Algorithm 440

A Multidimensional Monte Carlo Quadrature with Adaptive Stratified Sampling [D1]

L.J. Gallaher (Recd. 10 Dec. 1970, 20 July 1971) Rich Electronic Computer Center, Georgia Institute of Technology, Atlanta, GA 30319

Key Words and Phrases: Monte Carlo quadrature, stratified sampling, adaptive quadrature, sequential stratification
CR Categories: 5.16, 5.5
Language: Algol

Description

This procedure evaluates the n-dimensional integral
$\int_{V(a, b)} v(\mathbf{x}) d \mathbf{x}=\int_{a_{1}}^{b_{1}} \int_{a_{2}}^{b_{2}} \cdots \int_{a_{n}}^{b_{n}} v\left(x_{1}, x_{2}, \cdots, x_{n}\right) d x_{n} \cdots d x_{2} d x_{1}$
by the Monte Carlo method. The variance reduction scheme used here is a form of stratified sampling.

The advantages of stratified sampling are well known [1], and the concept of optimum stratification is discussed in most text books on Monte Carlo methods [2, 3, 4]. The advantages of adaptive quadrature are also well known, and many such algorithms have been published in Communications and elsewhere [5, 6, 7]. Combining adaptive quadrature with stratified sampling is a straightforward process [8, 9].

The workings of this procedure are somewhat similar to Algorithm 303 [6]. Algorithm 303 is one-dimensional, and while it can be used for multidimension integrals by recursive calls, for more than approximately six dimensions the number of evaluations of the integrand becomes intolerable. The goal of the algorithm given here is to try to overcome this defect of Algorithm 303 and other algorithms like it.

The procedure works as follows:

1. A set of samples is taken, uniformly stratified throughout the entire volume being integrated.
2. Based on the variance in these samples, a decision is made as to whether more samples are needed.
3. If more samples are needed, the volume is cut in half and the

Copyright (C) 1973, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, an algorithm is granted, provided that reference is made to this publication, to its date of issue, and to the fact that reprinting privileges were granted by permission of the Association for Computing Machinery.

Submittal of an algorithm for consideration for publication in Communications of the ACM implies unrestricted use of the algorithm within a computer is permissible.
entire procedure (but with fewer samples) is repeated on each half, recursively, the halvings being repeated as required. The choice of axis for the halving is based on samples of the gradient.

The result of this process is that the overall stratification is not uniform, but approaches optimum as more and more samples are taken, since more halvings (thus more samples) are taken in the regions of high variance.

A certain amount of caution must be used in the choice of the input parameter m ($m+n$ is the number of samples taken initially). If the function being integrated is reasonably smooth, relatively low values of m (say 5 to 10) are satisfactory. If $v(\mathbf{x})$ is known to have sharp peaks, ridges, valleys, or pits, then large values of m will be necessary in order to avoid missing these high and low spots. A rough rule is that m should be inversely proportional to the error tolerance and proportional to the logatithm of volume of anomalous regions. If V_{A} is the fractional volume of the anomalous regions and E_{r} is the relative error tolerance, then the empirical rule $m \gtrsim\left(-2 \ln \left(V_{A}\right)\right) / E_{r}$ has proved satisfactory. For this quadrature algorithm to be useful, the results should be insensitive to the users choice of m, and this has been observed provided m is not chosen too small. (This difficulty about the occasional need to choose m shrewdly is characteristic of all adaptive quadrature schemes, whether Monte Carlo or "exact" methods such as Romberg, Simpson, or others.)

As a test of this procedure, 100 evaluations were made of the volume of $1 / 32$ of a hypersphere in five dimensions (in rectangular coordinates), i.e.
$\int_{0}^{R} \int_{0}^{R} \int_{0}^{R} \int_{0}^{R}\left\{\begin{array}{l}\text { if } \sum_{1 \leq i \leq 4} x_{i}{ }^{2} \geq R^{2} \text { then } 0 \\ \text { else }\left(R^{2}-\sum_{1 \leq i \leq 4} x_{i}{ }^{2}\right)^{1 / 2}\end{array}\right\} d x_{1} d x_{2} d x_{3} d x_{1}$,
with 3% accuracy requested. A histogram is given below of the values obtained.

