
A l g o r i t h m s

L . D . F o s d i c k a n d

A . K . C l ine , E d i t o r s

Submittal of an algorithm for consideration for publication in
Communications of the ACM implies unrestricted use of the
algorithm within a computer is permissible.

Copyright © 1973, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, an algorithm

is granted, provided that reference is made to this publication, to
its date of issue, and to the fact that reprinting privileges were
granted by permission of the Association for Computing Machinery.

Algorithm 444

An Algorithm for Extracting
Phrases in a Space-Optimal
Fashion [Z]
R . A . W a g n e r [Recd . 5 M a r . 1971 a n d 30 A u g . 1971]

D e p a r t m e n t o f S y s t e m s a n d I n f o r m a t i o n Sc ience ,

V a n d e r b i l t U n i v e r s i t y , N a s h v i l l e , T N 37203

Key Words and Phrases: information retrieval, coding, text
compression

CR Categories: 3.70, 5.6
Language: PL/I

Description
Introduction. The algorithm P A R S E computes and prints a

minimum-space form o f a textual message, MS. The
minimization is performed over all possible "parses" of M S
into sequences of phrase references and character strings. Each
phrase reference represents one of a finite collection, P, of
phrases. The collection, P, must be selected before P A R S E is
applied.

Assumptions and requirements. P A R S E assumes that the unit
of storage is the byte, defined such that one byte can hold either
a single character of text or an integer i in the range 0 _< i < 14".
(For IBM 360 equipment, W = 256 = 2**8). P A R S E also
assumes that the number of different phrases in the collection P
is no larger than W**PHC, and that each message to be parsed
contains fewer than W**CHC characters of text. The parameter
values CHC = PHC = 1 appear appropriate on IBM 360
equipment, when P A R S E is applied to short messages, such as
compiler error messages.

P A R S E requires two arguments. The first is the message to
be parsed; the second is the table of common phrases which
may be used in the parse.

P A R S E assumes that an external procedure H A S H is
present; HASH(MS, I,K) is defined as follows: Let/-/1, H ~ , . . . ,
H,~ be a sequence of indices such that among them they exhaust
all entries P(Hi) such that

SUBSTR(MS, I,3) = SUBSTR(P(H~),I,3).

(That is, the H~'s include indices for every phrase P(Hi) which
agrees with characters 1, 1 + 1, and ! + 2 of the given
message. Other indices may occur among the Hi's, as well.)
Then HASH(MS,I,O) = I l l , HASH(MS,I,H~) = Hi+t, and
HASH(MS,I,H,~) = O.

A "hash table" procedure can easily be modified to yield
this performance; an equally useable, although slower version
returns MOD(K + 1, M q- 1) on every call. A procedure
H A S H is included below.

Methods. The method used to determine which phrases to
extract from the given message is described in [1]. The resulting
parsed message requires least space, assuming that messages are
storable only as described in [1]--that is, as sequences of

C (number) (character string)
I P (number)

representing a literal string of characters, and a reference to a
common phrase, respectively.

During the course of the computation, arrays G and H are
filled with values of functions g and h, respectively, as defined
in [1]. Just before label BUILD is reached,

H(I) = length of the best parse of SUBSTR(MS,I) , and
G(1) = length of the best parse of SUBSTR(MS,I) among

those parses beginning with a character string,

both for I = 1 , . . . , LENGTH(MS).
Internally, P A R S E uses a single array, Z, paralleling the

function arrays G and H, to retain the information needed for
re-constructing the parsed form of the message.

Z(1) = K, if G (1) > H(I), where K is the number of t h e " best"
common phrase matching M S at I, or

= J, if G(1) = H(I). (G(I) < H(I) is impossible.)

J gives the index of the end (plus one) of the character string
starting at L In this case, the best parse at I begins with this
character string. J satisfies: G(J) > H(J) and for all k, I _< k
< J, G(k) = H(k).

Results: To make the printed form of the parsed message
more intelligible, P A R S E prints:
tC (number) ~ as t~cldd t
vp (number)t as V%ddd t
where "ddd" is the 3-digit decimal representation of (number)
+ 1. In practice, a number representing a character count or
phrase index can be stored as an integer, in place of CHC or
PHC characters respectively. Thus, the character string
'ABC v would be stored as tC2ABC t, where 2 is a CHC-byte
integer whose value is 2. The same string would be printed by
the P A R S E algorithm as t~OO3ABC*.

The program P A R S E returns the number of bytes needed to
store MS, given the particular set of extractable phrases in P.

