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Abstract
Fault-tolerant quantum computing relies on Quantum Er-
ror Correction (QEC), which encodes logical qubits into data
and parity qubits. Error decoding is the process of trans-
lating the measured parity bits into types and locations of
errors. To prevent a backlog of errors, error decoding must
be performed in real-time (i.e., within 1𝜇𝑠 on superconduct-
ing machines). Minimum Weight Perfect Matching (MWPM)
is an accurate decoding algorithm for surface code, and re-
cent research has demonstrated real-time implementations
of MWPM (RT-MWPM) for a distance of up to 9. Unfor-
tunately, beyond d=9, the number of flipped parity bits in
the syndrome, referred to as the Hamming weight of the
syndrome, exceeds the capabilities of existing RT-MWPM
decoders. In this work, our goal is to enable larger distance
RT-MWPM decoders by using adaptive predecoding that
converts high Hamming weight syndromes into low Ham-
ming weight syndromes, which are accurately decoded by
the RT-MWPM decoder.
An effective predecoder must balance both accuracy (as

any erroneous decoding by the predecoder contributes to the
overall Logical Error Rate, termed as LER) and coverage (as
the predecoder must ensure that the hamming weight of the
syndrome is within the capability of the final decoder). In this
paper, we propose Promatch, a real-time adaptive predecoder
that predecodes both simple and complex patterns using a
locality-aware, greedy approach. Our approach ensures two
crucial factors: 1) high accuracy in prematching flipped bits,
ensuring that the decoding accuracy is not hampered by
the predecoder, and 2) enough coverage adjusted based on
the main decoder’s capability given the time constraints.
Promatch represents the first real-time decoding framework
capable of decoding surface codes of distances 11 and 13,
achieving an LER of 2.6 × 10−14 for distance 13. Moreover,
we demonstrate that running Promatch concurrently with
the recently proposed Astrea-G achieves LER equivalent to
MWPM LER, 3.4 × 10−15, for distance 13, representing the
first real-time accurate decoder for up-to a distance of 13.

∗The corresponding author can be reached at
narges.alavisamani@gatech.edu.

1 Introduction
The inherent noisiness of quantum computers limits the
execution of many promising applications in quantum chem-
istry, cryptanalysis, and machine learning [3, 14, 25, 33, 34,
37, 42, 47, 50, 54, 68]. Furthermore, many of these applica-
tions require extremely low error rates (< 10−12) unlikely
to be achieved on physical devices. Quantum Error Correc-
tion (QEC) can enable these applications by forming fault-
tolerant logical qubits from multiple physical qubits [8, 22,
23, 36, 41, 53, 56]. These logical qubits have lower error rates
than their constituent physical qubits, and by increasing
the level of redundancy, or code distance (𝑑), the logical er-
ror rate (LER) can be reduced. Logical qubits are encoded
using a combination of data qubits, which encode a quan-
tum state, and parity qubits, which detect errors on the data
qubits [8, 22, 23, 36, 41, 53, 56]. To identify any errors on the
data qubits, Fault-Tolerant Quantum Computers (FTQCs) that
use Quantum Error Correction (QEC) periodically execute
syndrome extraction. This process involves executing a quan-
tum circuit that measures the parity qubits. A measurement
result of ‘1’ indicates a parity-check failure. The parity qubit
measurements are then compiled into a bitstring known as a
syndrome, which is subsequently sent to a classical decoder.
The decoder analyzes the syndrome to identify where errors
have occurred on the logical qubit and computes a correction,
which is sent to the control processor to update future oper-
ations. However, as the syndrome extraction operations are
themselves faulty, decoders must analyze syndromes across
𝑑 rounds to accurately determine the location of errors.

In recent years, several software-based implementations of
MWPM have been proposed based on Blossom algorithm [29,
30, 38, 69] aiming to accelerate decoding and reduce average
decoding time. However, they remain impractical due to the
complexity of Blossom algorithm, which fails to guarantee
1𝜇𝑠 window. To achieve the required decoding speed, the
decoding algorithms need to be implementable on hardware,
such as FPGA, which serves as the primary focus of this
work. Astrea [66], the state-of-the-art real-time MWPM (RT-
MWPM) decoder, proposes using a brute-force method for
decoding syndromes that has up to 10 flipped parity bits.
Number of flipped parity bits in the syndrome is referred to
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Figure 1. (a) The overview of QEC process in the presence of a predecoder. (b) The tradeoff between accuracy and coverage
for Hierarchical predecoer [20], Clique [49], and the greedy predecoder [55]. Existing predecoders either have low accuracy
or low coverage. (c) The gap between current RT-MWPM and Non-RT MWPM decoders indicating a 43x higher LER (d) An
overview of insights using in Promatch for the locality-aware greedy algorithm. Promatch checks the neighborhood of flipped
parity bits and finds the correct matching (nodes 1 and 2), which enables additional correct prematching (nodes 3 and 4). These
two prematchings result in a lower weight, having a higher probability (𝑃2 compared to at most 𝑃3).

