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Description 
Introduction. These subroutines deal with the manipulation of 

Chebyshev series. The operations performed are the construction 
of the Chebyshev approximation of functions, the evaluation of the 
series or their derivative, the integration or differentiation, and the 
construction of negative or fractional powers of such a series. 

The subroutines are written in ANSI Fortran. They have been 
used without modification on such computers as the IBM-7094, 
IBM-360/91 (Fortran-lV-G compiler) and Univac 1108 (Fortran-V 
compiler). 

The ten subroutines are considered as a single set, principally 
because they all use the same storage philosophy. All information 
is transmitted through the CALL-sequence rather than through 
the use of C O M M O N  statements. Therefore, the user must provide 
storage for all the series in his main program, taking into account 
that  all operations are performed in double precision. The coeffi- 
cients of each series occupy a one-dimensional double-precision 
array according to the rules of ANSI Fortran. When several 
Chebyshev series are being inanipulated, it is convenient to store 
all the series in a matrix. Each column of the matrix contains a 
single series, in order that the coefficients of each series occupy 
consecutive storage locations. 

The first six subroutines contain no calls to other subroutines; 
in this sense they may be considered as independent. Each sub- 
routine can be used separately. 

In the present type of operations, it is extremely important to 
design and perform a large number of tests to certify all of the 
subroutines. We have tested the subroutines by generating some 
Chebyshev series which were published by Clenshaw [4], but we 

have also tested them with a number of additional methods; for 
instance: 
a. The series for several elementary functions such as sin(x), 
cos(x), sin(2x), and cos(2x) have been constructed directly. These 
series have then been evaluated, and the values have been compared 
with the values of the functions. 
b. The series for cos(2x) and sin(2x) have been derived from the 
series sin(x) and cos(x) by multiplication and addition of series. 
c. The series for sin(x) and cos(x) have been derived from each 
other by integration and differentiation. 
d. Many tests have been made by multiplying a series f ( x )  by the 
series 1/f(x)  or for instance by squaring the series for f(x)t,  or other 
similar operations. 

The generation, evaluation and multiplication subroutines. The 
methods for the generation of a Chebyshev series have been taken 
from C.W. Clenshaw's papers [3, 4, 5]. The rule for the multiplica- 
tion of Chebyshev series is also described by Clenshaw [3, p. 137], 
but the flowchart of our subroutine is from L. Carpenter [2]. 

We only consider the interval ( - 1 ,  +1)  of the independent 
variable x, and we represent a truncated Chebyshev series of order 
n in the form: 

f ( x )  = (c0/2) + ctT~(x) q- c2T2(x) + " "  + cnT,(x).  (1) 

We want to draw the user's attention to the fact that we use a 
factor ½ in the zero-order term but not in the last term of the series. 
Some authors have used different conventions in relation to this 
factor ½ for the first and last terms. 

In the applications of the subroutines some caution is also 
necessary, because the independent variable x (the Chebyshev 
independent variable) is within the limits ( - 1 ,  +1). If  the user's 
variable t (the physical independent variable) is within the limits 
( h ,  t2), the conversions between t and x should be made with the 
linear relations 

t = ((t2 + h) /2)  + ((t2 -- h) /2)x;  
x = ((2t -- (h + h ) ) / ( h  -- h)). (2) 

The coefficients c~ in formula (1) are computed with the rule 
given by Clenshaw [4, p. 3]: 

ci = (2In)-~'~"f(cos (Irj/n)) cos(ri j /n);  i = O, 1 . . . .  , n. (3) 
i-O 

The double accent means that the first and last terms of the sum are. 
divided by two. It is seen that n + 1 special values of the function 
f ( x )  are needed. In some applications, n has been as large as 1,500. 

A large number of applications have shown that in most in- 
stances the user desires to construct the Chebyshev series for not 
just one function but for several functions simultaneously. For 
instance, in the study of the motion of a particle there will always 
be three coordinates, x~, x2, xs,  rather than just one. For this 
reason we programmed the subroutine C H E B Y  to efficiently con- 
struct several Chebyshev series simultaneously. In particular, the 
number of cosine calculations has been minimized. There will be 
only 2n cosine calculations, no matter how many functions are 
being analyzed simultaneously. 