A sample driver, two sample input streams and associated
output follow the procedures P A R S E and HASH.

References
1. Wagner, R.A. Common phrases and minimum-space text
storage. Comm. A C M 16, 3 (Mar. 1973), 148-152.
2. Bell, James R. The quadratic quotient method; a hash code
eliminating secondary clustering. Comm. A C M 13, 2 (Feb. 1970),
107-109.

Algorithm (Figures 1-6 follow.)

1113 Communications March 1973
of Volume 16
the ACM Number 3

http://crossmark.crossref.org/dialog/?doi=10.1145%2F361972.361998&domain=pdf&date_stamp=1973-03-01

Fig. I. The PARSE Algorithm.
PARSE: PROC(MS,P) RETURNS(FIXED BINARY);

DCL (MS,P(*)) CHAR(*) VARYING;
DCL N;
DCL HASH RETURNS(FIXED BINARY);
DCL (CHC, /* BYTES PER CHARACTER-COUNT */

PHC) /* BYTES PER PHRASE-INDEX */
STATIC EXTERNAL FIXED BINARY;

N=LENGTH(MS);
BEGIN;

DCL(G,H,Z)(N+I) FIXED BINARY;
DCL(I,J,K,L,T) FIXED BINARY;

G(N+])=3; H(N+I)=I; J,Z(N+I)=N+I;
MSGP: DO I=N BY -I TO l ;

K=HASH(MS,I,OB);
H(1), G(1) = MIN(G(I+I)+], H(I+I)+CHC+2);
Z(1)=J;

/* J HOLDS INDEX OF END+I OF NEXT CHAR-STRING */
M]: DO WHILE (K>O);

L=LENGTH(P(K));
IF L 3> N-I+l THEN
IF L < N THEN
IF SUBSTR(MS,I,L)=P(K) THEN DO;

T=H(I+L)+PHC+I;
IF H(I)>T THEN DO;

H(1)=T; Z(1)=K; d=I;
END;

END;
K:HASH(MS,I,K);
END Ml;

END MSGP;

PUT SKIP EDIT(H(1),N+3,': ')(2 F(4),A);
l=l; GOTO BI;

BUILD:
IF H(1)<G(1) THEN DO;

PUT EDIT('%', Z(1))(A,P'999');
I=I+LENGTH(P(Z(1)));
END;

ELSE DO;
J=Z(1)-I;
PUT EDIT('#',J,SUBSTR(MS,I,J))(A,P'999',A);
l=Z(1);
END;

Bl: IF I~ >N THEN GOTO BUILD;
PUT EDITI'.')(A);
RETURN(H(1));

END PARSE;

Fig. 2. An acceptable HASH procedure.
HASH: PROC(MS,I,K) RETURNS(FIXED BINARY);

DCL MS CHAR(*), J FIXED BINARY(31,O),
(HT (0:20O)INIT((201)O),

KJ, HP INIT(197),
HX,HY,HZ) FIXED BINARY STATIC;

DCL (CHC, /* BYTES PER CHARACTER-COUNT */
PHC) /* BYTES PER PHRASE-INDEX */
STATIC EXTERNAL FIXED BINARY;

CALL HCMN(K);
RETURN(HT(HZ));

HCMN: PROC(K);
IF K = 0 THEN

IF LENGTH(MS)-I < PHC+I THEN HZ=-I;
ELSE DO;

UNSPEC(J)=UNSPEC(SUBSTR(MS,I,PHC+2));
HZ=MOD(J,HP);
HY=J/HP;
HX:O;
END;

ELSE DO;
HX=MOD(HX+HY,HP);
HZ=MOD(HX+HZ,HP);
END;

HZ=HZ+I;
RETURN;
END HCMN;

ENTER: ENTRY(MS,I,K);
IF LENGTH(MS) < PHC+2 THEN RETURN;
KJ=O;

El: CALL HCMN(KJ);
KJ=HT(HZ);
IF KJ > 0 THEN GOTO El;
HT(HZ)=K;
RETURN;
END HASH;

Fig. 3. A driver for the PARSE procedure.
DRIVER: PROC OPTIONS(MAIN).