as Hamming weight (HW) of the syndrome. Astrea is limit-
ted to HW≤ 10 due to the exponential growth of number
of matchings when HW increases. This fast growth makes
applying brute-force method impossible for 𝑑 > 7. To ad-
dress this challenge, a predecoding method can be applied to
predecode syndromes, accordingly reduce the HW of syn-
dromes, and then send them to the main decoder, as shown
in Figure 1(a). To have an effective predecoding process, the
predecoder needs to 1) be accurate, not limiting the accu-
racy of the decoder 2) sufficiently cover enough number of
flipped bits, making sure that the rest is manageable by the
decoder. The goal of this paper is to develop a larger distance
RT-MWPM using an adaptive predecoder that is accurate
and has enough coverage.
In the context of predecoding methods, accuracy refers

to the correctness of the predecoding process in matching
flipped bits before they are passed to the main decoder. If
predecoding is inaccurate, it results in erroneous decoding
even if the main decoder is capable of accurately handling
the remaining bits. Consequently, achieving high accuracy in
predecoding is essential to ensure the reliability of the entire
error correction process. In addition to accuracy, coverage
is another important factor for predecoders, which refers
to the number of pairs of flipped bits that are predecoded
compared to the total number of pairs required to be decoded.
Insufficient coverage means that too many error pairs are
left for the main decoder which cannot be handled within
the time constraints. On the other hand, excessively high
coverage underutilizes the main decoder’s capability and
may potentially compromise accuracy.
Prior predecoders tend to prioritize either coverage or

accuracy [20, 49, 55], as shown in Figure 1(b). For example,
Clique [49] and Hierarchical decoder [20] which uses a sim-
ple predecoding structures for simple patterns and using
MWPM for complex patterns. Therefore, these predecoders

do not reduce the complexity requirement of the main de-
coder, and they are still reliant on having a main decoder
that can decode high Hamming weight syndromes, which is
impractical to perform in real-time. Furthermore, any inaccu-
racy of the predecoder still contributes to the overall logical
error-rate. On the other hand, Smith et al.’s work [55] pro-
poses a Greedy predecoder that has high coverage but low
accuracy. Therefore, the overall logical error rate of the com-
bined decoder is more than two orders of magnitude higher
than the MWPM decoder alone. Another work Astrea-G [66]
adopts a greedy method that matches bit flips until the main
decoder can handle the remaining decoding, guaranteeing
sufficient coverage, which leads to similar LER as MWPM
LER for distance 9 but reduced accuracy for higher distances
(43× higher LER at 𝑑 = 13), as shown in Figure 1(c). The
tradeoff between accuracy and coverage makes it challeng-
ing to achieve an ideal solution. Low coverage may lead to
the main decoder being unable to accurately decode the re-
maining bits. Conversely, high coverage might utilize the
main decoder’s capacity inefficiently, but could come at the
cost of reduced overall accuracy due to incorrect matches.
Promatch strikes the right balance between accuracy and
coverage ensuring precise decoding and efficient utilization
of the main decoder’s capabilities.

Promatch utilizes a locality-aware greedy algorithm, care-
fully considering the consequences of each decision made
during the predecoding process. It matches and removes the
flipped bits from the syndrome until the main decoder can
find the exact MWPM solution for the remaining flipped bits
before reaching 1𝜇𝑠 . In some cases, a group of flipped bits
may form a complex pattern that is not immediately appar-
ent how to match efficiently. However, Promatch utilizes the
insight that by making the right initial matching within a
complex pattern, it can be broken down into simpler, more
manageable patterns, as shown in Figure 1(d).
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Figure 2. (a) Illustration of a 𝑑 = 5 surface code logical qubit lattice, alongside the associated 𝑍 and 𝑋 stabilizer extraction
circuits. (b) Two-round decoding graph example for the 𝑋 stabilizer. (c) Real-time decoders, under 1𝜇𝑠 , exist for up to distance
9 while, for higher distances, 11 and 13, we need to rely on software-based decoders which have high latency.

