L.D. Fosdick and
 Algorithms
 A.K. Cline, Editors

Submittal of an algorithm for consideration for publication in Communications of the ACM implies unrestricted use of the algorithm within a computer is permissible.

Copyright © 1973, Association for Computing Machinery, Inc. General permission to republish, but not for profit, all or part of this material is granted provided that ACM's copyright notice is given and that reference is made to the publication, to its date of issue, and to the fact that reprinting privileges were granted by permission of the Association for Computing Machinery.

Algorithm 446
 Ten Subroutines for the Manipulation of Chebyshev Series [Cl]

R. Broucke [Recd. 17 May 1971 and 7 April 1972] University of California, Los Angeles, CA 90024, and Jet Propulsion Laboratory, Pasadena, Calif.

Key Words and Phrases: Chebyshev series, differentiation, integration, curve fitting, approximations, negative powers

CR Categories: 5.12, 5.13, 5.16
Language: Fortran

Description

Introduction. These subroutines deal with the manipulation of Chebyshev series. The operations performed are the construction of the Chebyshev approximation of functions, the evaluation of the series or their derivative, the integration or differentiation, and the construction of negative or fractional powers of such a series.

The subroutines are written in ANSI Fortran. They have been used without modification on such computers as the IBM-7094, IBM-360/91 (Fortran-IV-G compiler) and Univac 1108 (Fortran-V compiler).

The ten subroutines are considered as a single set, principally because they all use the same storage philosophy. All information is transmitted through the CALL-sequence rather than through the use of COMMON statements. Therefore, the user must provide storage for all the series in his main program, taking into account that all operations are performed in double precision. The coefficients of each series occupy a one-dimensional double-precision array according to the rules of ANSI Fortran. When several Chebyshev series are being manipulated, it is convenient to store all the series in a matrix. Each column of the matrix contains a single series, in order that the coefficients of each series occupy consecutive storage locations.

The first six subroutines contain no calls to other subroutines; in this sense they may be considered as independent. Each subroutine can be used separately.

In the present type of operations, it is extremely important to design and perform a large number of tests to certify all of the subroutines. We have tested the subroutines by generating some Chebyshev series which were published by Clenshaw [4], but we
have also tested them with a number of additional methods; for instance:
a. The series for several elementary functions such as $\sin (x)$, $\cos (x), \sin (2 x)$, and $\cos (2 x)$ have been constructed directly. These series have then been evaluated, and the values have been compared with the values of the functions.
b. The series for $\cos (2 x)$ and $\sin (2 x)$ have been derived from the series $\sin (x)$ and $\cos (x)$ by multiplication and addition of series.
c. The series for $\sin (x)$ and $\cos (x)$ have been derived from each other by integration and differentiation.
d. Many tests have been made by multiplying a series $f(x)$ by the series $1 / f(x)$ or for instance by squaring the series for $f(x)^{\frac{1}{2}}$, or other similar operations.

The generation, evaluation and multiplication subroutines. The methods for the generation of a Chebyshev series have been taken from C.W. Clenshaw's papers [3, 4, 5]. The rule for the multiplication of Chebyshev series is also described by Clenshaw [3, p. 137], but the flowchart of our subroutine is from L. Carpenter [2].

We only consider the interval $(-1,+1)$ of the independent variable x, and we represent a truncated Chebyshev series of order n in the form:
$f(x)=\left(c_{0} / 2\right)+c_{1} T_{1}(x)+c_{2} T_{2}(x)+\cdots+c_{n} T_{n}(x)$.
We want to draw the user's attention to the fact that we use a factor $\frac{1}{2}$ in the zero-order term but not in the last term of the series. Some authors have used different conventions in relation to this factor $\frac{1}{2}$ for the first and last terms.

