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Description

Introduction. These subroutines deal with the manipulation of
Chebyshev series. The operations performed are the construction
of the Chebyshev approximation of functions, the evaluation of the
series or their derivative, the integration or differentiation, and the
construction of negative or fractional powers of such a series.

The subroutines are written in ANSI Fortran. They have been
used without modification on such computers as the IBM-7094,
IBM-360/91 (Fortran-1V-G compiler) and Univac 1108 (Fortran-V
compiler).

The ten subroutines are considered as a single set, principally
because they all use the same storage philosophy. All information
is transmitted through the CALL-sequence rather than through
the use of COMMON statements. Therefore, the user must provide
storage for all the series in his main program, taking into account
that all operations are performed in double precision. The coeffi-
cients of each series occupy a one-dimensional double-precision
array according to the rules of ANSI Fortran. When several
Chebyshev series are being manipulated, it is convenient to store
all the series in a matrix. Each column of the matrix contains a
single series, in order that the coefficients of each series occupy
consecutive storage locations.

The first six subroutines contain no calls to other subroutines;
in this sense they may be considered as independent. Each sub-
routine can be used separately.

In the present type of operations, it is extremely important to
design and perform a large number of tests to certify all of the
subroutines. We have tested the subroutines by generating some
Chebyshev series which were published by Clenshaw [4], but we
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have also tested them with a number of additional methods; for
instance:

a. The series for several elementary functions such as sin(x),
cos(x), sin(2x), and cos(2x) have been constructed directly. These
series have then been evaluated, and the values have been compared
with the values of the functions.

b. The series for cos(2x) and sin(2x) have been derived from the
series sin(x) and cos(x) by multiplication and addition of series.

¢. The series for sin(x) and cos(x) have been derived from each
other by integration and differentiation.

d. Many tests have been made by multiplying a series f(x) by the
series 1/f(x) or for instance by squaring the series for f(x)}, or other
similar operations.

The generation, evaluation and multiplication subroutines. The
methods for the generation of a Chebyshev series have been taken
from C.W. Clenshaw’s papers [3, 4, 5]. The rule for the multiplica-
tion of Chebyshev series is also described by Clenshaw [3, p. 137],
but the flowchart of our subroutine is from L. Carpenter [2].

We only consider the interval (—1, +1) of the independent
variable x, and we represent a truncated Chebyshev series of order
n in the form:

Sx) = (co/2) + aTi(x) 4+ c:To(x) + -+ + caTalx). ¢)]

We want to draw the user’s attention to the fact that we use a
factor 1 in the zero-order term but not in the last term of the series.
Some authors have used different conventions in relation to this
factor } for the first and last terms.

In the applications of the subroutines some caution is also
necessary, because the independent variable x (the Chebyshev
independent variable) is within the limits (—1, 4-1). If the user’s
variable ¢ (the physical independent variable) is within the limits
(1, t), the conversions between ¢ and x should be made with the
linear relations

t = ((t: + 1)/2) + ((lt — 1)/2)x; @
x = ((2t = (. 4+ 1))/(ta — 1)).

The coefficients ¢; in formula (1) are computed with the rule
given by Clenshaw [4, p. 3]:

¢ci = (2/n i”f(cos (wj/n)) cos(xij/n); i=01...,n 3)
=0

The double accent means that the first and last terms of the sum are.
divided by two. It is seen that n + 1 special values of the function
[f(x) are needed. In some applications, » has been as large as 1,500.

A large number of applications have shown that in most in-
stances the user desires to construct the Chebyshev series for not
just one function but for several functions simultaneously. For
instance, in the study of the motion of a particle there will always
be three coordinates, x;, x;, xs, rather than just one. For this
reason we programmed the subroutine CHEBY to efficiently con-
struct several Chebyshev series simultaneously. In particular, the
number of cosine calculations has been minimized. There will be
only 2n cosine calculations, no matter how many functions are
being analyzed simultaneously.

Besides the main program, the user will have to provide his own
subroutine for the evaluation of the special values of the functions
to be analyzed, as explained in the comments of the subroutine
CHEBY. The user may choose any name for this subroutine; how-
ever, this name has to be transmitted through the CALL CHEBY-
statement. This function subroutine will generally evaluate the
function values either by using the appropriate formulas or by per-
forming table lookup and interpolations if the data is only available
in the form of a table with discrete points.

