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Abs t rac t :  The Xerox PARC Dragon is a VLSI 
research computer that  uses several techniques to 
achieve dense code and fast procedure calls in a 
system that can support multiple processors on a 
central high bandwidth memory bus. 

1. I n t r o d u c t i o n  

From the outset, Dragon was intended as a 
synthesis of the best modern ideas in microprocessor 
and shared-memory multiprocessor design. The IBM 
801 [Radin 82] made us aware that  for the same 
number of integrated circuits, a processor executing a 
simple instruction set designed with pipelining in 
mind could execute considerably faster on real 
benchmarks than a processor with a complex 
instruction set. The Berkeley RISC [Patterson 85] 
project introduced us to the notion of register 
windows. The Berkeley RISC and the Stanford MIPS 
[Hennessy 82] showed us that  the 801 principles could 
be applied even to a single chip processor. Subsequent 
commercial announcements of the Fairchild Clipper, 
the HP Spectrum family, the IBM RT, the AMD 
29000, and others tend to confirm the wisdom of 
simple instruction sets. 

Our own experience at Xerox led us to value 
compact binary instruction encodings [Sweet 82] and 
to seek a fast procedure call [Lampson 82]. Many of 
the design decisions for Dragon were based on our 
experience with the Dorado processor [Lampson 81] 
and the Cedar programming environment [Swinehart 
86]. Earlier overviews of the Dragon system appeared 
in [McCreight 85] and [Monier 85]. 

The processor design interacts with the 
multiprocessor system design primarily in two ways: 
the consistency mechanism and the synchronization 
primitive. C. Thacker and S. Dashiell of Xerox 
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invented a snoopy cache consistency protocol. J. 
Goodman [Goodman 83] concurrently invented a 
similar protocol. We implement a protocol derived 
from Thacker's in caches attached to the processors. 
Our synchronization primitive, Conditional Store, is 
similar to tha t  used in the IBM 370 and Motorola 
68020, although its implementation is novel. 

2. O v e r v i e w  

A Dragon processor has two VLSI chips: an 
Instruction Fetch Unit  (IFU) and an Execution Unit  
(EU). Each chip has an associated off-chip cache. The 
IFU decodes instruction bytes and produces control 
signals for the EU and the caches. The EU has a 
3-port register file with 128 stack registers, 16 
auxiliary registers, and 12 constant registers. The 
IFU also has a 15-element stack of program counters 
and context pointers, where each context pointer 
determines the base of a register window in the EU 
stack registers. The EU has a 32 bit ALU and a 64 to 
32 bit funnel shifter. The average execution rate is 
between 1 and 2 cycles per instruction. 

We did not include internal support for floating 
point operations, fixed point multiplication, or fixed 
point division. This was due in part to a concern 
about silicon area, and in part because we thought it 
best to provide these functions through a coprocessor. 
The processor sees a coprocessor as a cache with a 
separate set of commands, so coprocessor control adds 
no logic beyond that required for the cache. Further 
details on floating point support are not yet final. 

Fetches and stores are pipelined so that a new 
memory operation can be initiated every cycle except 
when the cache rejects the request or the results of a 
fetch are required in the immediately following cycle. 
Also, fetch and store instructions allow an offset to be 
added to the address in the same instruction, a feature 
that  decreases the instruction count. 

Although it has only a small effect on the 
instruction set, the Dragon design includes snoopy 
caches that provide the appearance of a uniform 
memory space to multiple processors. Each cache 
listens to two busses: the processor bus and the 
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memory bus. The caches are also responsible for 
address translation, so the processor bus carries 
vir tual  addresses and the memory bus carries 
physical addresses. 

The central memory bus has a sufficiently high 
bandwidth (designed for a usable 200 Mbytes/sec) to 
service an estimated 4 to 8 Dragon processors. For 
increased bandwidth, the bus is a split-cycle bus: each 
bus operation has a request and a reply packet, so that  
packets from separate operations can be interleaved. 
Mul t ip le  memory controllers fur ther  increase 
concurrency and throughput  on the central bus. The 
bus architecture is similar to that  of the Sequent  
Spectrum [Manuel 87]. 

