
Tags and Type Checking in LISP:
Hardware and Software Approaches

Peter Steenkiste and John Hennessy

Computer Systems Laboratory
Stanford University

Abstract

One of the major factors that distinguishes LISP
from many other languages (Pascal, C, Fortran, etc.) is
the need for run-time type checking. Run-time type
checking is implemented by adding to each data object
a tag that encodes type information. Tags must be
compared for type compatibility, removed when using
the data, and inserted when new data items are created.
This tag manipulation, together with other work related
to dynamic type checking and generic operations,
constitutes a significant component of the execution
time of LISP programs. This has led both to the
development of LISP machines that support tag
checking in hardware and to the avoidance of type
checking by users running on stock hardware. To
understand the role and necessity of special-purpose
hardware for tag handling, we first measure the cost of
type checking operations for a group of LISP programs.
We then examine hardware and software
implementations of tag operations and estimate the cost
of tag handling with the different tag implementation
schemes. The data shows that minimal levels of
support provide most of the benefits, and that tag
operations can be relatively inexpensive, even when no
special hardware support is present.

1. Introduction

In statically typed languages like Pascal, type
checking is done at compile-time. Languages like LISP
do not require the user to specify the type of each data
item so run-time type checking is required. Run-time

The MIPS-X research pro~ct has been supported by the Defeiase
Advanced Research Project Agency under contract # MDA903-83-
C-0335

Permission to copy without fee all or part
of this material is granted provided that the

copies are not made or distributed for direct
commercial advantage, the ACM copyright notice
and the title of the publication and its date
appear, and notice is given that copying is by
permission of the Association for Computing
Machinery. To copy otherwise, or to
republish, requires a fee and/or specific
permission.

type checking is implemented by adding a tag to each
data item to encode the type of that item; operaations on
the data can then be type checked. On general-purpose
processors, the tag is usually stored together with the
data, or with a pointer to the data, in a single word. On
LISP machines, the word length is often extended to
accommodate tag bits, which are then handled with
separate hardware. Generul-purpose machines must
explicitly extract and compare tags when checking
types and remove tags when operating on tagged data.
Dynamic type checking, while chiefly concerned with
tag operations, also involves support of generic
arithmetic.

An earlier study [18] on the run-time behavior of
LISP showed that LISP programs spend an average of
one fourth of their execution time on handling tags with
type checking turned off. This cost was the primary
motivation for the creation of LISP machines with a
tagged architecture. LISP machines with tag support
have instructions that can operate on the tag and the
data part of an item, without having to disassemble it
with separate instructions, and they usually support tag
checking operations in parallel with other operations.
For example, an integer add and the type check on the
two operands occur simultaneously. Adding run-time
checking to primitive LISP operations slows down our
set of LISP programs by 25%, so overlapping some or
all of this testing with other operations can give a
substantial speedup.

In this paper we first study the cost of tag handling
for ten LISP programs that were executed on the MIPS-
X reduced-instruction-set processor. We then describe
a number of tag implementations, including both
software schemes, which can be used on general-
purpose architectures, and hardware schemes for LISP
machines. We compare how effective they are at
reducing the cost of tag handling; finally we discuss
generic arithmetic in Section 4.

2. Portable Standard Lisp on MIPS-X

The data presented in this paper are based on
measurements of ten Portable Standard Lisp programs
that were executed on an instruction-level simulator for
MIPS-X, a high-performance microprocessor[10].
MIPS-X is used as a typical example of a reduced-

© 1987 ACM 0-89791-238-U87/1000-0050 $00.75 5o

http://crossmark.crossref.org/dialog/?doi=10.1145%2F36206.36183&domain=pdf&date_stamp=1987-10-01

instruction-set processor. An advantage of using a
RISC architecture in this type of study is that one can
measure both instruction counts and execution time
easily, since the latter depends directly on the former
(ignoring cache misses). The programs we have
studied include a compiler front-end, a garbage
collector, and a rational function evaluator, and three of
the larger Gabriel benchmarks [7]; together the ten
programs contain about 11000 lines of LISP code,
without comments. Details about the benchmarks
appear in the Appendix. Portable Standard Lisp
[8, 9] is a small, efficient LISP dialecL In the

remainder of this section we discuss the PSL
implementation on MIPS-X.

2.1. The Implementation of tags

The PSL implementation on MIPS-X uses a 5 bit tag
that is stored in the most significant part of the word;
the remaining 27 bits contain a pointer to the data. For
some data types, the data item contains immediate data,
e.g. symbols and integers that fit in 27 bits: There are
four operations related to tags:

* tag insertion: given a piece of data, Or a pointer,
and its type (tag value), construct the data 1tern,

,, tag removal: given an item, extract the data item,
that is, clear the tag and create a valid pointer or
data item,

• ta~ extraction: given an item, extract the tag
vaitle,

• tag checking: given an item, test the value of its
tag; this is implemented as a tag extraction
followed by a conditional branch.