Besides the main program, the user will have to provide his own 
subroutine for the evaluation of the special values of the functions 
to be analyzed, as explained in the comments of the subroutine 
C H E B Y .  The user may choose any name for this subroutine; how- 
ever, this name has to be transmitted through the C A L L  C H E B Y -  
statement. This function subroutine will generally evaluate the 
function values either by using the appropriate formulas or by per- 
forming table lookup and interpolations if the data is only available 
in the form of a table with discrete points. 

The subroutine E C H E B  evaluates a Chebyshev series with the 
aid of Clenshaw's recurrence rule [4, p. 9]. The ci's being the coeffi- 
cients of the given series, we compute the values bn+2, b~-i,  bn, • • • ,  
b0 with: 

b,,+2 = b,,+l = 0; bi = 2xb~+l - b,'+2 + cl ,  (4) 

where the subscript i runs from n to 0. The number of arithmetic 
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operations involved is only 3n, and the value of  the function is then 
f (x)  = (bo - b2)/2. 

The subroutine ED CHB evaluates the derivative of  a Chebyshev 
series (without storing the coefficients of the differentiated series). 
It implements a combination of  the evaluation formula (4) and 
the differentiation formula (6) given below. 

The differentiation and integration subroutines. Clenshaw's 
formulas [4, p. 11] have again been used for the differentiation and 
integration operations. The coefficients a~ of the integrated Cheby- 
shev series are derived from the input coefficients c~ by: 

a0 = 0; a~ = c,_i/2n; al = (c~-1 - -  ci+l)/2i; (5) 
i = 1 , 2 , . . . , n - -  1. 

The coefficients d~ of  the differentiated series are obtained by a set 
of  recurrence equations: 

d, = 0; d,-1 = 2nc, ; di-i = di+i + 2ici ; (6) 
i = n -  l , n -  2 , . . . ,  1. 

When using the differentiation and integration subroutines, the 
user should remember the relation between the differentials of  t 
and x: 

tit = ((to - ti)/2) dx = (At/2)dx. (7) 
This should be considered whenever differentiation or integration 
of Chebyshev series is performed. For instance we have for any 
Chebyshev series f:  

f f d t  = (At /2)  f f d x .  (8) 
Negative and fractional powers. Our last four subroutines, 

dealing with expansion or iteration methods for the generation of  
noninteger powers of  a Chebyshev ~eries, are somewhat more so- 
phisticated than the first six subroutines, but the theoretical basis 
of  their operation has recently been described in detail [1]. For this 
reason, they will not be described in more detail here. All four sub- 
routines use the multiplication subroutine M L T P L Y  but are 
otherwise independent. The subroutines BINOM, XALFA2, and 
XALFA3 all have the same purpose but operate with different 
methods and have different convergence properties. All three are 
given in order to allow the user to experiment and eventually select 
the one that is most efficient for his particular application. 
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reviewers for their useful suggestions. 
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Algorithm 
S U B R O U T I N E  C H E B Y ( N F *  NPL~ N P L M A X ,  N 2 *  F U N C T N ,  X *  F X J ~  GC)  

C S I M U L T A N E O U S  C H E B Y S H E V  A N A L Y S I S  OF NF F U N C T I ' ~ N S  
C COMPUTES A M A T R I X ,  X~ C O N T A I N I N G  ONE C H E B Y S H E V  S E R I E S  PER 
C COLUMN FeB  A G I V E N  NUMBER OF F U N C T I O N S ,  N F .  I N P U T  N F L ,  
C THE NUMBER OF TERMS IN ALL S E R I E S s  NPLNAXs THE I~Ob 
C DIMENSION OF X IN THE CALLING PROG~AM (MUST BE,GE,NPL)~ 
C N 2 ,  D I M E N S I O N  OF GC ( M U S T  B E . G E . 2 * ( N P L - I ) ) ,  AND F U N C T N ,  
C T H E  NAME OF USER S U B R O U T I N E  W H I C H  D E F I N E S  T H E  N F  
C F U N C T I O N ~ .  F X J  AND GC A R E  V, GRK S P A C E °  
C AN E X A M P L E  OF SUCH A S U B r ~ O U T I N E  1 5  AS F D L L O ~ 5  
C S U B R O U T I N E  F U N C T N ( A , V A L I  
C D O U B L E  P B E C I S I { ~ N  A ~ V A L I B )  
C V A L (  I ) = D S I N ( A )  
C V A L I G ) = D C O S ( A )  
C R E T U R N  
C END 