The subroutine ECHEB evaluates a Chebyshev series with the
aid of Clenshaw’s recurrence rule [4, p. 9]. The ¢.’s being the coeffi-
cients of the given series, we compute the values bz, bny1, bny - . .,
by with:

b; = 2xb,-+1 - b,'+z + ¢ ) (4)
where the subscript i runs from # to 0. The number of arithmetic

bn+2 = b,.+1 = 0;
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operations involved is only 3#, and the value of the function is then
S(x) = (b — by)/2.

The subroutine ED CH B evaluates the derivative of a Chebyshev
series (without storing the coefficients of the differentiated series).
It implements a combination of the evaluation formula (4) and
the differentiation formula (6) given below.

The differentiation and integration subroutines. Clenshaw’s
formulas [4, p. 11] have again been used for the differentiation and
integration operations. The coefficients a; of the integrated Cheby-

shev series are derived from the input coefficients c; by:
ay = 0; an = Cn_1/2n; a; = (Cie1 — Cip1)/2i;

i=12...
The coefficients d; of the differentiated series are obtained by a set
of recurrence equations:

d, = 0;

&)

,n— 1

dn = 2nC, dioy = diyy + 2ici

n—1L,n—-2,...,1L

When using the differentiation and integration subroutines, the
user should remember the relation between the differentials of 7
and x:

dt = ((t; — 1)/2) dx = (At/2)dx. @

This should be considered whenever differentiation or integration
of Chebyshev series is performed. For instance we have for any
Chebyshev series f:

[ rdr = (At/2) [ fdx. (8)

Negative and fractional powers. Our last four subroutines,
dealing with expansion or iteration methods for the generation of
noninteger powers of a Chebyshev series, are somewhat more so-
phisticated than the first six subroutines, but the theoretical basis
of their operation has recently been described in detail [1]. For this
reason, they will not be described in more detail here. All four sub-
routines use the multiplication subroutine MLTPLY but are
otherwise independent. The subroutines BINOM, XALFA2, and
XALFA3 all have the same purpose but operate with different
methods and have different convergence properties. All three are
given in order to allow the user to experiment and eventually select
the one that is most efficient for his particular application.

Acknowledgments. 1 wish to thank Nancy Hamata at the Jet
Propulsion Laboratory for her assistance in the programming and
debugging of the present subroutines; also the two anonymous
reviewers for their useful suggestions.
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Algorithm

SUBROGUTINE CHEBY(NF, NPLs NPLMAXs N2, FUNCTN, Xs, FXJs» GC)

C SIMULTANEQUS CHEBYSHEV ANALYSIS OF NF FUNCTIUNS

€ CO@MPUTES A MATRIX, X, CONTAINING ONE CHEBYSHEV SERIES PEK
C COLUMN F@R A GIVEN NUMBEK OF FUNCTIONSs NF. INPUT NFL,
C THE NUMBER OF TERMS IN ALL SERIES, NPLMAX, THE rOW

C DIMENSION OF X IN THE CALLING PROGRAM (MUST BE.GE.NPL)»
C N2, DIMENSI@N BF GC (MUST BE.GE.2%(NPL-1))s AND FUNCTN»
C THE NAME PF USER SUBRQUTINE WHICH DEFINES THE NF

C FUNCTIBNS. FXJ AND GC AKE wWORK SPACE.

C AN EXAMPLE OF SUCH A SUBKGUTINE IS AS FOLLOWS

C SUBROUTINE FUNCTNCA,VAL)

C DOUBLE PRECISION A,VAL(2)

C VALC1)=DSINCA)

C VAL(2)>=DCOSCA)

C RETURN

C END
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* FKas

10
20

30

40

50

&0
70
80

90
100

C muL

C NPL

20

30

40

50

DGUBLE PKECISION X(NPLMAX>NF)» FXJCNF)» GCIN2)s ENNs
PENs FAC
DD 20 K=1,NPL

DO 10 J=1,NF

XC{K»J> = 0.D0

CONTINUE
CONTINUE
N = NPL
ENN = N
PEN = 3.1415926535897932D0/ENN
DO 30 K=1.,N2

-1

FK = K - 1
GC(K)Y = DCESC(FK*PEN)
CONTINUE
D@ 80 J=1,NPL
XJd = GCCJy
CALL FUNCTN(XJ» FXJ)
IF (J«.NEe.1 +AND. J«NE.NPL) GO TG SO
DO 40 K=1,NF
FXJ(K) = «SDO*FXJ(K)
CONTINUE
DE 70 L=1,NPL
LM = MODCCL~1)*(J-1),N2) + 1
DB 60 K=1,NF
XCLaK) = X(L,K) + FXJ(KI*GC(LM)
CONTINUE
CONTINUE
CONTINUE
FAC = 2.0DO/ENN