In the applications of the subroutines some caution is also necessary, because the independent variable x (the Chebyshev independent variable) is within the limits ($-1,+1$). If the user's variable t (the physical independent variable) is within the limits (t_{1}, t_{2}), the conversions between t and x should be made with the linear relations

$$
\begin{align*}
& t=\left(\left(t_{2}+t_{1}\right) / 2\right)+\left(\left(t_{2}-t_{1}\right) / 2\right) x \tag{2}\\
& x=\left(\left(2 t-\left(t_{2}+t_{1}\right)\right) /\left(t_{2}-t_{1}\right)\right) .
\end{align*}
$$

The coefficients c_{i} in formula (1) are computed with the rule given by Clenshaw [4, p. 3]:
$c_{i}=\left(2 / n \sum_{j=0}^{n} f(\cos (\pi j / n)) \cos (\pi i j / n) ; \quad i=0,1, \ldots, n\right.$.
The double accent means that the first and last terms of the sum are divided by two. It is seen that $n+1$ special values of the function $f(x)$ are needed. In some applications, n has been as large as 1,500 .

A large number of applications have shown that in most instances the user desires to construct the Chebyshev series for not just one function but for several functions simultaneously. For instance, in the study of the motion of a particle there will always be three coordinates, x_{1}, x_{2}, x_{3}, rather than just one. For this reason we programmed the subroutine CHEBY to efficiently construct several Chebyshev series simultaneously. In particular, the number of cosine calculations has been minimized. There will be only $2 n$ cosine calculations, no matter how many functions are being analyzed simultaneously.

Besides the main program, the user will have to provide his own subroutine for the evaluation of the special values of the functions to be analyzed, as explained in the comments of the subroutine $C H E B Y$. The user may choose any name for this subroutine; however, this name has to be transmitted through the CALL CHEBYstatement. This function subroutine will generally evaluate the function values either by using the appropriate formulas or by performing table lookup and interpolations if the data is only available in the form of a table with discrete points.

The subroutine ECHEB evaluates a Chebyshev series with the aid of Clenshaw's recurrence rule [4, p. 9]. The c_{i} 's being the coefficients of the given series, we compute the values $b_{n+2}, b_{n+1}, b_{n}, \ldots$, b_{0} with:
$b_{n+2}=b_{n+1}=0 ; \quad b_{i}=2 x b_{i+1}-b_{i+2}+c_{i}$,
where the subscript i runs from n to 0 . The number of arithmetic

```
Communications
of
the ACM
operations involved is only \(3 n\), and the value of the function is then \(f(x)=\left(b_{0}-b_{2}\right) / 2\).

The subroutine \(E D C H B\) evaluates the derivative of a Chebyshev series (without storing the coefficients of the differentiated series). It implements a combination of the evaluation formula (4) and the differentiation formula (6) given below.

The differentiation and integration subroutines. Clenshaw's formulas [4, p. 11] have again been used for the differentiation and integration operations. The coefficients \(a_{i}\) of the integrated Chebyshev series are derived from the input coefficients \(c_{i}\) by:
\(a_{0}=0 ; \quad a_{n}=c_{n-1} / 2 n ; \quad a_{i}=\left(c_{i-1}-c_{i+1}\right) / 2 i ;\)
\[
\begin{equation*}
i=1,2, \ldots, n-1 \tag{5}
\end{equation*}
\]

The coefficients \(d_{i}\) of the differentiated series are obtained by a set of recurrence equations:
\[
d_{n}=0
\]
\[
d_{n-1}=2 n c_{n}
\]
\[
\begin{equation*}
d_{i-1}=d_{i+1}+2 i c_{i} \tag{6}
\end{equation*}
\]
\[
i=n-1, n-2, \ldots, 1
\]

When using the differentiation and integration subroutines, the user should remember the relation between the differentials of \(t\) and \(x\) :
\(d t=\left(\left(t_{2}-t_{1}\right) / 2\right) d x=(\Delta t / 2) d x\).
This should be considered whenever differentiation or integration of Chebyshev series is performed. For instance we have for any Chebyshev series \(f\) :
\(\int f d t=(\Delta t / 2) \int f d x\).
Negative and fractional powers. Our last four subroutines, dealing with expansion or iteration methods for the generation of noninteger powers of a Chebyshev şeries, are somewhat more sophisticated than the first six subroutines, but the theoretical basis of their operation has recently been described in detail [1]. For this reason, they will not be described in more detail here. All four subroutines use the multiplication subroutine \(M L T P L Y\) but are otherwise independent. The subroutines BINOM, XALFA2, and \(X A L F A 3\) all have the same purpose but operate with different methods and have different convergence properties. All three are given in order to allow the user to experiment and eventually select the one that is most efficient for his particular application.

Acknowledgments. I wish to thank Nancy Hamata at the Jet Propulsion Laboratory for her assistance in the programming and debugging of the present subroutines; also the two anonymous reviewers for their useful suggestions.

\section*{References}
1. Broucke, R. Construction of national and negative powers of a formal series. Comm. ACM 14, 1 (Jan. 1971), 32-35.
2. Carpenter, L. Planetary perturbations in Chebyshev series. NASA Tech. Note TN-D-3168, Goddard Space Flight Center, Greenbelt, Md., Jan. 1966.
3. Clenshaw, C. W. The numerical solution of linear differential equations in Chebyshev series. Proc. Cambr. Phil. Soc., 53 (1957), 134-149.
4. Clenshaw, C.W., Chebyshev series for mathematical functions.

Nat. Phys. Lab. Math. Tables, 5 (1962) London, HMSO.
5. Clenshaw, C.W., and Norton, H.J. The solution of nonlinear ordinary differential equations in Chebyshev series. Computer \(J\). 6 (1963), 88-92.
```

