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ABSTRACT 

In recent years, many architectural design efforts 
have focused on maximizing performance for fre- 
quently executed, simple instructions. Although 
these efforts have resulted in machines with better 
average price/performance ratios, certain complex 
instructions and, thus, certain classes of programs 
which heavily depend on these instructions may 
suffer by comparison. Integer multiplication and 
division are one such set of complex instructions. 
This paper describes how a small set of primitive 
instructions combined with careful frequency 
analysis and clever programming allows the 
Hewlett-Packard Precision Architecture integer 
multiplication and division implementation to pro- 
vide adequate performance at little or no hardware 
cost. 

1. Introduction 

Many recent general purpose machine archi- 
tectures (e.g. [Rad82,Pat82]) have been designed 
around one fundamental tenet: by concentrating 
effort on a few frequently executed, simple instruc- 
tions, average performance can be increased and 
at the same time hardware costs can be reduced. 
Many published papers [Hen82,Neu79] contain 
instruction distributions which are ordered by fre- 
quency. The literature largely agrees that well 
designed memory access instructions and low over- 
head branches (both conditional and uncondi- 
tional) are crucial to any machine design. Arith- 
metic, boolean and procedure call operations are 
also important. 
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Further down the list, near the bottom, are 
the more complex instruction classes: floating 
point, decimal, large block moves and integer mul- 
tiplication and division. Does the relative infre- 
quency of these instructions imply that their imple- 
mentation is unimportant? Hardly. Machine 
architects must avoid the tendency to either over- 
design these -- which results in costly additional 
(and largely unnecessary) hardware or increased 
cycle time; or to underdesign it, in which case the 
instructions become weak points awaiting exercise 
and abuse by programs and benchmarks which 
depend on reasonable performance for these func- 
tions. The analysis and work which allowed these 
tendencies to be avoided for the implementation of 
integer multiplication and division in the Hewlett- 
Packard Precision Architecture are the subject of 
this paper. 

2. Overview 

Uses of Multiplication and Division 1. Most 
programs use multiplication and/or  division many 
times, either directly or indirectly. Almost all high 
level languages directly support these operations 
with an explicit operator (e.g., '*' and '/') and 
almost all support constructs that implicitly require 
a multiplication or division to occur. For example, 
in C: 

a = structureA[x][y].b; 

requkes two multiplications, namely 

x * y * sizeof(structureA) 

while 

diff = structureB[x] - structureB[y]; 

requires a division for the implied operation: 

(&structureB[y] - &structureB[x]) / size0f(structureB) 

1. For the remainder of the text, the references to 
multiplication and dMsion are of the integer variety. 
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Languages such as FORTRAN, where matrix 
ranks can be passed as parameters, may have large 
numbers of implicit multiplications by variables. 

Clever compilers can reduce the number of 
multiplications in a program by using a technique 
called "strength reduction". Strength reduction is 
the practice of replacing multiplications by addi- 
tions and additions by increments wherever possi- 
ble, since they are less costly than multiplications. 
For exomple: 

for (i=0; i<10; i= i+ l )  
j = j + i'15; 

In this simple exzmple the multiplication by 15 can 
be replaced by an addition of 15, since the multi- 
plication results form an arithmetic progression. 

In many cases, primarily if the reduction 
variable is used in both a subscript expression and 
a non-subscript expression, this optimization is dif- 
ficult or impossible to perform. Furthermore, 
optimizations may be inadvertently defeated by the 
use of a global variable as a loop counter or by 
careless goto's. Since programmers are not always 
aware of these problems, they may unwittingly 
force the execution of a large number of multipli- 
cations and still expect reasonable performance. 

Divisions may appear to be affected nega- 
tively by efficient optimization. Since there is 
rarely an opportunity for an optimizer to remove a 
division, the number of divisions in a program 
remains constant while the total number of instruc- 
tions executed is reduced. As a result the percent 
of the time a program spends doing divisions may 
actually increasel 

Frequency of Multtplication and Division. 
Multiplication and division are relatively infrequent 
instructions. The Gibson mix [GibT0] (based on 
the IBM 704 architecture) estlmates the frequency 
of multiplication at 0.6 percent and that of division 
at 0.2 percent. Other frequency measurement stu- 
dies [Hue82,Neu79] vary widely with different 
benchmarks giving results between 0.0 and 2.5 per- 
cent for multiplication and 0.0 to 0.5 percent for 
division. Clearly, the frequency does not warrant 
special hardware consideration in the design of a 
machine. 

Yet these instructions are executed fre- 
quently enough that a poor hardware or software 
implementation could significantly decrease a 
machine's performance, especially on programs 
which heavily use the operations. So what do we 
do? First, let us examine the way many machines 
implement the multiply and divide operations. 