DCL MS CHAR(256) VARYING;
DCL NP,M;
DCL (HASH RETURNS(FIXED BINARY), ENTER)

ENTRY(CHAR(256) VARYING, FIXED BINARY, FIXED BINARY);
DCL PARSE RETURNS(FIXED BINARY);
DCL (CHC, /* BYTES PER CHARACTER-COUNT */

PHC) /* BYTES PER PHRASE-INDEX */
STATIC EXTERNAL FIXED BINARY;

CHC,PHC=I; / * COUNT/INDEX SIZE=I BYTE */
GET SKIP LIST(NP,M);
BEGIN;

DCL P(NP) CHAR(M) VARYING;
DCL NB,NA,I,J;

NB,NA=O;
DO I=l TO NP;
GET SKIP LIST(P(1));
CALL ENTER(P(1),I , I) ;
END;

184

PUT PAGE LIST('PHRASES, AND THEIR PARSED FORMS');
DO I=l TO NP;

PUT SKIP(2) EDIT(I,' II P (I) I I )
(F (4) , ~) i .

NA=RA+PARSE(P(1),P);
END;

PUT PAGE LIST('MESSAGES:');
Ll: GET SKIP LIST(MS);

PUT SKIP(2) LIST(. . . . II MS);
IF MS=" THEN GOTO L2;
NB=NB+LENGTH(MS)+CHC+2;

/* ALLOW FOR STRING-OVERHEAD + END MARK */
NA=NA+PARSE(MS,P);
GOTO LI;

L2: PUT SKIP EDIT('FINAL STATISTICS:',
'WITHOUT PHRASE EXTRACTION:',N8,
'AFTER PHRASE EXTRACTION:',NA,
'SAVING:',NB-NA,
' (',(NB-NA)*IOO/NB,'%)')

(A,3(SKIP,A,F(5)),A,F(5,1),A);
RETURN;
END DRIVER;

Fig. 4. Sample input files.
(a) Two phrases, four messages. Illustrates heavily overlapping
phrases.
(b) Five phrases, 23 messages. These messages are the first 23
numbered error messages from the syntactic analysis section of
the PL/C compiler.
A

CMS03 LISTING OF INPUT STREAM
DO001
00002 2,10
00003 'AAAAA'
00004 'AAAJ~AA'
00005 'AA.NAAAAAAA'
00006 'MAAAAAAAAAA'
00007 'AAAAAANAAAAAAA'
00008 'AAAAAA.AAAAAAAAA'
00009 "

B
CMS03 LISTING OF INPUT STREAM

O0001
00002 5,20
00003 'EXTRA '
00004 'MISSING '
00005 'IMPROPER '
00006 'SEMI-COLON'
00007 'EXPRESSION'
00008 'EXTRA ('
00DO9 'MISSING ('
ODOIO 'EXTRA)'
O0011 'MISSING)'
ODOI2 'EXTRA COMMA'
O00l 3 'MISSING COMMA'
00014 'EXTRA SEMI-COLON'
DOOI5 'MISSING SEMI-COLON'
00016 'MISSING :'
DOOI7 'MISSING ='
00018 'IMPROPER *'
00019 'MISSING *'
00020 'EXTRA END'
00021 'MISSING END'
00022 'MISSING KEYWORD'
00023 'INCOMPLETE EXPRESSION'
00024 'MISSING EXPRESSION'
00025 'MISSING VARIABLE'
00026 'MISSING ARGUMENT, I SUPPLIED'
00027 'EMPTY LIST'
00028 'IMPROPER NOT'
0D029 'IMPROPER ELEMENT'
0 0 0 3 0 'UNTRANSLATABLE STATEMENT'
00031 "

Fig. 5. Result of applying DRIVER to the cards listed in Figure
4(a). Note that phrase 2 is itself reduced in size by PARSE, while
each of the messages are reduced to strings of phrase references
alone.
PHRASES, AND THEIR PARSED FORMS

I 'AAAAA'
8 8: #O05AAAAA.

2 'AAAAAAA'
7 lO: #O02AA%00I.

MESSAGES:

'AAAAAAAAAA'
5 13: %001%001.

'AAAAAAAAAAAA'
5 15: %001%002.

'AAAAAAAAAAAAAA'
5 17: %002%002.

'AAAAAAAAAAAAAAA'
7 18: %001%001%001.

FINAL STATISTICS:
WITHOUT PHRASE EXTRACTION:
AFTER PHRASE EXTRACTION:
SAVING: 26 (41.3%)

Communications
of
the ACM

63
37

March 1973
Volume 16
Number 3

Fig. 6. Result of applying DRIVER to the cards listed in Figure 4(b).
PHRASES, AND THEIR PARSED FORMS

1 'EXTRA '
9 9: #O06EXTRA .

2 'MISSING '
I I I f : #OO8MISSING .

3 'IMPROPER '
12 12: #OOglMPROPER .

