
The Dragon Processor

Russell R. Atkinson, Edward M. McCreight

Xerox Palo Alto Research Center

Abs t rac t : The Xerox PARC Dragon is a VLSI
research computer that uses several techniques to
achieve dense code and fast procedure calls in a
system that can support multiple processors on a
central high bandwidth memory bus.

1. I n t r o d u c t i o n

From the outset, Dragon was intended as a
synthesis of the best modern ideas in microprocessor
and shared-memory multiprocessor design. The IBM
801 [Radin 82] made us aware that for the same
number of integrated circuits, a processor executing a
simple instruction set designed with pipelining in
mind could execute considerably faster on real
benchmarks than a processor with a complex
instruction set. The Berkeley RISC [Patterson 85]
project introduced us to the notion of register
windows. The Berkeley RISC and the Stanford MIPS
[Hennessy 82] showed us that the 801 principles could
be applied even to a single chip processor. Subsequent
commercial announcements of the Fairchild Clipper,
the HP Spectrum family, the IBM RT, the AMD
29000, and others tend to confirm the wisdom of
simple instruction sets.

Our own experience at Xerox led us to value
compact binary instruction encodings [Sweet 82] and
to seek a fast procedure call [Lampson 82]. Many of
the design decisions for Dragon were based on our
experience with the Dorado processor [Lampson 81]
and the Cedar programming environment [Swinehart
86]. Earlier overviews of the Dragon system appeared
in [McCreight 85] and [Monier 85].

The processor design interacts with the
multiprocessor system design primarily in two ways:
the consistency mechanism and the synchronization
primitive. C. Thacker and S. Dashiell of Xerox

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

invented a snoopy cache consistency protocol. J.
Goodman [Goodman 83] concurrently invented a
similar protocol. We implement a protocol derived
from Thacker's in caches attached to the processors.
Our synchronization primitive, Conditional Store, is
similar to tha t used in the IBM 370 and Motorola
68020, although its implementation is novel.

2. O v e r v i e w

A Dragon processor has two VLSI chips: an
Instruction Fetch Unit (IFU) and an Execution Unit
(EU). Each chip has an associated off-chip cache. The
IFU decodes instruction bytes and produces control
signals for the EU and the caches. The EU has a
3-port register file with 128 stack registers, 16
auxiliary registers, and 12 constant registers. The
IFU also has a 15-element stack of program counters
and context pointers, where each context pointer
determines the base of a register window in the EU
stack registers. The EU has a 32 bit ALU and a 64 to
32 bit funnel shifter. The average execution rate is
between 1 and 2 cycles per instruction.

We did not include internal support for floating
point operations, fixed point multiplication, or fixed
point division. This was due in part to a concern
about silicon area, and in part because we thought it
best to provide these functions through a coprocessor.
The processor sees a coprocessor as a cache with a
separate set of commands, so coprocessor control adds
no logic beyond that required for the cache. Further
details on floating point support are not yet final.

Fetches and stores are pipelined so that a new
memory operation can be initiated every cycle except
when the cache rejects the request or the results of a
fetch are required in the immediately following cycle.
Also, fetch and store instructions allow an offset to be
added to the address in the same instruction, a feature
that decreases the instruction count.

Although it has only a small effect on the
instruction set, the Dragon design includes snoopy
caches that provide the appearance of a uniform
memory space to multiple processors. Each cache
listens to two busses: the processor bus and the

© 1987 ACM 0-89791-238-1/87/1000-0065 $00.75
65

http://crossmark.crossref.org/dialog/?doi=10.1145%2F36206.36185&domain=pdf&date_stamp=1987-10-01

memory bus. The caches are also responsible for
address translation, so the processor bus carries
vir tual addresses and the memory bus carries
physical addresses.

The central memory bus has a sufficiently high
bandwidth (designed for a usable 200 Mbytes/sec) to
service an estimated 4 to 8 Dragon processors. For
increased bandwidth, the bus is a split-cycle bus: each
bus operation has a request and a reply packet, so that
packets from separate operations can be interleaved.
Mul t ip le memory controllers fur ther increase
concurrency and throughput on the central bus. The
bus architecture is similar to that of the Sequent
Spectrum [Manuel 87].

The multiprocessor system we are designing for
individual researchers includes 4 processors, 32
Mbytes of memory, a color display of roughly 1 million
8-bit pixels, and peripherals such as disk and
Ethernet . To facilitate connecting a variety of
devices, a commercial bus (with microprocessor) is
provided via a bus adapter. We expect to see the first
instances of these machines in 1988.