Algorithm
SUBROUTINE CHEBY(NF, NPL, NPLMAX, N2, FUNCTN, X, FXJ, GC)
c SImultaneous chebyShev anAlysis of NF functions
C COMPUTES A MATRIX, X, CONTAINING GNE CHEBYSHEV SEKIES PEK
C COLUMN FOR A GIVEN NUMBEK OF FUNCTIONS, NF. INPUT NFL,
C THE NUMBER OF TERMS IN ALL SEKIES. NPLMAX, THE KOW
C DIMENSION OF X IN THE CALLING PKOGKAM (MUST BE.GE.NPL),
C N2, DIMENSIGN QF GC (MUST BE.GE.2*(NPL-1)), AND FUNCTN,
C THE NAME बF USER SUBR@UTINE WHICH DEFINES THE NF
C FUNCTIONS. FXJ AND GC AKE WOKK SPACE.
C AN EXAMPLE OF SUCH A SUBNOUTINE IS AS FOLL.OWS
c SUBFDUTINE FUNCTNGA,VAL,
c DDUBLE PREGISION A,VAL(2)
c VVL(1)=DSINSA)
c VAL(2)=DC0S(A)
c RETURN
END

```

DGUBLE PKECISION X(NPLMAX,NF), FXJ(NF), GC(N2), ENN, XJ,
* FK, PEN. FAC

OD \(10 \mathrm{~J}=1, \mathrm{~N}\) \(X(K, J)=0 . D O\)
10
CONTINUE
20 CONTINUE
\(N=N P L-1\)
\(\mathrm{PEN}=3.14159\)
\(30 K=1, N 2\)
FK \(=K-1\)
GK \(=K\) ) \(=\) DCES (FK*PEN)
30 CONTINUE
DO \(80 \mathrm{~J}=1\), NPL
CALL FUNCTN(XJ, FXJ)
IF (J.NE.1 .AND. J.NE.NPL) GO TO 50
DO \(40 \mathrm{~K}=1, \mathrm{NF}\)
FXJ \((K)=.500 * F X J(K)\)
CONTINUE
50 DE \(70 \mathrm{~L}=1, \mathrm{NPL}\)
\(L M=M \in D((L-1) *(J-1), N 2)+1\)
D0 \(60 K=1, N F\)
\(\underset{\text { CONTINUE }}{\text { CRIS }}=X(L, K)+F X J(K) * G C(L M)\)
CONTINUE
80 CONTINUE
FAC \(=2.0 D O / E N N\)
DO \(100 \mathrm{~K}=1\), NPL
D0 \(90 \mathrm{~J}=1, \mathrm{NF}\)
\(x(K, J)=F A C * X(K, J)\)
90 CBNTINUE
00 CENTINUE
RETURN
END

SUBROUTINE MLTPLY(XX, X2, NPL, X3)
C MULTIPLIES TWE GIVEN CHEBYSHEV DERIES, XX AND X2, WITH
C NPL TERMS TO PRQDUCE AN QUTPUT CHEBYSHEV SERIES, X3.
DQUBLE PRECISICN XX(NPL): X2(NPL): X \(3(N P L)\), EX
D0 \(10 \mathrm{~K}=1\), NPL
\(X 3(K)=0.000\)
10 CONTINUE
D0 \(30 \mathrm{~K}=1\), NPL
\(E X=0.000\)
\(M M=N P L-K+1\)
DO \(20 \mathrm{M}=1, \mathrm{MM}\)
\(L=M+K-1\)
\(E X=E X+X X C\)
\(E X=E X+X X(M) * X 2(L)+X X(L) * X 2(M)\)
CGNTINUE
X3(K) \(=0.500 * E X\)
30 Continue