The tag value for positive integers is 0, and for
negative integers, 31 (all l ' s) ; As a result of this
choice, the LISP representation for an integer is the
same as its two's complement machine representation
[9]. This means that integer arithmetic done On short

(27-bit) integers without type checking can use the
arithmetic instructions of the processor without any
need for reformatting. This optimization speeds up all
low level integer operations. Because of the special tag
encoding for integers, type checking for integers is
different from other data types (see Section 4.1).
Testing for overflow for integer additions (and
subtractions) can be implemented as a type checking
operation: if we add two LISP integer items and
overflow occurs, then the result will not b e a LISP
integer. This special treatment of integers is justified
by their high frequency of use

2.2. Run-time checking and generic
operations

How much run-time type checking is done, and how
it is done, strongly influence the number of tag
checking operations that are executed. For this reason,
we first optimized PSL run,time checking [19] to make

its performance comparable to that of some newer,
optimized LISP systems [3, 11]. In this section, we
describe what data types are used in our test programs,
and how type checking is done for those types.

For a lot of operations, run-time checking is
equivalent to checking the tag of the operand. An
important example is type checking on list operations
such as car and cdr: the operand has to be a list,
otherwise the operation is illegal. Type checking for a
symbol also consists of a single tag check. Run-time
checking for vector accesses is more complicated.
Compilers for language like Pascal and C often allow
the programmer to specify run-time bounds checking.
In LISP, vector accesses with full run-time checking
will not only do bounds checking, but will also check
that the indexed object is a vector and that the indexing
type is legal.

Because the type of the operands of an arithmetic
operation is not known at compile time, the LISP run-
time system has to deal with type conversion and has to
pick an operator that matches the type of the operands.
This generic arithmetic can be implemented by doing a
type dispatch on the type of the operands, but integers
are by far the most common type of numbers in
LISP [24], and genetic arithmetic can be speeded up by
first specifically testing for integer operands, thus
giving a fast result for the most common integer case.
The expensive general sequence is only used if non-
integers are involved. The integer tests and the integer
operation are done inline.

Most LISP dialects define more data types than are
used in our programs, but the data objects most actively
used will be of the types we discussed (numbers,
symbols, lists, or vectors). A lot of the other data types
are also modeled after, or are implemented on top of
one of the above types, for example: structures, strings,
and bit-vectors [17]. Because the data types used in our
programs, and the implementation of tag checking are
both similar to what is found in other modem LISP
systems, we expect that the numbers presented in this
paper are representative for most LISP dialects.

3. Time spent on tag operations

In this section we look at how much time LISP
programs spend on various tag operations. LISP
usually requires run-time checking on an operations,
bat there are several important cases where these
checks are not required. First, when the compiler can
determine the type of an operand based on the program
context [12], or when the programmer uses variable
declarations or type specific operators [16, 13,3], the
type checking operations can be removed without
affecting correctness or security. Second, many LISP
compilers have a flag that determines whether the
compiler will give priority to speed or to safety [17].
The importance of optimizing run-time type checking

51

cannot be accurately measured until we know the
frequency of its occurrence in real programs. Because
the amount of run-time checking depends on techniques
to minimize the checks, we have collected data in two
extreme situations: when no type checking is done, and
when full run-time checking is done. A real LISP
program will lie between these two extremes.

Adding run-time checking to our set of programs
increases the execution time with 25% on average, but
the slowdown for individual programs ranges from 6%
to 88% (Table 1). Checking on list operations is
responsible for most of the increase in execution time,
but for opt and tray, the contribution of checking vector
operations is significant, and rat does a fair amount of
arithmetic.

arith vector list total

inter 0.63 0.00 19
deduce 0.09 0.00 12
dedgc 0.04 0.00 6

rat 4.85 0.00 13
comp 0.05 0.00 I0
opt 2.68 11.76 27
frl 0.45 0.00 9

boyer 0.00 0.00 17
brow 0.03 0.00 19
tray 3.09 71.96 13

04 19.68
27 12.36
58 6.62
69 18.54
34 10.39
99 42.43
72 10.17
50 17.50
91 19.94
19 88.25

average 1.19 8.37 15.02 24.59

Table 1: Percentage increase in execution time
when run-time checking is added

In this paper, the 'cost' without (with) run-time
checking, is expressed as a percentage of the execution
time of the programs without (with) run-time checking.
The tags are implemented as described in Section 2.1,
but changes in the implementation, like putting the tags
in the low order bits, should not influence our results
significantly.

3.1. Tag Insertion

A tag haste be inserted each time when a new item
is created. Inserting a tag in a data item when both the
tag mad the item are in a register costs two cycles: one
to shift the tag to the most significant bits, and one to
'or' the tag and the item together. Because of our
choice of tag values, no tag insertion is necessary when
an integer is created; Figure 1 shows that the ten
programs spend on average 1.5% of their time on the
insertion of tags.