3. T h e instruction set

The instructions have lengths of 1, 2, 3, or 5
bytes. The 3 byte instructions are used for arithmetic,
logical, fetch, store, or field uni t operations, as well as
for conditional branches. The 5 byte instructions are
used for calls or jumps to arbi t rary locations, and for
operations on 32 bit literals. The 1 and 2 byte
operations are primari ly for code density - most of
them have 3 or 5 byte equivalents.

We believe tha t nearly all programs can be more
compactly compiled into a variable width instruction
set than a fixed width 32 bit instruction set. Usually
this compactness leads to lower paging and cache miss
rates, and therefore better performance. With lower
cache miss rates there is more bus bandwidth
available. Consequently, more processors can share a
given bus without saturation, again leading to better
overall performance.

Dynamically, the average instruction is about 18
bits long. A 16 byte span of memory can contain 7
average Dragon instructions, or 4 instructions of 32
bits each. Static measures of instruction size are close
to the dynamic measures.

Jumps cause some of the bytes fetched to be
unused. Although it is frequently possible to word
align some jump destinations (like loop tops and
procedure entries), some of the bytes fetched remain
unused. Prefetching instructions can also cause
instructions to be fetched and not used, but shorter
instructions also permit fewer words to be fetched for
the same benefit. Not all of these unused bytes
contribute to a larger effective instruction size, since

the unused bytes may belong to other instructions in
the working set. An effective instruction size of 20
bits is consistent with our simulations.

Other reasons to prefer word length instructions
include the reduced complexity, shorter pipeline (in
Dragon one pipeline stage would be removed),
increased branch distance, and potentially faster
execution.

One benefit of providing 5 byte instructions is the
ability to put full 32 bit addresses directly in the code
stream in a single instruction (and single cycle). We
estimate that 5% of instructions use full 32 bit literals
(primarily as addresses), al though the figure is known
to be highly application dependent.

4. F a s t procedure call

Procedure call is the most important abstraction
mechanism in languages like Pascal, C, and Mesa,
yielding both information hiding and (usually) code
density. However, expensive procedure calls lead
programmers to avoid using procedures. Our belief in
the value of abstraction led us to design a fast
procedure call mechanism.

Dragon has variable size register windows. The
registers for a local frame of a procedure are bounded
below by the L register, and above by the S register.
Arguments are passed by pushing them onto the stack
(incrementing S), and results are passed back on the
stack. Not only are most local variables accessed at
register speeds, but register saving is el iminated from
normal execution. Arguments become local variables
at procedure entry with a single instruction that sets
L from S and an offset. The fastest procedures are the
most common ones - those with a fixed, small
number of argument and result words.

Dragon actually has two register stacks: one for
data and one for control. Having separate stacks lets
us avoid manipulat ing the EU registers when
performing a call. The IFU has a control stack of
program counter (PC) and status register pairs.
Calling a procedure (or taking a trap) saves the active
PC and status (including the active L register);
re turning restores the most recent pair . There are
separate traps for IFU and EU frame overflow. IFU
underflow is hand led by software, and EU stack
underflow is prohibited by convention.

As an example of procedure call, consider the
following fragment of Mesa:

AddProc: PROC [U: INT, V: INT] RETURNS [INT] = {
RETURN [U + V + 17];
};

z + - A d d P r o c [x , y + 1];

Assume that x, y, and z are in local registers 3, 4, and
5. Then, the resulting code for the call is

66

LR3 -- push x
RADD [S + 1] + , r 4 , c l - - p u s h y + 1

DFC AddProc -- call AddProc

SR5 -- p o p the result i n to z
-- 4 inst ruct ions, I0 bytes

Simply compiled code for the AddProc procedure is
ALS - I - - L e - S - I

RADD [S + 1] + , r 0 , r l - - t e m p e - u + v

ADDB 17 - - t e m p e - t e m p + 17
SR0 -- r0 <-- t e m p ; p o p t e m p

RET 0 -- re tu rn ; S e- L

-- 5 inst ruct ions, 10 bytes

Optimized code for the AddProc procedure is
ADD -- x(--x + y; pop y
ADDB 17 - - x < - - x + 17

RETN -- re tu rn x, no change to S

-- 3 inst ruct ions, 4 bytes

Process switch is much more expensive than
procedure call, since there is more state to save and
restore. A Dorado procedure call takes 6 lasec and a
process switch takes 20 psec. A Dragon procedure call
takes under 1 psec and process switch takes 200 psec,
depending on the average stack depth. For processor
intensive Cedar programs on Dragons we project from
50K to 100K procedure calls per second per processor
(5-10% of all cycles), and less than 500 process
switches per second for an N-processor machine
(10%/N of all cycles).