\(\times 3(1)=\times 3(1)-0.500 * \times \times(1) * \times 2(1)\)
DO \(50 \quad K=3\), NPL
\(E X=0.0 D 0\)
\(M M=K-1\)
Dg \(40 \quad \mathrm{M}=2\), MM
\(L=K-M+1\)
\(E X=E X+X X X\)
CONTINUE
\(\begin{gathered}\text { X3(K) } \\ \text { ONTINUE }\end{gathered}=0.5 D 0 * E X+X 3(K)\)
SO CONTINUE
RETUR
END

SUBROUTINE ECHEB(X, COEF, NPL, FX)
C evaluates the value fx \((x)\) gF a given chebyshev series.
C EVALUATES THE VALUE
C COEF, WITH NPL TEKMS AT A GIVEN VALUE OF \(X\) BETWEEN
C -1. AND 1 .
DDUBLE PRECISION COEF (NFL), \(X\), FX, BR, BKPP, BKP2
BR \(=0.0 \mathrm{DO}\)
\(\begin{array}{ll}\operatorname{BRPP}=0.0 \mathrm{DO} \\ \mathrm{D} 0 \\ 10\end{array} \mathrm{~K}=1 . \mathrm{NPL}\)
\(\begin{array}{rl}\mathrm{DD} \\ \mathrm{J} & 10 \mathrm{~K}=1, \mathrm{NPL} \\ =N P L & -K\end{array}\)
\(\mathrm{BRP2}=\mathrm{NPL}-\mathrm{KRPP}+\)
\(B R P P=B K\)
\(B R=2.0 D\)
10 CONTINUE
CONTINUE
\(F X=0.5 D O *(B R-B R P Q)\)
RETURN
END

SUBRQUTINE EDCHEB (X, CEEF, NPL, FX)
C EVAL UATES THE VALUE \(F X(X)\) gF THE DERIVATIVE OF A
C CHEBYSHEV SERIES, COEF, WITH NPL TERMS AT A GIVEN
C VALUE OF \(x\) BETWEEN -1 . AND 1 .
DQUBLE PRECISION COEF(NPL), \(X\), FX, XJP2, XJPL, XJ, BJPZ,
* BJPL, BJ, BF, DJ
\(\times \mathrm{JFL}=0.000\)
\(x \mathrm{JPL}=0.000\)
\(8 \mathrm{JPR}=0.000\)
BJPZ \(=0.000\)
\(\mathrm{BJPL}=0.0 \mathrm{DO}\)
\(\mathrm{N}=\mathrm{NPL}=1\)
\(N=N P L=1\)
\(\begin{array}{rl}\mathrm{D} 日 \\ \mathrm{~J} & 10 \mathrm{~K}=1, \mathrm{~N} \\ =\mathrm{NPL}\end{array}\)
\(J=N P L\)
\(D J=J\)
\(X J=2 \cdot D 0 * \operatorname{CDEF}(J+1) * D J+X J P 2\)
\(B J=2 \cdot D 0 * X * B J P L-8 J P 2+X J\)
\(B F=B J P 2\)
BJPL \(=\) BJPL
BJPL \(=B . J\)
BJPL \(=B J\)
\(X J P 2=X J P L\)
XJPL \(=X J P L\)
\(X J P L=X J\)
10 CEntinue
\(F X=.500 *(B J-B F)\)
RETURN
END

Communications
April 1973
of
Volume 16
the ACM

SUBROUTINE DFRNT（XX：NPL，X2）
C COMPUTES THE DERIVATIVE CHEBYSHEV SERIES，X2，OF A GIVEN C GHEBYSHEV SERIES，XX，WITH NPL TEKMS．