We will not discuss tag insertion any further in this
document, both because it is not time critical, and
because there is little possibility for improvement by

simple changes in software or hardware. For example,
keeping a preshtfted list tag in a register (mad thus
reducing the cost of tag insertion for list cells to one
cycle) would speed up our programs only 0.5%.

3.2. Tag removal

On MIPS-X, the tag has to be removed before the
data part of an item can be used, except for integers.
Removing the tag can be done in one cycle by masking
it out with a mask kept in a register. Figure 1 shows that
the programs without run-time checking spend 8.7% of
their time on masking out tags. With run-time
checking, the cost drops to 7%, because the total
execution time has increased (due to time spent on
extracting and checking tags) while the time spent on
tag removal stays the same.

25

20

15

10

m

t l I
insertion

cost without run-time checking

cost added by ran-time chocking

cost with run-Ume checking

removal extraction checking

Figure 1: Percentage of time spent
on all tag handing operations

3.3. Tag extraction

On MIPS,X, it is necessary to extract the tag of a
data item before it can be compared with a known tag
value to check the type of the item. Tag extraction can
be done in a single cycle with a logical shift that places
the tag in the low order part of the' word. Figure 1
shows that 4% of the execution time is spent on tag
extraction when no run-time checking is done. These
tag extraction operations are part of type tests that are
explicitly specified in the source program.

The dark histogram in Figure 1 shows the cost of tag
extraction in programs with full run-time checking.
The black part of the graph corresponds to the
operations that were already present in the programs
without run-time checking (light grey histogram), and

52

the dark grey corresponds to the operations that were
added as part of the run-time checking; both
components are expressed as a percentage of the
execution time with run-time checking. Adding full
run-time checking sharply increases the extraction cost
and checking list operations is responsible for 80% of
this increase. When we add run-time checking, the
increase in the number of tag extraction operations, and
thus in the number of tag checking operations, is about
equal to the number of tag removal operations. This is
what one would expect: with full run-time checking the
type of each data item is checked before the item is
used and using an item requires the removal of its tag.

3.4. Tag checking

Figure 1 shows that programs without run-time
checking, spend 11% of their time on tag checking.
The cost of tag checking includes the cost of extracting
the tag, one cycle for a comparison, and possibly one or
two cycles for unused branch delay slots. With full
run-time checking almost 24% of the execution time is
used for tag checking. Both with and without run-time
testing, 95% of the tag checking operations are of the
simple type (tag extraction followed by a comparison
with a constant); the remaining tag Checking operations
are related to testing for integers and numbers.

3.5. Summary

In this section we saw that the total cost of tag
handling is between 22% and 32% (Figure 1),
depending on how much run-time checking is done.
This cost is fairly constant across all programs - the
standard deviations are 5.6% and 7.5% respectively -
although the programs are widely different` In the
following sections we will look at different tag
implementations that reduce the cost of tag handling: in
Section 4 we discuss software tag implementations that
speed up integer testing, and in Sections 5and 6 we
look at schemes that can be used to reduce the cost of
tag removal and tag checking. The hardware schemes
proposed must be evaluated not only for improvements
in instruction count, but also for potential negative
impact on the processor's cycle time.

4. Software optimization of generic
arithmetic and Integer testing

If the tag is kept in the low order part of the word,
integers should ha~,e tag value 0 for f~ t arithmetic, and
integer testing is the same as for other data types. But
when the tag is kept in the most significant part of the
word, integers should get a tag that is the sign extension
of their sign bit, andtype checking for integers is more
expensive, because positive and negative integers have
different tags. This section first describes tag checking

53

for integers, and then demonstrates how a special tag
encoding can reduce the number of test-for-integer
operations that are required for integer-biased generic
arithmetic.

4.1. Support for Integer testing

Testing for an integer, if the tag is in the most
significant part of the word, can be implemented in a
number of ways (assume 5 tag bits):

1. Extract the tag, then check for a positive integer,
ff that fails, check for a negative integer.

2. Sign extend the least significant 28 biy; the item
is an integer if the result is equal to me original
item.

3. Assuming that an arithmetic shift left gives a
trap on overflow, dging an arithmetic sfiitt lett
over 4 bits will trap it tile item is not an integer.

The last method allows integer testing in a single
cycle, but unfortunately, most architectures do not have
a true arithmetic shift left. Recovering from a trap is
also expensive, so this implementation would probably
only be acceptable ff a non-integer operand represents
an error condition. Neither the first nor the second
method require special hardware. It depends on the
sign of the number which one is the fastest, The second
method was used for the measurements in this paper,
and it always costs 3 cycles. The first method is faster
for positive numbers, and slower for negative numbers.

4.2. Reducing the cost of generic
arithmetic

With integer-biased genetic arithmetic(Section 2.2)
the cost of generic arithmetic, averaged over the ten
programs, is only 2%, but for computation intensive
programs, this cost can be substantially higher. In rat,
which is the most computation intensive program in our
set, 8% of the execution time is spent on genetic
arithmetic. In this section we describe how the
overhead of integer testing, which dominates the cost of
generic arithmetic for simple integer operations, can be
reduced by using a special tag encoding.

