
Tags and Type Checking in LISP: 
Hardware and Software Approaches 

Peter Steenkiste and John Hennessy 

Computer Systems Laboratory 
Stanford University 

Abstract 

One of the major factors that distinguishes LISP 
from many other languages (Pascal, C, Fortran, etc.) is 
the need for run-time type checking. Run-time type 
checking is implemented by adding to each data object 
a tag that encodes type information. Tags must be 
compared for type compatibility, removed when using 
the data, and inserted when new data items are created. 
This tag manipulation, together with other work related 
to dynamic type checking and generic operations, 
constitutes a significant component of the execution 
time of LISP programs. This has led both to the 
development of LISP machines that support tag 
checking in hardware and to the avoidance of type 
checking by users running on stock hardware. To 
understand the role and necessity of special-purpose 
hardware for tag handling, we first measure the cost of 
type checking operations for a group of LISP programs. 
We then examine hardware and software 
implementations of tag operations and estimate the cost 
of tag handling with the different tag implementation 
schemes. The data shows that minimal levels of 
support provide most of the benefits, and that tag 
operations can be relatively inexpensive, even when no 
special hardware support is present. 

1. Introduction 

In statically typed languages like Pascal, type 
checking is done at compile-time. Languages like LISP 
do not require the user to specify the type of each data 
item so run-time type checking is required. Run-time 
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type checking is implemented by adding a tag to each 
data item to encode the type of that item; operaations on 
the data can then be type checked. On general-purpose 
processors, the tag is usually stored together with the 
data, or with a pointer to the data, in a single word. On 
LISP machines, the word length is often extended to 
accommodate tag bits, which are then handled with 
separate hardware. Generul-purpose machines must 
explicitly extract and compare tags when checking 
types and remove tags when operating on tagged data. 
Dynamic type checking, while chiefly concerned with 
tag operations, also involves support of generic 
arithmetic. 

An earlier study [18] on the run-time behavior of 
LISP showed that LISP programs spend an average of 
one fourth of their execution time on handling tags with 
type checking turned off. This cost was the primary 
motivation for the creation of LISP machines with a 
tagged architecture. LISP machines with tag support 
have instructions that can operate on the tag and the 
data part of an item, without having to disassemble it 
with separate instructions, and they usually support tag 
checking operations in parallel with other operations. 
For example, an integer add and the type check on the 
two operands occur simultaneously. Adding run-time 
checking to primitive LISP operations slows down our 
set of LISP programs by 25%, so overlapping some or 
all of this testing with other operations can give a 
substantial speedup. 

In this paper we first study the cost of tag handling 
for ten LISP programs that were executed on the MIPS- 
X reduced-instruction-set processor. We then describe 
a number of tag implementations, including both 
software schemes, which can be used on general- 
purpose architectures, and hardware schemes for LISP 
machines. We compare how effective they are at 
reducing the cost of tag handling; finally we discuss 
generic arithmetic in Section 4. 

2. Portable Standard Lisp on MIPS-X 

The data presented in this paper are based on 
measurements of ten Portable Standard Lisp programs 
that were executed on an instruction-level simulator for 
MIPS-X, a high-performance microprocessor[10]. 
MIPS-X is used as a typical example of a reduced- 
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instruction-set processor. An advantage of using a 
RISC architecture in this type of study is that one can 
measure both instruction counts and execution time 
easily, since the latter depends directly on the former 
(ignoring cache misses). The programs we have 
studied include a compiler front-end, a garbage 
collector, and a rational function evaluator, and three of 
the larger Gabriel benchmarks [7]; together the ten 
programs contain about 11000 lines of LISP code, 
without comments. Details about the benchmarks 
appear in the Appendix. Portable Standard Lisp 
[8, 9] is a small, efficient LISP dialecL In the 

remainder of this section we discuss the PSL 
implementation on MIPS-X. 

2.1. The Implementation of tags 

The PSL implementation on MIPS-X uses a 5 bit tag 
that is stored in the most significant part of the word; 
the remaining 27 bits contain a pointer to the data. For 
some data types, the data item contains immediate data, 
e.g. symbols and integers that fit in 27 bits: There are 
four operations related to tags: 

* tag insertion: given a piece of data, Or a pointer, 
and its type (tag value), construct the data 1tern, 

,, tag removal: given an item, extract the data item, 
that is, clear the tag and create a valid pointer or 
data item, 

• ta~ extraction: given an item, extract the tag 
vaitle,  

• tag checking: given an item, test the value of its 
tag; this is  implemented as a tag extraction 
followed by a conditional branch. 