C TO REPLACE A SERIES \(X\) BY ITS DERIVATIVE，USE
C CALL DFRNT（X，NPL，\(X\) ）
DEUBLE PRECISIØN XX（NPL），XXN，XXL，DN，DL，X2（NPL）
DN \(=\) NPL -1
XXN \(=X X(N P L-1)\)
X \(2(N P L-1)=2.00 * X \times(N P L) * D N\)
\(\mathrm{X} 2(\mathrm{NPL})=0 . \mathrm{D}\)
\(0010 \mathrm{~K}=3\) ，NPL
\(L=N P L-K+1\)
\(\begin{array}{ll}\mathrm{DL} & =\mathrm{NPL} \\ \mathrm{L}\end{array}\)
\(X X L=X X(L)\)
\(\times 2(L)=x 2(L+2)+2 \cdot D 0 * \times \times N * D L\)
\(\times \times N=X \times L\)
10 CONTINUE
RETURN
RETD

SUBrioutine NTGRT（XX，NPL，X2）
C COMPUTES THE INTEGKAL CHEBYSHEV SEKIES，X2，OF A GIVEN C CHEBYSHEV SERIES，XX，WITH NPL TEIMMS．
C TO KEPLACE A SERIES X BY ITS INTEGKAL，USE
C CALL NTGRT（X，NPL，\(X\) ）
DOUBLE PRECISION XX（NPL），XPK，TENM，DK，X2（NPL）
XPR \(=\mathrm{XX}(1)\)
\(\times 2(1)=0.000\)
\(N=N P L-1\)
Do \(10 \mathrm{~K}=2\) ，
\(D K=K-1\)
（2RM＝（XPR－xX（K＋1））／（2．D0＊DK）
PR \(=X X(K)\)
\(X R(K)=T E R M\)
10 CONTINUE
DK＝N
XR（NPL）\(=X P R /(2 \cdot D O * D K)\)
RETURN
END

SUBROUTINE INVEKT（X，XX，NPL，NET，XNVSE，WY，he） C COMPUTES THE INVEKSE CHEBYSHEV SEKIES，XNUSE，GIVEN A C CHEBYSHEV SERIES．\(X\) ：A FIRST APPKOXIMATIDN CHEBYSHEV C SERIES，\(X X\) ，VIITH NPL TERMS．AND THE NUMBEK OF
C ITERATIONS，NET．THE SUBKOUTINE USES THE EULER METHDD
C AND COMPUTES ALL POHERS EPS＊＊K UP TE K＝2＊＊（NET＋1）．
WHERE EPS \(=1-x *(X X\) INVERSE）．WW AND W2 AKE，WQRK SPACE． C SUBKDUTINES USED－MLTPLY

DOUBLE PRECISIGN X（NPL），XX（NPL），XNVSE（NPL），kW（NPL）
＊W2（NPL）
CALL MLTPLY（X，\(X X\) ，NPL，WW）
\(W W(1)=2 \cdot D O-W W(1)\)
Do \(10 \mathrm{~K}=2\) ，NPL
\(W W(K)=-W W C(K)\)
10 Continue
CALL ML TPLY（WW，WW，NPL，W2）
WW（1）\(=2 \cdot D O+W W(1)\)
DO \(40 \mathrm{~K}=1\) ，NET
CALL MLTPLY（WW，W2，NPL，XNVSE）
D0 \(20 \mathrm{~J}=1\) ，NPL
WWi（J）\(=\) WW（J）＋XNVSE（J）
20 CONTINUE
CALL MLTPLY（W2，W2，NPL，XNVSE）
D0 \(30 \mathrm{~J}=1, \mathrm{NPL}\)
W2（J）\(=\operatorname{XNVSE}(J)\)
30 GONTINUE
a Continue
CALL ML TPLY（WH，\(X X\) ，NPL，XNVSE）
EETUiKN
END