"One alternative to register windows is global
optimization of register allocation [Radin 82]; another
is link time allocation [Wall 86]. We chose a more
dynamic course, since we make significant use of
object-style programming, where many procedures
are bound at runtime.

5. B e n c h m a r k s and c o m p a r i s o n s

This paper presents numbers from running three
benchmarks. Puzzle, written by Forrest Baskett, is a
small puzzle solving program that has been run on a
variety of machines. Riehards, written by Martin
Richards, is a small program that simulates event
scheduling in an operating system. Dhrystone
[Weicker 84] is a Mesa version of the popular
synthetic benchmark. We are limited by the lack of
globally accepted benchmarks, and by the early stage
of software development for Dragon. We do no t
present these numbers as being definitive.

Some other programs we have measured either
fall into the range of these benchmarks or are clearly
dominated by some special effect. For example, the
naive recursive program for Ackerman's function has
extreme stack depth variation. Such a program is
almost entirely dominated by register stack overflow
and underflow, yet few practical programs exhibit

such swings. Floating point operations (and intensive
fixed point multiplication and division) were also
avoided, since the external support for these
operations is not defined yet.

5.1. Some o b se rv a t i o n s

This section gives some numbers obtained from
detailed simulation of the benchmarks.

Cycles/inst gives the average number of cycles
per instruction. This number reflects the amount of
delay encountered from all sources. This figure must
be used with caution, since large numbers of single
cycle instructions (like the null operation) can
improve this figure while decreasing the effective
speed of the machine.

Bvtes/inst gives the number of bytes per
instruction actually fetched and used. It does not
include the number of bytes fetched and not used.

1st word not ready gives the percentage of
instructions that could not s tar t execution due to the
first word being not ready for instruction decode. This
combines two effects: the dead cycle after control
transfer, and the effects ofmispredicted branches.

2nd word not ready gives the percentage of
instructions that could not s tar t execution due to the
second word being not ready for instruction decode.
This is one penalty for having variable size
instructions.

Inst wait cycles give the percentage of cycles
spent waiting for instruction bytes to arrive in the
IFU for all causes.

Puzzle Richards Dhrvstone
Cycles/inst 1 .62 1 .65 1 .39
Bytes/inst 2.2 4 2.2 4 2.2 0
1st word not ready 24% 17 % 16 %
2nd word not ready 10% 2% 3%
Inst wait cycles 21% 12% 14%

The IFU cache miss rate was negligible for the
three programs. The EU cache miss rate was
negligible for Richards and Dhrystone, and was only
5% for Puzzle.

5.2. Compar i sons with the Dorado

To get the following numbers, we measured
minimum elapsed times for the Dorado and obtained
the Dragon cycle counts with a simulator. For both
machines the instruction counts were determined
using byte code interpretation. The Dorado cycle is 65
nsec. The Dragon cycle was assumed to be at its
design speed of 100 nsec. Cycle counts of the Dragon
hardware are consistent with the Dragon simulator,
but the first version of the processor did not execute at
the intended design rate due to an error in clock
distribution. An improved version is being fabricated.

67

Puzzle seconds i n s t 10 6 ~sec/inst cvcles/inst
Dorado 3 .66 15.4 0 .237 3 .66
Dragon 1 .19 7 .3 0. 162 1.62

Richards seconds inst 10 6 psec/inst cv¢les/inst
Dorado 2 .58 6 .29 0 .410 6 .31
Dragon 0 .95 5 .75 0. 165 1 .65

Dhrystone seconds inst 106 psec/inst cycles/inst
Dorado 0 .336 1 .08 0 .315 4 .83
Dragon 0. 089 0 .64 0. 139 1 .39

The three benchmarks given above show the
Dragon as having between 2.7 and 3.8 times the
performance of a Dorado. Of course, the above
examples may not be typical: cache misses, process
switches, and other effects characteristic of large
programs will tend to narrow the differences. Still,
we consider a. doubling in performance to be a
conservative estimate even for large programs.