DGUBLE PHECISION X(NPLMAXsNF), FXJINF) ,  GCINB), ENN, XJ, 
* FK~ PEN~ FAC 
DO 20 K = I , N P L  

DO 1O J = I , N F  
X ( K a J )  = O . D O  

IO CONTINUE 
20 CONTINUE 

N = N P L  - I 
ENN = N 
P E N  = 3 . 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 D O / E N N  
DO 30 K=I~N2 

FK = K - I 
G C ( K )  = D C O S ( F K * P E N )  

3 0  C O N T I N U E  
DO SO J = I , N P L  

XJ = G C ( J )  
C A L L  F U N C T N ( X J n  F K J I  
IF ( J . N E o l  . A N D .  J o N E o N P L )  GO T~ 50 

DO 40  K = I J N F  
F X J ( K )  = . S D O * F X J ( K )  

40  C O N T I N U E  
50  DO 7 0  L = I ~ N P L  

LM = H D D ( ( L - I ) * ( J - I ) , N G )  ÷ 1 
DG 60 R = I n N F  

X ( L , K )  = X I L , K )  + F X J ( K ) * G C ( L M )  
6 0  C O N T I N U E  
7 0  C O N T I N U E  
8 0  C O N T I N U E  

F A C =  2 . G D B / E N N  
DO lOG K = | ~ N P L  

DO 90  J= I ,NF  
X (KsJ )  = F A C * X ( K ~ J )  

90 .C~NTINUE 
I00  CONTINUE 

RETURN 
END 

5UBR{JUTINE NLTPLY(XX, XB, NPL, X3) 
C MULTIPLIES TWO GIVEN CHEBYSHEV S E R I E S *  XX AND A2, VJITH 
C NPL TERMS TO PRODUCE AN ~UTPUT CHEBYSHEV SERIESs X3. 

DDUBLE PRECISICN XX(NPL)* X2(NPL)s /C3(NPL), EX 
De |0 K=I ,NPL 

X 3 ( K )  = O,ODO 
lO  C O N T I N U E  

DO 3 0  K = I , N P L  
EX = O,ODO 
MM = NPL  - K + 1 
DO 2 0  M = l a M M  

L = M + K - I 
EX = EX + XX(M)*XB(L) + XX(L)*X2(M) 

90 CDNTINUE 
X 3 C K )  = Oo5DO*EX 

30 CBNTINUE 

X 3 ( I )  = X 3 ( I )  - O . 5 D O t X X ( I ) ' ~ X 2 ( i )  
DO 5 0  R = 3 J N P L  

EX = O,ODO 
MM = K - I 
DO 40 M=2,MM 

L = R - M + I 
EX = EX + X X I M ) * X B ( L )  

40  C O N T I N U E  
X 3 ( K )  = O . 5 D O * E X  + X 3 ( K )  

5 0  C O N T I N U E  
RETURN 
END 

S U B R O U T I N E  E C H E B ( X s  C B E E ,  N P L J  F X )  
C E V A L U A T E S  T H E  V A L U E  F X ( X )  OF A G I V E N  C H E B Y S H E V  S E R I E S 1  
C C O E E ,  ~ I T H  N P L  TERMS AT  A G I V E N  V A L U E  OF X BETWEEN 
C - I .  A N D  1o 

D O U B L E  P R E C I S I O N  C O E E ( N P L ) ,  X ,  FX~ BRs BRPP~ B R P 2  
BR = O.ODO 
BRPP = O.ODO 
DO IO K = I , N P L  

J = N P L  - K + I 
B R P 2  = BRPP 
B R P P  = BR 
BR = 2 ° O D O * X * B R P P  - B R P 2  + C O E F ( J )  

10  C O N T I N U E  
FX = O.SDO*(BR-BRP2) 
RETURN 
END 

S U B R O U T I N E  E D C H E B ( X ,  C C E F I  N P L s  F X )  
C E V A L U A T E S  T H E  V A L U E  F X ( X )  OF THE D E R I V A T I V E  OF A 
C C H E B Y S H E V  S E R I E S ,  COEFa b I T H  N P L  TERMS A T  A G I V E N  
C VALUE OF X BETWEEN - l .  A N D  I o  