Promatch can be added to any decoder, however for our
evaluations and getting low enough LER, we use Astrea [66].
Our design incorporates Astrea’s exact MWPM solution for
low-HW syndromes and employs an adaptive matching ap-
proach to predecode flipped bits of the syndrome till reduce
the HW to a value that allows us to apply Astrea within
the remaining time before reaching 1𝜇𝑠 . Promatch decodes
surface codes of 𝑑 = 11 and 𝑑 = 13 in real time with LER of
4.5 × 10−13, and 2.6 × 10−14, respectively. The LER gained by
Promatch, is the lowest LER in the literature that a real-time
decoding process has achieved for distance 13. Further, we
observed the gap between these LER values and MWPM
LER can be closed by running Astrea-G [66] in parallel with
Promatch. Thus, our combined proposal represents the first
decoder proposal that is both accurate (similar to MWPM)
and real-time for up-to distance of 13.

Overall, this paper makes the following contribution:

• Accurate Predecoder : Promatch introduces a locality-
aware greedy method that utilizes information from
each flipped bit’s neighborhood to provide an adequate
number of accurate matching while avoiding inaccu-
rate patterns.

• Adaptive Predecoder: Promatch is an adaptive prede-
coder which increases the complexity of patterns that
are pre-matched based on whether the resulting ham-
ming weight is within the capability of the main de-
coder.

• Real-time Decoding for Large Distances: Promatch is
the first real-time decoder capable of decoding surface
codes of distance 11 and 13 with the highest accuracy
in the literature.

• Achieving MWPM LER for Large Distances: When run
concurrently with Astrea-G, Promatch makes it pos-
sible to achieve MWPM LER for up to 𝑑 = 13 for the
first time.

2 Background and Motivation
2.1 Quantum Error Correction Using Surface Codes
Surface codes are regarded as the most promising QEC code
due to their high threshold (about 1%) and grid structure. Sur-
face codes encode a logical qubit of distance 𝑑 onto a lattice
with 𝑑2 data qubits and 𝑑2 − 1 parity qubits [22, 23, 36, 59],
as shown in Figure 2(a). Errors on data qubits are projected
into Pauli errors on their adjacent parity qubits through the
periodic measurement of these parity qubits. The output
of this parity qubit measurement is called a syndrome, and
the measurement process is known as syndrome extraction.
During this process, each parity qubit measures a four-qubit
operator, called a stabilizer, involving its four neighboring
data qubits and extracts information about errors on them.
Surface codes use two types of stabilizers (𝑍 and𝑋 ) to detect
bit-flip (𝑋 ) and phase-flip (𝑍 ) errors, respectively. Errors lead
to failed parity checks producing non-zero syndromes. The
code distance is the measure of the redundancy of the code
as well as its error-correcting capability. A distance 𝑑 code
can correct all error chains of at most length

⌊
𝑑−1
2
⌋
.

2.2 Error Decoding
QEC uses decoders that analyze the syndromes to identify
the location and type of errors by matching or pairing the
non-zero syndrome bits or failed parity checks. The problem
can be reduced to a matching problem on a two-dimensional
graph, known as the decoding graph, where each node de-
notes a parity qubit and each edge denotes a data qubit. The
pairing step matches the non-zero nodes and assigns errors
onto the data qubits corresponding to the edges connecting
them, as illustrated in Figure 2(b). However, in reality, syn-
dromes are imperfect due to gate and measurement errors
that occur during syndrome extraction. These errors result in
failed parity checks across consecutive syndrome extraction
rounds. To tolerate these errors, the decoder analyzes 𝑑 con-
secutive syndromes, resulting in a matching problem on a
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three-dimensional graph, as shown in Figure 2(b). Decoders
must accurately identify errors in real-time to prevent the
accumulation of errors. The typical latency that must be met
is about 1𝜇𝑠 on superconducting systems (which corresponds
to the time it takes to extract a syndrome).