The Dorado rates as a 3000 Dhrystone machine
for an unoptimized Mesa version of the familiar
benchmark (1000 iterations). Simple optimizations
such as disabling bounds checking and inline
substitution of procedures push the raw Dorado rate
to near 6000. A Dragon running the unoptimized
program is a 11000 Dhrystone machine (although this
rate is very sensitive to the cost of string comparison).
We have not tried any optimizations on the Dragon
version.

6.2. Precise traps

The Dragon processor delays committing the
effects of an instruction until all previous instructions
have committed their effects. If an instruction traps,
the state of the processor when the trap is taken is as
if all previous instructions had completed, and the
trap instruction has had no effect on the registers.
This execution model, an extreme case of "precise
traps," is nearly ideal for the trap handler
programmer. We chose it because we worried that
trap handling would be dynamically significant,
especially since register window overflow causes a
trap. As a result of this model, trap handling is fast,
but at a noticeable cost in silicon area and a small cost
in cycle time for all instructions. Further, this model
prohibits out-of-order finish, which might be desirable
for a floating point coprocessor, and it contributed to
our decision to omit delayed branches because they
involve two program counters. This latter decision we
now regard as a mistake. We now favor a more
pragmatic approach to traps that provides hardware
assistance for rapid handling of those traps that will
be dynamically significant, and provides the bare
hardware essentials necessary to infer and to restore
the state of the machine after other traps.

6.3. Field unit

6. O t h e r f e a t u r e s

6.1. J u m p predic t ion

The Dragon uses jump prediction to reduce the
cost of jumps. A correctly predicted jump takes I cycle
to fall through and 2 cycles to branch. An incorrectly
predicted jump takes 5 cycles. The static prediction
produced by compiler heuristics ranged from 93%
correct for Puzzle down to 65% correct for Dhrystone.

How much can static predictions improve with
additional knowledge about the program? A simple
tool was written to monitor conditional jumps, and the
results were used to change the predictions, then the
test program was rerun. For Dhrystone, the correct
prediction percentage improved from 65% to 84%, and
the cycle count improved about 6%, although only 10
predictions were inverted. For the Richards
benchmark, however, correct predictions improved
from 71% to 80%, and the cycle count improved by
only 2%. No significant improvement in the cycle
count resulted for Puzzle, where only one prediction
was changed. It remains to be seen whether this
range is typical of larger programs. We intend to
experiment further with runtime adjustment of jump
prediction.

We added a field unit to support field extract and
insert, as well as bitmap operations. In one cycle this
field unit can extract a 1 to 32 bit arbitrary field from
a pair of words, perform logical shifts or rotates of a
word, or insert a 1 to 32 bit field into a word. Such a
field unit promotes data density by allowing efficient
packing. Also, long strings of arbitrarily aligned data
can be moved or compared rapidly.

Even with this field unit, byte fetching using a
pointer and offset takes 6 instructions open-coded,
and byte storing takes 9 instructions open-coded.
This is more expensive than we would like, yet
statistics for Cedar do not indicate that it is important
to add additional byte support.

6.4. CST

The Conditional Store (CST) instruction was
chosen as the atomic update primitive for Dragon.
CST can be described as having the effect of
atomically executing:

sample ~-- MemFetch[ptr];
IF sample = old THEN MemStore[ptr, new];

CST allows the atomic computation of X *- F[X],
where X is an arbitrary word in memory, and F is an
arbitrary function (which always returns the same
value for a given value of X). This is useful not only

68

for the implementation of semaphores and monitor
locks, but also for operations like reference counting.

The implementation of CST is primarily in the
cache; the IFU presents the cache with the ptr, old,
and new words, issues a CST command, and receives
the sample result word. Synchronization with other
processors is not necessary unless the addressed cache
line is shared and old equals sample.

The advantages of this implementation are speed
and simplicity for the processor and reduced central
bus traffic. The disadvantage is a modest increase in
complexity for the cache, although the extra area
required is quite small.

Extrapolating from rates of primitives in Cedar,
in a four-processor Dragon system there could be over
150,000 CST instructions per second due to reference
counting, locking, scheduling and other atomic
operations referencing memory. If the bus were held
for i psec for each operation, then 15% of the bus load
would be due to CST instructions. By avoiding the
bus traffic for non-shared words, and by using the
split cycle bus, we reduce the bus load due to CST
instructions to well under 5% (the exact amount is
application dependent).

7. Conc lus ion

How successful has the Dragon processor effort
been? It has taken a long time to finish the logic
design and layout. We have had few experienced
people, ambitious performance goals, a need to build
tools, and early staff turnover. Commercial
processors satisfying nearly all of our requirements
are nearly available now, so the processor effort must
be regarded as a limited success.

