
I n t e g e r M u l t i p l i c a t i o n a n d D i v i s i o n o n t h e H P P r e c i s i o n A r c h i t e c t u r e

Daniel Z Magenheimer, Liz Peters, Karl Pettis, Dan Zuras

Hewlett-Packard Co.
Information Technology Group

19447 Pruneridge Ave, Cupertino CA

ABSTRACT

In recent years, many architectural design efforts
have focused on maximizing performance for fre-
quently executed, simple instructions. Although
these efforts have resulted in machines with better
average price/performance ratios, certain complex
instructions and, thus, certain classes of programs
which heavily depend on these instructions may
suffer by comparison. Integer multiplication and
division are one such set of complex instructions.
This paper describes how a small set of primitive
instructions combined with careful frequency
analysis and clever programming allows the
Hewlett-Packard Precision Architecture integer
multiplication and division implementation to pro-
vide adequate performance at little or no hardware
cost.

1. Introduction

Many recent general purpose machine archi-
tectures (e.g. [Rad82,Pat82]) have been designed
around one fundamental tenet: by concentrating
effort on a few frequently executed, simple instruc-
tions, average performance can be increased and
at the same time hardware costs can be reduced.
Many published papers [Hen82,Neu79] contain
instruction distributions which are ordered by fre-
quency. The literature largely agrees that well
designed memory access instructions and low over-
head branches (both conditional and uncondi-
tional) are crucial to any machine design. Arith-
metic, boolean and procedure call operations are
also important.

Permssion to copy without fee all or part of this material
is granted provided that the copies are not made or
distributed for direct commercial advantage, the ACM
copyright notice and the title of the publication and its
date appear, and notice is given that copying is by
permission of the Association for Computing Machinery.
To copy otherwise, or to republish, requires a fee and/or
specific permission.

Further down the list, near the bottom, are
the more complex instruction classes: floating
point, decimal, large block moves and integer mul-
tiplication and division. Does the relative infre-
quency of these instructions imply that their imple-
mentation is unimportant? Hardly. Machine
architects must avoid the tendency to either over-
design these -- which results in costly additional
(and largely unnecessary) hardware or increased
cycle time; or to underdesign it, in which case the
instructions become weak points awaiting exercise
and abuse by programs and benchmarks which
depend on reasonable performance for these func-
tions. The analysis and work which allowed these
tendencies to be avoided for the implementation of
integer multiplication and division in the Hewlett-
Packard Precision Architecture are the subject of
this paper.

2. Overview

Uses of Multiplication and Division 1. Most
programs use multiplication and/or division many
times, either directly or indirectly. Almost all high
level languages directly support these operations
with an explicit operator (e.g., '*' and '/') and
almost all support constructs that implicitly require
a multiplication or division to occur. For example,
in C:

a = structureA[x][y].b;

requkes two multiplications, namely

x * y * sizeof(structureA)

while

diff = structureB[x] - structureB[y];

requires a division for the implied operation:

(&structureB[y] - &structureB[x]) / size0f(structureB)

1. For the remainder of the text, the references to
multiplication and dMsion are of the integer variety.

C© 1987 ACM 0-89791-238-t/87/1000-0090 $00.75
90

http://crossmark.crossref.org/dialog/?doi=10.1145%2F36206.36189&domain=pdf&date_stamp=1987-10-01

Languages such as FORTRAN, where matrix
ranks can be passed as parameters, may have large
numbers of implicit multiplications by variables.

Clever compilers can reduce the number of
multiplications in a program by using a technique
called "strength reduction". Strength reduction is
the practice of replacing multiplications by addi-
tions and additions by increments wherever possi-
ble, since they are less costly than multiplications.
For exomple:

for (i=0; i<10; i= i+ l)
j = j + i'15;

In this simple exzmple the multiplication by 15 can
be replaced by an addition of 15, since the multi-
plication results form an arithmetic progression.

In many cases, primarily if the reduction
variable is used in both a subscript expression and
a non-subscript expression, this optimization is dif-
ficult or impossible to perform. Furthermore,
optimizations may be inadvertently defeated by the
use of a global variable as a loop counter or by
careless goto's. Since programmers are not always
aware of these problems, they may unwittingly
force the execution of a large number of multipli-
cations and still expect reasonable performance.

Divisions may appear to be affected nega-
tively by efficient optimization. Since there is
rarely an opportunity for an optimizer to remove a
division, the number of divisions in a program
remains constant while the total number of instruc-
tions executed is reduced. As a result the percent
of the time a program spends doing divisions may
actually increasel

Frequency of Multtplication and Division.
Multiplication and division are relatively infrequent
instructions. The Gibson mix [GibT0] (based on
the IBM 704 architecture) estlmates the frequency
of multiplication at 0.6 percent and that of division
at 0.2 percent. Other frequency measurement stu-
dies [Hue82,Neu79] vary widely with different
benchmarks giving results between 0.0 and 2.5 per-
cent for multiplication and 0.0 to 0.5 percent for
division. Clearly, the frequency does not warrant
special hardware consideration in the design of a
machine.