2.3 MinimumWeight Perfect Matching (MWPM)
The MWPM decoder is widely regarded as the gold standard
for decoding surface codes. Each edge on the decoding graph
is associated with a weight that denotes the probability of er-
ror causing the two nodes connecting the edge to flip. There-
fore, constructing a fully-connected weighted graph com-
prising of the non-zero syndrome bits and perfectly matching
the nodes such that the total weight is minimized enables us
to determine the highest probability error event. Although
the accuracy of MWPM is desirable, implementing it in real-
time is challenging owing to the complexities of the inherent
Blossom algorithm used to compute the MWPM.
Recent works solve real-time MWPM (RT-MWPM) de-

coding using alternate approaches. As shown in Figure 2(c),
LILLIPUT achieves RT-MWPM in 29 ns and 42 ns for 𝑑=3
and 𝑑=5 (for only two syndrome rounds) respectively using
lookup tables [17, 59]. However, the size of the tables grows
exponentially with the distance, limiting its scalability. As-
trea achieves RT-MWPM up to 𝑑=7 within 456ns [66]. As
each error chain (irrespective of its length) only flips up to
two syndrome bits, the Hamming weight of the syndromes
corresponding to correctable errors remain within 10 for 𝑑=7.
The number of possible matchings for syndromes of Ham-
mingweight 10 is 945. Astrea searches through themusing an
accelerated brute-force search in hardware. However, brute-
force search is not scalable for larger code distances as the
Hamming weight increases due to the increased redundan-
cies. Astrea-G extends Astrea by searching greedily and prior-
itizing certain matchings [66]. It achieves RT-MWPM in 1𝜇𝑠
for up to 𝑑=9. However, this greediness causes inaccuracies
beyond 𝑑=9 and the logical error rate of Astrea-G is higher
than the idealized MWPM, for example 43× for 13. Beyond
𝑑=9, we must rely on software implementations [28, 31, 39]
to achieve MWPM accuracy or approximate solutions (such
as AFS decoder) [18, 32, 35, 52, 61, 63] that trade-off accuracy
for real-time decoding. Although a recent variant of the Blos-
som algorithm has significantly lower complexity compared
to the original implementation, the worst-case latencies are
still a few hundred microseconds to milliseconds. Ideally, we
want to expand the reach of RT-MWPM beyond d=9.

2.4 Prior Works on Predecoding
The decoding complexity grows with the code distance due
to the increased number of syndrome bit flips in the larger
decoding graph. High Hamming weight syndromes are more
complex and take longer to decode due to the increase in the
number of possible pairings. The complexity of decoding can
be reduced by prematching or predecoding a subset of the
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Figure 3. (a) NSM Predecoders attempt to decode the entire
syndrome. If they fail, then the entire syndrome is sent to
the main decoder. (b) SM Predecoders decode a subset of the
syndrome and send the remainder to the main decoder.

non-zero syndrome bits. The first proposals for predecod-
ing focused on reducing syndrome transmission bandwidth
between the quantum substrate and the decoders [20, 49].
These implementations attempt to quickly decode the entire
syndrome by matching non-zero syndrome bits to their geo-
metrically local neighbors. If the predecoder is able to do so,
no information is sent to the main decoder (often an MWPM
or Union-Find decoder). We refer to these predecoders as
Non-Syndrome-Modified (NSM) predecoders because they
do not modify the syndrome before sending it to the main
decoder, as shown in Figure 3(a).

More recent predecoders use an orthogonal approach that
focuses on minimizing the complexity of the decoding task
handled by the main decoder [9, 11, 55, 62]. These Syndrome-
Modified (SM) predecoders reduce the Hamming weight of
the syndromes by matching a subset of the syndrome bits
and sending the remaining unmatched syndrome with a
lower Hamming weight to the main decoder, as illustrated
in Figure 3(b).

2.5 Limitations of Prior Works on Predecoding
The limitation of NSM predecoders is that these predecoders
do not reduce the decoding complexity of the main decoder
and therefore, the overall decoding performance is still con-
strained by the main decoder. If the main decoder is a soft-
ware MWPM decoder, real-time decoding is not feasible [49],
whereas the accuracy is reduced if the main decoder is a
Union-Find decoder [20]. Concurrently, SM predecoders are
limited by their accuracy: such predecoders may err when
matching, and this error will cause a logical error1.
Thus, we observe a tradeoff between predecoder accu-

racy and coverage. NSM predecoders avoid predecoding syn-
dromes with potential non-local matchings, resulting in sub-
par coverage. In contrast, Syndrome-Modification prede-
coders achieve good coverage by reducing the Hamming
weight of the syndrome, but may incur inaccuracy while
1We note that the accuracy of any predecoder, both NSM and SM, is crucial
as any inaccuracies will cause a logical error.
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doing so. We further note that coverage is strongly corre-
lated to latency, and there is an inherent trade-off between
accuracy and decoding latency. A predecoder that optimizes
for accuracy will avoid reducing the Hamming weight too
significantly so the main decoder decodes the majority of the
syndrome. However, this increases overall decoding latency.
For example, the Clique predecoder is limited by the latency
of software MWPM [49]. On the other hand, a predecoder
that optimizes for coverage may predecode too much of the
syndrome to relieve the burden of the main decoder. This ap-
proach reduces decoding latency but also reduces accuracy.
This phenomenon is observed in the predecoders proposed
by Chamberland et al. and Smith et al. [11, 55]. Unfortu-
nately, prior predecoders optimize for either higher accuracy
or coverage. Note that it is possible to have very accurate
and high coverage predecoding using complex algorithms
such as belief propagation but incur long latencies that may
not converge in real-time [9].