A genetic integer add takes 10 cycles: 9 cycles for
type and overflow checking, and 1 for adding..The

can add the numbers, and do all the type and overflow
checking with one single type checking operation on
the result. This reduces the cost of a generic add of two

operations the speedup would be smaller because more
than one type test is necessary. With this special
encoding of tags, the time spent on genetic arithmetic
drops to 1.6%, or a gainof 0.4% over the scheme with a

straightforward tag encoding; for rat, the speedup is
about 2%.

The requirement on tag values can be met by using
an extra tag bit; in the ease of PSL, 6 tag bits instead of
5. With 6 tag bits it is possible to assign tag bits in such
a way that the sam of two non-integer tag values, with
possibly a carry in, can never result in a integer tag
value without giving overflow. Another possibility is
to keep 5 tag bits, and to reduce the number of tag
values that are required by putting some typing
information with the data.

This tag implementation has the disadvantage that it
requires an extra tag bit. Not only does this reduce the
address size by one bit, but it also means that this
scheme cannot be used with tag implementations that
allow only 2 or 3 tag bits (see Section 5.2). Since these
tag implementations have a higher payoff, at least for
our set of programs, we will not use the enceding
described in this section. But if enough tag bits are
available, and if generic arithmetic is important, then
the special tag encoding deserves consideration.

5. Support for tag removal

In Section 3.2 we found that our set of LISP
programs spend around 9% of their time masking out
the tag of a data item in order to be able to use the data
part. In this section we first discuss the need for tag
removal. Then we show what can be gained ff tag
removal is not necessary, and f'mally we describe a
number of tag implementations that eliminate the need
for tag removal.

5.1. The need for tag removal

The data part of most LISP objects contains a pointer
to the data, so it will always be used as an address.
Two important exceptions are integers and symbols.
We saw earlier that no tag removal is necessary for
integers, and symbols are either compared with other
symbols, without removing the tag, or they are used as
an index in a symbol table, in which ease the data part
of the item is again used for the purpose of addressing a
memory location. On a processor that drops the top 5
bits of 32 bit addresses before accessing memory, it is
not necessary to mask the tag of an item explicitly when
the data part of the item is used to access memory,
which is, as we just argued, usually the case.

We changed the compiler so that no masking of the
tag is done for items that are used as addresses, and we
changed the simulator, so that it only uses the bottom
27 bits of an address when accessing memory. Figure 2
shows, for programs with no run-time checking, the
decrease in instruction frequencies resulting from this
optimization. When we compare the 'and' entry in
Figure 2 with the 'removal" entry in Figure 1, we see

that almost all masking operations have been removed.
Part of the gain is undone by an increase in move
instructions which is a consequence of the requirement
that all load instructions have to be idempotent
(repeatable).< The increase in wasted cycles (no-ops and
squashed insfructions) results from the fact that fewer
AIM instructions are available to fill delay slots after
branches, loads and stores. Not having to mask the tag
speeds up our programs 5.7% on average.

1° F
81-

.

41

2

0

-2

move noop squash
and B B n total

Figure 2: Reduction in instruction frequencies
due to the elimination of tag removal

5.2. Implementation

Removal of the tag when an object is used as an
address could be accomplished in either hardware or
software. A hardware solution is available on machines
where the address length is shorter than the word length
and the tag can be placed in the upper bits of the word.
Several architectures with this property exist (68000
[20], IBM/370 [23]), but most architectures that are

designed today have a full 32 bit address space. LISP
machines typically treat the tag and the data part of a
data item as separate entities, so it is natural that the tag
is automatically dropped when memory is accessed
[1, 14].

Given a general-purpose processor like MIPS-X it
would be possible to add special hardware that would
blank out the 5 most significant bits of each address,
before it is put on the address bus. This hardware could
be controlled by a bit in the processor status word or
special load and store instructions could be added to the
instruction seL

It is possible to avoid the need for tag masking by
making only changes in the software. On MIPS-X,
most tag removals for addresses could be eliminated by
using the two low-order bits of a word as a tag. MIPS-
X uses byte addresses, bu t all memory accesses are

54

word afigned, hence, the bottom two bits of an address
are dropped before the (word-addressed) memory is
accessed. With two tag bits, three combinations are
used to encode the most frequently used data types,
leaving one combination as an escape, and thus
eliminating tag masking for most memory accesses. On
architectures that look at the two bottom bits of the
address, this approach can still be used, but the
compiler has to adjust the offset that is used to access
the object so that the tag is eliminated, as is done in
[15].

It is possible to avoid tag removal for more LISP
types by using the three bottom bits for tag encoding.
Even and odd integers get the tag values 000 and 100,
so that integer arithmetic and indexing in word vectors
will be fast, four tag values can be used for frequently
used data types, and the values 011 and 111 (two
bottom bits 1) are reserved as an escape. For ~iata type, s
with 3 bit tags, data objects will always be aligned on
even or odd word boundaries. This is not a problem
since list ceils always require two words, and other
types such as vectors and structures often come in
larger blocks, so wasting a word to ensure the
alignment is relatively cheap. Aligning list cells on
double word boundaries might also be beneficial for
caches with block sizes larger than two. The Lucid
Common Lisp compiler uses the three bottom hits as
tag bits for some architectures.