Usual Implementation- Multiplication. In 
[Boo51], Booth observed that one could speed up 
binary multiplication by replacing strings of zeros 
or ones in the multiplier with a number chosen 
from the digit set {-1,0,1}. This reduced the 

number of steps by at least a factor of two. The 
modern version of this method, often called Booth 
encoding, is usually implemented by cycling 
through the multiplier two bits at a time and 
adding to the accumulating product the multipli- 
cand times a number in the digit set {-2,-1,0,1,2}. 
These implementations use 16 such cycles for a 
full 32-bit multiply. A side effect of this method is 
that one bit of state analogous to a carry must be 
retained between each step. A correction for 
signed multiplies is also necessary at the end. 

Usual Implementation - Division. There are 
a few common methods of implementing integer 
division [Was82]. One of the simplest is a restor- 
ing division algorithm. Assuming the dividend and 
divisor are positive, this method starts by logically 
shifting the divisor left. This shifted divisor is then 
subtracted from the dividend. If this causes the 
dividend to become negative, the divisor is added 
back. Otherwise the partial quotient is incre- 
mented. After this step, the partial quotient is 
shifted left and the divisor is shifted right. These 
subtraction and shifting steps are repeated until 
the final quotient is generated. 

The restoring algorithm can require both an 
addition and a subtraction for each bit of the quo- 
tient. To reduce the number of operations 
required most modern computers implement a 
non-restoring division algorithm. In this method, 
the shifted divisor is either subtracted from, or 
added to, the dividend depending on whether the 
previous result was positive or negative. The com- 
plement of the sign of the result is shifted into the 
quotient. Logically these bits are + 1 or -1, instead 
of the usual 1 or 0, but there is a simple transfor- 
mation done at the end to change the quotient to 
the usual binary representation. This algorithm 
requires a single addition (or subtraction) for each 
quotient bit. 

3. HP Precision Support 

Since one of the primary goals in the 
development of the Precision architecture was sea- 
lability, instructions were carefully chosen so as to 
be easily and efficiently implemented in both 
discrete logic and VLSL Further, instructions 
which increased the basic cycle time of the 
machine or significantly affected the complexity of 
the datapaths in either technology were critically 
examined and often discarded. 

In particular, at one point in the evolution of 
the architecture both a "multiply step" and a 
"divide step", similar to the ones described by 
Jouppi (cf. [Jou81]), were included in the instruc- 
tion set. The Multiply Step implemented a two-bit 
Booth's algorithm, but required either a "three- 
read-port two-write-port" register fde, or a special 
register (the HL registers in [Jou81]) with the 
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associated control and datapaths and several addi- 
tional variations of the instruction to handle pre- 
and post-corrections. 

The Divide Step also required the special 
register and its pipelining affected the critical path 
for the basic cycle time. As a result, the Multiply 
Step instruction was removed from the instruction 
set and the Divide Step instruction was vastly sim- 
plified. But rather than replacing them directly 
many-for-one, and thus suffering significant perfor- 
mance degradation on multiplication and division, 
a careful analysis of the basic operations being 
performed and their usage was undertaken. 

Operand Frequency Analysis. Several ana- 
lyses have been published on the frequency and 
type of operands used by arithmetic instructions. 
Though these studies rarely focus on multiplication 
and division, some information on these operations 
is often included. Interesting observations include: 

e Some 91% of multiplication operations 
include one compile-time constant (immedi- 
ate) operand. [Neu79] 

® Immediate operand values for all operations 
tend to be small. [Hen82,Swe82] 

• Non-immediate operartd values for multipli- 
cation tend to be small. [Luk86] 

• "Standard" (32-bit result) multiplication 
occurs much more frequently than extended 
(64-bit result) multiplication. [C1a82] 

To avoid taking these results out of context, we 
performed our own trace analyses (cf. [Luk86]) for 
independent confirmation. 

In the spirit of the philosophy espoused by 
RISC architects [Pat85,Bir85] we should attempt to 
optimize the most frequent cases, even at the cost 
of decreasing performance of the less frequent 
cases. The absence of well-defined support 
instructions encourages us to exploit these observa- 
tions. By recognizing the inherent non-uniformity 
and spedal cases of operands (and results), we 
may be able to increase the overall performance. 
This is precisely the approach used for multiplica- 
tion and division in the Precision architecture 
which will be examined in the next few sections. 
But first, we need to understand the basic building 
blocks from which minimal support is obtained. 