SUBROUTINE BINOMCX，\(X X\) ，NPL，\(M\) ，NT，\(K A, 4 w, ~ w 2, ~ w 3\)
\(C\) COMPUTES THE BINOMIAL EXPANSIEN SERIES，XA，FOK \((-1 / M)\)
C PGWER DF A GIVEN CHEBYSHEV SEKIES，\(X\) ，WITH NPL TERMS，
C WHERE M IS A PGSITIVE INTEGER．XX IS A GIVEN INITIAL
C APPRQXIMATION T 0 X＊＊\((-1 / M)\) ．NT IS \(A\) GIVEN NUMBER \(\operatorname{GF}\)
C TERMS IN BINOMIAL SERIES．WW，W2，AND W3 ARE WORK SPACE
c SUBRDUTINES USED－MLTPLY
DOUBLE PRECISIGN X（NPL），XX（NPL），XA（NPL），WW（NPL），
＊WR（NPL），W3（NPL），ALFA，COEF，DM，DKMM，DKM2
\(\mathrm{DM}=\mathrm{M}\)
ALFA \(=-1 . D 0 / D M\)
DO \(10 \mathrm{~J}=1, \mathrm{NPL}\)
\(W \operatorname{Wr}(J)=X(J)\)
10 CENTINUE
De \(30 \mathrm{~K}=1, \mathrm{M}\)
CALL MLTPLY（WW，\(X X\) ，NPL，W2） Do \(20 \mathrm{~J}=1, \mathrm{NPL}\) WW（J）\(=W 2(\mathrm{~J})\) continue
30
\(W W(1)=W W(1)-2 . D O\)
\(x A(1)=2.00\)
De \(40 \mathrm{~J}=2, \mathrm{NPL}\)
\(\begin{aligned} X A(J) & =0.0 D 0 \\ 12(J) & =0.00\end{aligned}\) \(W 3(J)=0 . D 0\)
40 Centinue
W3（1）\(=2 \cdot D 0\)
Dの \(60 \mathrm{~K}=2\) ．NT
DKMM \(=K-1\)
DKM2 \(=K-2\)
OEF \(=\)（ALFA－DKM2）／DKMM
CALL MLTPLY（W3，WW，NPL，W2） DO \(50 \mathrm{~J}=1\) ，NPL
（J）\(=\) Wと（J）＊CDEF ontinue

60 CONTINUE
CALL MLTPLY（XA，\(X X\) ，NPL，W． 2 ）
DO \(70 \mathrm{~J}=1\) ．NPL
70 CONTINUE
CENTINU
RETU
END

SUBROUTINE XALFAR（X，\(X X\) ，NPL，\(M\) ，MAXET，EPSLN，NET，WW， ＊W2）
C REPLACES A GIVEN INITIAL APPKOXIMATION CHEBYSHEV SERIES．
C XX，BY A GIVEN CHEBYSHEV SERIES，\(X\) ，WITH NPL TEKMS．
C INPUT MAXET，MAXIMUM ALLOWED NUMEER OF ITEKATIENS，AND
C EPSLN．REQUIRED PRECISION EPSILON．QUTPUT AKGUMENT，
C NET．IS NUMEER OF ITEGATIONS PHEFORMED IF MAXET NET
C REQUIRED PHECISION MAY NOT HAVE BEEN EACHED AND THERE
C MAY BE DIVERGENCE WW AND WQ AHE WEHK SPACE AND THETE
c Conveigence is oundontic
C SUBROUTINES USED－MLTPLY
DQUBLE PKECISI日N X（NPL），XX（NPL），WH（NPL），W2（NPL），
＊EPSLN，DALFA，DM，\(S\) ，TDMM
\(D M=M\)
DALFA \(=1\). DO \(/ D M\)
TDMM \(=2 \cdot D 0 *(D M+1 \cdot D O)\)