Number of occurrences	4	0	8	14	18	16	20	14	5	1	
$\overline{I_{\text {aba }} / /_{\text {exact }}}$				70	8	9	0	1			1.04

Here $I_{o b}$ is the value observed, $I_{\text {exact }}$ is the correct value. The initial value of m was 120 , and the average number of function evaluations per integral was 1427. The standard error for the 100 evaluations was approximately 2%. Foc corresponding accuracy, about 4.5 times as many samples would have been needed by unstratified uniform sampling.

Finally it should be pointed out that the results given by adaptive stratification are not entirely unbiased in the usual sense of the Monte Carlo method. There is, in fact, a biasing in favor of regions having low values of the magnitude of the gradient. However, this bias should normally be expected to be much smaller than the requested error tolerance.

Acceptable random number generators for this algorithm may be found in [10].

References

1. Cochran, William G. Sampling Techniques. Wiley, New York, 1953 (2nd ed. 1963).
2. Kahn, Herman. Applications of Monte Carlo. RM-1237-AEC, Rand Corp., Santa Monica, Calif., Apr. 1954 (revised Apr. 1956).
3. Hammersley, J.M., and Handscomb, D.C. Monte Carlo Methods. J. Wiley, New York, 1964.
4. Spanier, Jerome, and Gedbard, Ely M. Monte Carlo Principles and Neutron Transport Problems. Addison-Wesley, Reading, Mass., 1969.
5. McKeeman, William M. Algorithm 145: Adaptive numerical integration by Simpson's rule. Comm. ACM 5 (Dec. 1962), 604.
6. Gallaher, L.J. Algorithm 303: An adaptive quadrature procedure with random panel sizes. Comm. ACM 10 (June 1967), 373-374.
7. Lyness, J.N. Algorithm 379: SQUANK (Simpson quadrature used adaptively-noise killed). Comm. ACM 13 (Apr. 1970), 260-263.
8. Halton, J.H., and Zeidman, E.A. Monte Carlo integration and sequential stratification. Comput. Sci. Tech. Rep. 13, U. of Wisconsin, Madison, Wis. 1968.
9. Zeidman, E.A. The Evaluation of multidimensional integrals by sequential stratification. (to be published).
10. Halton, John H. A retrospective and prospective survey of the Monte Carlo method. SIAM Rev. 12, 1 (Jan. 1970), 1-63.

Algorithm
real procedure quadmc ($n, a, x, b, v x, e s q, m, V a b, r n$);
value n, esq, $m, V a b$;
integer n, m; real $v x$, esq, Vab, rn;
array a, x, b;
comment The procedure parameters are:
n - number of dimensions, $n \geq 1$
a - array of n lower bounds
x - array of n position coordinates of which $v\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is a function, x is called by name
b - array of n upper bounds (it is not required that $b_{i}>a_{i}$)
$v x$ - function to be integrated, $v x$ must be a function of the array
x (Jensen's device) and be called by name
$e s q$ - square of the absolute error tolerance for the quadrature
m - the number of samples to be taken at the first level is $m+n$, $m \geq n$
$V a b-$ volume being integrated, i.e. $V a b=\prod_{1 \leq i \leq n}\left|\left(b_{i}-a_{i}\right)\right|$
$r n$ - procedure to give a new random number uniform on the open interval zero to one ($0<r n<1$) each time referenced, called by name.
All of these parameters are input parameters to be supplied by the user.
Some of the local variables of this procedure are:
$v b a r$ - average value of $v(\mathbf{x})$ for $m+n$ samples, i.e.
$\bar{v} \equiv \frac{1}{m+n} \sum_{1 \leq i \leq m+n} v\left(\mathbf{x}_{i}\right)$
v sqbar - average value of $v(\mathbf{x})^{2}$ for $m+n$ samples, i.e.
$\overline{v^{2}}=\frac{1}{m+n} \sum_{1 \leq i \leq m+n} v\left(\mathbf{x}_{i}\right)^{2}$
$s s q$ - the square of the standard error of the mean (of the integral) for $m+n$ samples, i.e.
$\sigma^{2}=\frac{\left(\overline{v^{2}}-\bar{v}^{2}\right)}{(m+n-1)} V_{a b}^{2}$
$v i$ - value of $v(\mathbf{x})$ at i th sample, i.e. $v\left(\mathbf{x}_{i}\right)$
$v i p-$ a value of $v(\mathbf{x})$ such that $2|v i p-v i|$ is a sample of the magnitude of the i th component of the average normalized gradient, $1 \leq i \leq n$
it - vector of shuffled integers 1 to m
j - array of n different vectors of shuffled integers 1 to m used in constructing the (uniform) stratification
$c l$ - point on the l th axis that divides the volume of integration in half for the next recursive level, i.e. $c l=(b[l]-a[l]) / 2$,
l - index of the axis having the largest in magnitude sample of the component of the average normalized gradient.
end of comment;
begin