In retrospect, we should have forced the design
into a single chip. The design would be simpler, and
we the combined chip would be only slightly larger
than the current IFU using the same design rules.

The most impo/'tant change we would make to the
instruction set would be to incorporate delayed
branches. For our benchmarks the performance gain
would range from 10% to 20%. The complexity
penalty would be small.

Our decision to use variable length instructions is
questionable. In most respects a 32 bit fixed size
instruction would have been better. Only code
density and the ability to express full 32 bit constants
in a single instruction argue for variable size
instructions. We still do not have enough statistics to
make this decision clear, although we lean towards
fixed length instructions.

The use of variable size register windows has
strong advantages over our previous architecture, and
has advantages over fixed register set machines for
unoptimized or object-style code. Variable size

register windows also more fully use registers than
fixed size register windows.

Word addressing gives us a larger virtual
memory than byte addressing. A requirement to run
existing C code might influence us to choose byte
addressing instead of word addressing.

Chuck Thacker and Butler Lampson provided the
original impetus for Dragon, and Phil Petit worked on
the first IFU design. Don Curry and Louis Monier
performed wonders in designing the IFU and EU. Ed
Fiala contributed to the instruction set and
diagnostics. Many other members of PARC's
Computer Science Laboratory also deserve credit for
other aspects of the Dragon system.

References

[Goodman 83] Goodman, James R. Using Cache Memory to
Reduce Processor-Memory Traffic. Computer Architecture
Symposium Proceedings: 124-131, IEEE, 1983.

[Hennessy 82] Hennessy, John, N. Jouppi, F. Baskett, T. Gross,
and J. Gill. Hardware/Software Tradeoffs for Increased
Performance. Proceedings of the Symposium on Architectural
Support for Programming Languages and Operating Systems:
24 1, Mar. 1982. Published as SIGPLAN Notices 17 (4), Apr.
1982.

[Lampson 81] Lampson, Butler W., et al. The Dorado: A
High-Performance Personal Computer. Technical Report
CSL-81-1, Xerox Palo Alto Research Center, Jan. 198L

[Lampson 82] Lampson, Butler W. Fast Procedure Calls.
Proceedings of the Symposium on Architectural Support for
Programming Languages and Operating Systems: 66-76, Mar.
1982. Published as SIGPLAN Notices 17 (4), Apr. 1982.

[Manuel 87] Manuel, Tom. How Sequent's new model outruns
most mainframes. Electronics 60 (11): 76-78, May 28, 1987.

[McCreight 85] McCreight, Edward M. The Dragon Computer
System. Proceedings of the NATO Advanced Science Institute
on M icroarchitecture of VLSI Computers: 83-101, Martinus
Nijhoff Publishers, Dordrecht, 1985.

[Monier 85] Monier, Louis and Pradeep Sindhu. The
Architecture of the Dragon. Proceedings of the Thirtieth IEEE
International Conference: 118-121, Feb. 1985.

[Patterson 85] Patterson, David A. Reduced instruction set
computers, CACM 28 (1): 8-21, Jan. 1985.

[Radin 82] Radin, George. The 801 minicomputer. Proceedings
of the Symposium on Architectural Support for Programming
Languages and Operating Systems: 39-47, Mar. 1982.
Published as SIGPLAN Notices 17 (4), Apr. 1982.

[Sweet 82] Sweet, Richard E., and James G. Sandman.
Empirical Analysis of the Mesa Instruction Set. Proceedings of
the Symposium on Architectural Support for Programming
Languages and Operating Systems: 158-166, Mar. 1982.
Published as SIGPLAN Notices 17 (4), Apr. 1982.

[Swinehart 86] Swinehart, Daniel C., Polle T. Zellweger,
Richard J. Beach, and Robert B Hagmann. A Structural View
of the Cedar Programming Environment. Technical Report
CSL-86-1, Xerox Palo Alto Research Center, dun. 1986. Also
published in ACM TOPLAS, October 1986.

[Wall 86] Wall, David W. Global Register Allocation at Link
Time, WRL Report 86/3, Digital Equipment Corporation
Western Research Laboratory, Palo Alto, Oct. 1986.

[Weieker 84] Weicker, Reinhold P. Dhrystone: A synthetic
systems programming benchmark, CACM 27 (10): 1013-1030,
Oct. 1984.

69