4. The Instructions 

A byte-oriented machine may have difficulty 
accessing elements in an array of a datatype of 16, 
32 or 64 bits without some form of an indexed 
load instruction. The Precision architecture has 
such an instruction and its implementation necessi- 
tates a "pre-shifter" datapath before one of the 
inputs into the ALU. This allows byte addresses 
to be calculated for half-word, word and double- 
word addresses in array indexing. This pre-shifter 

also serves in a second capacity: it allows for one 
of the operands in a normal addition to be shifted 
before an addition takes place. We refer to this 
operation generically as the shift and add opera- 
tion. As we shall see, these simple operations 
prove to be quite powerful. 

Shift and Add Instructions. The Precision 
architecture defines a set of shift and add instruc- 
tions. First, the shift amount may be either one, 
two or three bits. Then for each of these shift 
amounts, there is a variation which traps if an 
overflow occurs and one that does not. 

One might suspect that proper overflow 
detection requires a full 35-bit addition to be per- 
formed - an expensive proposition especially in a 
discrete implementation. Instead, a normal 32-bit 
addition is performed and overflow is detected by 
a circuit that compares the sign bits of the 
operands with the shifted out sign bits and the sign 
bit of the result. Although this does not allow for 
proper overflow detection if the operands are of 
different signs, this case hardly ever arises and, in 
practice, can easily be avoided. 

Divide Step Instruction. The divide step 
instruction performs part of a single-bit nonrestor- 
ing divide step based on a set of input conditions 
and produces a set of result conditions. It calcu- 
lates one bit of the quotient when a register con- 
tzinlng the least significant word of a 64-bit partial 
dividend is divided by a register containing the 
(32-bit) divisor and leaves the partial remainder in 
the target register. When combined with an add 
with carry operation on the most significant word 
of the partial dividend, and both are repeated 32 
times, a full division is obtained. 

This operation differs from the one 
described by Jouppi in two important respects: 
First, since the most significant word of the divi- 
dend is used only in the second instruction (add 
with carry) of each step, the divide step instruction 
requires only two register reads and one register 
write and no additional datapaths for a special 
register. Second, since the determination of 
whether the following step does an addition or 
subtraction is computed late in the current step 
and is required early in the following step, the 
pipelining of this flag (which we call the V-bit) may 
increase the basic cycle time of the machine. 
Since the second instruction of the two instruction 
step does not require the V-bit, our cycle time is 
not affected. So although we have doubled the 
number of instructions to compute a division, we 
have reduced the cost and removed a potential 
bottleneck in the performance of the machine. 

A more precise description of these and 
other Precision architecture instructions can be 
found in [HP86]. 
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5. Multiplication by C o n s t a n t s  These are some of the simple rules that are 
Multiplication by constants on the Precision used to generate chains. There are more complex 

: architecture may be thought of as a generalization ones. For example, numbers of the form (2~-1)n 
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of the notion of an addition chain. In [Knu81], an 
addition chain for the number n is defined as a 
sequence of integers 

1 = %, al, a2, .... a r = n 

that are generated by the rule 

a i =  aj + a k , 
for some j,k such that k~_j<i for all i in [1,r]. If 
the length of the shortest chain for n is denoted by 
l(n), Knuth shows that asymptotically, 

l(n) <- k(n) + h(k(n))  + 
o(x(n) X(x(X(n)))/x(X(n))2) 

where k(n) = [lg(n)]. 

The  Precision architecture allows us to con- 
struct a similar chain 

a l = 0 , %  = 1, al, a2, ..., a r = n 

with instructions that implement the rules 1 

a i = a i + a k 
a i Zai + ak 
a i 4~ + a k 
a i 8aj + a k 
a i = a j - a  k 
a i aj< < n  

for some j,k,n such that k-<j<i  and n<31.  (a.1 is 
included as the Precision architecture allows access 
to a register which always contains the value zero.) 
For example, the number 10 can be constructed by 
the chain 

a 0 = 1, a 1 = 5, a 2 =  10 

Thus, multiplication by 10 can be done in two 
steps by 

r = 4 s + s  
r = r + r  

All multiplication by constants may be constructed 
in this way. 

Chain Rules. With these instructions we can 
generate the numbers -1, 3, 5, 9, and any power of 
two in a single step. Therefore, given a chain for 
generating n of length l(n), we can generate -n, 3n, 
5n, 9n, and 2Kn in no more than one more step. 
Since the operand is always left untouched in a 
multiplication by constant, we can also generate l- 
n, n- l ,  n + l ,  n÷2,  n+4,  n+8,  2n+ l ,  4n+1, and 
8n + 1 in no more than one more step. 

L The notation < < and > > refer to left and fight shifts, 
respectively. 

may be generated from a chain for n in no more 
than two more steps by appending the sequence 

t = n < < k  
t = t - n  

onto the end. 

