may 
be found in [10]. 
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Algorithm 
real procedure quadmc (n, a, x, b, vx, esq, m, Vab, rn) ; 

value n, esq, m, Vab; 
integer n, m; real vx, esq, Vab, rn; 
a r r a y  a, x, b; 

comment The procedure parameters are: 
n - number of  dimensions, n >_ 1 
a - array of  n lower bounds 
x - array of  n position coordinates of  which v(x~, x2,  . . . ,  xn) is 

a function, x is called by name 
b - array of  n upper bounds (it is not  required that  bl > ai) 
vx - function to be integrated, vx must be a function of  the array 

x (Jensen's device) and be called by name 
esq - square of  the absolute error tolerance for the quadrature 
m - the number of  samples to be taken at the first level is m d- n, 

m > n  
Vab - volume being integrated, i.e. Vab = ]-~<i<_~ I (bi - aO [ 
r n -  procedure to give a new random number uniform on the 

open interval zero to one (0 < rn < 1) each time referenced, 
called by name. 

All o f  these parameters are input parameters to be supplied by 
the user. 

Some of  the local variables of  this procedure are: 
v b a r -  average value of  v(x) for m + n samples, i.e. 

1 
~- - -  ~ v(xl) 

m q- n l<_i<_m+n 

vsqbar - average value of  v(x)~ for m -I- n sampies, i.e. 

~_= 1 
Z v(x,)~ 

m q- n l<~i<m+n 

ssq - the square of  the s tandard error o f  the mean (of the integral) 
for m -b n samples, i.e. 

(~-  ~) 
if2 I/a2b 

( m - b  n -- 1) 

vi - value of  v(x) at ith sample, i.e. v(x/) 
r i p -  a value of  v(x) such that 2 [ rip -- vi[ is a sample of  the 

magnitude of  the ith component  of  the average normalized 
gradient, 1 < i < n 

it - vector of  shuffled integers I to m 
j - array of  n different vectors of  shuffled integers 1 to m used in 

constructing the (uniform) stratification 
el - point on the lth axis that divides the volume of  integration in 

half for the next recursive level, i.e. cl = (b[l] - a[l])/2, 
1 - index of  the axis having the largest in magnitude sample of  

the component  of  the average normalized gradient. 
end of  comment; 

begin 
integer l; real vbar, ssq; 
i f m  < n t h e n m  :=  n; 
begin 

real gin, vi, vip, vsqbar; 
integer itemp, ir, k, i; 
array h[l :n]; 
integer array j[1 :n, 1 :m], it[1 :m]; 
for i :=  1 step 1 until m do it[i] := i; 
for k :=  1 step 1 until n do 
begin 

h[k] :=  (b[k] - a[k])/m; 
for i :=  1 step 1 until m do 
begin 

ir := entier (rn X m) d- 1; 
comment 0 < rn < 1; 
i temp := it[i]; it[i] := it[it]; it[Jr] := itemp; 

end; 
for i :=  1 step 1 until m doj[k ,  i] :=  it[i]; 

end; 
l : = 1 ;  
vsqbar := vbar := gm := O; 
for i :=  1 step 1 until m do 
begin 

for k : --- 1 step 1 until ii do 
xik] :=  a[k] q- (j[k, i] -- rn) X h[k]; 
vi : =  VX; 
vbar := vbar + vi; 
vsqbar :=  vsqbar q- vi ~ 2; 
if i _< n then 
begin 

comment Sample the gradients; 
x[i] := x[i] + abs(b[i] - a[ i]) /2X 
(if x[i] < (b[i] d- a[i])/2 then 1 else - 1); 
vip :=  vx; 
vbar :=  vbar -}- vip; 
vsqbar :=  vsqbar -t- rip T 2; 
if  gm < abs(vip - vi) then 
begin 

l := i; gm :=  abs(vip - vi); 
end; 

end; 
end; 
vbar :=  vbar/(m q- n); 
vsqbar :~  vsqbar / (m+n);  
ssq :=  Vab T 2 X (vsqbar - vbar T 2 ) / ( m q - n - l ) ;  

end; 
if ssq < 2 X esq then quadmc := vbar >( Vab else 

begin 
real temp, cl, al, bl; 
m :=  m X 0.707; 
if m < ssq/esq then m := ssq/esq; 
comment The author is indebted to the referee's 