$$
\text { integer } l \text {; real vbar, ssq; }
$$

if $m<n$ then $m:=n$;
begin
real $g m, v i$, vip, vsqbar;
integer itemp, ir, k, i;
array $h[1: n]$;
integer array $j[1: n, 1: m], i t[1: m]$;
for $i:=1$ step 1 until m do $i t[i]:=i$;
for $k:=1$ step 1 until n do
begin
$h[k]:=(b[k]-a[k]) / m ;$
for $i:=1$ step 1 until m do
begin
ir : $=$ entier $(r n \times m)+1$;
comment $0<r n<1$;
itemp $:=i t[i] ; i t[i]:=i t[i r] ; i t[i r]:=i t e m p ;$
end;
for $i:=1$ step 1 until m do $j[k, i]:=i t[i] ;$
end;
$l:=1$;
vsqbar $:=v b a r:=g m:=0 ;$
for $i:=1$ step 1 until m do
begin
for $k:=1$ step 1 until n do
$x \mid k]:=a[k]+(j[k, i]-r n) \times h[k] ;$
$\nu i:=\nu x ;$
$v b a r:=v b a r+v i ;$
vsqbar $:=v s q b a r+v i \uparrow 2 ;$
if $i \leq n$ then
begin
comment Sample the gradients;
$x[i]:=x[i]+a b s(b[i]-a[i]) / 2 \times$
(if $x[i]<(b[i]+a[i]) / 2$ then 1 else -1);
$v i p:=v x$;
$v b a r:=v b a r+v i p ;$
vsqbar $:=v s a b a r+v i p \uparrow 2 ;$
if $g m<a b s(v i p-v i)$ then
begin
$l:=i ; g m:=a b s(v i p-v i) ;$
end;
end;
end;
vbar: $:=\operatorname{var} /(m+n)$;
vsqbar $:=\nu s q b a r /(m+n)$;
$s s q:=V a b \uparrow 2 \times(v s q b a r-v b a r \uparrow 2) /(m+n-1) ;$
end;
if $s s q \leq 2 \times e s q$ then quadmc $:=v b a r \times V a b$ else
begin
real temp, cl, al, bl;
$m:=m \times 0.707$;
if $m<s s q / e s q$ then $m:=s s q / e s q$;
comment The author is indebted to the referee's
discussions pointing out the significance of maintaining
$m \gtrsim s s q / e s q ;$
$e s q:=e s q \times s s q /(s s q-e s q) ;$
$a l:=a[l] ; \quad b l:=b[l] ;$
$b[l]:=c l:=(b l+a l) / \mathbf{2} ;$
temp $:=\operatorname{quadmc}(n, a, x, b, v x, e s q / 2, m, V a b / 2, r n)$;
$b[l]:=b l ; \quad a[l]:=c l ;$
temp $:=\operatorname{quadmc}(n, a, x, b, v x, e s q / 2, m, V a b / 2, r n)+t e m p ;$
$a[l]:=a l$;
quadmc $:=($ temp $\times s s q+e s q \times v b a r \times V a b) /(s s q+e s q) ;$
end;
end of quadmc