D O U B L E  P R E C I S I O N  C O E F ( N P L ) n  Xp F X ,  X J P 2 ,  X J P L ,  XJ~  B J P G ,  
* B J P L ,  B J ,  BFs  DJ  

X J P 2  = O°ODO 
X J P L  = OoODO 
BJPB = OoODO 
BJPL = O.ODO 
N = N P L  - I 
DO l O  K = I , N  

J = N P L  - K 
DJ  = J 
X J  = 2 . D O * C B E E ( J + I ) * D J  + ~ J P 2  
B J  = 2 ° D O * X * B J P L  - B J P 2  + X J  
BF  = B J P B  
B J P 2  = B J P L  
B J P L  = B J  
X J P 2  = X J P L  
X J P L  = X J  

10 C O N T I N U E  
FX = .5DO*(BJ-BF) 
RETURN 
END 
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S U B R O U T I N E  D F R N T ( X X ,  N P L ,  XO)  
C COMPUTES T H E  D E R I V A T I V E  C N E B Y S H E V  S E R I E S ,  XG.  OF A G I V E N  
C CHEBYSHEV SERIES, X X .  WITH N P L  TERMS, 

C TO REPLACE A S E R I E S  X BY I T S  DEI~IVATIVE, USE 
C CALL DFRNT(X~NPL,X) 

D O U B L E  P R E C I S I O N  X X ( N P L ) .  X X N .  X K L ,  DN, D L .  K G ( N P L )  
DN = N P L  " 1 
X X N  = X A ( N P L - I )  
X O ( N P L - I )  = 2 . O O * X X ( N P L ) * D N  
X O ( N P L )  = O . D O  
DO l O  K = 3 , N P L  

L = N P L  - K + 1 
DL = L 
X X L  = X X ( L )  
X O ( L )  = X O I L + 2 )  + B . D O * A X N * U L  
XXN = XXL 

I0 CONTINUE 
RETURN 
END 

SUBROUTINE NTGRT(KX, NPL, XB) 
C COMPUTES THE INTEGRAL CHEBYSHEV SERIES, X2, OF A GIVEN 
C CHEBYSHEV SERIES, XX, WITH NPL TERMS. 
C T8 REPLACE A SERIES X BY ITS INTEGRAL, USE 
C C A L L  NTGRT(X,NPL.X) 

D O U B L E  P R E C I S I O N  X K ( N P L ) ,  X P ~ ,  T E ~ M ,  DK ,  ~ 2 ( N P L )  
XPR = XX(1) 
XG(1) = O.ODO 
N = NPL - l 
DO I0 K = 2 , N  

DK = K - I 
TERM = (XPH-XX(K+I)) / (~*DO*DK) 
XPR = XXIK) 
X2IK) = TERM 

I0 CONTINUE 
DK = N 
X 2 ( N P L )  = X P R / ( 2 . D O * D K )  
RETURN 
END 

S U B R O U T I N E  I N V E R T ( X ,  X X ,  N P L s  N E T ,  X N V S E ,  WV;, Wfi) 
C C O M P U T E S  T H E  I N V E R S E  C H E B Y S H E V  S E R I E S ,  X N V S E ,  G I V E N  A 
C C H E B Y S B E V  S E R I E S ,  X ,  A F I R S T  A P P R O X I M A T I O N  C H E B Y S H E V  
C S E R I E S ,  X K ,  k I l H  N P L  TERMS,  A N D  T H E  N U M B E ~  OF 
C I T E R A T I O N S ,  N E T .  T H E  S U B R O U T I N E  U S E S  T H E  E U L E R  METHOD 
C A N D  C O M P U T E S  A L L  POWERS E P S * * K  UP T~ K = 2 * * I N E T + I ) ,  
C WHERE E P S = I - X * I X X  I N V E K S E I .  WW AND W2 A ~ E ' W O H K  S P A C E .  
C S U B R O U T I N E S  U S E D  - M L T P L Y  

DOUBLE PRECISION X ( N P L ) ,  XX(NPL), X N V S E ( N P L ) ,  ~ W ( N P L ) .  
* W O ( N P L )  