Yet these instructions are executed fre-
quently enough that a poor hardware or software
implementation could significantly decrease a
machine's performance, especially on programs
which heavily use the operations. So what do we
do? First, let us examine the way many machines
implement the multiply and divide operations.

Usual Implementation- Multiplication. In
[Boo51], Booth observed that one could speed up
binary multiplication by replacing strings of zeros
or ones in the multiplier with a number chosen
from the digit set {-1,0,1}. This reduced the

number of steps by at least a factor of two. The
modern version of this method, often called Booth
encoding, is usually implemented by cycling
through the multiplier two bits at a time and
adding to the accumulating product the multipli-
cand times a number in the digit set {-2,-1,0,1,2}.
These implementations use 16 such cycles for a
full 32-bit multiply. A side effect of this method is
that one bit of state analogous to a carry must be
retained between each step. A correction for
signed multiplies is also necessary at the end.

Usual Implementation - Division. There are
a few common methods of implementing integer
division [Was82]. One of the simplest is a restor-
ing division algorithm. Assuming the dividend and
divisor are positive, this method starts by logically
shifting the divisor left. This shifted divisor is then
subtracted from the dividend. If this causes the
dividend to become negative, the divisor is added
back. Otherwise the partial quotient is incre-
mented. After this step, the partial quotient is
shifted left and the divisor is shifted right. These
subtraction and shifting steps are repeated until
the final quotient is generated.

The restoring algorithm can require both an
addition and a subtraction for each bit of the quo-
tient. To reduce the number of operations
required most modern computers implement a
non-restoring division algorithm. In this method,
the shifted divisor is either subtracted from, or
added to, the dividend depending on whether the
previous result was positive or negative. The com-
plement of the sign of the result is shifted into the
quotient. Logically these bits are + 1 or -1, instead
of the usual 1 or 0, but there is a simple transfor-
mation done at the end to change the quotient to
the usual binary representation. This algorithm
requires a single addition (or subtraction) for each
quotient bit.

3. HP Precision Support

Since one of the primary goals in the
development of the Precision architecture was sea-
lability, instructions were carefully chosen so as to
be easily and efficiently implemented in both
discrete logic and VLSL Further, instructions
which increased the basic cycle time of the
machine or significantly affected the complexity of
the datapaths in either technology were critically
examined and often discarded.

In particular, at one point in the evolution of
the architecture both a "multiply step" and a
"divide step", similar to the ones described by
Jouppi (cf. [Jou81]), were included in the instruc-
tion set. The Multiply Step implemented a two-bit
Booth's algorithm, but required either a "three-
read-port two-write-port" register fde, or a special
register (the HL registers in [Jou81]) with the

91

associated control and datapaths and several addi-
tional variations of the instruction to handle pre-
and post-corrections.

The Divide Step also required the special
register and its pipelining affected the critical path
for the basic cycle time. As a result, the Multiply
Step instruction was removed from the instruction
set and the Divide Step instruction was vastly sim-
plified. But rather than replacing them directly
many-for-one, and thus suffering significant perfor-
mance degradation on multiplication and division,
a careful analysis of the basic operations being
performed and their usage was undertaken.

Operand Frequency Analysis. Several ana-
lyses have been published on the frequency and
type of operands used by arithmetic instructions.
Though these studies rarely focus on multiplication
and division, some information on these operations
is often included. Interesting observations include:

e Some 91% of multiplication operations
include one compile-time constant (immedi-
ate) operand. [Neu79]

® Immediate operand values for all operations
tend to be small. [Hen82,Swe82]

• Non-immediate operartd values for multipli-
cation tend to be small. [Luk86]

• "Standard" (32-bit result) multiplication
occurs much more frequently than extended
(64-bit result) multiplication. [C1a82]

To avoid taking these results out of context, we
performed our own trace analyses (cf. [Luk86]) for
independent confirmation.

In the spirit of the philosophy espoused by
RISC architects [Pat85,Bir85] we should attempt to
optimize the most frequent cases, even at the cost
of decreasing performance of the less frequent
cases. The absence of well-defined support
instructions encourages us to exploit these observa-
tions. By recognizing the inherent non-uniformity
and spedal cases of operands (and results), we
may be able to increase the overall performance.
This is precisely the approach used for multiplica-
tion and division in the Precision architecture
which will be examined in the next few sections.
But first, we need to understand the basic building
blocks from which minimal support is obtained.

4. The Instructions

A byte-oriented machine may have difficulty
accessing elements in an array of a datatype of 16,
32 or 64 bits without some form of an indexed
load instruction. The Precision architecture has
such an instruction and its implementation necessi-
tates a "pre-shifter" datapath before one of the
inputs into the ALU. This allows byte addresses
to be calculated for half-word, word and double-
word addresses in array indexing. This pre-shifter

also serves in a second capacity: it allows for one
of the operands in a normal addition to be shifted
before an addition takes place. We refer to this
operation generically as the shift and add opera-
tion. As we shall see, these simple operations
prove to be quite powerful.