2.6 Goal: Enabling Higher Distance RT-MWPM
Decoders by Using Adaptive SM Predecoding

Currently, there is a gap between RT decoders and Non-RT
MWPM for 𝑑 > 9, 2.5 times and 43 times higher than logi-
cal error rate of Non-RT MWPM, as illustrated in Figure 4.
Notably, a contemporary RT MWPM decoder, named As-
trea, can decode syndromes that have low Hamming weight.
Motivated by this capability, our objective is to construct
a SM predecoder that can precisely predecode and reduce
high Hamming weight syndromes. This reduction enables
the RT MWPM decoder to process the modified syndromes
effectively. Our envisioned SM predecoder operates adap-
tively, predecoding syndromes to achieve a level of sufficient
coverage based on the present abilities of the RT MWPM
decoder. With this approach, we aim to design an accurate
RT predecoder that, when combined with Astrea, can bridge
the existing gap between RT and Non-RT MWPM decoders.

× 2.5
× 43

Figure 4. Logical error rate trends for MWPM, Astrea-G,
Clique+MWPM, and AFS as code distance 𝑑 increases, con-
sidering a physical error rate of 10−4.

3 Promatch: Key Insights
Promatch focuses on decoding syndromes that have more
than 10 flipped bits (HW > 10), which we refer to as high
Hammingweight syndromes as Astrea can accurately decode
all syndromes with HW ≤ 10 in real-time. Like many other
predecoding approaches, the core idea of this work revolves
around the observation that most of the flipped bits in the
syndrome are matched to their neighbors in the decoding
graph (indicating a chain of length one).

Figure 5.More than 90% of error chains, based on MWPM
decoder, has length of 1. This means more than 90% of flipped
bits are matched to their neighbors. This plot is for distance
13 and physical error rate 10−4.

Figure 5 shows the frequency of different error chain
lengths for the high Hamming weight syndromes. As error
chains of length 1 are extremely common, most predecoders
attempt to remove such errors [20, 55]. However, only greed-
ily predecoding errors via error chains of length 1 leads to
a loss in accuracy. In this section, we present our insights
regarding how incorrect decisions can be avoided during
predecoding. In our insights, we leverage the decoding sub-
graph, which is the subgraph of the larger decoding graph
containing only the nonzero bits in a syndrome bit and any
edges between them, as shown in Figure 6.

3.1 High Accuracy: Singletons contribute more
weights to the MWPM solution

During predecoding, every prematching removes two nonzero
syndrome bits from the decoding subgraph, consequently re-
moving any edges incident to these syndrome bits. As edges
are removed from the graph, this can result in syndrome bits
unconnected to the rest of the decoding subgraph. We call
these unconnected bits singletons. As these singletons are not
connected to any other syndrome bit, the only way to match
such bits to other syndrome bits is by correcting along an
error chain with length 𝐿 ≥ 2. However, such error chains
are unlikely, as their probability of occurrence is about 𝑝−𝐿 .
Thus, our first insight is that predecoding should minimize
the number of singletons created during prematching.
In Figure 7, we illustrate the structure of four connected

flipped bits observed in the simulations. In this scenario,
we have six possible options for matching, and the correct
choice is to match 1 with 2 and 3 with 4. However, if we
make a mistake and match 2 with 3, in the next step, we will
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Decoding Graph Decoding Subgraph

Figure 6. Decoding subgraph created from flipped parity
bits and edges of which both nodes (parity bits) are flipped.

have two singletons of 1 and 4, and we will have no other
option but to match them. This incorrect matching solution
results in a total weight of approximately 12, whereas the
correct match has a weight of around 8. It is important to
note that the correct match is the only one that does not
generate any new singletons, making it the optimal choice.