The multiprocessor system we are designing for 
individual researchers includes 4 processors, 32 
Mbytes of memory, a color display of roughly 1 million 
8-bit pixels, and peripherals such as disk and 
Ethernet .  To facilitate connecting a variety of 
devices, a commercial bus (with microprocessor) is 
provided via a bus adapter. We expect to see the first 
instances of these machines in 1988. 

3. T h e  instruction set 

The instructions have lengths of 1, 2, 3, or 5 
bytes. The 3 byte instructions are used for arithmetic,  
logical, fetch, store, or field uni t  operations, as well as 
for conditional branches. The 5 byte instructions are 
used for calls or jumps to arbi t rary  locations, and for 
operations on 32 bit literals. The 1 and 2 byte 
operations are primari ly for code density - most of 
them have 3 or 5 byte equivalents.  

We believe tha t  nearly all programs can be more 
compactly compiled into a variable width instruction 
set than a fixed width 32 bit instruction set. Usually 
this compactness leads to lower paging and cache miss 
rates, and therefore better  performance. With lower 
cache miss rates  there is more bus bandwidth 
available. Consequently, more processors can share a 
given bus without saturation, again leading to better 
overall performance. 

Dynamically, the average instruction is about  18 
bits long. A 16 byte span of memory can contain 7 
average Dragon instructions, or 4 instructions of 32 
bits each. Static measures of instruction size are close 
to the dynamic measures. 

Jumps  cause some of the bytes fetched to be 
unused. Although it is frequently possible to word 
align some jump destinations (like loop tops and 
procedure entries), some of the bytes fetched remain 
unused. Prefetching instructions can also cause 
instructions to be fetched and not used, but  shorter 
instructions also permit fewer words to be fetched for 
the same benefit. Not all of these unused bytes 
contribute to a larger effective instruction size, since 

the unused bytes may belong to other instructions in 
the working set. An effective instruction size of 20 
bits is consistent with our simulations. 

Other reasons to prefer word length instructions 
include the reduced complexity, shorter pipeline (in 
Dragon one pipeline stage would be removed), 
increased branch distance, and potentially faster 
execution. 

One benefit of providing 5 byte instructions is the 
ability to put full 32 bit addresses directly in the code 
stream in a single instruction (and single cycle). We 
estimate that  5% of instructions use full 32 bit literals 
(primarily as addresses), al though the figure is known 
to be highly application dependent. 

4. F a s t  procedure call 

Procedure call is the most important  abstraction 
mechanism in languages like Pascal, C, and Mesa, 
yielding both information hiding and (usually) code 
density. However, expensive procedure calls lead 
programmers to avoid using procedures. Our belief in 
the value of abstraction led us to design a fast 
procedure call mechanism. 

Dragon has variable size register windows. The 
registers for a local frame of a procedure are bounded 
below by the L register, and above by the S register. 
Arguments  are passed by pushing them onto the stack 
(incrementing S), and results are passed back on the 
stack. Not only are most local variables accessed at 
register speeds, but  register saving is el iminated from 
normal execution. Arguments become local variables 
at  procedure entry with a single instruction that  sets 
L from S and an offset. The fastest procedures are the 
most common ones - those with a fixed, small 
number  of argument  and result words. 

Dragon actually has two register stacks: one for 
data  and one for control. Having separate stacks lets 
us avoid manipulat ing the EU registers when 
performing a call. The IFU has a control stack of 
program counter (PC) and status register pairs. 
Calling a procedure (or taking a trap) saves the active 
PC and status ( including the active L register); 
re turning restores the most recent pair .  There are 
separate traps for IFU and EU frame overflow. IFU 
underflow is hand led  by software, and EU stack 
underflow is prohibited by convention. 