Not having to strip the tag of an item before
accessing memory can save almost 6% in execution
time, and several simple implementations exist. The
software schemes that place the tag in the bottom two
or three bits are very attractive: they avoid tag removal
for almost all memory accesses without requiring
special hardware, and they have the added advantage
that the address space is not limited, which is important
for large LISP systems.

6. Support for
tag extraction and tag checking

Our programs spend between 11% and 24% of their
time on tag checking (Figure I), depending on how
much run-time checking is done, so tag checking is an
attractive candidate for optimization. Tag checking
operations, or type dispatching, are required in a
number of situations:

1. run-time error checking, for example type
checking as part of a car operation,

2. generic operations, for example genetic
arittmaetic, ana

3. checking operations specified at the source
level, for ex~unple the ftinction atom.

Ignoring efforts to eliminate type and tag checking at
compile-time using type deduction, the cost of tag
checking can be reduced in two ways. First, by
eliminating the need for tag extraction, thus reducing

the cost of tag checking operations in all of the above
categories. Second, by eliminating some tag checking
operations completely m some of the categories.
Because tag checking is a very simple operation, there
is no room for software optimization, and both
approaches require hardware changes. Both strategies
are discussed in this section.

6.1. Eliminating tag extraction

We saw in Section 3.4 that tag extraction followed
by a single eq/neq comparison is the most common
form of type checking. The tag extraction operation
can be avoided with a special conditional eq/neq branch
that only tests the part of the word that contains the tag.
This would efiminate almost 4% of the instructions, if
no run-time checking is done, and about 10% of the
instructions with full run-time checking. Some
architectures, for example the VAX-11, have
instn|ctions that compare bit-fields directly, and that
allow tag checking without explicit tag extraction.
However, these instructions must be faster than a
sequence of simpler instructions if they are to yield a
performance improvement.

The special conditional branches can be implemented
in a number of ways. First, it can be hardwired into the
processor what bits will be used in the comparison.
This is not very flexible, because the architecture, and
not the software, determines where the tag bits should
be placed in the word, but such an implementation is
acceptable for LISP machines [14, 6, 21]. Second, the
special conditional branch can take a mask as a third
argument. This solution is more flexible, but it is
expensive to implement because it introduces an
instruction with 3 sources, compficating the data path
and shortening the branch offset. Third, the bits can be
specified by a mask that is set under program control.
This can either be implemented by having a special
mask register, or by using a specific general purpose
register, in which case we would still need 3 reads from
the register file. Note that an eq/neq comparison on
part of a word, specified by a mask, is easy to
implement and is also very fast.

6.2. Hardware tag checking

The cost of tag checking can be substantially reduced
by providing special hardware that does some tag
checking operations in parallel with other operations. It
is not re~tlly ~ssible to eliminate tag checking
operations that are specified in the source code
(category three of the beginning of this section), but
LISP machines such as the Symbolics 3600 [14], TI
Explorer [6] and SPUR [21] provide hardware support
for tag checking operations that result from error
checking on primitive operations; and from generic
operations (categories one and two).

55

A m ~ ~ m ~

6.2.1. Error checking

Software tag checking used for error testing on
primitive LISP operations can be eliminated by having
special memory instructions that check the tag of the
address during address calculation, and that trap if the
tag does not have the expected value; the expected tag
could be specified in a register, as an immediate, or in
the opcode. The hardware test is limited to a simple tag
check; for operations such as list accessing, this is
sufficient, but for vector operations, range checking
would still have to be done in software.

Hardware for parallel error checking is very simple if
the tag location and the tag values, can be built into the
hardware. For example, if the expected data type is
encoded in the opcode, a PLA with the opcode and the
operand tag as inputs, and a single output indicating
success or failure, is all that is needed. The hardware
becomes a lot more complicated if the tag
implementation has to be left to the software.

For MIPS-X specifically, two difficulties would arise
when adding parallel tag checking. First, the path to
load/store data from/to the cache is critical; adding
gates to that path to implement parallel checking and
trapping, would slow down the processor. Second, the
MIPS-X design tries to detect the arrival of an
exception (e.g. traps and interrupts) as early as possible,
to keep the exception handling out of the critical path of
the processor. Adding an instruction that could
explicitly trap, might reduce the time that is available to
handle exceptions, thus slowing down the processor.

Run-time error checking on list operations accounts
for between 0% and 12% of the execution time in our
programs. Adding hardware to do this test in parallel
with the address calculation would eliminate this cost,
plus an extra 0%-4% because no tag removal would be
required for memory accesses to lists. Extending the
hardware to allow parallel type checking for other data
types (vectors and structures), could give a speedup
similar to the speedup for lists, depending on what data
types are used in the program.