Shift and Add Instructions. The Precision
architecture defines a set of shift and add instruc-
tions. First, the shift amount may be either one,
two or three bits. Then for each of these shift
amounts, there is a variation which traps if an
overflow occurs and one that does not.

One might suspect that proper overflow
detection requires a full 35-bit addition to be per-
formed - an expensive proposition especially in a
discrete implementation. Instead, a normal 32-bit
addition is performed and overflow is detected by
a circuit that compares the sign bits of the
operands with the shifted out sign bits and the sign
bit of the result. Although this does not allow for
proper overflow detection if the operands are of
different signs, this case hardly ever arises and, in
practice, can easily be avoided.

Divide Step Instruction. The divide step
instruction performs part of a single-bit nonrestor-
ing divide step based on a set of input conditions
and produces a set of result conditions. It calcu-
lates one bit of the quotient when a register con-
tzinlng the least significant word of a 64-bit partial
dividend is divided by a register containing the
(32-bit) divisor and leaves the partial remainder in
the target register. When combined with an add
with carry operation on the most significant word
of the partial dividend, and both are repeated 32
times, a full division is obtained.

This operation differs from the one
described by Jouppi in two important respects:
First, since the most significant word of the divi-
dend is used only in the second instruction (add
with carry) of each step, the divide step instruction
requires only two register reads and one register
write and no additional datapaths for a special
register. Second, since the determination of
whether the following step does an addition or
subtraction is computed late in the current step
and is required early in the following step, the
pipelining of this flag (which we call the V-bit) may
increase the basic cycle time of the machine.
Since the second instruction of the two instruction
step does not require the V-bit, our cycle time is
not affected. So although we have doubled the
number of instructions to compute a division, we
have reduced the cost and removed a potential
bottleneck in the performance of the machine.

A more precise description of these and
other Precision architecture instructions can be
found in [HP86].

92

5. Multiplication by C o n s t a n t s These are some of the simple rules that are
Multiplication by constants on the Precision used to generate chains. There are more complex

: architecture may be thought of as a generalization ones. For example, numbers of the form (2~-1)n

!ii~!i!i I)
i!~i!ii!(i!~i

i i!!i!iiiiii!

of the notion of an addition chain. In [Knu81], an
addition chain for the number n is defined as a
sequence of integers

1 = %, al, a2, a r = n

that are generated by the rule

a i = aj + a k ,
for some j,k such that k~_j<i for all i in [1,r]. If
the length of the shortest chain for n is denoted by
l(n), Knuth shows that asymptotically,

l(n) <- k(n) + h(k(n)) +
o(x(n) X(x(X(n)))/x(X(n))2)

where k(n) = [lg(n)].

The Precision architecture allows us to con-
struct a similar chain

a l = 0 , % = 1, al, a2, ..., a r = n

with instructions that implement the rules 1

a i = a i + a k
a i Zai + ak
a i 4~ + a k
a i 8aj + a k
a i = a j - a k
a i aj< < n

for some j,k,n such that k-<j<i and n<31. (a.1 is
included as the Precision architecture allows access
to a register which always contains the value zero.)
For example, the number 10 can be constructed by
the chain

a 0 = 1, a 1 = 5, a 2 = 10

Thus, multiplication by 10 can be done in two
steps by

r = 4 s + s
r = r + r

All multiplication by constants may be constructed
in this way.

Chain Rules. With these instructions we can
generate the numbers -1, 3, 5, 9, and any power of
two in a single step. Therefore, given a chain for
generating n of length l(n), we can generate -n, 3n,
5n, 9n, and 2Kn in no more than one more step.
Since the operand is always left untouched in a
multiplication by constant, we can also generate l-
n, n- l , n + l , n÷2, n+4, n+8, 2n+ l , 4n+1, and
8n + 1 in no more than one more step.

L The notation < < and > > refer to left and fight shifts,
respectively.

may be generated from a chain for n in no more
than two more steps by appending the sequence

t = n < < k
t = t - n

onto the end.

We have written a rule-based program that
searches for chains in this manner. The chains
generated by this program compare quite well to
those generated by a program that exhaustively
searches for all possible chains. They are gen-
erated in much less time and, for all numbers less
than 10000, are of minimal length in all but 12
cases. Thus, by remembering these exceptions,
minimal length chains may be generated in reason-
able time for most constants.

Overflow. As has been mentioned, provision
has been made in the Precision architecture for
the detection of overflow on multiplication. A
properly constructed chain can thus automatically
detect overflow for those languages that require it.
Such a chain must be monotonic and contain only
add or shift and add instructions (as this would
require the use of an instruction that does not
detect overflow).

A chain is said to be monotonic if

a i < aj for all i< j .

For example, one chain for multiplication by 15 is

a I = % < < 4
a 2 = a l - %

but this chain contains a shift by 4 and is not
monotonic. A monotonic chain for multiplication
by 15,

a 1 = 2% + %
% = 4a 1 + a 1

can, however, be made to check for overflow.