C A L L  MLTPLY(X, X X ,  N P L ,  ~W) 
WW(I) = 2.DO - WW(1) 
DO ]O K=2,NPL 

WW(K) = - ~ W C H )  
10  C O N T I N U E  

CALL MLTPLY(WW, WW, NPL, WO) 
WW(1) = 2.DO + WW(1) 
DO 40  K=I,NET 

C A L L  MLTPLYIWW, W2, N P L ,  KNvSE) 
DO 2 0  J = I , N P L  

HWIJ) = WW(J) ÷ X N V S E ( J )  
20 C O N T I N U E  

CALL MLTPLY(WB, WB, NPL, ~NVSE) 
De 30 J=I,NPL 

W2(J) = XNVSE(J) 
3 0  C O N T I N U E  
40  CONTINUE 

C A L L  MLTPLY(WW, KX, N P L ,  X N V S E )  
RETURN 
END 

SUBROUTINE BINOM(X, XX, NPL, M, NT, XA, WW, WO, W3) 
C COMPUTES THE BINOMIAL EXPANSION SERIES, XA, FOR ( - I / M )  
C POWER OF A GIVEN CHEBYSHEV SERIES, X, WITH NPL TPJ~MS, 
C WHERE M IS A POSITIVE INTEGER. XK I5 A GIVEN INIT IAL 
C APPROXIMATION TO X * * ( - I / M ) .  NT IS A GIVEN NUMBER OF 
C TERMS IN BINOMIAL SERIES. WW, W2, AND W3 ARE ~ORK SPACE 
C SUBROUTINES USED - M L T P L Y  

D O U B L E  P R E C I S I O N  X ( N P L ) ,  X X ( N P L ) ,  X A I N P L ) ,  W W ( N P L ) ,  
* W O ( N P L ) ,  W S ( N P L ) ,  A L F A ,  C O E F ,  DM, DHMM, DRMO 

DM = M 
ALFA= -I.DO/DM 
DO 10 J=I,NPL 

WW(J) = X(J)  
I0 CONTINUE 

D0 3 0  K = I , M  
CALL MLTPLY(WW,  XX,  N P L ,  W2) 
De 2 0  J = I , N P L  

WW(J) = W2(J) 
BO CONTINUE 
30 CONTINUE 

WW(1) = WW(1) - B.DO 
XA(1) = 2.DO 
DO 40 J=B,NPL 

XA(J) = O.ODO 
~ 3 I J )  = O.DO 

4 0  C O N T I N U E  
W 3 ( I )  = 2 . D O  
DO 60  K = O , N T  

DRMM = K - I 
DON2 = K - 2 
COEF = ( A L F A ' D K M B ) / D K H M  
C A L L  M L T P L Y ( W 3 ,  WW, N P L ,  WO) 
DO 50  J = I , N P L  

W 3 ( J I  = W O ( J ) * C O E F  
X A ( J )  = X A ( J )  + W S ( J I  

5 0  C O N T I N U E  
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6 0  C O N T I N U E  
C A L L  M L T P L Y I X A ,  X X ,  N P L ,  WO) 
DO 7 0  J = I , N P L  

XA(J) = W2(J) 
70 CONTINUE 

R E T U H N  
END 

S U B R O U T I N E  X A L F A G I X ,  X X ,  N P L ,  M,  M A X E T ,  E P S L N ,  N E T ~  WW, 
* W2)  

C R E P L A C E S  A G I V E N  I N I T I A L  A P P H O X I M A T I O N  C H E B Y S H E V  SE~t ( IES,  
C XX, BY A GIVEN CHEBYSHEV SERIES, X, WITH NPL TERMS, 
C RAISED TO THE ( - I / M I  PO~ER, WHEHE M IS AN INTEGER. 
C INPUT MAXETJ MAXIMUM ALLOWED NUM@ER OF ITEkATIONS, AND 
C EPSLN, REQUIRED PRECISION EPSILON. OUTPUT ARGUMENT, 
C NET, 15 NUMBER OF ITERATIONS PKEFOIXMED. IF MAXET=NET, 
C REQUIRED PRECISION MAY NOT HAVE BEEN AEACHED AND THERE 
C MAY BE DIVERGENCE. WW AND W2 AR'E W~RK SPACE. 
C C O N V E R G E N C E  IS QUADRATIC 
C SUBROUTINES USED - MLTPLY 