1

p× p 1
2
3

41
2
3

4

Prematching 2 and 3

Prematching 1 and 2

p× pn≥1 pm≥1×1
3
2 4
3

1 1

Figure 7. Avoiding generation of singletons results in lower-
cost matchings in future steps. Additionally, a correct match-
ing (nodes 1 and 2) enables additional correct prematching
(nodes 3 and 4).

3.2 Sufficient Coverage: Use multiple simple steps
Prior predecoders treat prematching as a monolithic process:
the predecoder prematches once, and the remainder of the
syndrome, regardless of the remaining Hamming weight,
is sent to the main decoder. However, we observe that pre-
matching decisions often reveal new possible prematchings
by removing nodes and edges from the decoding subgraph
and consequently reducing the complexity of the decoding
subgraph. Thus, our second insight is that prematching deci-
sions enable additional prematching decisions 2

As shown in Figure 7, the structure of four connected
flipped bits may appear complex at first glance. However, by
following the key insight of not generating new singletons,
we can make the optimal matches. For instance, we match 1
2We assume independent errors (no spatial correlation). If multiple errors
happen far away from each other then such isolated errors can be matched
easily, and decoding becomes an easy problem. However, the harder problem
for decoding is when multiple errors happen to occur near to each other
and this occurs with non-negligible probability even with random errors.
Handling such patterns is a requirement to achieve low logical error rate
(for example, if such patterns happen with a 1 in a billion probability and
the decoder is unable to handle, then the LER will always be at-least 10−9,
whereas we seek LER of as low as 10−15), so we need to handle such patterns.

with 2, leaving uswith the simplematch of 3with 4 as a stand-
alone pair. In this way, we can successfully match an error
structure of four flipped bits in just two consecutive simple
steps. This demonstrates the effectiveness of our approach
in handling complex error patterns while minimizing the
adverse impact of matching decisions.

4 Promatch Design
This section explains the algorithm and hardware design of
Promatch. Figure 8 shows an overview of Promatch. Pro-
match is designed in such a way that it initiates the match-
ing process with the least risky pairs. If necessary, it incre-
mentally adjusts the risk level until a sufficient coverage is
achieved. It leverages the insight that initial matching of
complex patterns into simpler ones is crucial. Specifically,
during stages 2, 3, and 4, which tackle complex patterns,
Promatch matches one pair at a time before reassessing. This
approach can simplify patterns, allowing earlier stages to
address them. For example, in Figure 7, prematching bits 1
and 2 breaks the complex pattern which results in trivially
matching 3 and 4. After each matching that Promatch ap-
plies, it checks if the main decoder can decode the modified
syndrome in the remaining time. If yes, it gives the syndrome
to the main decoder. If not, Promatch predecodes more bits.

4.1 Promatch Algorithm
At each round of Promatch, we extract the data of the decod-
ing subgraph. Each flipped bit that has not yet been matched
in the syndrome acts as a node in the subgraph. We gather
the following data for each node of the subgraph at each
round of the algorithm: 1) The degree of the node. For node
𝑖 , this is denoted by 𝑑𝑒𝑔𝑖 . 2) For each node, the number of
neighbors possessing degree 1. For node 𝑖 , this number is
denoted by #𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡𝑖 . #𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡𝑖 indicates the number
of flipped bits in the syndrome that rely exclusively on node
𝑖 for a match with an error chain of length 1. If these neigh-
boring bits do not get matched with node 𝑖 , they become
singletons. For instance, in Figure 9, flipped bit 𝑎 has four
neighbors, 𝑏, 𝑐 , 𝑑 , and 𝑒 . Three out of these four neighbors
have a degree of 1, namely 𝑏, 𝑐 , and 𝑑 . This means that if
these three nodes intend to form a match in an error chain
of length 1, bit 𝑎 is their sole option. For example, if 𝑎 and
𝑏 get matched and removed from the syndrome, the other
degree-1 neighbors, 𝑐 and 𝑑 , will have no neighbors in their
neighborhood with only 1 edge and will become singleton
bits. However, 𝑒 still has 𝑓 in its neighborhood, preventing
it from becoming a singleton.