Algorithm 441

Random Deviates from the Dipole Distribution [G5]

Robert E. Knop [Recd. 12 Jan. 1971, 7 May 1971, 23
Aug. 1971, and 8 Mar. 1972]
Department of Physics, The Florida State University, Tallahassee, FL 32306

Key Words and Phrases: random number, probability density, probability distribution, Dipole distribution, Cauchy distribution, simulation, Monte Carlo

CR Categories: 3.17, 5.5
Language: Fortran

Description

The function subprogram $D I P O L E$ returns a random deviate $-\infty<z<\infty$ sampled from the two parameter ($R^{2}<1$, α arbitrary) family of density functions:

$$
\begin{aligned}
f(z)= & 1 /\left(\pi\left(1+z^{2}\right)\right) \\
& +R^{2} \times\left(\left(1-z^{2}\right) \times \cos (2 \alpha)+2 \times z \times \sin (2 \alpha)\right) /\left(\pi \times\left(1+z^{2}\right)^{2}\right)
\end{aligned}
$$

The cumulative distribution function is:

$$
\begin{aligned}
F(z)= & (1 / 2)+(1 / \pi) \times \tan ^{-1}(z) \\
& +R^{2} \times\left(z \times \operatorname{co}\left(s(2 \alpha-\sin (2 \alpha)) /\left(\pi \times\left(1+z^{2}\right)\right)\right.\right.
\end{aligned}
$$

Densities of this type commonly occur in the analysis of resonant scattering of elementary particles. We note that when $R=0$ we have the Cauchy [1] or Breit-Wigner [2] density. When $R=1$ and $\alpha=0$ we have the single channel dipole density. ${ }^{1}$ The dipole density with free parameters has been proposed to describe multichannel resonant scattering [3].

The algorithm begins by sampling the random vector (x, y) from a density uniform over the unit disk. The center of the unit disk is then displaced from the origin by the transformations $u=x+R \times \cos (\alpha)$ and $v=y+R \times \sin (\alpha)$. Letting $u=r \times \cos (\theta)$ and $v=r \times \sin (\theta)$ we can find the marginal density of θ :
$f(\theta)=1 /(2 \pi) \times\left(\int_{0}^{r_{+}^{2}} d s+\int_{0}^{r_{-}^{2}} d s\right)$
where the limits of integration for r are given by:
$r_{ \pm}(\theta)=R \times \cos (\theta-\alpha) \pm\left(1-R^{2} \times \sin ^{2}(\theta-\alpha)\right)^{\frac{1}{2}}$.
The marginal density of θ is thus:
$f(\theta)=\left(1+R^{2} \cos (2 \times(\theta-\alpha))\right) / \pi$
for $-\pi / 2<\theta<\pi / 2$. The transformation $z=\tan (\theta)=v / u$ then yields the dipole density function. Other densities which could be easily sampled by computing rational functions of u and v are suggested by transformations such as $z=\tan ^{2}(\theta), \sin ^{2}(\theta), \sin (2 \times \theta)$, or $1 /|\sin (2 \times \theta)|-1$.

Function DIPOLE has two arguments which must be calculated by the calling program, $A=R \times \cos (\alpha)$ and $B=R \times \sin (\alpha)$. DIPOLE calls the function $R 11(D)$ which must return a random deviate from the uniform distribution over the interval $(-1,1)$. D represents a dummy argument.

This work was supported in part by the U.S. Atomic Energy Commission.
${ }^{1}$ The density is named after the analytic property of having poles of order 2 in the complex plane. See [2].

The author wishes to express his gratitude to Prof. R.G. Glasser of the University of Maryland for comments concerning this algorithm.