DOUBLE PRECISION X(NPL), XK(NPL), hW(NPL), WG(NPL), 
* E P S L N ,  DALFA, DM, ~ ,  TDMM 

DM = M 
DALFA = t .DO/DM 
TDMM = 2.DO*(DM÷I.UO) 
DO 60 JX=I,MAXET 

DO I 0  L = t .  N P L  
W W ( L )  = X I L )  

tO CONTINUE 
DO 3 0  K = I , M  

C A L L  ~ L T P L Y ( W W ,  XK, N P L ,  W2)  
De 2 0  L = I , N P L  

W W ( L )  = W O ( L )  
OO CONTINUE 
3 0  CONTINUE 

S = - 2 . D O  
DO 4 0  L = I , N P L  

S = S + DABSIWWIL)) 
V W ( L )  = - W ~ v I L )  

4 0  C O N T I N U E  
W W ( I I  = WW( I )  + TDMM 
CALL MLTPLy(WW, XX, NPL, WG) 
DO SO L=I,NPL 

X X ( L )  = WB(L)*DALEA 
50 CONTINUE 

NET = JX 
I F  ( D A B S ( S ) . L T . E P S L N )  RETURN 

60 CONTINUE 
RETURN 
END 

S U B R O U T I N E  X A L F A 3 ( X .  X X ,  N P L ,  M . . M A X E T ,  E P S L N ,  N E T .  Wk,  
* WG) 

C REPLACES A GIVEN INIT IAL APPROXIMATION CHEBYSHEV S ~ I E S ,  
C XX, BY A GIVEN CHEBYSNEV SERIES, X, kiTH NPL TERMS, 
C RAISED TO THE ( - I / M )  POWER, WHERE M IS AN INTEGER. 
C INPUT MAXET, MAXIMUM ALLOWED NUMBE~ OF ITERATIONS, AND 
C EPSLN, REQUIRED PRECISION EPSILON. OUTPUT ARGUMENT, 
C NET, IS NUMBER OF ITERATIONS P~EFOkMED. IF MAKET=NET, 
C REQUIRED PRECISION MAY NOT HAVE BEEN REACHED AND THEI(E 
C MAY BE DIVERGENCE. WW AND W2 ARE WORK SPACE. 
C C O N V E R G E N C E  I S  OF ORDER T H R E E  
C SUBROUTINES USED - MLTPLY 

DOUBLE PRECISION X(NPL), XX(NPL), WW(NPL), W2(NPL;, 
* EPSLN, OALFA, DM, S, TDMM, PSDML 

DM = M 
D A L E A  = I . D O / D M  
TDMM = 2 . D O * ( D M + I , D O )  
P 5 D M L  = . S D O ~ I D M + I . D O )  
DO 9 0  JX=I,MAXET 

DO IO  L = I , N P L  
W b I L )  = X ( L )  

10 CONTINUE 
DO 30 H=1,M 

CALL MLTPLYIWW, XX, NPL, WB) 
DO @0 L=I,NPL 

WWIL).= WG(L) 
20 CONTINUE 
3 0  CONTINUE 

S = - 2 . D O  
DZ 4 0  L = I , N P L  

S = S + DABSIWW(L)) 
AO CONTINUE 

WW(1) = WW(I) - B.DO 
DO 50  L = I . N P L  

W W I L }  = W k ( L ) * D A L F A  
50  C O N T I N U E  

CALL M L T P L Y I W W ,  WW, N P L ,  WB) 
OO 6 0  L = I , N P L  

WW(L) = -WWfL) 
W B ( L )  = W B ( L ) * P 5 D M L  

60  C O N T I N U E  
WW(1) = WW(1) + B.DO 
DO 7 0  L = I , N P L  

W B ( L )  = W B ( L )  + W W ( L )  
7 0  C O N T I N U E  

CALL HLTPLY{W2, XX, NPL, WW) 
DO 80 L = I , N P L  

XXIL) = WW(L) 
80 CONTINUE 

NET = JX 
I F  (DABSI~).LT.EPSLN) RETURN 

9 0  C O N T I N U E  
RETURN 
END 
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