DO 100 K=1,NPL
D@ 90 J=1,NF
XKC(KsJ) = FAC*X(KsJ)
LCOGNTINUE
CeNTINUE
RETURN
END

SUBRBUTINE MLTPLY (XX, X2, NPL, X3)

TIPLIES TW@ GIVEN CHEBYSHEV SERIESs XX AND X2, WITH
TERMS T@ PRODUCE AN BUTPUT CHEBYSHEV SERIES, X3.
DOUBLE PRECISICN XX(NPL)» X2(NPL)s A3C(NPL)» EX
D@ 10 K=1,NPL

X3¢(K) = 0.0D0
CONTINUE
D@ 30 K=1,NPL
EX = 0.,0D0
MM = NPL - K + 1
DO 20 M=1.MM
L=2=4+K-~-1
EX = EX 4 XX(M)*X2(L) + XX(L)*X2(M)
CONTINUE
X3(K)Y =
CONTINUE
X3C1) = X3C1) = 0.5DOXXXC1)*X2(1)
D@ 50 K=3,NPL
EX = 0.0D0
MM = K - 1
D@ 40 M=2,MM
L=XK=-M+1
EX = EX + XX(M)*X2(L)
CONTINUE
X3CKY =
CONTINUE
RETURN
END

0+5DO*EX

Q0+«5DO*EX + X3(K)

SUBROUTINE ECHEB(X», C@EF, NPL» FX)

C EVALUATES THE VALUE FX(X) OF A GIVEN CHEBYSHEV SERIES.

€ CRE
C ~1.

C EVAI
C CHE
C vaL
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F» WITH NPL TERMS AT A GIVEN VALUE OF X BETWEEN
AND 1.

DOUBLE PRECISI@N COEF(NPL)» X, FX» Brs BRPP, BkP2
8R = 0.0D0

BRPP = 0.0D0

DB 10 K=1,NPL
J= NPL - K + 1
BRP2 = BRPP
BRPP = BR
BR = 2.0DO*X*BRPP - BRP2 + CEEF(J)
CONTINUE
FX = 0.5DO*(BR-BRP2)
RETURN
END

SUBROUTINE EDCHEB(X, CGEF, NPL, FX)
LUATES THE VALUE FX(X) @F THE DERIVATIVE OF A
BYSHEV SERIES» CQEF, WITH NPL TERMS AT A GIVEN
UE @F X BETWEEN -1. AND 1.

DOUBLE PRECISIBN CREF(NPL)Y, X» FX» XJPZ2, XJPL,» XJ»
* BJPL, BJ, BFs DJ

XJP2 = 0.0D0

XJPL = 0.0D0
BJP2 = 0.0D0
BJPL = 0.0D0
N = NPL - 1
DO 10 K=1,N

J = NPL - K

DJ J

XJ 2+.D0*COEF(J+1)%DJ + XJP2

B8J 2.D0%X¥BJPL -~ BJP2 + XJ

nonou o

XJPL
CONTINUE
FX = «5DO*(BJ~BF)
RETURN
END
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SUBRDUTINE DFRNT(XXs NPLs X2)