Such chains are not always as short as they
might be. A similar chain for 31,

a 1 = % < < 5
a2 = a l - %

cannot be made monotonic in two steps. A three
step chain for 31, such as

al = 4~al + % a 2 - + a 1
a 3 ~- 2a 2 + a 0

must be constructed if overflow is to be detected.
Thus, there may be a penalty incurred for the
detection of overflow that languages such as Pascal
may have to pay that languages such as C may not.
On the other hand, the penalty is bounded. This is

93

became overflow can always be detected by
bounds checking the operand before using a chain
that does not detect overflow.

Register Use. The number of temporary
registers needed for intermediate results may also
be traded off with the length of the chain. How-
ever, since a minimal length chain typically uses
very few temporaries, this has not been a problem.
In fact, the only numbers less than 100 that need a
temporary at all in their minimal chains are 59, 87,
and 94.

It is possible for a multiplication to be done
in place for some constants (specifically, numbers
of the form 2 i 3 J 5 k). However, by convention,
the source register for a multiplication by constant
is left untouched by the multiplication. Thus, if a
chain always uses the previously constructed
number or the number 1 in each step, it need not
use a temporary register for an intermediate result.

For example, a minimal chain for 59,

t = 2 s + s
r = 2 t + s
r = 8 r + t

uses one temporary, while this chain

r = s + s
r = 8 r + s
r - - 2 r + r
r = 8 s + r

does not. In this case, a longer chain is not neces-
sarily slower than a chain without temporaries. If
the use of a temporary register requires that a
store and load take place, a longer chain is to be
preferred. ~

Some Results. This effort has shown some
interesting results. For example, Figure 1 shows a
table of the least numbers that may be generated
in r steps for 1-<r-<6.

r least values of n such 'that l(n)=r
1 2,3,4,5,8,9,16,32,64,128,256,512
2 6,7,10,11,12.13.15.17.18.19.20.21
3 14,22,23,26,28,29,30,35,38,39,42
4 58,78,86,92,106,110,114,115,116
5 466,474,618,622,678,683,686,687
6 3802,4838,5326,5519,5534,55.50

Figure 1.

The first n such that l(n)=7 is not yet knowa
as execution of exhaustive searches for ebaln~ of
length 7 is prohibitively time consuming. It is
known that there are no such n less than 10000.

Even so, some conjectures can be made. It
is certain that the behavior of the function c(r),
defined as the first n such that l(n)=r, is at least
exponential. The first 6 entries suggest that is

94

might be super exponential. If true, this would
imply that the asymptotic behavior of l(n) is better
than log(n).

6. Multiplication by Variables

Despite the simplicity of the multiply-by-
constant techniques, there are still many programs
with a large number of multiplications where nei-
ther operand is available at compile time. We
refer to this type of multiply as a multiply-by-
variable. The discussion in this section is limited
to the previously-defined "standard" multiply (32-
bit result). An efficient implementation of
extended multiply (64-bit result) is an area of our
current research.

The Basics. With no multiply step instruc-
tion to work with, it is necessary to understand the
basics more thoroughly. A multiplication algo'
rithm can be constructed using several simple
operations including:

• an ADD operation,

• an arithmetic right shift operation ; and

• a bit test (or test for odd) instruction.

With this simple algorithm, the bits of the multi-
plier are examined one at a time, from the least
significant to the most significant. For each bit, if
the bit is set, the multiplicand is added to the
result register. If the bit is dear, the result is left
alone. In any case, the multiplicand is then dou-
bled before the next multiplier bit is examined.

Though this simple algorithm was never con-
sidered for implementation in the Precision archi-
tecture, it is instructive both because it demon-
strates several problems that must be overcome in
any multiplication algorithm and because it
approximates a "worst case" performance. The
algorithm is shown in Figure 2.

trap = mpy;
mpy = abs(mpy);
rslt = 0;
for (i -- 32; i > 0; i--i-l) {

if (mpy & 1)
rslt = mcand + rslt;

mpy = mpy > > 1;
mcand = mcand + mcand;

}
if (trap < 0)

rslt = -rslt;

Figure 2.

First, notice that overflows can occur in at
least two places: in the addition of the multiplicand
to the result and in the addition of the multipli-
cand to itself. Since the semantics of most high-

level languages require that overflow be detected
in multiplication, we must assume that it is possi-
ble to check for overflow in the additions. (This
is, of course, always true since the same languages
require overflow detection for addition.) This is of
greater importance as the algorithm becomes more
complex, as we must take care that all possible
overflows are detected and, further, that overflow
is not incorrectly reported due to intermediate cal-
culations. The discussion also points out that,
since some languages (such as C), do not report
overflows on multiplies, we must provide two ver-
sions of the algorithm - one which detects over-
flow and one (possibly faster) which doesn't.

Second, notice the taking of the absolute
value of the multiplier before the multiply occurs.
A negative multiplier unnecessarily complicates the
algorithm, so it is easier to take its absolute value,
remember whether it was negative or not, and
correct, if necessary, at the end. (These steps are
ignored in the remaining examples in this section.)
Note also that this is a good example of the earlier
admonition regarding overflow: if the result of the
multiplication is the most negative number (on a
two's complement machine), either the absolute
value operation, the final correction, or an inter-
mediate calculation may report an overflow when
it is possible that the result is perfectly represent-
able.