discussions pointing out the significance of  maintaining 
m >~ ssq/esq; 

esq := esq Y ssq/(ssq - esq); 
al := a[l]; bl := b[l]; 
b[l] := cl := (bl -k al) /2;  
temp := quadmc(n, a, x, b, vx, esq/2, m, Vab/2,  rn); 
b[l] := bl; all] := cl; 
temp :=  quadmc(n,, a, x, b, vx, esq/2, m, Vab/2,  rn) -[- temp; 
all] := al; 
quadmc := (temp X ssq q- esq Y vbar Y Vab)/(ssqq-e~q); 

end; 
end of  quadmc 
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Random Deviates from the 
Dipole Distribution [G5] 
R o b e r t  E. K n o p  [Recd.  12 J a n .  1971, 7 M a y  1971, 23 

A u g .  1971, a n d  8 M a r .  1972] 

D e p a r t m e n t  o f  Phys ics ,  T h e  F l o r i d a  S t a t e  U n i v e r s i t y ,  

T a l l a h a s s e e ,  F L  32306  

Key Words and Phrases: random number, probability density, 
probability distribution, Dipole distribution, Cauehy distribution, 
simulation, Monte Carlo 

CR Categories: 3.17, 5.5 
Language: Fortran 

Description 
The function subprogram D I P O L E  returns a random deviate 

- ~ < z < co sampled from the two parameter (R 2 < 1, a arbi- 
trary) family of density functions: 

f ( z )  = 1/(Tr(lq-zZ)) 

+ Rz× ((1 -- z 2) ×cos(2a) + 2XzXsin(2c~))/(~r × (1 +zZ) ~) 

The cumulative distribution function is: 

F(z) = (1/2) + ( l / r )×tan-1(z )  

+ R2X (zXco(s(2a -- sin(2a))/Or X (1 +z2)) 

Densities of this type commonly occur in the analysis of 
resonant scattering of elementary particles. We note that when 
R = 0 we have the Cauchy [1] or Breit-Wigner [2] density. When 
R = 1 and a = 0 we have the single channel dipole density. 1 
The dipole density with free parameters has been proposed to 
describe multichannel resonant scattering [3]. 

The algorithm begins by sampling the random vector (x, y) 
from a density uniform over the unit disk. The center of the unit 
disk is then displaced from the origin by the transformations 
u = x + RXeos(~)  and v = y q- RXsin(ot). Letting u = rXcos(O) 
and v = rXsin(O) we can find the marginal density of 0: 

f (o)  = a / (2 , )  X ( for '~ ds q - f o r ~ d s )  

where the limits of integration for r are given by: 

r±(O) = R X c o s ( O - a )  d: (l--R2Xsin2(O--a))L 

The marginal density of 0 is thus: 

f(O) = (1 d-g2cos(2X(O-a))) / rc  

for -~r /2  < 0 < 7r/2. The transformation z = tan(O) = v/u then 
yields the dipole density function. Other densities which could be 
easily sampled by computing rational functions of u and v are 
suggested by transformations such as z = tan2(O), sin2(O), sin(2>(O), 
or 1/[ sm(2×0)l - 1. 

Function D I P O L E  has two arguments which must be calcu- 
lated by the calling program, A = RXcos(a)  and B = RXsin(a) .  
D I P O L E  calls the function R l l (D)  which must return a random 
deviate from the uniform distribution over the interval ( -1 ,1) .  
D represents a dummy argument. 

This work was supported in part by the U.S. Atomic Energy 
Commission. 

1 The density is named after the analytic property of having 
poles of order 2 in the complex plane. See [2]. 
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of the University of Maryland for comments concerning this 
algorithm. 
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Algorithm 
FUNCTION DIPOLE(A,BI 

I0 X = R I I f D )  
Y : R I I ( D )  
I F f I . O - X * X - Y * Y I  1 0 , 1 0 , 2 0  

2 0  DIPOLE = ( y + B ) / ( X + A )  
RETURN 
END 
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Normal Deviate [S14] 
G . W .  Hi l l  a n d  A . W .  D a v i s  [Recd .  20  J a n .  1971 a n d  2 

A u g .  19711 

C . S . I . R . O .  D i v i s i o n  o f  M a t h e m a t i c a l  S t a t i s t i c s ,  G l e n  

O s m o n d ,  S th .  A u s t r a l i a  c 

Key Words and Phrases: normal distribution inverse, probit 
transform, Taylor series approximation 

CR Categories: 5.12, 5.5 
Language: Algol 

Description 
This procedure evaluates the inverse of the cumulative normal 

distribution, i.e. the normal deviate u(p), corresponding to the 
probability level p, where 

f_, 1 p = P(u) = ~(t) dt, 4~(t) = ~ exp(--t2/2).  