The tag value for positive integers is 0, and for 
negative integers, 31 (all l ' s ) ;  As a result of this 
choice, the LISP representation for an integer is the 
same as its two's complement machine representation 
[9]. This means that integer arithmetic done On short 

(27-bit) integers without type checking can use the 
arithmetic instructions of the processor without any 
need for reformatting. This optimization speeds up all 
low level integer operations. Because of the special tag 
encoding for integers, type checking for integers is 
different from other data types (see Section 4.1). 
Testing for overflow for integer additions (and 
subtractions) can be implemented as a type checking 
operation: if we add two LISP integer items and 
overflow occurs, then the result will not b e  a LISP 
integer. This special treatment of integers is justified 
by their high frequency of use . . . .  

2.2. Run-time checking and generic 
operations 

How much run-time type checking is done, and how 
it is done, strongly influence the number of tag 
checking operations that are executed. For this reason, 
we first optimized PSL run,time checking [19] to make 

its performance comparable to that of some newer, 
optimized LISP systems [3, 11]. In this section, we 
describe what data types are used in our test programs, 
and how type checking is done for those types. 

For a lot of operations, run-time checking is 
equivalent to checking the tag of the operand. An 
important example is type checking on list operations 
such as car and cdr: the operand has to be a list, 
otherwise the operation is illegal. Type checking for a 
symbol also consists of a single tag check. Run-time 
checking for vector accesses is more complicated. 
Compilers for language like Pascal and C often allow 
the programmer to specify run-time bounds checking. 
In LISP, vector accesses with full run-time checking 
will not only do bounds checking, but will also check 
that the indexed object is a vector and that the indexing 
type is legal. 

Because the type of the operands of an arithmetic 
operation is not known at compile time, the LISP run- 
time system has to deal with type conversion and has to 
pick an operator that matches the type of the operands. 
This generic arithmetic can be implemented by doing a 
type dispatch on the type of the operands, but integers 
are by far the most common type of numbers in 
LISP [24], and genetic arithmetic can be speeded up by 
first specifically testing for integer operands, thus 
giving a fast result for the most common integer case. 
The expensive general sequence is only used if non- 
integers are involved. The integer tests and the integer 
operation are done inline. 

Most LISP dialects define more data types than are 
used in our programs, but the data objects most actively 
used will be of the types we discussed (numbers, 
symbols, lists, or vectors). A lot of the other data types 
are also modeled after, or are implemented on top of 
one of the above types, for example: structures, strings, 
and bit-vectors [17]. Because the data types used in our 
programs, and the implementation of tag checking are 
both similar to what is found in other modem LISP 
systems, we expect that the numbers presented in this 
paper are representative for most LISP dialects. 

3. Time spent on tag operations 

In this section we look at how much time LISP 
programs spend on various tag operations. LISP 
usually requires run-time checking on an operations, 
bat there are several important cases where these 
checks are not required. First, when the compiler can 
determine the type of an operand based on the program 
context [12], or when the programmer uses variable 
declarations or type specific operators [16, 13,3], the 
type checking operations can be removed without 
affecting correctness or security. Second, many LISP 
compilers have a flag that determines whether the 
compiler will give priority to speed or to safety [17]. 
The importance of optimizing run-time type checking 
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cannot be accurately measured until we know the 
frequency of its occurrence in real programs. Because 
the amount of run-time checking depends on techniques 
to minimize the checks, we have collected data in two 
extreme situations: when no type checking is done, and 
when full run-time checking is done. A real LISP 
program will lie between these two extremes. 

Adding run-time checking to our set of programs 
increases the execution time with 25% on average, but 
the slowdown for individual programs ranges from 6% 
to 88% (Table 1). Checking on list operations is 
responsible for most of the increase in execution time, 
but for opt and tray, the contribution of checking vector 
operations is significant, and rat does a fair amount of 
arithmetic. 

arith vector list total 

inter 0.63 0.00 19 
deduce 0.09 0.00 12 
dedgc 0.04 0.00 6 

rat 4.85 0.00 13 
comp 0.05 0.00 I0 
opt 2.68 11.76 27 
frl 0.45 0.00 9 

boyer 0.00 0.00 17 
brow 0.03 0.00 19 
tray 3.09 71.96 13 

04 19.68 
27 12.36 
58 6.62 
69 18.54 
34 10.39 
99 42.43 
72 10.17 
50 17.50 
91 19.94 
19 88.25 

average 1.19 8.37 15.02 24.59 

Table 1: Percentage increase in execution time 
when run-time checking is added 

In this paper, the 'cost' without (with) run-time 
checking, is expressed as a percentage of the execution 
time of the programs without (with) run-time checking. 
The tags are implemented as described in Section 2.1, 
but changes in the implementation, like putting the tags 
in the low order bits, should not influence our results 
significantly. 

