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elongated because the computer printer prints out charac-
ters leaving more space between rows than between
columns.
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procedure EXPAND(M); integer M;

comment This algorithm algebraically expands arbitrarily
parenthesized expressions into monomials. Distributionis direct,
without intermediate expansion of lower level expressions. The
algorithm has been used as a part of algebra programs in the-
oretical physics {2, 3]. It was devised by H. J. Kaiser [1] and re-
constructed by M. J. Levine. Expansion proceeds in two steps:
First, parsing an input expression into a sequence of variable-
operator pairs with associated parenthesis-level information,
and then picking out the variables which belong together as
factors of monomial terms. EXPAND accepts an abbreviated
Avgor-like syntax:

{variable) ::= A |B|C|D|E|F|@

(primary) ::= (variable) | ({(expression))
{term) ::= (primary) | (term) X (primary)
{expression) ::= (term) | (expression) 4- (term)
REFERENCES:

1. Ka1sEr, H. J. Trace calculation on electronic computer. Nu-
clear Physics 43 (1963), 620.
2. LeviNg, M. J. Dirac matrix and tensor algebras on a compu-
ter. J. Computat. Phys. 1 (1967), 454.
3. Swanson, 8. M. Computer algorithms for Dirac algebra.
J. Computat. Phys. 4, 1 (1969), 171;
begin
integer LVL, N, T, U; Boolean array MULT[0: M];
integer arvay V, VL, OPL, INDEX[0: M];
integer procedure CHAR;
begin
integer C;
A: insymbol (2, ‘X) + (ABCDEFGuy, C); if C = 12 then go
to A;
CHAR := C
end CHAR;
procedure DISTRIBUTE(N); integer N;
comment There are two problems in distribution: first, to se-
lect the variables in an expression which belong together as
factors of the current monomial, and then to alter the reference
marks in USED to indicate the next monomial. A Boolean
value in USED is associated with each variable-operator pair.
The expression is scanned from the left to select the first un-
used variable, and then any variables in an additive relation
to the selected variable are skipped before continuing the
scanning for other factors. For the next monomial, the first
selected variable followed by a ‘-’ is marked used, and the
marks on all the variables to the left are altered, depending on
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their operator type and level relation to the “+”’. Distribu-
tion is from left to right (initial factors change most often);
begin .
integer I,J, K, L, LEVEL;
Boolean ALTER, PRODUCT, TERM;
Boolean array USED[0:N];
for K := O step 1 until N do USEDIK] := false;

NEXT: ALTER := true; J :=1:= —1;
FACTOR: I := I+ 1; if USEDI[I] then go to FACTOR;
:=J +1; INDEX|J]:= I

SKIP: if MULT[I] then go to FACTOR; LEVEL := OPL{I];
if LEVEL > 0 then
begin
if ALTER then
begin
L := LEVEL; LEVEL := VL[I] + 1;
USEDI[I] := PRODUCT := TERM := true;
ALTER := false;
for K := ] — 1step —1until 0 do
begin
if OPL[K] < LEVEL then
begin
LEVEL := OPLIK]; PRODUCT := MULT[K];
if PRODUCT then LEVEL := LEVEL + 1;
if LEVEL < L then TERM := false
end;
if PRODUCT then USED[K] := TERM
end
end
else
begin
R: I:=1+1; if LEVEL < OPL[I] then go to R
end;
go to SKIP
end;
PROCESS(J); if — ALTER then go to NEXT;
end DISTRIBUTE;
procedure PROCESS(J); integer J;
comment A skeletal output routine (normally, monomials are
further manipulated, sorted, and accumulated);
begin
integer I; oulstring (1, ‘4’);
for I := 0 step 1 until J do
begin
outsymbol (1, “X) 4+ (ABCDEFG”, VIINDEXI[I]]);
if I # J then outsiring (1, ““X”’)
end
end PROCESS;
comment The following statements parse the input. A full-
fledged input routine would extend {primary) to include num-
bers and would class both “—” and ““4-’ together as (adding
operators). DISTRIBUTE still works with only “+4” and “X*’
since a “‘—’’ is either absorbed into a following unsigned num-
ber or replaced by the string *“—1X”’. Only a single subexpres-
sion, followed by an unparenthesized “+”, is expanded at a
time, M limits the size of this subexpression. A syntax error or
a semicolon terminates the processing of input;
LVL := N :=0; U := CHAR; if U < 4 then go to ERR;
A: T:=U; ifU = 13then T := 3 else U := CHAR;
if U = 4 then
begin
if T = 1 then
begin
MULTIN] := true; OPL[N]:=LVL; N:=N-+1
end
else if 7 = 3 then
begin
MULTIN] := false; OPLIN] := LVL;
if LVL = 0 then begin DISTRIBUTE(N); N := 0end
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else N := N +1
end
else if T = 4 then LVL := LVL + 1
else go to ERR
end
else
begin
if T =2 ALVL >0then LVL := LVL — 1 else
if T = 5 then begin V[N] := T; VL[N] := LVL end
else go to ERR;
end;
if U # 13 then go to A else if LVL = 0 then go to B;
ERR: ouistring (1, ‘syntax error’);
B: end EXPAND
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Algorithm 310 was coded in AncoL 60 reference language and
run on an IBM 360/65. The algorithm was tested for a large range
of values including m = 5, 10, 501, and 2000. Reference [1] was
utilized to verify the theory involved in the algorithm before actual
machine testing.

The intention of Algorithm 310 is to give only the number of
primes less than or equal to m. Actual confirmation in the initial
phases was accomplished through additional instructions that
printed the array of prime numbers, p, and the number of primes,
k. Both references listed were useful in substantiation of the prime
numbers given. These references were again useful in verifying that
all the primes in the array had been discovered and printed.

Each test produced the correct number of primes, k, for the
specified range, m. When the primes were listed, the total taken by
hand agreed with the number, k, given by the algorithm.

REFERENCES:

1. EsTERMANN, T. Introduction to Modern Prime Number Theory.
Cambridge U. Press, Cambridge, England, 1952.

2. Leamer, D. N. Carnegie Institution of Washington, Publica-
tion No. 165. Hafner, New York, 1956.

REMARIKK ON ALGORITHM 336 [H]
NETFLOW [T. A. Bray and C. Witzgall, Comm. ACM 11
(Sept. 1968), 631-632]
T. A. Bray anp C. Wrrzearr (Reed. 20 Oct. 1969)
Boeing Scientific Research Laboratories, Seattle, WA
98124

KEY WORDS AND PHRASES: capacitated network, linear
programming, minimum-cost flow, network flow, out-of -kilter
CR CATEGORIES: 5.32, 5.41
The algorithm as published contains an error on the 11th line
following the line labled XD, which reads:
if del = abs(cok) A ...
This line should read
if del > abs(cok) A ...
Fortunately, this error does not invalidate the algorithm but may
in some cases lead to additional operations.
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