Performance is obviously a concern too. In
the Precision architecture instruction set, the algo-
rithm in Figure 2 has a dynamic path of 167 (sin-
gle cycle) instructions. A multiply which is more
than two orders of magnitude slower than an add
is clearly unacceptable. What can we do to speed
it up?

A Simple Optimization. If we examine the
distribution of possible multipliers, we note that a
large quantity have an absolute value with several
"leading" zeroes. Now our initial algorithm shifts
the multiplier to the right one bit at a time, and, as
soon as the shifted multiplier has only zeroes, the
result is correct. So, we can take advantage of
these facts by exiting the loop early if the shifted
multiplier is zero. But do we gain anything by
adding an instruction to a critical loop? Almost
certainly. Our count indicates that we have
increased our worst case to 192 instructions. But,
if we assume that the absolute value of the set of
multipliers is logarithmically distributed (a pes-
simistic guess further refined below), the loop will
be executed on the average only half as many (16)

" v r " times. The a e age multiplication now takes 103
instructions -- a 40 percent improvement. We now
have an algorithm with data-dependent perfor-
mance,

Using The Power of the Shift and Add, With
these basics in mind, we next turn to the Precision

architecture's shift and add instructions. By exa-
mining several bits at a time from both the multi-
plier and multiplicand we can execute the loop
fewer times and increase the algorithm's perfor-
mance, as shown in Figure 3.

rslt = 0;
while (TRUE) {

if (mpy & 1) rslt = mcand + rslt;
if (mpy & 2)rslt = (mcand < < 1) + rslt;
if (mpy & 4) rslt = (mcand < < 2) + rslt;
if (mpy & 8) rslt = (mcand < < 3) + rslt;
mpy = m p y > > 4;
if (mpy = = 0) break;
mcand = mcand < < 4;

}

Figure 3.

The overflow versions of the shift and add
instructions allow us to detect intermediate over-
flows in adding the shifted multiplicand to the
result. Also, two Shift Two and Add's neatly com-
plete the left shift of the multiplicand at the end of
the loop and check for overflows, all in two
instruction cycles. Note, though, that several of
the other overflow problems are yet to be solved.

The performance of this new algorithm is
even more difficult to predict. First, we have
reduced the worst case to 107 instructions. (The
loop contains 13.) By applying the previous log-
uniform distribution to four-bit "chunks", we will
execute the loop an average of four times, result-
ing in an average instruction count of 55 instruc-
tions -- three times better than our initial algorithm
1. But the best is yet to come.

An Observation. Rather than examining the
distribution of multipliers, we now concern our-
selves with the distribution of both operands. It is
rarely the case that both operands are large, say
larger than 16 bits, because the result will be an
overflow. If an overflow causes an abort, perfor-
mance of the overflowing multiply is certainly of
no concern. If the language allows overflows to be
taken by exception handlers, the handler overhead
(let alone the system overhead to get to and return
from the handler) will overshadow the multiply's
performance. And in languages with no overflow
checking (e.g. C), the result after overflow is unde-
fined. Surely, depending on multiplies which over-
flow is a questionable programming practice at
best and, in any case, will result in a poorly per-
forming program. Let us then no longer concern

1. The 4-bit fight shift of the multiplicand assumes the
machine implementation contains a barrel shifter for an
efficient single-cycle shift. Several additional cycles are
consumed otherwise.

95

ourselves with the performance of multiplies that
result in an overflow.

We now note that, if the multiplication does
not result in an overflow, at least one of the
operands must be representable in less than 16
bits. Let us assume that it is the multiplier, for if
it isn't, due to the commutativity of multiplication,
we can simply switch the operands so that it is.
With a simple test and possible swap, we have
reduced the maximum number of times through
the loop to four and the average to two. Our mul-
tiply is now 59 instructions, worst case, and 33
instructions on the average!

Applying Constant Multiplication. Our loop
consumes 13 instructions per i t e r a t i o n - five are
shifting the operands and loop overhead but eight
are used for multiplying the multiplicand by a
number between zero and 15 and adding it to the
result. From the section on constant multiplica-
tion, we have seen that we can multiply any
number by a positive constant less than 16 in at
most three cycles (and usually two or one). By
applying similar techniques, we can multiply the
multiplicand by the four bits taken from the multi-
plier and add the result. To do this we must use a
switch (case) table to isolate the 16 separate cases
so that we can multiply by "constants". Our algo-
rithm now appears in Figure 4.

rslt = 0;
while (TRUE) {

switch(mpy & 15) {
case 0: break;
case 1: rslt = mcand + rslt; break;
case 2: rslt = 2*mcand + rslt; break;
case 3: rslt = 3*mcand + rslt; break;

case 14: rslt = 14*meand + rslt; break;
case 15: rslt = 15*mcand + rslt; break;

}
m p y = m p y > > 4 ;
if (mpy = = 0) break;
mcand = mcand < < 4;

}

Figure 4.