4 'SEMI-COLON'
13 13: #OlOSEHI-COLON.

5 'EXPRESSION'
13 13: #01OEXPRESSION.

MESSAGES:

'EXTRA ('
6 I0: %O01#OOl(.

'MISSING ('
6 12: %002#00](.

'EXTRA)'
6 lO: %OOl#O01).

'MISSING)'
6 12: %002#001),

'EXTRA COMMA'
IO 14: %001#OOSCOMMA.

'MISSING COiV~4A '
lO 16: %O02#OO5COMMA.

'EXTRA SEMI-COLON'
5 19: %00I%004.

'MISSING SEMI-COLON'
5 21: %002%004.

'MISSING :'
6 12: %002#001:,

'MISSING ='
6 12: %OO2#OOl=.

'IMPROPER * '
6 13: %003#001*.

'MISSING * '
6 12: %002#001*.

'EXTRA END'
G 12: %OOI#OO3END.

'MISSING END'
8 14: %002#OO3END.

'MISSING KEYWORD'
12 18: %OO2#O07KEYWORD.

'INCOMPLETE EXPRESSION'
16 24: #OIIINCOMPLETE %005.

'MISSING EXPRESSION'
5 21: %002%005.

'MISSING VARIABLE t
13 19: %OO2#OO8VARIABLE.

'MISSING ARGUMENT, 1 SUPPLIED'
25 31: %OO2#02OARGUMENT, l SUPPLIED.

'EMPTY LIST'
13 13: #OIOEMPTY LIST.

'IMPROPER NOT'
8 IS: %O03#OO3NOT.

'IMPROPER ELEMENT'
12 19: %O03#OO7ELEMENT,

'UNTRANSLATABLE STATEMENT'
27 27: #024UNTRANSLATABLE STATEMENT.

, *

FINAL STATISTICS:
WITHOUT PHRASE EXTRACTION: 376
AFTER PHRASE EXTRACTION: 283
SAVING: 93 (24.6%)

Algorithm 445

Binary Pattern
Reconstruction from
Projections [Z]
S h i - K u o C h a n g [Recd. 4 N o v . 1970 a n d 12 M a y 1971]
S c h o o l o f Elec tr ica l E n g i n e e r i n g , C o r n e l l U n i v e r s i t y
I thaca, N Y 14850.

Key Words and Phrases: pattern reconstruction, image
reconstruction, data compression, picture processing

CR Categories: 3.63, 5.30
Language: Algol

Description
This procedure reconstructs a binary pattern from its horizon-

tal and vertical projections [1]. The parameters are described as
follows, m, n are the dimensions of the binary pattern f switch is
an integer variable, fx [1 :n] is the projection o f f on the horizontal
axis. fy [l:m, 1] is initially set to (1, 2, . . . , m). fy [l:m, 2] is the
projection of f on the vertical axis. f [1 :n, 1 :m] is the pattern to be
reconstructed, initially set to 0.

The projections fx and fy are inconsistent if there is no pattern
f having such projections. The pattern f is unambiguous if there is
no other pattern having the same projections as f. Given the pro-
jections fx and fy, there are three possibilities: (I) fx and fy are
inconsistent; (2) they are consistent but the pattern f i s ambiguous;
or (3) they are consistent and the pattern f i s unambiguous.
(1) Inconsistent Projections. This procedure sets switch to -- 1 and
reconstructs a pattern f having the correct horizontal projection
fx. Its vertical projection will be different from fy.
(2) Ambiguous Pattern. This procedure sets switch to 0 and re-
constructs a pattern fhaving projections fx and fy.
(3) Unambiguous Pattern. This procedure sets switch to 1 and
reconstructs a pattern fhaving projections fx and fy. In this case f
is unique.

References
1. Chang, S.-K. The reconstruction of binary patterns from their
projections. Comm. ACM 14, 1 (Jan. 1971), 21-25.
2. Chang S.-K., and Shelton, G.L. Two algorithms for multiple-
view binary pattern reconstruction. IEEE Trans. Syst., Man,
Cybern. (Jan. 1971), 90-94.

Algorithm
procedure Pattern Reconstruction (switch, m, n, fx, fy, f) ;

integer m, n, switch; integer array fx, fy, f;
comment The parameters are defined as follows: switch is an
output parameter with values - 1 , 0, or 1 according as the
projections are inconsistent (switch = - 1), the pattern is
ambiguous (switch = 0), the pattern is unambiguous (switch =
1). m is the column dimension of the binary pattern f, and n is
the row dimension of the binary pattern f. m and n are input

Author's present address: Institute of Mathematics, Academia
Sinica, 910 Nankang, Taiwan, Republic of China.