As an example of procedure call, consider the 
following fragment of Mesa: 

AddProc: PROC [U: INT, V: INT] RETURNS [INT] = { 
RETURN [U + V + 17]; 
}; 

z + -  A d d P r o c [ x ,  y + 1]; 

Assume that  x, y, and z are in local registers 3, 4, and 
5. Then, the resulting code for the call is 
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LR3 -- push x 
RADD [ S + 1 ] + , r 4 ,  c l  - - p u s h y + 1  

DFC AddProc  -- call AddProc  

SR5 -- p o p  the  result  i n to  z 
-- 4 inst ruct ions,  I0  bytes 

Simply compiled code for the AddProc procedure is 
ALS - I  - - L e - S -  I 

RADD [ S + 1 ] + , r 0 ,  r l  - - t e m p e - u  + v 

ADDB 17 - - t e m p e - t e m p  + 17 
SR0 -- r0 <-- t e m p ;  p o p  t e m p  

RET 0 -- re tu rn ;  S e-  L 

-- 5 inst ruct ions,  10 bytes 

Optimized code for the AddProc procedure is 
ADD -- x(--x + y; pop y 
ADDB 17 - - x < - - x  + 17 

RETN -- re tu rn  x, no change to  S 

-- 3 inst ruct ions,  4 bytes 

Process switch is much more expensive than 
procedure call, since there is more state to save and 
restore. A Dorado procedure call takes 6 lasec and a 
process switch takes 20 psec. A Dragon procedure call 
takes under 1 psec and process switch takes 200 psec, 
depending on the average stack depth. For processor 
intensive Cedar programs on Dragons we project from 
50K to 100K procedure calls per second per processor 
(5-10% of all cycles), and less than 500 process 
switches per second for an N-processor machine 
(10%/N of all cycles). 

"One alternative to register windows is global 
optimization of register allocation [Radin 82]; another 
is link time allocation [Wall 86]. We chose a more 
dynamic course, since we make significant use of 
object-style programming, where many procedures 
are bound at  runtime. 

5. B e n c h m a r k s  and  c o m p a r i s o n s  

This paper presents numbers from running three 
benchmarks. Puzzle, written by Forrest Baskett, is a 
small puzzle solving program that  has been run on a 
variety of machines. Riehards, written by Martin 
Richards, is a small program that  simulates event 
scheduling in an operating system. Dhrystone 
[Weicker 84] is a Mesa version of the popular 
synthetic benchmark. We are limited by the lack of 
globally accepted benchmarks, and by the early stage 
of software development for Dragon. We do no t  
present these numbers as being definitive. 

Some other programs we have measured either 
fall into the range of these benchmarks or are clearly 
dominated by some special effect. For example, the 
naive recursive program for Ackerman's function has 
extreme stack depth variation. Such a program is 
almost entirely dominated by register stack overflow 
and underflow, yet  few practical programs exhibit 

such swings. Floating point operations (and intensive 
fixed point multiplication and division) were also 
avoided, since the external support for these 
operations is not defined yet. 

5.1. Some o b se rv a t i o n s  

This section gives some numbers obtained from 
detailed simulation of the benchmarks. 

Cycles/inst gives the average number of cycles 
per instruction. This number reflects the amount of 
delay encountered from all sources. This figure must 
be used with caution, since large numbers of single 
cycle instructions (like the null operation) can 
improve this figure while decreasing the effective 
speed of the machine. 

Bvtes/inst gives the number of bytes per 
instruction actually fetched and used. It does not 
include the number of bytes fetched and not used. 

1st word not ready gives the percentage of 
instructions that  could not s tar t  execution due to the 
first word being not ready for instruction decode. This 
combines two effects: the dead cycle after control 
transfer, and the effects ofmispredicted branches. 

2nd word not ready gives the percentage of 
instructions that  could not s tar t  execution due to the 
second word being not ready for instruction decode. 
This is one penalty for having variable size 
instructions. 

Inst wait cycles give the percentage of cycles 
spent waiting for instruction bytes to arrive in the 
IFU for all causes. 

Puzzle Richards Dhrvstone 
Cycles/inst 1 .62  1 .65  1 .39  
Bytes/inst 2.2 4 2.2 4 2.2 0 
1st word not ready 24% 17 % 16 % 
2nd word not ready 10% 2% 3% 
Inst wait cycles 21% 12% 14% 

The IFU cache miss rate was negligible for the 
three programs. The EU cache miss rate was 
negligible for Richards and Dhrystone, and was only 
5% for Puzzle. 