A Few Additional Details. Study of the exist-
ing literature on operand distribution (supple-
mented by a few traces of our own) led us to
believe that the lesser of the two operands was less
than 16 more than half the time. We also
observed that both operands were nearly always
positive. Thus we optimized for:

® A single loop iteration;

• Quick exit for values of zero and one; and

• Positive operands.

Lastly, all entries in the switch statement are
reduced to two instructions to reduce the
algorithm's size (and the instruction cache misses
suffered) and to accommodate the Precision
architecture's "branch vectored" instruction.

In the final algorithm, overflow checking is
completely and accurately handled and only one
temporary variable is required. Many subtle tech-
niques available in the Precision architecture
instruction set have been used to remove unneces-
sary cycles. The result is an algorithm that is diffi-
cult to represent in a high-level language, and so it
has been omitted. Figure 5 shows instruction
counts for different ranges of operands.

min(Ixl,lYl)
0-15

16-255
256-4095

4096-46340

Best Avg Worst
(including overhead) %
10 15 23 60
20 24 34 20
28 34 45 10
36 44 56 10

Figure 5.

If we assume the distribution of operands
displayed in the table (and a distribution which has
both operands positive about 90% of the time), we
fmd that the algorithm performs the multiply in an
average of less than 20 instructions. This is a
eight-fold improvement over the original algorithm
and compares favorably with Booth's algorithm
implemented with a Multiply Step.

7. Division

On most machines, integer division takes sig-
nifical~t~y ~nger than addition or subtraction. This
dffferenc~ ~s compounded on machines such as the
Precision architecture which do not have an expli-
cit division instruction but instead perform division
by calling a software routine. If many divisions are
needed, this disparity in execution time can result
in a bottleneck so we looked for ways to do
specific division cases faster in order to improve
the average performance of division.

A well known example is division by a power
of 2. On a binary machine this becomes a matter
of shifting. Even if some adjustments must be
made to handle negative dividends, it is usually far
faster to do an adjustment and then shift than to
go through the general division algorithm for
powers of 2. Under the Precision architecture,
division by small powers ~ of 2 can be done in one
instruction when dealing with unsigned numbers
and in three when dealing with signed numbers.
For division by large powers of 2, this becomes
one instruction for unsigned numbers and four for
signed.

96

i

However, there are often ceases where the
division is by a known quantity that is not a power
of 2. Such divisions are usually done by using the
existing general purpose division algorkhm or
instruction. But if the divisor is known in advance,
a different division method can be derived. This
derived method may or may not be a worthwhile
improvement depending on how fast the general
division method is.

Division Problem Description. We are
interested in the integer quotient of two numbers,
x and y. It is assumed that y is a known constant
and that x is a variable. For simplicity in the dis-
cussion that follows, assume that x >- 0 and that y
> 0. The extensions to handle negative x will be
discussed later. Many programming languages
such as C, Pascal, and Fortran define integer divi-
sion to truncate towards 0. The derived method is
designed to work in this way to yield results com-
patible with these programming languages. So we
want to compute the function q(x) such that

q(x) -- I x / Y]
Our technique is to find an inexpensive way

to multiply x by the reciprocal of y. We choose a
number z and use it to derive numbers a and b
from y. The number a will be z times the recipro-
cal of y and the number b will be an adjustment.
Then the new function q'(x) is defined:

q'(x) = (ax + b) / z
If we choose the right z, then the result of

truncating q'(x) to an integer will be equal to q(x)
for all legal values of x. In that cease we can avoid
the division by y in the evaluation of q(x) and
instead compute the truncated q'(x). Note that we
have replaced a division by a multiplication, an
addition, and a different division. These replace-
ment operations must be done in extended preci-
sion so that the full range of values for x can be
handled. Nevertheless, for specific values of y, it
will often be possible to find a , b and z such that
all those operations are still significantly faster
than the general division algorithm.

The Derived Method. Assume that the posi-
tive number z has been chosen (the criteria for
choosing it will be discnssed later). Let

a = i z / y]
Now we want to find b such that truncating

q' (x) will be equal to q(x) over a sufficiently large
range of x. In order for the two functions to be
equal, if x is in the range

ky <_x < (k+ l)y
for some k, then we must have

k --< q'(x) = (a x + b) / z < (k + l)

If this is true for all k in some range [0..K], then
truncating q'(x) equals q(x) for x in the range
[0..(K+ 1)y-l]. For 32-bit division we need (K+ 1)y

97

to be at least 232 .

To fred b, first define r to be the remainder
of z when divided by y . In other words r = z - ay.
Now q'(x) is a non-decreasing function of x.
Applying this to the upper bound yields

a((k + l) y -1) + b < (k + l)z
which implies an upper limit for the value of b :

b < a + (k + l) r

This is true for all k in the range [0..K]. In
particular, it is true for k = 0, and this leads to an
upper bound for b :

b < a + r
Similarly, using the minimum value of x to

find a lower bound for b we have

k ~ (a k y + b) / z

which implies that

k r < _ b

If r happens to be 0, then any b in the range
[0..(a-I)] will satisfy both bounds for all non-
negative k. In this case we will choose b = 0 to
eliminate the need for an addition. If r is not 0,
then our choice for b implies a maximum bound
for K, since kr <- b for all k . To allow K to be as
large as possible, the best choice is b = (a+r-1).