We have written a rule-based program that 
searches for chains in this manner. The chains 
generated by this program compare quite well to 
those generated by a program that exhaustively 
searches for all possible chains. They are gen- 
erated in much less time and, for all numbers less 
than 10000, are of minimal length in all but 12 
cases. Thus, by remembering these exceptions, 
minimal length chains may be generated in reason- 
able time for most constants. 

Overflow. As has been mentioned, provision 
has been made in the Precision architecture for 
the detection of overflow on multiplication. A 
properly constructed chain can thus automatically 
detect overflow for those languages that require it. 
Such a chain must be monotonic and contain only 
add or shift and add instructions (as this would 
require the use of an instruction that does not 
detect overflow). 

A chain is said to be monotonic if 

a i < aj for all i< j .  

For example, one chain for multiplication by 15 is 

a I = % < < 4  
a 2 =  a l -  % 

but this chain contains a shift by 4 and is not 
monotonic. A monotonic chain for multiplication 
by 15, 

a 1 = 2% + % 
% = 4a 1 + a 1 

can, however, be made to check for overflow. 

Such chains are not always as short as they 
might be. A similar chain for 31, 

a 1 = % < < 5  
a2 = a l -  % 

cannot be made monotonic in two steps. A three 
step chain for 31, such as 

al = 4~al + % a 2 - + a 1 
a 3 ~- 2a 2 + a 0 

must be constructed if overflow is to be detected. 
Thus, there may be a penalty incurred for the 
detection of overflow that languages such as Pascal 
may have to pay that languages such as C may not. 
On the other hand, the penalty is bounded. This is 
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became overflow can always be detected by 
bounds checking the operand before using a chain 
that does not detect overflow. 

Register Use. The number of temporary 
registers needed for intermediate results may also 
be traded off with the length of the chain. How- 
ever, since a minimal length chain typically uses 
very few temporaries, this has not been a problem. 
In fact, the only numbers less than 100 that need a 
temporary at all in their minimal chains are 59, 87, 
and 94. 

It is possible for a multiplication to be done 
in place for some constants (specifically, numbers 
of the form 2 i 3 J 5 k ). However, by convention, 
the source register for  a multiplication by constant 
is left untouched by the multiplication. Thus, if a 
chain always uses the previously constructed 
number or the number 1 in each step, it need not 
use a temporary register for an intermediate result. 

For example, a minimal chain for 59, 

t = 2 s + s  
r = 2 t + s  
r = 8 r + t  

uses one temporary, while this chain 

r = s + s  
r = 8 r + s  
r - - 2 r + r  
r = 8 s + r  

does not. In this case, a longer chain is not neces- 
sarily slower than a chain without temporaries. If 
the use of a temporary register requires that a 
store and load take place, a longer chain is to be 
preferred. ~ 

Some Results. This effort has shown some 
interesting results. For example, Figure 1 shows a 
table of the least numbers that may be generated 
in r steps for 1-<r-<6. 

r least values of n such 'that l(n)=r 
1 2,3,4,5,8,9,16,32,64,128,256,512 
2 6,7,10,11,12.13.15.17.18.19.20.21 
3 14,22,23,26,28,29,30,35,38,39,42 
4 58,78,86,92,106,110,114,115,116 
5 466,474,618,622,678,683,686,687 ...... 
6 3802,4838,5326,5519,5534,55.50 

Figure 1. 

The first n such that l(n)=7 is not yet knowa 
as execution of exhaustive searches for ebaln~ of 
length 7 is prohibitively time consuming. It is 
known that there are no such n less than 10000. 

Even so, some conjectures can be made. It 
is certain that the behavior of the function c(r), 
defined as the first n such that l(n)=r, is at least 
exponential. The first 6 entries suggest that is 
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might be super exponential. If true, this would 
imply that the asymptotic behavior of l(n) is better 
than log(n). 

6. Multiplication by Variables 

Despite the simplicity of the multiply-by- 
constant techniques, there are still many programs 
with a large number of multiplications where nei- 
ther operand is available at compile time. We 
refer to this type of multiply as a multiply-by- 
variable. The discussion in this section is limited 
to the previously-defined "standard" multiply (32- 
bit result). An efficient implementation of 
extended multiply (64-bit result) is an area of our 
current research. 

The Basics. With no multiply step instruc- 
tion to work with, it is necessary to understand the 
basics more thoroughly. A multiplication algo' 
rithm can be constructed using several simple 
operations including: 

• an ADD operation, 

• an arithmetic right shift operation ; and 

• a bit test (or test for odd) instruction. 

With this simple algorithm, the bits of the multi- 
plier are examined one at a time, from the least 
significant to the most significant. For each bit, if 
the bit is set, the multiplicand is added to the 
result register. If the bit is dear, the result is left 
alone. In any case, the multiplicand is then dou- 
bled before the next multiplier bit is examined. 