3.1. Tag Insertion 

A tag haste  be inserted each time when a new item 
is created. Inserting a tag in a data item when both the 
tag mad the item are in a register costs two cycles: one 
to shift the tag to the most significant bits, and one to 
'or' the tag and the item together. Because of our 
choice of tag values, no tag insertion is necessary when 
an integer is created; Figure 1 shows that the ten 
programs spend on average 1.5% of their time on the 
insertion of tags. 

We will not discuss tag insertion any further in this 
document, both because it is not time critical, and 
because there is little possibility for improvement by 

simple changes in software or hardware. For example, 
keeping a preshtfted list tag in a register (mad thus 
reducing the cost of tag insertion for list cells to one 
cycle) would speed up our programs only 0.5%. 

3.2. Tag removal 

On MIPS-X, the tag has to be removed before the 
data part of an item can be used, except for integers. 
Removing the tag can be done in one cycle by masking 
it out with a mask kept in a register. Figure 1 shows that 
the programs without run-time checking spend 8.7% of 
their time on masking out tags. With run-time 
checking, the cost drops to 7%, because the total 
execution time has increased (due to time spent on 
extracting and checking tags) while the time spent on 
tag removal stays the same. 

25 

20 

15 

10 

m 

t l I  
insertion 

cost without run-time checking 

cost added by ran-time chocking 

cost with run-Ume checking 

removal extraction checking 

Figure 1: Percentage of time spent 
on all tag handing operations 

3.3. Tag extraction 

On MIPS,X, it is necessary to extract the tag of a 
data item before it can be compared with a known tag 
value to check the type of the item. Tag extraction can 
be done in a single cycle with a logical shift that places 
the tag in the low order part of the' word. Figure 1 
shows that 4% of the execution time is spent on tag 
extraction when no run-time checking is done. These 
tag extraction operations are part of type tests that are 
explicitly specified in the source program. 

The dark histogram in Figure 1 shows the cost of tag 
extraction in programs with full run-time checking. 
The black part of the graph corresponds to the 
operations that were already present in the programs 
without run-time checking (light grey histogram), and 
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the dark grey corresponds to the operations that were 
added as part of the run-time checking; both 
components are expressed as a percentage of the 
execution time with run-time checking. Adding full 
run-time checking sharply increases the extraction cost 
and checking list operations is responsible for 80% of 
this increase. When we add run-time checking, the 
increase in the number of tag extraction operations, and 
thus in the number of tag checking operations, is about 
equal to the number of tag removal operations. This is 
what one would expect: with full run-time checking the 
type of each data item is checked before the item is 
used and using an item requires the removal of its tag. 

3.4. Tag checking 

Figure 1 shows that programs without run-time 
checking, spend 11% of their time on tag checking. 
The cost of tag checking includes the cost of extracting 
the tag, one cycle for a comparison, and possibly one or 
two cycles for unused branch delay slots. With full 
run-time checking almost 24% of the execution time is 
used for tag checking. Both with and without run-time 
testing, 95% of the tag checking operations are of the 
simple type (tag extraction followed by a comparison 
with a constant); the remaining tag Checking operations 
are related to testing for integers and numbers. 

3.5. Summary 

In this section we saw that the total cost of tag 
handling is between 22% and 32% (Figure 1), 
depending on how much run-time checking is done. 
This cost is fairly constant across all programs - the 
standard deviations are 5.6% and 7.5% respectively - 
although the programs are widely different` In the 
following sections we will look at different tag 
implementations that reduce the cost of tag handling: in 
Section 4 we discuss software tag implementations that 
speed up integer testing, and in Sections 5and 6 we 
look at schemes that can be used to reduce the cost of 
tag removal and tag checking. The hardware schemes 
proposed must be evaluated not only for improvements 
in instruction count, but also for potential negative 
impact on the processor's cycle time. 

4. Software optimization of generic 
arithmetic and Integer testing 

If the tag is kept in the low order part of the word, 
integers should ha~,e tag value 0 for f~ t  arithmetic, and 
integer testing is the same as for other data types. But 
when the tag is kept in the  most significant part of the 
word, integers should get a tag that is the sign extension 
of their sign bit, andtype checking for integers is more 
expensive, because positive and negative integers have 
different tags. This section first describes tag checking 
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for integers, and then demonstrates how a special tag 
encoding can reduce the number of test-for-integer 
operations that are required for integer-biased generic 
arithmetic. 