To summarize up to this point, we have pro-
ven that truncation of the q'(x) function will yield
the same result as the true division, q(x), for x in
the range 0 --< x < (K+l)y. The value of K
depends on the choice of z, which also determines
the numbers a and b.

Choosing z. The choice of z is constrained
by a few factors. The first is that the resulting
upper bound for x be sufficiently large to accom-
modate all values of interest. Since we are work-
ing with a 32 bit machine, we restricted x to be
less than 232. The second constraint is a time con-
straint. The resulting multiple precision operations
of multiplying x by a, adding b, and dividing by z
must all be done faster than the general purpose
division method.

In fact, there are an infinite number of
choices for z which satisfy the first constraint. Any
z which is a multiple of y, for example, will have
the remainder r equal to 0. This implies that there
is no upper, bound on the values for x. The time
constraint ms more limiting, since it implies a
bound on how complex the operations can be. Ini-
tially we have chosen to restrict the choice of z to
a power of 2 (so that division by z and the result-
ing truncation would be fast). Values of z equal to
a power of 2 pins or minus 1 have also been con-
sidered, since it is possible to divide by numbers of
this form relatively qulcldy.

We also restricted ourselves to odd y, since
division by an even y can be done by first dividing

the dividend by the largest power of 2 which
divides y, and then dividing by the odd factor ofy.

For small odd values of y, Figure 6 indicates
the smallest power of 2 which satisfies the first
constraint that (K+ 1)y be at least 232, The values
for a and (K+ 1)y are in hexadecimal notation.

z r a
3 232 1 5 5 5 5 5 5 5 5
5 232 1 3 3 3 3 3 3 3 3
7 233 1 4 9 2 4 9 2 4 9
9 235 5 E 3 8 E 3 8 E 3

11 236 9 1 7 4 5 D 1 7 4 5
13 235 7 9D89D89D
15 232 1 1 1 1 1 1 1 1 1
17 232 1 FOFOFOF
19 236 1 D 7 9 4 3 5 E 5

(K+i)y
1 0 0 0 0 0 0 0 2
1 0 0 0 0 0 0 0 4
2 0 0 0 0 0 0 0 6
1 9 9 9 9 9 9 A 7
1C71C71D6
1 2 4 9 2 4 9 3 8
1 0 0 0 0 0 0 0 E
1 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 1 2

Figure 6.

The intermediate result, (ax + b), must be
stored in a multiple precision fashion. In the cases
fisted, except for y = 11, the largest possible inter-
mediate result will fit using two 32-bit words of
precision. This result can be computed as (x+l)a
+ (r-l) since b = (a+r-1). If r = 1, the final addi-
tion can then be skipped.

The fmal observation is that the multiplica-
tion by a can be done by shifting and adding. This
is particularly true when the bits forming the
binary representation of a form a regular pattern.
For example, if y = 3, then the computation of the
result is shown in Figure 7. The initial add takes
two instructions since the addition can carry into
the higher precision word. Each shift and add pair
operating on two word precision numbers takes 4
instructions, except the first pair which takes 3
instructions due to the existence of the Shift Two
and Add instruction. The desired quotient is the
higher precision word of the intermediate result
since z = 232. The total sequence takes 17 instruc-
tions. This is still significantly slower than a single
addition, but it is a factor of 3.5 times better than
the general purpose algorithm.

trap = x + 1
tmp = (trap < < 2) + trap
trap = (tmp < < 4) + trap
tmp = (trap < < 8) + tmp
trap = (trap < < 16) + trap
quo = trap > .> 32

Figure 7.

Negative Dividends. To handle signed divi-
sion with truncation towards 0, all that is needed is
to negate the incoming dividend if it is negative, do
the division on the positive result, and negate the
f'mal quotient if the original dividend was negative.
The testing of the dividend requires some over-

head, but this can be partially offset since it will
then be known that the initial adding of 1 to the
dividend will not carry over into the higher preci-
sion word of the intermediate result. For example,
to do signed division by 3 when the dividend turns
out to be positive takes 17 instruction cycles which
is exactly the same as the unsigned case. If the
dividend turns out to be negative, then the signed
division takes 19 instructions.

Performance. As a result of the application
of this algorithm for division by small numbers on
the Precision architecture, divisions using constant
divisors less than twenty vary from one to 27
cycles, while divisions using variable divisors less
then twenty vary from ten to 36 cycles. Both of
these compare favorably with the average 80 cycles
for the general-purpose divide routine.

8. Summary

Although integer multipfication and division
are relatively infrequent operations, some pro-
grams may use them extensively -- intentionally or
otherwise. Design choices in their implementation
must be made carefully to avoid slowing down or
adding significant cost to the machine. We have
described these design choices for the Hewlett-
Packard Precision Architecture and have shown
how the resultant instructions can be combined
with careful frequency analysis to result in perfor-
mance which meets or exceeds other methods but
with significantly less cost. In particular, we have
shown how, in the Precision architecture:

® Multipficatious by compile-time constants
can generally be performed in four or fewer
(single-cycle) instructions;

• Multiplications by variables, including full
overflow checking, can be obtained in an
average of less than 20 (single-cycle) instruc-
tions; and

• Divisions by small numbers can be handled
differently and take about 15 to 25 (single-
cycle) instructions to perform, vs. about 80
for other divisions.