After updating all the #𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡𝑖 and 𝑑𝑒𝑔𝑖 values for all
nodes, Promatch starts finding matchings with prioritizing
pairs that: (a) do not generate singletons after matching, and
(b) have the highest probability, meaning they minimally
increase the overall weight in the MWPM solution. To en-
sure high accuracy, Promatch begins by matching isolated
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Figure 9. There are three nodes (𝑏, 𝑐 , and 𝑑) in the decoding
subgraph, whose only neighbor is node 𝑎. If 𝑎 and 𝑏 get
matched with each other, it creates singleton bits 𝑐 and 𝑑

(while 𝑒 pairs with 𝑓 ).

pairs—simple patterns of flipped bits with only one neighbor,
which are more common and less risky. To achieve sufficient
coverage, it also engages with complex patterns, involving
flipped bits that have multiple neighbors and, consequently,
multiple matching options. These patterns can also contain
extant singletons, which are complicated by their lack of
adjacent matching options. Despite these complex patterns
being riskier and less frequent, Promatch dedicates part of
its design to these patterns to ensure enough coverage. In
the following parts, we describe the steps of Promatch, or-
dering them by their priorities. In addition, we explain the
reasons behind their prioritization order. These steps are also
elaborated in Algorithm 1.

1. Promatch begins by matching isolated pairs primarily
for two key reasons: First, based on our insight about
how singletons can increase the weight of the MWPM
solution, Promatch prioritizes matching isolated pairs
because matching them does not create singletons and
accordingly ensures that the decoding process remains
efficient by not introducing higher weights. Second,
if any of the flipped bits among the two of bits in an
isolated pairs gets matched to another node, the other
node becomes a singleton bit. Therefore, to prevent
either of flipped bits in an isolated pair from becoming

a singleton bit, we require to match flipped bits of an
isolated pairs with each other.

2. In this step, Promatchmatches two neighboring flipped
parity bits, that creates a non-isolated pairs, only if the
matching does not generate any singleton bits.

2.1. First, Promatch prioritizes a pairs of neighboring
nodes with the lowest weight in the decoding graph
(highest probability). In this step, it prioritizes the
pair of which one of the nodes have degree 1. Similar
to step 1, it is important to prioritizing matching
such pair because for one of the bits, this matching
is the only option that prevents it from becoming a
singleton bit.

2.2. Second, if there is no pair of which the degree of the
nodes is 1, it chooses the pair that has the lowest
weight in the decoding graph (highest probability).

3. Promatch employs this particular step only when there
are no viable matching candidates left for step 2. This
situation arises when pairs of neighboring flipped bits
cannot be matched without leading to the creation of a
singleton bit. In such cases, Promatch opts to match an
extant singleton bit with another flipped bit, choosing
the one that forms the shortest path or, equivalently,
the error chainwith the highest probability. In this step,
the condition of not creating singleton bit is still neces-
sary. it is important to note that, Promatch requires to
search among a fewer number of paths, compared to
Astrea’s brute-force method. This is because the num-
ber of singleton bits is low. Additionally, this step is
utilized only after Step 1 and 2 have been applied and
if Step 1 and Step 2 have not been enough to reach the
sufficient coverage. Therefore, there are a few number
of paths left, which makes this step fast enough.

4. The algorithm uses this step only if no flipped bit can
be matched in Step 1, Step 2, and Step 3. This step is
similar to Step 2, having similar substeps 4.1 and 4.2,
without the condition of not generating singleton bits,
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and is the only one that adds singleton bits to the decod-
ing subgraph. Therefore, in this step, Promatch takes
the riskiest decision to ensure that the main decoder
can decode the modified syndrome within remaining
time before reaching 1𝜇𝑠 . Note that, similar to Step 2
and Step 3, Promatch may break complex patterns to
simple patterns allowing less risky decisions in future.

Algorithm 1 Promatch Algorithm
Input: Decoding Subgraph (𝑉 , 𝐸)
while HW is not low enough do

while isolated pairs exist and HW is not low enoug
do

match isolated pairs
if HW is low enough then break
for 𝑒𝑖 𝑗 in 𝐸

if matching 𝑖 and 𝑗 does not create Singleton
if 𝑚𝑖𝑛(𝑑𝑒𝑔𝑖 , 𝑑𝑒𝑔 𝑗 ) == 1

if 𝑤𝑖 𝑗 < weight of current Step2.1 candidate
then set (𝑖, 𝑗) as Step2.1 candidate

else if 𝑤𝑖 𝑗 < weight of current Step2.2 candi-
date

then set (𝑖, 𝑗) as Step2.2 candidate
else ⊲ Risky step

if 𝑚𝑖𝑛(𝑑𝑒𝑔𝑖 , 𝑑𝑒𝑔 𝑗 ) == 1
if 𝑤𝑖 𝑗 < weight of current Step4.1 candidate

then set (𝑖, 𝑗) as Step4.2 candidate
else if 𝑤𝑖 𝑗 < weight of current Step4.2 candi-

date
then set (𝑖, 𝑗) as Step4.2 candidate

end if
end for
if Step2.1 and Step2.2 candidate is empty
and ∃ Singleton ∈ 𝑉

for every node 𝑖 and Singleton node 𝑗 in 𝑉
if matching 𝑖 and 𝑗 does not create new Singleton
and path weight of 𝑖 and 𝑗 is less than path
weight of Step3 candidate

then set (𝑖, 𝑗) as Step3 candidate
end if

end for
end if
Match only 1 pair among the candidates prioritizing
Step2.1, Step2.2, Step3, Step4.1, and then Step4.2.