4.1. Support for Integer testing 

Testing for an integer, if the tag is in the most 
significant part of the word, can be implemented in a 
number of ways (assume 5 tag bits): 

1. Extract the tag, then check for a positive integer, 
ff that fails, check for a negative integer. 

2. Sign extend the least significant 28 biy; the item 
is an integer if the result is equal to me original 
item. 

3. Assuming that an arithmetic shift left gives a 
trap on overflow, dging an arithmetic sfiitt lett 
over 4 bits will trap it tile item is not an integer. 

The last method allows integer testing in a single 
cycle, but unfortunately, most architectures do not have 
a true arithmetic shift left. Recovering from a trap is 
also expensive, so this implementation would probably 
only be acceptable ff a non-integer operand represents 
an error condition. Neither the first nor the second 
method require special hardware. It depends on the 
sign of the number which one is the fastest, The second 
method was used for the measurements in this paper, 
and it always costs 3 cycles. The first method is faster 
for positive numbers, and slower for negative numbers. 

4.2. Reducing the cost of generic 
arithmetic 

With integer-biased genetic arithmetic(Section 2.2) 
the cost of generic arithmetic, averaged over the ten 
programs, is only 2%, but for computation intensive 
programs, this cost can be substantially higher. In rat, 
which is the most computation intensive program in our 
set, 8% of the execution time is spent on genetic 
arithmetic. In this section we describe how the 
overhead of integer testing, which dominates the cost of 
generic arithmetic for simple integer operations, can be 
reduced by using a special tag encoding. 

A genetic integer add takes 10 cycles: 9 cycles for 
type and overflow checking, and 1 for adding..The 

can add the numbers, and do all the type and overflow 
checking with one single type checking operation on 
the result. This reduces the cost of a generic add of two 

operations the speedup would be smaller because more 
than one type test is necessary. With this special 
encoding of tags, the time spent on genetic arithmetic 
drops to 1.6%, or a gainof 0.4% over the scheme with a 



straightforward tag encoding; for rat, the speedup is 
about 2%. 

The requirement on tag values can be met by using 
an extra tag bit; in the ease of PSL, 6 tag bits instead of 
5. With 6 tag bits it is possible to assign tag bits in such 
a way that the sam of two non-integer tag values, with 
possibly a carry in, can never result in a integer tag 
value without giving overflow. Another possibility is 
to keep 5 tag bits, and to reduce the number of tag 
values that are required by putting some typing 
information with the data. 

This tag implementation has the disadvantage that it 
requires an extra tag bit. Not only does this reduce the 
address size by one bit, but it also means that this 
scheme cannot be used with tag implementations that 
allow only 2 or 3 tag bits (see Section 5.2). Since these 
tag implementations have a higher payoff, at least for 
our set of programs, we will not use the enceding 
described in this section. But if enough tag bits are 
available, and if generic arithmetic is important, then 
the special tag encoding deserves consideration. 

5. Support for tag removal 

In Section 3.2 we found that our set of LISP 
programs spend around 9% of their time masking out 
the tag of a data item in order to be able to use the data 
part. In this section we first discuss the need for tag 
removal. Then we show what can be gained ff tag 
removal is not necessary, and f'mally we describe a 
number of tag implementations that eliminate the need 
for tag removal. 

5.1. The need for tag removal 

The data part of most LISP objects contains a pointer 
to the data, so it will always be used as an address. 
Two important exceptions are integers and symbols. 
We saw earlier that no tag removal is necessary for 
integers, and symbols are either compared with other 
symbols, without removing the tag, or they are used as 
an index in a symbol table, in which ease the data part 
of the item is again used for the purpose of addressing a 
memory location. On a processor that drops the top 5 
bits of 32 bit addresses before accessing memory, it is 
not necessary to mask the tag of an item explicitly when 
the data part of the item is used to access memory, 
which is, as we just argued, usually the case. 