By examining the distribution of operands, over a
large class of programs, we can conclude that, on
the Precision architecture, the average multiply
requires about six cycles and the average divide
takes about 40.

9. Acknowledgements

The foundation for much of this work was
laid by Steve Muchnick, Allen Baum, and Terrence
Miller, who designed the basic instructions and
explored their use in simple integer multiplications
and divisions. Michael Mahon, Dave James, and
Bill Bryg proposed several of the algorithmic

98

improvements described and Richard Campbell lrat851
further refined the techniques. We are proud to
present the collective work of all of these people.
We especially thank Joel Birnbaum and Bill Wor- [Rad82]
ley, for without their vision, perseverance and
leadership, the Precision architecture might never
have existed.

10. References
[Bir85] Birnbaum, J.S., and Wodey Jr., W.S., "Beyond RISC~

High-Precision Architecture," Hewlett-Packard]our-
nat VoL 36, No. 8, August 1985.

[130o51] Booth, Andrew D., "A Signed Binary Multiplication
Technique", Quart. Journ. Mech. and Applied Math.,
VoL IV Pt. 2 (1951), pp. 236.-240.

[Cla82] Clark, D.W., "Measurement and Analysis of Instruc-
tion Use in the VAX 11/780," Proc. of the 9th Sym-
posium on Computer Architecture, April 1982, pp. 9-
17.

[Cou86] Coutant, D.S, Hammond, C.L., and Kelley, J.W.,
"Compilers for the New Generation of Hewlett-
Packard Computers," Hewlett-Packard]oumal, VoL
37, No. 1, January 1986.

[Ele86] "A Simple Design May Pay Off Big for Hewlett-
Packard", Electronics, March 3,1986, pp. 39-47

[GibT0] Gibson, J.C., "The Gibson Mix," Report TR 00.2043,
IBM Systems Development Division, Poughkeepsie,
N.Y. 1970.

[Hen82] Hennessy, J., et al,. "Hardware/Software Tradeoffs
for Increased Performance," Proc. Syrup. Architectural
Support for Programming Languages and O~rating
Systems (Palo Alto, Ca., March 1-3). ACM, New
York, 1982, pp. 2-11.

[HP86] Precision Architecture and Instruction Reference
Manual, Hewlett-Packard Co., HP Part Number
09740-90014, November 1986.

[Hue83] Huck, J.C., Comparative Analysis of Computer Archi-
tectures. Ph.D. Th., Stanford University, May 1983.

[Jou81] Jouppi, N., "MIPS II - Multiplication and Division
Features," EE392C Final Reports, Stanford Univer-
sity, June 1981.

[Knu81] Kauth, D., The Art of Computer Programming, Vol.
2, Seminumerical Algorithms, Addison-Wesley, 1981,
pp. ~q'! A.a.5.

[Luk86] Lukes, J.A., "HP Precision Architecture Performance
Analysis," Hewlett- Packard Iourna~ Vol. 37, No. 8,
August 1986.

[Mah86] Mahon, Michael J., et al., "Hewlett.Packard Preci-
sion Architecture: The Processor," Hewlett-Packard
Journal, Vol. 37, no. 8, August 1986.

[Neu79] Neuhauser, Charles J., "Instruction Stream Monitor-
ing of the PDP-11," Stanford University, Dept. of
Electrical Engr., Computer Systems Laboratory,
Tech. Note No. 156, May 1979

[Pat82] Patterson, D.A., and Sequin, C.H., "A VLSI RISC,"
Compute6 Vol. 15, No. 9, Sept. 1982, pp. 8-21

[Pat84] Patterson, D.A., "RISC Watch" Computer Architec-
ture News, Vol. 12, No. 1, Mar. 1984, pp. 11-19

[Shu78]

[s~82]

[Was82]

Patterson, D.A., "Reduced Instruction Set Comput-
ers" Communications of the ACM, Vol. 12, No. 1,
Jan. 1985, pp. 8-21

Radin, G., '~Fhe 801 Minicomputer," Proc. Syrup.
ArcMtectural Support for Programming Languages and
Operating Systems (Palo Alto, Ca., March 1-3).
ACM, New York, 1982, pp. 39.-47.

Shustek, LJ., Analysis and Performance of Computer
lnslruction Sets. Ph.D. Th., Stanford University, May
1977.

Sweet, R.E., and Sandman, J.G., "Empirical Analysis
of the Mesa Instruction Set," Proc. Syrup. Architec-
tural Support for Programming Languages and Operat-
ing Systems (Palo Alto, Ca., March 1-3). ACM, New
York, 1982, pp. 158-166.

Waser, S. and Flynn, MJ., Introduction to Arith-
metic for Digital Systems Designers, Holt, Rinehart
and Winston. New York, 1982

99