€ CoMPUTES THE DERIVATIVE CHEBYSHEV SERIES, X2, @F A GIVEN
C CHEBYSHEV SERIES, XX, WITH NPL TEKRMS.
C TO REPLACE A SERIES X BY ITS DERIVATIVE, USE
C CALL DFRNT(XsNPL,X)>
DEBUBLE PRECISION XX(NPL)s XXNs XXL» DNs DL, X2¢NPL)
DN = NPL - 1
XXN = XX(NPL=~1)
X2(NPL=1) = 2.DO*XX(NPL)*DN
X2(NPL) = Q.D0
DB 10 K=3,NPL
L = NPL = K + 1
DL = L
XXL = XX(L)
X2¢L) = X2(L+2) + 2 DO*AXN*DL
XXN = XXL
10 CONTINUE
RETURN
END
SUBRQUTINE NTGRT(XX» NPL, X2)
C COMPUTES THE INTEGRAL CHEBYSHEV SExIES, X2, @F A GIVEN
C CHEBYSHEV SERIES» XX» WITH NPL TEKMS.
C TO KEPLACE A SERIES X BY ITS INTEGRAL, USE
C CALL NTGRT(X,NPL»X)
DOUBLE PRECISION XX(NPL)s XPrs» TEXMs DK» X2(NPL)
XPR = XX(1)
X2¢1) = 0.0D0
N = NFL - 1
D@ 10 K=2,N
DK = K -1
TERM = (XPR-XX(K+1))/(2.D0%*DK)
XPR = XX{(K)
X2(K) = TERM
10 CONTINUE
DK =
X2(NPL) = XPR/(2.D0%*DK)
RETURN
END
SUBRBUTINE INVERT(Xs XXs NPL, NET» XNVSEs WU, W2)
C COMPUTES THE INVERSE CHEBYSHEV SERIES» XNVSE» GIVEN A
C CHEBYSHEV SERIESs X» A FIRST APPROXIMATION CHEBYSHEV
C SERIES», XX, WITH NPL TEKMS, AND THE NUMBEKR OF
C ITERATIONS, NET. THE SUBROUTINE USES THE EULER METHOD
C AND COMPUTES ALL POWERS EPS**K UP TE K=2%*(NET+1),
C WHERE EPS=1-X*(XX INVERSE)e. wWw AND W2 AKE'WORK SPACE.
C SUBRQUTINES USED ~ MLTPLY
DOUBLE PRECISIGN X(NPL)» XX(NPL)s» XNVSEC(NPL)» WW(NPL).,
* W2(NPL)
CALL MLTPLY(X» XX» NPL, WW)
WWC1) = 2.D0 - WWCD)
DO 10 K=2,NPL
WW(K) = =uW(K)
10 CONTINUE
CALL MLTPLY(WW, WW, NPL, W2)
WWC1) = 2.D0 + WWC1)
D@ 40 K=1,NET
CALL MLTPLY(WW, W2, NPL, XNVSE)
Do 20 J=1,NPL
WW(J) = WWCJ) + XNVSECD)
20 CONTINUE
CALL MLTPLY(W2, W2, NPL, XNVSE)
D@ 30 J=1.NPL
W2CJd) = XNVSEC(D)
30 CONTINUE
40 CONTINUE
CALL MLTPLYCWW, XX» NPL, XNVSE)
RETURN
END
SUBROUTINE BINOM(Xs XXs NPLs» Ms NTs» XAs Wws W2, w3)
C COMPUTES THE BINOMIAL EXPANSIGN SEKRIES, XA, FOR (-1/M)
C PBWER BF A GIVEN CHEBYSHEV SERIES, X» WITH NPL TERMS,
C WHERE M IS A PBSITIVE INTEGER. XX IS A GIVEN INITIAL
C APPROXIMATION TO X«x(-1/M)>. NT IS A GIVEN NUMBER @F
C TERMS IN BINOMIAL SERIES. WW, W2, AND w3 ARE WORK SPACE
C SUBROUTINES USED - MLTPLY
DOUBLE PRECISI@N X(NPL)s XX(NPL)» XACNPL)» WW(NPL),
* W2(NPL)> W3(NPL), ALFA, COEF, DM, DKMM, DKM2
DM =M
ALFA = ~1.D0O/DM
D@ 10 J=1,NPL
Wuedd = X
10 CONTINUE
DO 30 K=1,M
CALL MLTPLY(WW, XXs NPL, W2)
DG 20 J=1,NPL
WWw(J) = W2«
20 CONTINUE
30 CONTINUE
WWC1) = WW(1)> - 2.D0
XAC1) = 2.D0
D@ 40 J=2,NPL
XACJ) = 0.0D0
w3CJ) = 0.D0
40 CONTINUE
W3C1) = 2.D0
D@ 60 K=2,NT
DKMM = K = 1
DKM2 = K - 2
CQEF = (ALFA~DKM2)/DKMM
CALL MLTPLY(W3, WW, NPL» W2)
DB 50 J=1sNPL
W3CJ) = W2(JI*CREF
XACJ) = XACJ) + W3
50 CONTINUE
256
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60 CONTINUE
CALL MLTPLY(XA, XX» NPLs W2)
DG 70 J=1,NPL
XACJ) = wW2¢J)
70 CeNTINUE
RETURN
END