We changed the compiler so that no masking of the 
tag is done for items that are used as addresses, and we 
changed the simulator, so that it only uses the bottom 
27 bits of an address when accessing memory. Figure 2 
shows, for programs with no run-time checking, the 
decrease in instruction frequencies resulting from this 
optimization. When we compare the 'and' entry in 
Figure 2 with the 'removal" entry in Figure 1, we see 

that almost all masking operations have been removed. 
Part of the gain is undone by an increase in move 
instructions which is a consequence of the requirement 
that all load instructions have to be idempotent 
(repeatable).< The increase in wasted cycles (no-ops and 
squashed insfructions) results from the fact that fewer 
AIM instructions are available to fill delay slots after 
branches, loads and stores. Not having to mask the tag 
speeds up our programs 5.7% on average. 

1° F 
81- 

. 

41 

2 

0 

-2 

move noop squash 
and B B n total 

Figure 2: Reduction in instruction frequencies 
due to the elimination of tag removal 

5.2. Implementation 

Removal of the tag when an object is used as an 
address could be accomplished in either hardware or 
software. A hardware solution is available on machines 
where the address length is shorter than the word length 
and the tag can be placed in the upper bits of the word. 
Several architectures with this property exist (68000 
[20], IBM/370 [23]), but most architectures that are 

designed today have a full 32 bit address space. LISP 
machines typically treat the tag and the data part of a 
data item as separate entities, so it is natural that the tag 
is automatically dropped when memory is accessed 
[1, 14]. 

Given a general-purpose processor like MIPS-X it 
would be possible to add special hardware that would 
blank out the 5 most significant bits of each address, 
before it is put on the address bus. This hardware could 
be controlled by a bit in the processor status word or 
special load and store instructions could be added to the 
instruction seL 

It is possible to avoid the need for tag masking by 
making only changes in the software. On MIPS-X, 
most tag removals for addresses could be eliminated by 
using the two low-order bits of a word as a tag. MIPS- 
X uses byte addresses, bu t  all memory accesses are 
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word afigned, hence, the bottom two bits of an address 
are dropped before the (word-addressed) memory is 
accessed. With two tag bits, three combinations are 
used to encode the most frequently used data types, 
leaving one combination as an escape, and thus 
eliminating tag masking for most memory accesses. On 
architectures that look at the two bottom bits of the 
address, this approach can still be used, but the 
compiler has to adjust the offset that is used to access 
the object so that the tag is eliminated, as is done in 
[15]. 

It is possible to avoid tag removal for more LISP 
types by using the three bottom bits for tag encoding. 
Even and odd integers get the tag values 000 and 100, 
so that integer arithmetic and indexing in word vectors 
will be fast, four tag values can be used for frequently 
used data types, and the values 011 and 111 (two 
bottom bits 1) are reserved as an escape. For ~iata type, s 
with 3 bit tags, data objects will always be aligned on 
even or odd word boundaries. This is not a problem 
since list ceils always require two words, and other 
types such as vectors and structures often come in 
larger blocks, so wasting a word to ensure the 
alignment is relatively cheap. Aligning list cells on 
double word boundaries might also be beneficial for 
caches with block sizes larger than two. The Lucid 
Common Lisp compiler uses the three bottom hits as 
tag bits for some architectures. 

Not having to strip the tag of an item before 
accessing memory can save almost 6% in execution 
time, and several simple implementations exist. The 
software schemes that place the tag in the bottom two 
or three bits are very attractive: they avoid tag removal 
for almost all memory accesses without requiring 
special hardware, and they have the added advantage 
that the address space is not limited, which is important 
for large LISP systems. 

6. Support for 
tag extraction and tag checking 

Our programs spend between 11% and 24% of their 
time on tag checking (Figure I), depending on how 
much run-time checking is done, so tag checking is an 
attractive candidate for optimization. Tag checking 
operations, or type dispatching, are required in a 
number of situations: 

1. run-time error checking, for example type 
checking as part of a car operation, 

2. generic operations, for example genetic 
arittmaetic, ana 

3. checking operations specified at the source 
level, for ex~unple the ftinction atom. 

Ignoring efforts to eliminate type and tag checking at 
compile-time using type deduction, the cost of tag 
checking can be reduced in two ways. First, by 
eliminating the need for tag extraction, thus reducing 

the cost of tag checking operations in all of the above 
categories. Second, by eliminating some tag checking 
operations completely m some of the categories. 
Because tag checking is a very simple operation, there 
is no room for software optimization, and both 
approaches require hardware changes. Both strategies 
are discussed in this section. 