Though this simple algorithm was never con- 
sidered for implementation in the Precision archi- 
tecture, it is instructive both because it demon- 
strates several problems that must be overcome in 
any multiplication algorithm and because it 
approximates a "worst case" performance. The 
algorithm is shown in Figure 2. 

trap = mpy; 
mpy = abs(mpy); 
rslt = 0; 
for (i -- 32; i > 0; i--i-l) { 

if (mpy & 1) 
rslt = mcand + rslt; 

mpy = mpy > >  1; 
mcand = mcand + mcand; 

} 
if (trap < 0) 

rslt = -rslt; 

Figure 2. 

First, notice that overflows can occur in at 
least two places: in the addition of the multiplicand 
to the result and in the addition of the multipli- 
cand to itself. Since the semantics of most high- 



level languages require that overflow be detected 
in multiplication, we must assume that it is possi- 
ble to check for overflow in the additions. (This 
is, of course, always true since the same languages 
require overflow detection for addition.) This is of 
greater importance as the algorithm becomes more 
complex, as we must take care that all possible 
overflows are detected and, further, that overflow 
is not incorrectly reported due to intermediate cal- 
culations. The discussion also points out that, 
since some languages (such as C), do not report 
overflows on multiplies, we must provide two ver- 
sions of the algorithm - one which detects over- 
flow and one (possibly faster) which doesn't. 

Second, notice the taking of the absolute 
value of the multiplier before the multiply occurs. 
A negative multiplier unnecessarily complicates the 
algorithm, so it is easier to take its absolute value, 
remember whether it was negative or not, and 
correct, if necessary, at the end. (These steps are 
ignored in the remaining examples in this section.) 
Note also that this is a good example of the earlier 
admonition regarding overflow: if the result of the 
multiplication is the most negative number (on a 
two's complement machine), either the absolute 
value operation, the final correction, or an inter- 
mediate calculation may report an overflow when 
it is possible that the result is perfectly represent- 
able. 

Performance is obviously a concern too. In 
the Precision architecture instruction set, the algo- 
rithm in Figure 2 has a dynamic path of 167 (sin- 
gle cycle) instructions. A multiply which is more 
than two orders of magnitude slower than an add 
is clearly unacceptable. What can we do to speed 
it up? 

A Simple Optimization. If we examine the 
distribution of possible multipliers, we note that a 
large quantity have an absolute value with several 
"leading" zeroes. Now our initial algorithm shifts 
the multiplier to the right one bit at a time, and, as 
soon as the shifted multiplier has only zeroes, the 
result is correct. So, we can take advantage of 
these facts by exiting the loop early if the shifted 
multiplier is zero. But do we gain anything by 
adding an instruction to a critical loop? Almost 
certainly. Our count indicates that we have 
increased our worst case to 192 instructions. But, 
if we assume that the absolute value of the set of 
multipliers is logarithmically distributed (a pes- 
simistic guess further refined below), the loop will 
be executed on the average only half as many (16) 

" v r " times. The a e age multiplication now takes 103 
instructions -- a 40 percent improvement. We now 
have an algorithm with data-dependent perfor- 
mance, 

Using The Power of the Shift and Add, With 
these basics in mind, we next turn to the Precision 

architecture's shift and add instructions. By exa- 
mining several bits at a time from both the multi- 
plier and multiplicand we can execute the loop 
fewer times and increase the algorithm's perfor- 
mance, as shown in Figure 3. 

rslt = 0; 
while (TRUE) { 

if (mpy & 1) rslt = mcand + rslt; 
if (mpy & 2)rslt  = (mcand < <  1) + rslt; 
if (mpy & 4) rslt = (mcand < < 2) + rslt; 
if (mpy & 8) rslt = (mcand < < 3) + rslt; 
mpy = m p y > >  4; 
if (mpy = = 0) break; 
mcand = mcand < < 4; 

} 

Figure 3. 

The overflow versions of the shift and add 
instructions allow us to detect intermediate over- 
flows in adding the shifted multiplicand to the 
result. Also, two Shift Two and Add's neatly com- 
plete the left shift of the multiplicand at the end of 
the loop and check for overflows, all in two 
instruction cycles. Note, though, that several of 
the other overflow problems are yet to be solved. 

The performance of this new algorithm is 
even more difficult to predict. First, we have 
reduced the worst case to 107 instructions. (The 
loop contains 13.) By applying the previous log- 
uniform distribution to four-bit "chunks", we will 
execute the loop an average of four times, result- 
ing in an average instruction count of 55 instruc- 
tions -- three times better than our initial algorithm 
1. But the best is yet to come. 