Note that the MIPS-X architecture naturally allows
some overlap between an operation and its
corresponding tag checking operation. With a squashed
delayed branch, two instructions are executed while the
branch condition is calculated and while the next
instruction is fetched, and the effect of both instructions
is cancelled if the the branch does not go [5]. An
operation and its tag check will happen concurrently, if
the branch condition is 'tag equal to expected tag' and
if the operation is moved in a delayed slot of the
branch.

6.2.2. Generic operations
Genetic operations are operations that can handle

data of different types. Examples are genetic arithmetic
and the function equal. Genetic operations can be
implemented in software by testing sequentially for the

different possible data types, by dispatching on the type
of the operand(s) (basically a case statement), or by a
combination of the two, as described in see Section 2.2
for integer-biased generic arithmetic. It is possible to
provides hardware support for generic operations at
various levels. A first possibility is to test the type of
the operands, while executing the operation, assuming
that the operands are of the most common type. If the
test fails, a trap is generated, and the operation is
aborted; less common data types can then be handled in
software. The implementation of arithmetic operations
on SPUR [21] follows this strategy. This approach is
very fast for the most common data type, but the
treatment of other data types can be slow, depending on
how fast traps are handled, and on how often the 'less
common' case occurs. A floating point program that
uses integer-biased generic arithmetic could well be
slower than an integer-biased software implementation,
because of the trap overhead. Trap handling can be
simplified, at the expense of extra hardware, by the use
of shadow registers that cache the operands [22].

By also providing hardware support for dispatching
on the type of operands, it is possible to further speed
up generic operations [14, 6]. The VLSI chip used in
the TI Explorer II [2], for example, has a special on-
chip memory for dispatch tables that can be used by the
micro-code. Generic arithmetic operations are
implemented by testing for the most common integer
case while starting the integer operation, and if the test
fails, the micro-code dispatches on the type of the
operands. This approach is similar to the software
implementation of genetic arithmetic on general-
purpose processors, but it will be faster, if the extra
hardware is free, because it allows more parallelism.

The hardware described in this section would reduce
the cost of genetic arithmetic to 1.3%, down from 2%;
all operands are integers, so a type dispatch is never
needed. If a type dispatch is needed, the performance
of the different tag implementations will vary strongly.
When a type dispatch is needed for every arithmetic
operation, that is, the inline test always fails, then with
the MIPS-X software tag implementation, the overhead
of the type dispatch would increase the average
execution time by 2.7%. We expect that this number
will be lower on a processor like the Symbolics, but it
will be higher if less common data types cause a trap, as
in SPUR.

Compile-time analysis can be used to reduce the cost
of using the wrong bias. If compile-time analysis
indicates that the operands are probably not integers,
the compiler can generate code that invokes the general
dispatch routine, or a (software) routine with a different
bias. As the compiler is more and more successful at
deriving data types, the 'less common' case will
become more and more an exception.

56

7. Summary: what can hardware buy?

Table 2 shows what fraction of the cycles (after
pipeline scheduling) would be eliminated in the ten PSL
programs, with the various software and hardware tag
implementations discussed in this paper. The programs
were executed as described in Section 3, and the
speedup is relative to the execution time with the
straightforward tag implementation of Section 2.1. The
two columns give results for programs with, and
without run-time checking, and each column gives the
speedup relative to the execution time for that column.
The exact speedup will depend on the quality of the
compiler, and on whether the compiler has been tuned
for speed or for safety. Remember that adding full
run-time checking in software slows down our
programs by 25% on average.

The first three rows summarize the results for the tag
implementations of Sections 5 and 6.1:

®row one co~esponds to a software tag
implementation in which the tag is kept in the
bottom two or three bits of the word so no
explicit tag removal is necessary before accessing
memory; load and store instructions that ignore
the tag bits in the address give the same speedup.

® row two gives the speedup if the processor has a
special conditional branch that checks the tag
without extracting it.

• row three gives the result if the implementations
of rows one and two are combined.

These three implementations require either no hardware
changes, or very simple hardware changes.

The fourth row shows the reduction m cycles if we
had special hardware that traps if an arithmetic
operation has non-integer operands, or if overflow
occurs. The speedup is small because our programs are
not computation intensive; note that the tag
implementation of Section 4.2 would further reduce the
gain of hardware support for generic arithmetic over a
software implementation, but that tag implementation is
not compatible with the implementation of row 1. The
fifth row gives the speedup if tag checking on list
operations is done with extra hardware in parallel with
the address calculation (Section 6.2). In the sixth row,
we assumed that parallel tag checking is not only
possible for lists, but also for vectors and structures.
These hardware additions are more substantial because
they influence the control of MIPS-X.