6.1. Eliminating tag extraction 

We saw in Section 3.4 that tag extraction followed 
by a single eq/neq comparison is the most common 
form of type checking. The tag extraction operation 
can be avoided with a special conditional eq/neq branch 
that only tests the part of the word that contains the tag. 
This would efiminate almost 4% of the instructions, if 
no run-time checking is done, and about 10% of the 
instructions with full run-time checking. Some 
architectures, for example the VAX-11, have 
instn|ctions that compare bit-fields directly, and that 
allow tag checking without explicit tag extraction. 
However, these instructions must be faster than a 
sequence of simpler instructions if they are to yield a 
performance improvement. 

The special conditional branches can be implemented 
in a number of ways. First, it can be hardwired into the 
processor what bits will be used in the comparison. 
This is not very flexible, because the architecture, and 
not the software, determines where the tag bits should 
be placed in the word, but such an implementation is 
acceptable for LISP machines [14, 6, 21]. Second, the 
special conditional branch can take a mask as a third 
argument. This solution is more flexible, but it is 
expensive to implement because it introduces an 
instruction with 3 sources, compficating the data path 
and shortening the branch offset. Third, the bits can be 
specified by a mask that is set under program control. 
This can either be implemented by having a special 
mask register, or by using a specific general purpose 
register, in which case we would still need 3 reads from 
the register file. Note that an eq/neq comparison on 
part of a word, specified by a mask, is easy to 
implement and is also very fast. 

6.2. Hardware tag checking 

The cost of tag checking can be substantially reduced 
by providing special hardware that does some tag 
checking operations in parallel with other operations. It 
is not re~tlly ~ssible to eliminate tag checking 
operations that are specified in the source code 
(category three of the beginning of this section), but 
LISP machines such as the Symbolics 3600 [14], TI 
Explorer [6] and SPUR [21] provide hardware support 
for tag checking operations that result from error 
checking on primitive operations; and from generic 
operations (categories one and two). 
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6.2.1. Error checking 

Software tag checking used for error testing on 
primitive LISP operations can be eliminated by having 
special memory instructions that check the tag of the 
address during address calculation, and that trap if the 
tag does not have the expected value; the expected tag 
could be specified in a register, as an immediate, or in 
the opcode. The hardware test is limited to a simple tag 
check; for operations such as list accessing, this is 
sufficient, but for vector operations, range checking 
would still have to be done in software. 

Hardware for parallel error checking is very simple if 
the tag location and the tag values, can be built into the 
hardware. For example, if the expected data type is 
encoded in the opcode, a PLA with the opcode and the 
operand tag as inputs, and a single output indicating 
success or failure, is all that is needed. The hardware 
becomes a lot more complicated if the tag 
implementation has to be left to the software. 

For MIPS-X specifically, two difficulties would arise 
when adding parallel tag checking. First, the path to 
load/store data from/to the cache is critical; adding 
gates to that path to implement parallel checking and 
trapping, would slow down the processor. Second, the 
MIPS-X design tries to detect the arrival of an 
exception (e.g. traps and interrupts) as early as possible, 
to keep the exception handling out of the critical path of 
the processor. Adding an instruction that could 
explicitly trap, might reduce the time that is available to 
handle exceptions, thus slowing down the processor. 

Run-time error checking on list operations accounts 
for between 0% and 12% of the execution time in our 
programs. Adding hardware to do this test in parallel 
with the address calculation would eliminate this cost, 
plus an extra 0%-4% because no tag removal would be 
required for memory accesses to lists. Extending the 
hardware to allow parallel type checking for other data 
types (vectors and structures), could give a speedup 
similar to the speedup for lists, depending on what data 
types are used in the program. 

Note that the MIPS-X architecture naturally allows 
some overlap between an operation and its 
corresponding tag checking operation. With a squashed 
delayed branch, two instructions are executed while the 
branch condition is calculated and while the next 
instruction is fetched, and the effect of both instructions 
is cancelled if the the branch does not go [5]. An 
operation and its tag check will happen concurrently, if 
the branch condition is 'tag equal to expected tag' and 
if the operation is moved in a delayed slot of the 
branch. 

6.2.2. Generic operations 
Genetic operations are operations that can handle 

data of different types. Examples are genetic arithmetic 
and the function equal. Genetic operations can be 
implemented in software by testing sequentially for the 

different possible data types, by dispatching on the type 
of the operand(s) (basically a case statement), or by a 
combination of the two, as described in see Section 2.2 
for integer-biased generic arithmetic. It is possible to 
provides hardware support for generic operations at 
various levels. A first possibility is to test the type of 
the operands, while executing the operation, assuming 
that the operands are of the most common type. If the 
test fails, a trap is generated, and the operation is 
aborted; less common data types can then be handled in 
software. The implementation of arithmetic operations 
on SPUR [21] follows this strategy. This approach is 
very fast for the most common data type, but the 
treatment of other data types can be slow, depending on 
how fast traps are handled, and on how often the 'less 
common' case occurs. A floating point program that 
uses integer-biased generic arithmetic could well be 
slower than an integer-biased software implementation, 
because of the trap overhead. Trap handling can be 
simplified, at the expense of extra hardware, by the use 
of shadow registers that cache the operands [22]. 