An Observation. Rather than examining the 
distribution of multipliers, we now concern our- 
selves with the distribution of both operands. It is 
rarely the case that both operands are large, say 
larger than 16 bits, because the result will be an 
overflow. If an overflow causes an abort, perfor- 
mance of the overflowing multiply is certainly of 
no concern. If the language allows overflows to be 
taken by exception handlers, the handler overhead 
(let alone the system overhead to get to and return 
from the handler) will overshadow the multiply's 
performance. And in languages with no overflow 
checking (e.g. C), the result after overflow is unde- 
fined. Surely, depending on multiplies which over- 
flow is a questionable programming practice at 
best and, in any case, will result in a poorly per- 
forming program. Let us then no longer concern 

1. The 4-bit fight shift of the multiplicand assumes the 
machine implementation contains a barrel shifter for an 
efficient single-cycle shift. Several additional cycles are 
consumed otherwise. 
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ourselves with the performance of multiplies that 
result in an overflow. 

We now note that, if the multiplication does 
not result in an overflow, at least one of the 
operands must be representable in less than 16 
bits. Let us assume that it is the multiplier, for if 
it isn't, due to the commutativity of multiplication, 
we can simply switch the operands so that it is. 
With a simple test and possible swap, we have 
reduced the maximum number of times through 
the loop to four and the average to two. Our mul- 
tiply is now 59 instructions, worst case, and 33 
instructions on the average! 

Applying Constant Multiplication. Our loop 
consumes 13 instructions per i t e r a t i o n -  five are 
shifting the operands and loop overhead but eight 
are used for multiplying the multiplicand by a 
number between zero and 15 and adding it to the 
result. From the section on constant multiplica- 
tion, we have seen that we can multiply any 
number by a positive constant less than 16 in at 
most three cycles (and usually two or one). By 
applying similar techniques, we can multiply the 
multiplicand by the four bits taken from the multi- 
plier and add the result. To do this we must use a 
switch (case) table to isolate the 16 separate cases 
so that we can multiply by "constants". Our algo- 
rithm now appears in Figure 4. 

rslt = 0; 
while (TRUE) { 

switch(mpy & 15) { 
case 0: break; 
case 1: rslt = mcand + rslt; break; 
case 2: rslt = 2*mcand + rslt; break; 
case 3: rslt = 3*mcand + rslt; break; 

case 14: rslt = 14*meand + rslt; break; 
case 15: rslt = 15*mcand + rslt; break; 

} 
m p y =  m p y > > 4 ;  
if (mpy = = 0) break; 
mcand = mcand < < 4; 

} 

Figure 4. 

A Few Additional Details. Study of the exist- 
ing literature on operand distribution (supple- 
mented by a few traces of our own) led us to 
believe that the lesser of the two operands was less 
than 16 more than half the time. We also 
observed that both operands were nearly always 
positive. Thus we optimized for: 

® A single loop iteration; 

• Quick exit for values of zero and one; and 

• Positive operands. 

Lastly, all entries in the switch statement are 
reduced to two instructions to reduce the 
algorithm's size (and the instruction cache misses 
suffered) and to accommodate the Precision 
architecture's "branch vectored" instruction. 

In the final algorithm, overflow checking is 
completely and accurately handled and only one 
temporary variable is required. Many subtle tech- 
niques available in the Precision architecture 
instruction set have been used to remove unneces- 
sary cycles. The result is an algorithm that is diffi- 
cult to represent in a high-level language, and so it 
has been omitted. Figure 5 shows instruction 
counts for different ranges of operands. 

min(Ixl,lYl) 
0-15 

16-255 
256-4095 

4096-46340 

Best Avg Worst 
(including overhead) % 
10 15 23 60 
20 24 34 20 
28 34 45 10 
36 44 56 10 

Figure 5. 

If we assume the distribution of operands 
displayed in the table (and a distribution which has 
both operands positive about 90% of the time), we 
fmd that the algorithm performs the multiply in an 
average of less than 20 instructions. This is a 
eight-fold improvement over the original algorithm 
and compares favorably with Booth's algorithm 
implemented with a Multiply Step. 

7. Division 

On most machines, integer division takes sig- 
nifical~t~y ~nger  than addition or subtraction. This 
dffferenc~ ~s compounded on machines such as the 
Precision architecture which do not have an expli- 
cit division instruction but instead perform division 
by calling a software routine. If many divisions are 
needed, this disparity in execution time can result 
in a bottleneck so we looked for ways to do 
specific division cases faster in order to improve 
the average performance of division. 