An initial approximation to u(p), such as x(p),  may be improved by 
using an expansion of u(z), defined as the inverse of 

z = p - P(x)  = f u q ~ ( t ) d t .  
[ 
~ x  

u(z) may be developed in a Taylor series about z=0 ,  where 
u(O) =x,  see ref. [1], 

u,, = x + c,(x) r ! ,  
r = l  

and 

c l (x )= l ,  c2(x)=x,  cz(x)=2x2+ l, c4(x)=6x~+ 7x, 

e~l(x)  = (rx Wd/dx)e , (x) .  

An error e(x) in the initial approximation, u0 =x(p) ,  entails an 
error ~,(x) in un of the order of e"+lCn+l(X)/(n+ 1) ! In order to mini- 
mize the maximum relative error R , = m a x l ~ , / u , ,  [ in the result 
obtained from n terms of the Taylor series, several sets of coeffi- 
cients in an initial rational approximation styled after Hastings [2] 

a + bs + cs 2 
x(p) = s -- - -  s =  (--2In(p)) ½, 0 < p < 0 . 5 ,  

d + es --}- f s  2 q- s ~' 
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have been obtained such that I [~(x)]'+lc,+l(x)/x I is minimax for 
Ix 1<40- For odd n the minimized expression is an even function 
of ~ and x, so that the relative error level may be halved when n 
is odd by adding ½xR,,. The resulting precision is shown below as 
S,  , i.e. 

error(result) 
10 -sn = max r~sult 

a b c d e f Rn Sn 

ul 1271.059 450.636 7.45551 500.756 750.365 110.4212 0.62210 - - 7  7.50 
u~ 1484.397 494.327 7.61067 589.557 855.441 119.4733 0.64410 -- 10 10.19 
u3 1251.789 444.751 7.51005 493.187 739.156 109.3967 0.743t~ -- 13 13.43 
u4 1637.720 494.877 7.47395 659.935 908.401 117.9407 0. I l l10  -- 15 15.95 
u5 1488.369 460.200 7.38458 598.957 831.379 110.7527 0.94010 - - 1 9  19.37 
u6 1269.225 448.718 7.49755 499.171 749.275 110.0194 0.7591o -- 21 21.12 
UT 1266.846 448.047 7.49101 498.003 748.189 109.8371 0.16610 - - 2 3  24.07 

According to the precision required, one set of coefficients and the 
corresponding labeled statement, selected from the following list, 
should be incorporated in the procedure body as illustrated for 
the case of u7. 

ul: normdev := z 4- xXl.0000000311 

u2: normdev := (xXzX0.5 4- 1.0)Xz 4- x 

u3: normdev := (((s 4- 0.5)Xz/3.0 4- xX0.5)Xz 4- 1.0)Xz 4- x 

4- 0.371310- 13 

u4: normdev := (((((sX0.75 4- 0.875)Xz 4- x ) X x  4- 0.5)Xz/3.0 

4- xXO.5)Xz 4- I.O)Xz 4- x 
uS: normdev := ((((((sX0.6 4- 1.15)Xs 4- 0.175)Xz 

o 4- (sX0.75 4- 0.875)Xx)Xz + s 4- 0.5)Xz/3.0 

4- xXO.5)Xz 4- 1.O)Xz 4- x 
4- 0.421o- 19Xx 

u6: normdev := (((((((120Xs 4- 326)Xs 4- 1 2 7 ) X x X z / 6  

4- (24Xs 4- 46)Xs 4- 7)Xz/40 4- (O,75Xs 
4- 0.875)Xx)Xz 

4- s 4- 0.5)Xz/3.0 4- xXO.5)Xz 4- l.O)Xz + x 

u7: normdev := (((((((((720 Xs 4- 2556)Xs 4- 1740)Xs 

+ 127)Xz/7 

4- ((120Xs 4- 326)Xs 4- 127)Xx)Xz/6  

+ (24Xs 4- 46)Xs 4- 7)Xz/40 4- (0.75Xs 

4- 0.875)Xx)Xz 

4- s 4- 0.5)Xz/3.0 4- xX0.5)Xz 4- 1.0)Xz 4- x 

4- 0.83210-- 24Xx 

Coefficients in a similar Taylor series in powers of In(P(x)/p), used 
in AS Algorithm 24 [3], require more computation than the c,(x) 
in these approximations. 