By also providing hardware support for dispatching 
on the type of operands, it is possible to further speed 
up generic operations [14, 6]. The VLSI chip used in 
the TI Explorer II [2], for example, has a special on- 
chip memory for dispatch tables that can be used by the 
micro-code. Generic arithmetic operations are 
implemented by testing for the most common integer 
case while starting the integer operation, and if the test 
fails, the micro-code dispatches on the type of the 
operands. This approach is similar to the software 
implementation of genetic arithmetic on general- 
purpose processors, but it will be faster, if the extra 
hardware is free, because it allows more parallelism. 

The hardware described in this section would reduce 
the cost of genetic arithmetic to 1.3%, down from 2%; 
all operands are integers, so a type dispatch is never 
needed. If a type dispatch is needed, the performance 
of the different tag implementations will vary strongly. 
When a type dispatch is needed for every arithmetic 
operation, that is, the inline test always fails, then with 
the MIPS-X software tag implementation, the overhead 
of the  type dispatch would increase the average 
execution time by 2.7%. We expect that this number 
will be lower on a processor like the Symbolics, but it 
will be higher if less common data types cause a trap, as 
in SPUR. 

Compile-time analysis can be used to reduce the cost 
of using the wrong bias. If compile-time analysis 
indicates that the operands are probably not integers, 
the compiler can generate code that invokes the general 
dispatch routine, or a (software) routine with a different 
bias. As the compiler is more and more successful at 
deriving data types, the 'less common' case will 
become more and more an exception. 
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7. Summary: what can hardware buy? 

Table 2 shows what fraction of the cycles (after 
pipeline scheduling) would be eliminated in the ten PSL 
programs, with the various software and hardware tag 
implementations discussed in this paper. The programs 
were executed as described in Section 3, and the 
speedup is relative to the execution time with the 
straightforward tag implementation of Section 2.1. The 
two columns give results for programs with, and 
without run-time checking, and each column gives the 
speedup relative to the execution time for that column. 
The exact speedup will depend on the quality of the 
compiler, and on whether the compiler has been tuned 
for speed or for safety. Remember that adding full 
run-time checking in software slows down our 
programs by 25% on average. 

The first three rows summarize the results for the tag 
implementations of Sections 5 and 6.1: 

®row one co~esponds to a software tag 
implementation in which the tag is kept in the 
bottom two or three bits of the  word so no 
explicit tag removal is necessary before accessing 
memory; load and store instructions that ignore 
the tag bits in the address give the same speedup. 

® row two gives the speedup if the processor has a 
special conditional branch that checks the tag 
without extracting it. 

• row three gives the result if the implementations 
of rows one and two are combined. 

These three implementations require either no hardware 
changes, or very simple hardware changes. 

The fourth row shows the reduction m cycles if we 
had special hardware that traps if an arithmetic 
operation has non-integer operands, or if overflow 
occurs. The speedup is small because our programs are 
not computation intensive; note that the tag 
implementation of Section 4.2 would further reduce the 
gain of hardware support for generic arithmetic over a 
software implementation, but that tag implementation is 
not compatible with the implementation of row 1. The 
fifth row gives the speedup if tag checking on list 
operations is done with extra hardware in parallel with 
the address calculation (Section 6.2). In the sixth row, 
we assumed that parallel tag checking is not only 
possible for lists, but also for vectors and structures. 
These hardware additions are more substantial because 
they influence the control of MIPS-X. 

The seventh row corresponds to a processor that has: 
1. loads and stores that ignore the tag (row 1), 
2. special instructions to check the tag without 

extracting it (row 2), 
3. hardware for generic arithmetic (row 4), 
4. loads and stores that do parallel error checking 

for all data types (row 6). 
This is to the maximum amount of hardware support 
that can be added to MIPS-X without requiring a total 
reorganization of the processor. It would eliminate 
between 9% and 22% of the cycles. This savings 
should be compared with the software implementation 
of row one (6%-5%), and with row three (9%-14%), 
which only requires very limited hardware changes. 