References

1. von Neumann, J. Various techniques used in connection with random digits. In Nat. Bur. Standards Appl. Math. Ser. 12, U.S. Gov. Print. Off., Washington, D.C., 1951, p. 36.
2. Goldberger, M.L., and Watson, K.M. Collision Theory. J Wiley, New York, 1964, Chap. 8.
3. Rebbi, C., and Slansky, R. Doubled resonances and unitarity. Phys. Rev. 185, 1838 (1969).

Algorithm

FUNCTIEN DIPOLE(A, $B)$
$x=R 11(D)$
$Y=R 11(D)$
IF(1.0-X*X-Y*Y) 10,10,20
20 DIPELE $=(Y+B) /(X+A)$
RETURN
END

Algorithm 442

Normal Deviate [S14]
G.W. Hill and A.W. Davis [Recd. 20 Jan. 1971 and 2 Aug. 1971]
C.S.I.R.O. Division of Mathematical Statistics, Glen Osmond, Sth. Australia

Key Words and Phrases: normal distribution inverse, probit transform, Taylor series approximation

CR Categories: 5.12, 5.5
Language: Algol

Description

This procedure evaluates the inverse of the cumulative normal distribution, i.e. the normal deviate $u(p)$, corresponding to the probability level p, where
$p=P(u)=\int_{-\infty}^{u} \phi(t) d t, \quad \phi(t)=\frac{1}{(2 \pi)^{\frac{1}{2}}} \exp \left(-t^{2} / 2\right)$.
An initial approximation to $u(p)$, such as $x(p)$, may be improved by using an expansion of $u(z)$, defined as the inverse of
$z=p-P(x)=\int_{x}^{u} \phi(t) d t$.
$u(z)$ may be developed in a Taylor series about $z=0$, where $u(0)=x$, see ref. [1],
$u_{n}=x+\sum_{r=1}^{n} c_{r}(x)\left(\frac{z}{\phi(x)}\right)^{r} / r!$,
and

$$
\begin{aligned}
c_{1}(x)=1, c_{2}(x)=x, c_{3}(x)=2 x^{2}+1, c_{4}(x)= & 6 x^{3}+7 x \\
& c_{r+1}(x)=(r x+d / d x) c_{r}(x)
\end{aligned}
$$

An error $\epsilon(x)$ in the initial approximation, $u_{0}=x(p)$, entails an error $\epsilon_{n}(x)$ in u_{n} of the order of $\epsilon^{n+1} c_{n+1}(x) /(n+1)$! In order to minimize the maximum relative error $R_{n}=\max \left|\epsilon_{n} / u_{n}\right|$ in the result obtained from n terms of the Taylor series, several sets of coefficients in an initial rational approximation styled after Hastings [2]
$x(p)=s-\frac{a+b s+c s^{2}}{d+e s+f s^{2}+s^{3}}, \quad s=(-2 \ln (p))^{\frac{1}{2}}, \quad 0<p<0.5$,
have been obtained such that $\left|[\epsilon(x)]^{n+1} c_{n+1}(x) / x\right|$ is mininıax for $|x|<40$. For odd n the minimized expression is an even function of ϵ and x, so that the relative error level may be halved when n is odd by adding $\frac{1}{2} x R_{n}$. The resulting precision is shown below as S_{n}, i.e.
$10^{-S_{n}}=\max \left|\frac{\text { error(result })}{\text { result }}\right|$
$u_{1} 1271.059450 .636$ 7.45551 $500.756750 .365110 .42120 .622_{10}-7$
$\begin{array}{lllllllll}u_{1} & 1271.059 & 450.636 & 7.45551 & 500.756 & 750.365 & 110.4212 & 0.622_{10}-7 & 7.50\end{array}$ $u_{2} \quad 1484.397494 .3277 .61067589 .557855 .441119 .47330 .644_{10}-1010.19$ $u_{3} 1251.789444 .7517 .51005493 .187739 .156109 .39670 .743_{10}-1313.43$ $u_{4} 1637.720494 .8777 .47395659 .935908 .401117 .94070 .111_{10}-1515.95$ $u_{5} 1488.369460 .200 \quad 7.38458 \quad 598.957831 .379 \quad 110.7527 \quad 0.940_{10}-1919.37$ $\begin{array}{lllllllllll}u_{6} & 1269.225 & 448.718 & 7.49755 & 499.171 & 749.275 & 110.0194 & 0.759_{10}-21 & 21.12\end{array}$ ич $1266.846448 .0477 .49101498 .003748 .189109 .8371 \quad 0.166_{10}-2324.07$