SUBROUTINE XALFAZ(Xs XX» NPLs Ms» MAXETs EPSLN> NET, WWs
* We)
REPLACES A GIVEN INITIAL APPKOXIMATION CHEBYSHEV SERIES,
XX, BY A GIVEN CHEBYSHEV SERIES, Xs WITH NPL TERMS»
RAISED TQ THE (-1/M) POWERs, WHEKE M IS AN INTEGER.
INPUT MAXET, MAXIMUM ALLOWED NUMBER OF ITEKATIONS, AND
EPSLN, REQUIRED PRECISION EPSILON. BUTPUT AKGUMENT,
NET, IS NUMBER GF ITERATIONS PREFORMED. IF MAXET=NET,
REQUIRED PRECISI®BN MAY N@T HAVE BEEN ~EACHED AND THERE
MAY BE DIVERGENCE. Ww AND W2 AKE WORK SPACE.
CONVERGENCE IS QUADRATIC
SUBROUTINES USED - MLTPLY
DQUBLE PRECISION X(NPL)Y» XXCNPL)» WW(NPL)» W2(NPL)»
* EPSLN, DALFA, DM, S, TDMM
DM = M
DALFA = 1.D0O/DM
TOMM = 24D0O%(DM+1.D0)
DB 60 JX=1,MAXET
D@ 10 L=1,NPL
WkeL) = X(L)>
10 CONTINUE
DO 30 K=l,M
CALL MLTPLY(WW, XXs NPL, W2)
D@ 20 L=1,NPL
WWCLY = w2¢L)
20 CONTINUE
30 CONTINUE
5 = -2.D0
DO 40 L=1,NPL
5 = 5 + DABS(WW(LY)
VwCL) = -WhdL)
40 CONTINUE
WWCl) = WWel) + TDMM
CALL MLTPLY(Wk, XX» NPLs W2)
DO S0 L=1,NPL
XXCL) = W2(L)*DALFA
50 CONTINUE
NET = JX
IF (DABS(S).LT.EPSLN) RETURN
60 CONTINUE o
RETURN
END

SUBROUTINE XALFA3(X» XX» NPL, M, *MAXET, EPSLN» NET, Whs
* W2)
REPLACES A GIVEN INITIAL APPROXIMATION CHEBYSHEV SERIES,
XXs BY A GIVEN CHEBYSHEV SEKIES, X» WITH NPL TERMS,
RAISED T@ THE (-1/M) PBWER»> WHERE M IS AN INTEGER.
INPUT MAXET, MAXIMUM ALLOWED NUMBER OF ITERATIONS», AND
EPSLN, REQUIRED PRECISION EPSILON. QUTPUT ARGUMENT.
NET, 1S NUMBER OF ITERATIONS PREF@RMED. IF MAXET=NET»
REQUIRED PRECISISN MAY NGT HAVE BEEN REACHED AND THEKE
MAY BE DIVERGENCE. WW AND W2 ARE WBRK SPACE.
CONVERGENCE IS OF BRDER THREE
SUBRPUTINES USED - MLTPLY
DOUBLE PRECISIGN X(NPL)» XXC(NPL)s WWC(NPL)» W2(NPLJ»
* EPSLN, DALFA, DM, S, TDMM, PSDML
DM = M
DALFA = 1.D0/DM
TDMM = 2.DO*(DM+1.D0)
PSDML = «5D0%(DM+1.D0)
D& 90 JX=1,MAXET
D8 10 L=1,NPL
WLy = XL
10 CANTINUE
DO 30 K=1,M
CALL MLTPLY(WW, XX, NPL, W2)
DO 20 L=1,NPL
WHCL) »= W2CL)
20 CONTINUE
30 CONTINUE
§ = -2.D0
DB 40 L=1,NPL
S = 5 + DABSCWW(L))
40 CONTINUE
Wh1) = Ww(l) - 2.D0
DO 50 L=1,NPL
WWCL)Y = Wk (L)*DALFA
50 CONTINUE
CALL MLTPLY(WW, Wws, NPLs W2)
DE 60 L.=1,NPL
WWCL)Y = -WW(L)
W2(L) = welL)>*PSDML
60 CONTINUE
WHCL) = Whe1) + 2.DO0
D@ 70 L=1,NPL
WaCL) = W2CL) + Wh(L)
70 CONTINUE
CALL MLTPLY(WZ2, XX» NPLs WW)
D2 80 L=1.NPL
XXCL) = WWeL)
80 CONTINUE
NET = JX
IF (DABS(S)LT+EPSLN) RETURN
90 CONTINUE
RETURN
END
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