5.2. Compar i sons  with the Dorado 

To get the following numbers, we measured 
minimum elapsed times for the Dorado and obtained 
the Dragon cycle counts with a simulator. For both 
machines the instruction counts were determined 
using byte code interpretation. The Dorado cycle is 65 
nsec. The Dragon cycle was assumed to be at its 
design speed of 100 nsec. Cycle counts of the Dragon 
hardware are consistent with the Dragon simulator, 
but the first version of the processor did not execute at 
the intended design rate due to an error in clock 
distribution. An improved version is being fabricated. 
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Puzzle . . . .  seconds i n s t  10 6 ~sec/inst cvcles/inst 
Dorado 3 .66  15.4  0 .237 3 .66  
Dragon 1 .19 7 .3  0. 162 1.62 

Richards seconds inst 10 6 psec/inst cv¢les/inst 
Dorado 2 .58 6 .29  0 .410 6 .31  
Dragon 0 .95 5 .75 0. 165 1 .65 

Dhrystone seconds inst 106 psec/inst cycles/inst 
Dorado 0 .336  1 .08 0 .315 4 .83  
Dragon 0. 089 0 .64  0. 139 1 .39 

The three benchmarks given above show the 
Dragon as having between 2.7 and 3.8 times the 
performance of a Dorado. Of course, the above 
examples may not be typical: cache misses, process 
switches, and other effects characteristic of large 
programs will tend to narrow the differences. Still, 
we consider a. doubling in performance to be a 
conservative estimate even for large programs. 

The Dorado rates as a 3000 Dhrystone machine 
for an unoptimized Mesa version of the familiar 
benchmark (1000 iterations). Simple optimizations 
such as disabling bounds checking and inline 
substitution of procedures push the raw Dorado rate 
to near 6000. A Dragon running the unoptimized 
program is a 11000 Dhrystone machine (although this 
rate is very sensitive to the cost of string comparison). 
We have not tried any optimizations on the Dragon 
version. 

6.2. Precise traps 

The Dragon processor delays committing the 
effects of an instruction until all previous instructions 
have committed their effects. If an instruction traps, 
the state of the processor when the trap is taken is as 
if all previous instructions had completed, and the 
trap instruction has had no effect on the registers. 
This execution model, an extreme case of "precise 
traps," is nearly ideal for the trap handler 
programmer. We chose it because we worried that 
trap handling would be dynamically significant, 
especially since register window overflow causes a 
trap. As a result of this model, trap handling is fast, 
but at a noticeable cost in silicon area and a small cost 
in cycle time for all instructions. Further, this model 
prohibits out-of-order finish, which might be desirable 
for a floating point coprocessor, and it contributed to 
our decision to omit delayed branches because they 
involve two program counters. This latter decision we 
now regard as a mistake. We now favor a more 
pragmatic approach to traps that provides hardware 
assistance for rapid handling of those traps that will 
be dynamically significant, and provides the bare 
hardware essentials necessary to infer and to restore 
the state of the machine after other traps. 

6.3. Field unit 

6. O t h e r  f e a t u r e s  

6.1. J u m p  predic t ion  

The Dragon uses jump prediction to reduce the 
cost of jumps. A correctly predicted jump takes I cycle 
to fall through and 2 cycles to branch. An incorrectly 
predicted jump takes 5 cycles. The static prediction 
produced by compiler heuristics ranged from 93% 
correct for Puzzle down to 65% correct for Dhrystone. 

How much can static predictions improve with 
additional knowledge about the program? A simple 
tool was written to monitor conditional jumps, and the 
results were used to change the predictions, then the 
test program was rerun. For Dhrystone, the correct 
prediction percentage improved from 65% to 84%, and 
the cycle count improved about 6%, although only 10 
predictions were inverted. For the Richards 
benchmark, however, correct predictions improved 
from 71% to 80%, and the cycle count improved by 
only 2%. No significant improvement in the cycle 
count resulted for Puzzle, where only one prediction 
was changed. It remains to be seen whether this 
range is typical of larger programs. We intend to 
experiment further with runtime adjustment of jump 
prediction. 