A well known example is division by a power 
of 2. On a binary machine this becomes a matter 
of shifting. Even if some adjustments must be 
made to handle negative dividends, it is usually far 
faster to do an adjustment and then shift than to 
go through the general division algorithm for 
powers of 2. Under the Precision architecture, 
division by small powers ~ of 2 can be done in one 
instruction when dealing with unsigned numbers 
and in three when dealing with signed numbers. 
For division by large powers of 2, this becomes 
one instruction for unsigned numbers and four for 
signed. 
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However, there are often ceases where the 
division is by a known quantity that is not a power 
of 2. Such divisions are usually done by using the 
existing general purpose division algorkhm or 
instruction. But if the divisor is known in advance, 
a different division method can be derived. This 
derived method may or may not be a worthwhile 
improvement depending on how fast the general 
division method is. 

Division Problem Description. We are 
interested in the integer quotient of two numbers, 
x and y. It is assumed that y is a known constant 
and that x is a variable. For simplicity in the dis- 
cussion that follows, assume that x >- 0 and that y 
> 0. The extensions to handle negative x will be 
discussed later. Many programming languages 
such as C, Pascal, and Fortran define integer divi- 
sion to truncate towards 0. The derived method is 
designed to work in this way to yield results com- 
patible with these programming languages. So we 
want to compute the function q(x) such that 

q(x) -- I x / Y ]  
Our technique is to find an inexpensive way 

to multiply x by the reciprocal of y. We choose a 
number z and use it to derive numbers a and b 
from y. The number a will be z times the recipro- 
cal of y and the number b will be an adjustment. 
Then the new function q'(x) is defined: 

q'(x) = (ax + b ) / z  
If we choose the right z, then the result of 

truncating q'(x) to an integer will be equal to q(x) 
for all legal values of x.  In that cease we can avoid 
the division by y in the evaluation of q(x) and 
instead compute the truncated q'(x). Note that we 
have replaced a division by a multiplication, an 
addition, and a different division. These replace- 
ment operations must be done in extended preci- 
sion so that the full range of values for x can be 
handled. Nevertheless, for specific values of y, it 
will often be possible to find a ,  b and z such that 
all those operations are still significantly faster 
than the general division algorithm. 

The Derived Method. Assume that the posi- 
tive number z has been chosen (the criteria for 
choosing it will be discnssed later). Let 

a = i z / y ]  
Now we want to find b such that truncating 

q' (x) will be equal to q(x) over a sufficiently large 
range of x.  In order for the two functions to be 
equal, if x is in the range 

ky <_x < (k+ l)y 
for some k,  then we must have 

k --< q'(x) = ( a x + b ) / z  < ( k + l )  

If this is true for all k in some range [0..K], then 
truncating q'(x) equals q(x) for x in  the range 
[0..(K+ 1)y-l]. For 32-bit division we need (K+ 1)y 
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to be at least 232 . 

To fred b,  first define r to be the remainder 
of z when divided by y .  In other words r = z - ay. 
Now q'(x) is a non-decreasing function of x. 
Applying this to the upper bound yields 

a((k + l ) y -1 )  + b < (k + l)z 
which implies an upper limit for the value of b : 

b < a + ( k + l ) r  

This is true for all k in the range [0..K]. In 
particular, it is true for k = 0, and this leads to an 
upper bound for b : 

b < a + r  
Similarly, using the minimum value of x to 

find a lower bound for b we have 

k ~ ( a k y + b ) / z  

which implies that 

k r < _ b  

If r happens to be 0, then any b in the range 
[0..(a-I)] will satisfy both bounds for all non- 
negative k.  In this case we will choose b = 0 to 
eliminate the need for an addition. If r is not 0, 
then our choice for b implies a maximum bound 
for K,  since kr <- b for all k .  To allow K to be as 
large as possible, the best choice is b = (a+r-1). 

To summarize up to this point, we have pro- 
ven that truncation of the q'(x) function will yield 
the same result as the true division, q(x), for x in 
the range 0 --< x < (K+l)y. The value of K 
depends on the choice of z, which also determines 
the numbers a and b. 

Choosing z. The choice of z is constrained 
by a few factors. The first is that the resulting 
upper bound for x be sufficiently large to accom- 
modate all values of interest. Since we are work- 
ing with a 32 bit machine, we restricted x to be 
less than 232. The second constraint is a time con- 
straint. The resulting multiple precision operations 
of multiplying x by a, adding b, and dividing by z 
must all be done faster than the general purpose 
division method. 

In fact, there are an infinite number of 
choices for z which satisfy the first constraint. Any 
z which is a multiple of y, for example, will have 
the remainder r equal to 0. This implies that there 
is no upper, bound on the values for x.  The time 
constraint ms more limiting, since it implies a 
bound on how complex the operations can be. Ini- 
tially we have chosen to restrict the choice of z to 
a power of 2 (so that division by z and the result- 
ing truncation would be fast). Values of z equal to 
a power of 2 pins or minus 1 have also been con- 
sidered, since it is possible to divide by numbers of 
this form relatively qulcldy. 