According to the precision required, one set of coefficients and the corresponding labeled statement, selected from the following list, should be incorporated in the procedure body as illustrated for the case of u_{7}.

$$
\begin{aligned}
\text { u1: normdev }:= & z+x \times 1.0000000311 \\
\text { u2: normdev }:= & (x \times z \times 0.5+1.0) \times z+x \\
u 3: \text { normdev }:= & (((s+0.5) \times z / 3.0+x \times 0.5) \times z+1.0) \times z+x \\
& +0.3713_{10}-13 \\
u 4: \text { normdev }:= & (((((s \times 0.75+0.875) \times z+x) \times x+0.5) \times z / 3.0 \\
& +x \times 0.5) \times z+1.0) \times z+x \\
u 5: \text { normdev:= } & ((((((s \times 0.6+1.15) \times s+0.175) \times z \\
& +(s \times 0.75+0.875) \times x) \times z+s+0.5) \times z / 3.0 \\
& +x \times 0.5) \times z+1.0) \times z+x \\
& +0.42_{10}-19 \times x \\
& +(((((120 \times s+326) \times s+127) \times x \times z / 6 \\
& +(24 \times s+46) \times s+7) \times z / 40+(0.75 \times s \\
& +0.875) \times x) \times z \\
& +s+0.5) \times z / 3.0+x \times 0.5) \times z+1.0) \times z+x \\
\text { unormdev: } & \\
u 7: \text { normdev:=} & ((((((((720 \times s+2556) \times s+1740) \times s \\
& +127) \times z / 7 \\
& +((120 \times s+326) \times s+127) \times x) \times z / 6 \\
& +(24 \times s+46) \times s+7) \times z / 40+(0.75 \times s \\
& +0.875) \times x) \times z \\
& +s+0.5) \times z / 3.0+x \times 0.5) \times z+1.0) \times z+x \\
& +0.832_{10}-24 \times x
\end{aligned}
$$

Coefficients in a similar Taylor series in powers of $\ln (P(x) / p)$, used in AS Algorithm 24 [3], require more computation than the $c_{n}(x)$ in these approximations.

The real procedure supplied by the user for normal (x, y) should return the value of the tail area to the left of x and, via the second parameter, y, should return the value of $\phi(x)$, which is often available in the process of computing the tail area. A procedure based on Algorithm 304 [4] is recommended since other algorithms such as Algorithm 209 [5] and $C D F N$ [6] lose precision as p approaches their error levels (about $10^{-7}, 10^{-10}$ respectively), whereas Algorithm 304 maintains precision until calculations involving $\phi(x)$ exceed the capacity of floating point representation. The similar CJ Algorithm 39 [7] matches the precision of u_{2} and may be readily modified to return also the value of $\phi(x)$.

The user-supplied real procedure extreme (p) should cater for the cases $p=0, p=1$, by returning suitable extreme values dependent on the floating point representation for the processor used, e.g. extreme $(0)=-37$ where binary exponents are ten bits, since $\phi(-37)$ is approximately $2^{-2^{10}}$ and extreme $(1)=+7$ for 36 -bit precision, since $P(x>7)$ is approximately $1-2^{-36}$. If p lies outside $(0,1)$ the procedure should provide a diagnostic warning and may terminate or return an extreme value such as +37 as an indication of error to the calling program.