The real procedure supplied by the user for normal(x,y) should 
return the value of the tail area to the left of x and, via the second 
parameter, y, should return the value of q~(x), which is often avail- 
able in the process of computing the tail area. A procedure based on 
Algorithm 304 [4] is recommended since other algorithms such as 
Algorithm 209 [5] and CDFN [6] lose precision as p approaches 
their error levels (about 10 -7, 10 -10 respectively), whereas Algo- 
rithm 304 maintains precision until calculations involving 4,(x) 
exceed the capacity of floating point representation. The similar 
CJ Algorithm 39 [7] matches the precision of u~ and may be readily 
modified to return also the value of q~(x). 

The user-supplied real procedure extreme (p) should cater for 
the cases p = 0, p = 1, by returning suitable extreme values dependent 
on the floating point representation for the processor used, e.g. 
extreme(O) = --37 where binary exponents are ten bits, since 
4~(--37) is approximately 2 -2~° and extreme(l) = 4-7 for 36-bit 
precision, since P(x>7) is approximately 1--2 -~G. If p lies outside 
(0,1) the procedure should provide a diagnostic warning and may 
terminate or return an extreme value such as 4-37 as an indication 
of error to the calling program. 

Precision may be extended by using the D decimal digit result 

from one application of normal and the n-term Taylor series as an 
initial approximation for a second application, thus increasing 
precision to at least (n4-1)(D-log~o(x24-1)) decimal digits (as noted 
by the referee) or at most the precision of normal, e.g. ul(ul) as in 
CDFN1 [6] would have a relative error O(10-~4(x~4-1)), if not 
limited by the use of the lower precision CDFN for normal. For 
double precision calculations the more elaborate higher order 
terms of the Taylor series may be evaluated using single precision 
operations, enabling achievement of extended precision with rela- 
tively little increase in processor time. Calculations to 25 decimal 
digit precision and independently calculated check values to 18 
significant digits I8] confirmed achievement of at least 10 significant 
decimal digits for Algorithm AS 24 and S,, significant digits for this 
procedure, except for limitations of representation of p near 1.0. 
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Algorithm 
real procedure normdev(p, normal, extreme); 

value p; real p; real procedure normal, extreme; 
comment Input parameter p is the cumulative normal probability 

defined by 

E ' p = ~5(t) dt, 4,(t) = ~ exp(--P/2), 

normal (x,y) is a procedure for evaluating the above integral 
for u = x and which returns y = 4~(x), extreme(p) is a procedure 
designed to handle extreme values of p. On completion of ex- 
ecution of this procedure normdev is an approximation for u; 

begin 
real s, x, z; 
x : =  i f p  > 0.5 then 1.0 I p e l s e p ;  
if  x < 0.0 then normdev := extreme (p) 
else 
begin 

comment Initial rational approximation; 
s := sqrt(--2.0 X In(x)); 
x := ((-7.49101 X s - 448.047) × s - 1266.846)/ 

(((s 4- 109.8371) X s + 748.189) X s 4- 498.003) 4- s; 
i f p  < 0.5 t h e n x  :=  - -x ;  
z := p -- normal(x,s); z := z/s; s := x T 2; 

u7: 
normdev := (((((((((720 X s + 2556) X s 4- 1740) X s 

+ 127) X z/7 
+ ((120 X s + 326) X s + 127) X x) X z/6 
+ (24 X s 4- 46) X s 4- 7) X z/40 + (0.75 X s + 0.875) 
X x )  X z  
+ s  +0 .5 )  X z/3.0 + x  X 0.5) X z + 1.0) X z4 -  x 
4- 0.8321o-24 X x 

end seven term Taylor series for 24 decimal precision 
end normal deviate 
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