We also restricted ourselves to odd y, since 
division by an even y can be done by first dividing 



the dividend by the largest power of 2 which 
divides y, and then dividing by the odd factor ofy. 

For small odd values of y, Figure 6 indicates 
the smallest power of 2 which satisfies the first 
constraint that (K+ 1)y be at least 232, The values 
for a and (K+ 1)y are in hexadecimal notation. 

z r a 
3 232 1 5 5 5 5 5 5 5 5  
5 232 1 3 3 3 3 3 3 3 3  
7 233 1 4 9 2 4 9 2 4 9  
9 235 5 E 3 8 E 3 8 E 3  

11 236 9 1 7 4 5 D 1 7 4 5  
13 235 7 9D89D89D 
15 232 1 1 1 1 1 1 1 1 1  
17 232 1 FOFOFOF 
19 236 1 D 7 9 4 3 5 E 5  

(K+i)y 
1 0 0 0 0 0 0 0 2  
1 0 0 0 0 0 0 0 4  
2 0 0 0 0 0 0 0 6  
1 9 9 9 9 9 9 A 7  
1C71C71D6 
1 2 4 9 2 4 9 3 8  
1 0 0 0 0 0 0 0 E  
1 0 0 0 0 0 0 1 0  

1 0 0 0 0 0 0 0 1 2  

Figure 6. 

The intermediate result, (ax + b), must be 
stored in a multiple precision fashion. In the cases 
fisted, except for y = 11, the largest possible inter- 
mediate result will fit using two 32-bit words of 
precision. This result can be computed as (x+l)a 
+ (r-l) since b = (a+r-1). If r = 1, the final addi- 
tion can then be skipped. 

The fmal observation is that the multiplica- 
tion by a can be done by shifting and adding. This 
is particularly true when the bits forming the 
binary representation of a form a regular pattern. 
For example, if y = 3, then the computation of the 
result is shown in Figure 7. The initial add takes 
two instructions since the addition can carry into 
the higher precision word. Each shift and add pair 
operating on two word precision numbers takes 4 
instructions, except the first pair which takes 3 
instructions due to the existence of the Shift Two 
and Add instruction. The desired quotient is the 
higher precision word of the intermediate result 
since z = 232. The total sequence takes 17 instruc- 
tions. This is still significantly slower than a single 
addition, but it is a factor of 3.5 times better than 
the general purpose algorithm. 

trap = x + 1 
tmp = (trap < <  2) + trap 
trap = (tmp < <  4) + trap 
tmp = (trap < <  8) + tmp 
trap = (trap < <  16) + trap 
quo = trap > .>  32 

Figure 7. 

Negative Dividends. To handle signed divi- 
sion with truncation towards 0, all that is needed is 
to negate the incoming dividend if it is negative, do 
the division on the positive result, and negate the 
f'mal quotient if the original dividend was negative. 
The testing of the dividend requires some over- 

head, but this can be partially offset since it will 
then be known that the initial adding of 1 to the 
dividend will not carry over into the higher preci- 
sion word of the intermediate result. For example, 
to do signed division by 3 when the dividend turns 
out to be positive takes 17 instruction cycles which 
is exactly the same as the unsigned case. If the 
dividend turns out to be negative, then the signed 
division takes 19 instructions. 

Performance. As a result of the application 
of this algorithm for division by small numbers on 
the Precision architecture, divisions using constant 
divisors less than twenty vary from one to 27 
cycles, while divisions using variable divisors less 
then twenty vary from ten to 36 cycles. Both of 
these compare favorably with the average 80 cycles 
for the general-purpose divide routine. 

8. Summary 

Although integer multipfication and division 
are relatively infrequent operations, some pro- 
grams may use them extensively -- intentionally or 
otherwise. Design choices in their implementation 
must be made carefully to avoid slowing down or 
adding significant cost to the machine. We have 
described these design choices for the Hewlett- 
Packard Precision Architecture and have shown 
how the resultant instructions can be combined 
with careful frequency analysis to result in perfor- 
mance which meets or exceeds other methods but 
with significantly less cost. In particular, we have 
shown how, in the Precision architecture: 

® Multipficatious by compile-time constants 
can generally be performed in four or fewer 
(single-cycle) instructions; 

• Multiplications by variables, including full 
overflow checking, can be obtained in an 
average of less than 20 (single-cycle) instruc- 
tions; and 

• Divisions by small numbers can be handled 
differently and take about 15 to 25 (single- 
cycle) instructions to perform, vs. about 80 
for other divisions. 

By examining the distribution of operands, over a 
large class of programs, we can conclude that, on 
the Precision architecture, the average multiply 
requires about six cycles and the average divide 
takes about 40. 
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