We added a field unit to support field extract and 
insert, as well as bitmap operations. In one cycle this 
field unit can extract a 1 to 32 bit arbitrary field from 
a pair of words, perform logical shifts or rotates of a 
word, or insert a 1 to 32 bit field into a word. Such a 
field unit promotes data density by allowing efficient 
packing. Also, long strings of arbitrarily aligned data 
can be moved or compared rapidly. 

Even with this field unit, byte fetching using a 
pointer and offset takes 6 instructions open-coded, 
and byte storing takes 9 instructions open-coded. 
This is more expensive than we would like, yet 
statistics for Cedar do not indicate that it is important 
to add additional byte support. 

6.4. CST 

The Conditional Store (CST) instruction was 
chosen as the atomic update primitive for Dragon. 
CST can be described as having the effect of 
atomically executing: 

sample ~-- MemFetch[ptr]; 
IF sample = old THEN MemStore[ptr, new]; 

CST allows the atomic computation of X *- F[X], 
where X is an arbitrary word in memory, and F is an 
arbitrary function (which always returns the same 
value for a given value of X). This is useful not only 
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for the implementation of semaphores and monitor 
locks, but also for operations like reference counting. 

The implementation of CST is primarily in the 
cache; the IFU presents the cache with the ptr, old, 
and new words, issues a CST command, and receives 
the sample result word. Synchronization with other 
processors is not necessary unless the addressed cache 
line is shared and old equals sample. 

The advantages of this implementation are speed 
and simplicity for the processor and reduced central 
bus traffic. The disadvantage is a modest increase in 
complexity for the cache, although the extra area 
required is quite small. 

Extrapolating from rates of primitives in Cedar, 
in a four-processor Dragon system there could be over 
150,000 CST instructions per second due to reference 
counting, locking, scheduling and other atomic 
operations referencing memory. If the bus were held 
for i psec for each operation, then 15% of the bus load 
would be due to CST instructions. By avoiding the 
bus traffic for non-shared words, and by using the 
split cycle bus, we reduce the bus load due to CST 
instructions to well under 5% (the exact amount is 
application dependent). 

7. Conc lus ion  

How successful has the Dragon processor effort 
been? It has taken a long time to finish the logic 
design and layout. We have had few experienced 
people, ambitious performance goals, a need to build 
tools, and early staff turnover. Commercial 
processors satisfying nearly all of our requirements 
are nearly available now, so the processor effort must 
be regarded as a limited success. 

In retrospect, we should have forced the design 
into a single chip. The design would be simpler, and 
we the combined chip would be only slightly larger 
than the current IFU using the same design rules. 

The most impo/'tant change we would make to the 
instruction set would be to incorporate delayed 
branches. For our benchmarks the performance gain 
would range from 10% to 20%. The complexity 
penalty would be small. 

Our decision to use variable length instructions is 
questionable. In most respects a 32 bit fixed size 
instruction would have been better. Only code 
density and the ability to express full 32 bit constants 
in a single instruction argue for variable size 
instructions. We still do not have enough statistics to 
make this decision clear, although we lean towards 
fixed length instructions. 

The use of variable size register windows has 
strong advantages over our previous architecture, and 
has advantages over fixed register set machines for 
unoptimized or object-style code. Variable size 

register windows also more fully use registers than 
fixed size register windows. 

Word addressing gives us a larger virtual 
memory than byte addressing. A requirement to run 
existing C code might influence us to choose byte 
addressing instead of word addressing. 

Chuck Thacker and Butler Lampson provided the 
original impetus for Dragon, and Phil Petit worked on 
the first IFU design. Don Curry and Louis Monier 
performed wonders in designing the IFU and EU. Ed 
Fiala contributed to the instruction set and 
diagnostics. Many other members of PARC's 
Computer Science Laboratory also deserve credit for 
other aspects of the Dragon system. 
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