185 Communications March 1973
of Volume 16
the ACM Number 3

parameters. The array f x [1 :n] is the projection of the binary
pat tern f o n the x axis. f x is an input array. The array f y [l:m,
1:2] contains 1, 2 , . . . , m in column 1 initially, and column 2
contains the projection of the binary pat tern f on the y axis. f y
is an input array, and it is modified by this procedure. The array
f [1 :n, 1 :m] contains 0 initially and contains the reconstructed
binary pat tern finally;

begin
integer ix, iy, j , number;
procedure Sort;
begin

integer limit, ind, i;
limit := m -- 1;

SI :
ind := 0;
for i := 1 step 1 until limit do
i f f y [i, 2] < f y [i+1, 2] then
begin

integer t l , t2;
ind : = 1 ;
t l := f y [/ + l , 1]; t2 := f v [/ + l , 2];
f y [i+1, 11 : = f y [i, 1];
f y [/ + l , 21 : = f Y [i, 21;
f y [i, 1] := t l ; f y [i , 2] := t2

end;
limit : = limit -- 1 ;
if (limit > O) /~ (ind = 1) then go to SI

end Sort ;
procedure Merge;
i f f y [number, 2] < fy [number+l , 2] then
begin

integer nl , n2, t l , t2;
nl := number;

$2:

$3:

$4:

i f n l > l t h e n
begin

i f f y [nl, 2] = f y [nl - 1, 2] then
beginnl := n l - 1; go t o S 2 e n d

end;
n2 := number W I;

if n2 < m then
begin

i f f y [n 2 + l , 2] = f y [n2, 2] then
b e g i n n 2 : = n 2 + 1; go t o S 3 e n d

end;

t l : = f y [nl, I]; t2 : = . /) [nl, 2];
f y [nl, 11 := f y [n2, 1]; .fy [nl, 2] := J), [n2, 21;
. fy[n2, 1] := t l ; f y [n2,2] : = t2;
if (nl < number) A (number+l < n2) then
beginnl : = n l + 1; n 2 : = n 2 - 1; go t o S 4 e n d

end Merge;
comment The procedure Sort orders f y , and the procedure Merge

reorders .fy. The main procedure now follows;
switch : = 1;
Sort;
for ix := 1 step 1 until n do
begin

number : = f x [ix];
i f number > 0 then
begin

for j : = 1 step 1 until number do
begin

iy := f y [j, 1];
f y [j , 2] := f y [j , 2] - 1;
f [ix, iy] : = 1

end;
comment One column of f is reconstructed;

if number < m then
begin

if (switch= 1) /k (fy[number, 2] < f y [number+ l, 2])
then switch := 0;
comment The above condi t ion indicates tha t the

pat tern f i s ambiguous, and the switch is set to 0;
Merge;
comment f y is reordered before we start to reconstruct

the next column;
end

end
end;
for j := I step ! until m do
if f y [j, 2] ~ 0 then switch : = -- 1 ;
comment The above condi t ion indicates tha t the projections are

inconsistent, and the switch is set to - 1 ;
end Pattern Reconstruction

Remarks on Algorithm 445 [Z]
Binary Pattern Reconstruction from Projections [by
Shi-Kuo Chang, Comm. A C M 16 (Mar. 1973),
185-186]

John Lau [Recd. 22 July 1971]
Department of Computer Science, University of
British Columbia, Vancouver 8, B.C., Canada

Key Words and Phrases: pattern reconstruction, image
reconstruction, data compression, picture processing

CR Categories: 3.63, 5.30
Language: Algol

The procedure works well for all consistent patterns, ambiguous
or unambiguous. However, when f x and f y are inconsistent, the
procedure can construct a pat tern f [l :n, 1 :m] with f x satisfied, only
if all elements of f x have values between 0 and m. I f any of these
elements is greater than m, a p rogram interrupt would usually be
caused by "value of subscript outside declared bounds" when the
p rogram executes the lines

for j := 1 step 1 until number do
begin

iy := fy[j , 1];
fy[j , 2] : = fy[j , 2] -- 1;
f[ix , iy] : = 1

erd;

and execution of p rogram would then be terminated. Even if a
pat tern could be constructed in this case, it would not be able to
satisfy f x entirely.

186 Communica t ions March 1973
of Volume 16
the A C M N u m b e r 3