no run-time run-time 
checking checking 

-I- 

--2-- 

--3-- 

--4-- 

-6- 

-7- 

avoid tag masking (software) 

avoid tag extraction 

avoid masking and extraction 

support generic arithmetic 

avoid tag checking 
on list ops 

5.7% 4.6% 

3.6% 9.3% 

9.3% 13.9% 

0% 0.7% 

check 0% 12.1% 
mask 0% 4.2% 
total 0% 16.3% 

avoid error check 0% 13.6% 
tag checking mask 0% 4.6% 
(lists+vectors) total 0% 18.2% 

avoid masking 
avoid extraction 
avoid all error tag 

5.7% 4.6% 
3.6% 2.9% 

checking 0.0% 14.6% 
total 9.3% 22.1% 

Table 2: Speedup in percent for different degrees of hardware support 
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More complex hardware support, such as microcode 
support for type dispatching, is possible. However, it 
would require a total reorganization of the MIPS-X 
architecture, and our results indicate that the payoff 
would be much less than the negative impact of the 
added hardware on cycle time and other performance 
measures. 

SPUR[21] provides hardware support for tag 
handling corresponding to row seven, except that SPUR 
does not allow parallel checking on memory accesses 
other than list accesses (row 5 instead of row 6). As a 
result, the SPUR tag hardware would eliminate between 
9% and 21% of the cycles in our programs, although 
the gain drops to between 4% and 16% of the cycles, if 
the software tag implementation of row one is used on 
MIPS-X. 

8. Conclusion 
In this paper we first looked at the cost of the various 

tag handling operations, if a :straightforward tag 
implementation is used. W e  found that tag checking, 
which includes the cost of extracting the tag, is the most 
expensive operation, ceaainly if full checking at run- 
time is required (11%-24% of execution time). Tag 
removal, which is done before using the data, uses 
about 8% of the execution time, and tag insertion uses 
1.5%. 

Then, we looked at how the cost of tag handling can 
be reduced with different software and hardware tag 
implementations. The cost of tag removal can be 
reduced in software by putting the tag in the bottom 2 
or 3 bits of the data word; this results in a speedup of 
about 5%. Speeding uptag checking requires special 
hardware. One possibility is to eliminate the need for 
tag extraction before a tag check. This is easy to 
implement, and it gives a speedup of 4% to 9%, 
depending on how many tag checking operations can be 
eliminated by the compiler. The two optimizations 
combined eliminate between 9% and 14% of the cycles. 
Another possibility is to have special hardware that 
does tag checking in parallel with memory access 
operations. This, together with the previous features, 
gives a speedup of between 9% and 22%, but it requires 
more complicated hardware, and the tag 
implementation has to be built into the architecture. 

database organized as a discr/minafion tree; 
adapted from [4]. 

• dedg..c" the same program as deduce, but a 
copying garbage collector is invoked. The 
program spends about 50% of its time in the 
garbage collector. 

® rat. a rational function evaluator that comes with 
the PSL system. 

• comp:.the first pass of the front-end of the PSL 
compuer. 

• OPt: the optimizer that was added to the compiler. 
It uses lists, and vectors. 

®frl: a simple inventory system using the frame 
representation language. 

® boyer: the boyer benchmark; a rewrite-rule-based 
simplifier combined with a aumb tautology- 
checker; benchmark published by Gabriel [7]. 

• brow: a short version of the browse benchmark; 
creates and browses through an AI-like database 
of units; benchmark publislied by Gabriel [7]. 

• trav: a short version of the traverse benchmark; 
creates and traverses a tree structure; uses 
structures which are implemented as vectors; 
benchmark published by Gabriel [7]. 

Table 3 gives the number of procedures, the number 
of lines of source code (without comments), and the 
number of MIPS-X machine instructions after 
compilation, for each program. Each program includes 
besides the user program, the LISP system modules, or 
parts of modules, that are used by the program. 

n--~er lines words 
of source object 

procedures code code 

inter 64 710 1533 
deduce 100 900 3419 
dedgc 116 1100 4112 

rat 148 1900 6315 
~omp 220 2400 9466 
opt 226 3500 11121 
frl 198 2500 11802 

boyer 84 1200 1793 
brow 91 I000 2296 
trav 78 810 1673 

Table 3: Information on the 10 test programs 

Appendix 

The foUowing set of 10 LISP programs were used to 
collect data: 

, inter: a simple interpreter for a subset of LISP is 
used to calculate the Fibbonachi number 10, and 
to sort a list of numbers; adapted from "Lisp in 
Lisp" [251. 

® deduce: a deductive information retriever for a 
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