The seventh row corresponds to a processor that has:
1. loads and stores that ignore the tag (row 1),
2. special instructions to check the tag without

extracting it (row 2),
3. hardware for generic arithmetic (row 4),
4. loads and stores that do parallel error checking

for all data types (row 6).
This is to the maximum amount of hardware support
that can be added to MIPS-X without requiring a total
reorganization of the processor. It would eliminate
between 9% and 22% of the cycles. This savings
should be compared with the software implementation
of row one (6%-5%), and with row three (9%-14%),
which only requires very limited hardware changes.

no run-time run-time
checking checking

-I-

--2--

--3--

--4--

-6-

-7-

avoid tag masking (software)

avoid tag extraction

avoid masking and extraction

support generic arithmetic

avoid tag checking
on list ops

5.7% 4.6%

3.6% 9.3%

9.3% 13.9%

0% 0.7%

check 0% 12.1%
mask 0% 4.2%
total 0% 16.3%

avoid error check 0% 13.6%
tag checking mask 0% 4.6%
(lists+vectors) total 0% 18.2%

avoid masking
avoid extraction
avoid all error tag

5.7% 4.6%
3.6% 2.9%

checking 0.0% 14.6%
total 9.3% 22.1%

Table 2: Speedup in percent for different degrees of hardware support

57

More complex hardware support, such as microcode
support for type dispatching, is possible. However, it
would require a total reorganization of the MIPS-X
architecture, and our results indicate that the payoff
would be much less than the negative impact of the
added hardware on cycle time and other performance
measures.

SPUR[21] provides hardware support for tag
handling corresponding to row seven, except that SPUR
does not allow parallel checking on memory accesses
other than list accesses (row 5 instead of row 6). As a
result, the SPUR tag hardware would eliminate between
9% and 21% of the cycles in our programs, although
the gain drops to between 4% and 16% of the cycles, if
the software tag implementation of row one is used on
MIPS-X.

8. Conclusion
In this paper we first looked at the cost of the various

tag handling operations, if a :straightforward tag
implementation is used. W e found that tag checking,
which includes the cost of extracting the tag, is the most
expensive operation, ceaainly if full checking at run-
time is required (11%-24% of execution time). Tag
removal, which is done before using the data, uses
about 8% of the execution time, and tag insertion uses
1.5%.

Then, we looked at how the cost of tag handling can
be reduced with different software and hardware tag
implementations. The cost of tag removal can be
reduced in software by putting the tag in the bottom 2
or 3 bits of the data word; this results in a speedup of
about 5%. Speeding uptag checking requires special
hardware. One possibility is to eliminate the need for
tag extraction before a tag check. This is easy to
implement, and it gives a speedup of 4% to 9%,
depending on how many tag checking operations can be
eliminated by the compiler. The two optimizations
combined eliminate between 9% and 14% of the cycles.
Another possibility is to have special hardware that
does tag checking in parallel with memory access
operations. This, together with the previous features,
gives a speedup of between 9% and 22%, but it requires
more complicated hardware, and the tag
implementation has to be built into the architecture.

database organized as a discr/minafion tree;
adapted from [4].

• dedg..c" the same program as deduce, but a
copying garbage collector is invoked. The
program spends about 50% of its time in the
garbage collector.

® rat. a rational function evaluator that comes with
the PSL system.

• comp:.the first pass of the front-end of the PSL
compuer.

• OPt: the optimizer that was added to the compiler.
It uses lists, and vectors.

®frl: a simple inventory system using the frame
representation language.

® boyer: the boyer benchmark; a rewrite-rule-based
simplifier combined with a aumb tautology-
checker; benchmark published by Gabriel [7].

• brow: a short version of the browse benchmark;
creates and browses through an AI-like database
of units; benchmark publislied by Gabriel [7].

• trav: a short version of the traverse benchmark;
creates and traverses a tree structure; uses
structures which are implemented as vectors;
benchmark published by Gabriel [7].

Table 3 gives the number of procedures, the number
of lines of source code (without comments), and the
number of MIPS-X machine instructions after
compilation, for each program. Each program includes
besides the user program, the LISP system modules, or
parts of modules, that are used by the program.

n--~er lines words
of source object

procedures code code

inter 64 710 1533
deduce 100 900 3419
dedgc 116 1100 4112

rat 148 1900 6315
~omp 220 2400 9466
opt 226 3500 11121
frl 198 2500 11802

boyer 84 1200 1793
brow 91 I000 2296
trav 78 810 1673

Table 3: Information on the 10 test programs

Appendix

The foUowing set of 10 LISP programs were used to
collect data:

, inter: a simple interpreter for a subset of LISP is
used to calculate the Fibbonachi number 10, and
to sort a list of numbers; adapted from "Lisp in
Lisp" [251.

® deduce: a deductive information retriever for a

Acknowledgments

We thank the members of the MIPS-X group for
their help and suggestions. Mark Horowitz provided
helpful information about the MIPS-X implementation.
The PSL system was developed at the University of
Utah.

58

References

1. Bawden, A., Greenblatt, R., HoUoway, J., Knight,
T., Moon, D., and Weinreb, D. LISP Machine Progress
Report. Memo No 4~4, MIT Artificial Intelligence
Laboratory, August, 1977.