DO \(60 \mathrm{JX}=1, \mathrm{MAXET}\)
WW（L）\(=X(L)\)
10 CONTINUE
DO \(30 \mathrm{~K}=1\) ， M
CALL MLTPLY（WW，\(X X\) ，NPL，W2）
DO \(20 \mathrm{~L}=1\) ，NPL
\(W W(L)=W 2(L)\)
CONTINUE
CONTINUE
Dg \(40 \quad \mathrm{~L}=1\) ，NPL
\(S=S+\operatorname{DABS}(\operatorname{VW}(L))\)
V． \(\mathrm{K}(\mathrm{L})=-W \mathrm{H}(\mathrm{L})\)
40 CONTINUE
\(W W(1)=W W(1)+T D M M\) CALL MLTPLY（WW，XX，NPL，Wi2） DO \(50 \mathrm{~L}=1, \mathrm{NPL}\) \(X X(L)=W 2(L) * D A L F A\)
50
CONTINUE IF（DABS（S）．LT．EPSLN）RETURN
60 CONTINUE
RETURN
END

SUBROUTINE XALFABC \(X, X X\) ，NPL，\(M\) ，MAXET，EPSLN，NET，WW， ＊W2）
C REPLACES A GIVEN INITIAL APPKOXIMATION CHEBYSHEV SEKIES
C XX，BY A GIVEN CHEBYSHEV SEKIES，\(X\) ，\(W I T H\) NPL TERMS
C KAISED TO THE（ \(-1 / M\) ）POWER．WHERE M IS AN INTEGER．
C INPUT MAXET，MAXIMUM ALL \(V W E D\) NUMBEK OF ITERATIONS，AND
C EPSLN，REQUIRED PKECISION EPSILON．OUTPUT AHGUMENT，
C NET，IS NUMBEN QF ITERATIGNS PKEFOKMED．IF MAXET＝NET，
C REOUIRED PRECISIEN MAY NGT HAVE BEEN KEACHED AND THEKE
C MAY BE DIVERGENCE．WW AND WZ AKE WORK SPACE．
C CONVERGENCE IS OF GRDER THREE
SUBROUTINES USED－MLTPLY
DQUBLE PRECS
EPSLN，DALFA，DM，S，TDMM，PSDML
\(D M=M\)
DALFA \(=1 . D 0 / D M\)
TDMM \(=2\). DO \(2(D M+1 . D O)\)
\(50 M L=.5 D 0 *(D M+1 \cdot D 0)\)
De \(10 \mathrm{~L}=1, N \mathrm{NL}\)
wh（L）\(=X(L\) ，
CONTINUE
DO \(30 K=1\) ，M
GALL MLTPLY（WW，\(x X\) ，NPL， H ）
D® 20 L＝1，NPL
WTLNUE \(=\) W2（L）
Continue
\(\mathrm{S}=-2 \cdot \mathrm{DO}\)
DO \(40 \mathrm{~L}=1\) ，NPL
\(S=S+D A B S(W W(L))\)
CONTINUE
Wh（1）\(=\) WW（ 1\()-2 . D O\)
DO \(50 \mathrm{~L}=1\) ，NPL
Wh（L）\(=\) Wik（L）＊DALFA
CONTINUE
CALL MLTPLY（WW，WW，NPL，W2）
DC \(60 \mathrm{~L}=1\) ，NPL
W2（L）\(=W 2(L) * P 5 D M L\)
CONTINUE
WW（1）\(=W W:(1)\)
\(D 070 \mathrm{~L}=1, N L^{2}\)
W2（L）\(=W 2(L)\)＋Wiw（L）
Centinue
CALL MLTPLY（W2，\(X X\) ，NPL，WW）
DO \(80 \mathrm{~L}=1\) ，NPL
\(X X(L)=W W(L)\)
CONTINUE
IF（DABS（S）－LT．EPSLN）RETUFN
90 CONTINUE
RETUN̄N
END

Communications```