Precision may be extended by using the D decimal digit result
from one application of normal and the n-term Taylor series as an initial approximation for a second application, thus increasing precision to at least $(n \dot{+} 1)\left(D-\log _{10}\left(x^{2}+1\right)\right)$ decimal digits (as noted by the referee) or at most the precision of normal, e.g. $u_{1}\left(u_{1}\right)$ as in CDFNI [6] would have a relative error $O\left(10^{-14}\left(x^{2}+1\right)\right)$, if not limited by the use of the lower precision CDFN for normal. For double precision calculations the more elaborate higher order terms of the Taylor series may be evaluated using single precision operations, enabling achievement of extended precision with relatively little increase in processor time. Calculations to 25 decimal digit precision and independently calculated check values to 18 significant digits [8] confirmed achievement of at least 10 significant decimal digits for Algorithm AS 24 and S_{n} significant digits for this procedure, except for limitations of representation of p near 1.0 .

References

1. Hill, G.W., and Davis, A.W. Generalized asymptotic expansions of Cornish-Fisher type. Ann. Math. Statist. 39, 4 (Aug. 1968), 1264-1273.
2. Hastings, C. Jr. Approximations for Digital Computers.

Princeton U. Press, Princeton, New Jersey, 1955, pp. 191-192.
3. Cunningham, S.W. Algorithm AS 24, From normal integral to deviate. J.R. Statist. Soc. C. 18, 3 (1969), 290-293.
4. Hill, I.D., and Joyce, S.A. Algorithm 304, Normal. Comm. ACM 10, 6 (June 1967), 374.
5. Ibbetson, D. Algorithm 209, Gauss. Comm. ACM 6, 10 (Oct. 1963), 616.
6. Milton, R.C., and Hotchkiss, R. Computer evaluation of the normal and inverse normal distribution functions. Technometrics 11, 4 (Nov. 1969), 817-822.
7. Adams, A.G. Algorithm 39. Areas under the normal curve. Comp. J. 12, 2 (May 1969), 197-198.
8. Strecok, A.J. The inverse of the error function. Math. Comp. 22, 101 (Jan. 1968), 144-158.

```
Algorithm
real procedure normdev(p, normal, extreme);
    value p; real p; real procedure normal, extreme;
    comment Input parameter p is the cumulative normal probability
        defined by
        p= \int}\mp@subsup{\int}{-\infty}{u}\phi(t)dt,\quad\phi(t)=\frac{1}{(2\pi\mp@subsup{)}{}{\frac{1}{2}}}\operatorname{exp}(-\mp@subsup{t}{}{2}/2)
        normal (x,y) is a procedure for evaluating the above integral
        for }u=x\mathrm{ and which returns }y=\phi(x),\operatorname{extreme(p) is a procedure
        designed to handle extreme values of p. On completion of ex-
        ecution of this procedure normdev is an approximation for u;
begin
    real s, x, z;
    x:= if p>0.5 then 1.0 - p else p;
    if }x<0.0\mathrm{ then normdev := extreme ( }p\mathrm{ )
    else
    begin
        comment Initial rational approximation;
```



```
        x:=((-7.49101\timess-448.047)\timess-1266.846)/
            (((s+109.8371) < s+748.189) < s+498.003) + s;
        if p<0.5 then x:= - x;
        z:=p-normal(x,s);z:=z/s;s:== x\uparrow2;
u7:
        normdev := ((()((()(720 ) s + 2556) }\timess+1740)\times
        +127)\timesz/7
        +((120\timess+326)}\timess+127)\timesx)\timesz/
        +(24\timess+46)\timess+7)}\timesz/40+(0.75\timess+0.875
        X x)}\times
        +s+0.5)\timesz/3.0+x\times0.5)\timesz+1.0)}\timesz+
        +0.832 10-24 < x
    end seven term Taylor series for 24 decimal precision
```

end normal deviate

Communications
of
the ACM

January 1973
Volume 16
Number 1