2. Bosshart, P., Hewes, C., Chang, M., and Chan, K. A
553K-Transistor LISP Processor Chip. Digest 1987
International Solid-State Circuits Conference, IEEE,
New York, February, 1987, pp. 202-203.

3. Brooks, R,, Posner, D., McDonald, J., White, J.,
Benson, E., and Gabriel, R. Design of An Optimizing,
Dynamically Retargetable Compiler for Common Lisp.
Proceedings of the 1986 Conference on LISP and
Functional Programming, ACM, Boston, August, 1986,
pp. 67-85.

4. Charniak, E., Riesbeck, C. K., and McDermott,
D. V.. Artificial Intelligence Programming. Lawrence
Erlbaum Associates, Hillsdale, New Jersey, 1980.

5. Chow, P., and Horowitz, M. Architectural Tradeoffs
in the Design of MIPS-X. Proceedings of the 14th
Annual International Symposium on Computer
Architecture, ACM, June, 1987, pp..

6. Corley, C.J. and Statz, J.A. "LISP workstation
brings AI power to a user's desk". Computer Design
24, 1 (January 1985).

7. Gabriel, R.P.. Computer Systems Series. Volume :
Performance and evaluation of LISP systems. The MIT
Press, 1985.

8. Griss, M.L. and Hearn, A.C. "A Portable LISP
Compiler". Software - Practice and Experience 11, 6
(June 1981), 541-605.

9. Griss, M.L., Benson, E., and Maguire, G.Q. PSL: A
Portable LISP System. Proceedings of the 1982
Symposium on LISP and Functional Programming,
Pittsburgh, August, 1982, pp. 88-97/.

10. Horowitz, M., Hennessy, J., Chow, P., Gulak, P.,
Acken, J., Agarwal, A., Chu, C.Y., McFarling, S.,
Przybylski, S., Richardson, S., Salz, A., Sirnoni, R.,
Stark, D., Steenldste, P., Tjiang, S., and Wing, M. A
32b Microprocessor with On-Chip 2K Byte Instruction
Cache. Digest 1987 International Solid-State Circuits
Conference, IEEE, New York, February, 1987, pp.
30-31.

11. Kranz, D., Kelsey, R., Rees, R., Hudak, P., Philbin,
J, and Adams, N. ORBIT: An Optimizing Compiler for
Scheme. Proceedings of the SIGPLAN '86 Symposium
on Compiler Construction, ACM, Pale Alto, June,
1986, pp, 219-233.

12. Milner, R. "A Theory of Type Polymorphism in
Programming". Journal of Computer and System
Science 17, 3 (December 1978), 348-375.

13. Moon, D.A. Maclisp Reference Manual. MIT,
Laboratory of Computer Science, 1983.

14. Moon, D.A. Architecture of the Symbofics 3600.
Proceedings of the 12th Annual International
Symposium on Computer Architecture, ACM, Boston,
June, 1985, pp. 76-83. Also in SIGARCH Newsletter
13(3).

15. Rees, J., and Adams. N. T: A Dialect of Lisp or, or
LAMBDA: The Ultimate Software Tool. Proceedings
of the 1982 Symposium on LISP and Functional
Programming, Pittsburgh, August, 1982, pp. 114-122.

16. Steele, G.L. Jr. Fast Arithmetic in MaeLISP.
Proceedings of the 1977 MACSYMA Users'
Conference, July, 1977.

17. Steele, G: L. Jr.. Common Lisp - The Language.
Digital Press, 1984.

18. Steenkiste; P., and Hennessy, J. LISP on a
Reduced-Instruction.Set-Processor. Proceedings of the
1986 Conference on LISP and Functional
Programming, ACM, Boston, August, 1986, pp.
192-20!.

19. Steenkiste, P. LISP on a Reduced-Instruction-Set
Processor: Characterization and Optimization. Ph.D.
Th., Stanford University, March 1987.

20. Stritter, E., and Gunter, T. "A Microprocessor
Architecture for a Changing World: The Motorola
68000". IEEE Computer 12, 2 (February 1979), 43-52.

21. Taylor, G.S., HiUfinger, P.N. Larus, J., et al.
Evaluation of the SPUR Lisp Architecture.
Proceedings of the 13th Annual International
Symposium on Computer Architecture, ACM, Tokyo,
June, 1986, pp. d4A.-452.

22. Ungar, D. The Design and Evaluation of A High
Performance Smalltalk System. Ph.D. Th., UC
Berkeley, March 1986. Technical Report UCB/CSD
86/2287.

23. White, J. "LISP/370: A Short Technical
Description of the Implementation". SIGSAM 12, 4
(November 1978), 23-27.

24. White, J. Reconfigurable, Retargetable Bignums.
Proceedings of the 1986 Conference on LISP and
Functional Programming, ACM, Boston, August, 1986,
pp. 174-191.

25. Winston, P. and Horn, B.. Lisp. Addison-Wesley
Publishing Company, 1981.

59