end while

4.2 Hardware Implementation of Promatch
Promatch iterates over the edges of decoding subgraph. The
weights of the edges of the decoding graph are stored in a
Edge Table in an on-chip memory on the FPGA. To avoid
impacting memory latency on the decoding time, the data
is loaded from the memory gradually while the syndrome
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<weightij

Figure 10. Pipeline of iterating over the edges of subgraph
to find matching candidates for Promatch.

is extracted and previous syndrome is being decoded. Note
that Promatch’s locality-aware approach makes loading all
the required data during the syndrome extraction possible,
which is not the case for exhaustive search approaches. There
are four steps in Promatch algorithm design, detailed in Sec-
tion 4.1. Each of these steps has its own matching candidates.
The candidates of Step 1, isolated pairs, are stored in a sep-
arate register from the rest of the candidates because this
step can have multiple candidates. This setup allows all these
candidates to be applied to the syndrome simultaneously, a
notable difference from other steps that match and modify
the syndrome based on a single pair at a time. The candidates
of other steps are stored in Matching Candidate Register.

4.2.1 Implementation of the Decoding Subgraph. The
decoding subgraph information is stored in this format: A
vertex array is utilized to store the index of the flipped parity
bits in the syndrome. A neighbor array is also utilized to
specify the neighbors of each vertex. Each neighbor contains
the weight of the edge connecting it to the vertex. Addition-
ally, each vertex 𝑖 has two vertex property array, namely the
degree array and the dependency array. which contains 𝑑𝑒𝑔𝑖
and #𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡𝑖 , respectively.

4.2.2 The Pipeline of Finding Matching Candidates
For Each Step. Figure 10 depicts the pipeline stages for iden-
tifying matching candidates within the decoding subgraph.
The first stage examines each edge’s node degrees, signaling
which of the four steps in Promatch could consider the edge
as a matching candidate. The subsequent stage evaluates if
pairing through this edge would result in a singleton bit; if
it does not, the edge is flagged as a potential candidate for
Step 2 of Promatch. The third stage determines the appropri-
ate candidate register for updates based on this edge. Lastly,
it compares this edge’s weights with the existing candidates,
updating the candidate register if this edge offers a lower
weight ( higher probability match).

Figure 11 shows the simple logics for singleton detection
and step candidate detection, which makes Promatch fast
enough compatible with the time limitation that the decoding
process has.
In Step 3, Promatch calculates the lowest-weight paths

between existing singleton bits and the remaining flipped
bits. It uses an 𝑛 × 𝑛 weight table, with each cell containing
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8 bits, to store path weights among all 𝑛 syndrome bits. This
table, kept in on-chip memory, is processed in parallel to and
independently from the main pipeline of Figure 10.

4.2.3 Promatch || Astrea-G. Promatch demonstrates a
high proficiency in decoding a range of syndrome patterns,
from simple to complex, prioritizing simpler matchings of
isolated pairs or nodes with a single degree. This approach,
however, faces challenges with more intricate error struc-
tures, especially those involving multiple distinct compo-
nents located comparably close to each other, resulting in
having multiple closely good matching options. AstreaG, on
the other hand, use MWPM graph which is a complete graph
comprising all flipped parity bits. In this graph, the edges
represent the shortest path between each pair of flipped bits.
AstreaG filters out higher weight pairs by pruning edges of
the MWPM graph with error chain probabilities below the
LER, followed by employing a greedy-based near-exhaustive
search method for decoding. When run in parallel, Astrea-G
helps Promatch by providing an exhaustive search strategy.
Promatch and Astrea-G each have their specific strengths in
handling different types of error patterns which we explain
in the following parts.

Both Succeed in Sparse Error Patterns: Both Promatch
andAstrea-G are successful in decoding scenarioswith sparse
flipped parity bits. Promatch’s greedy approachworkswell in
these cases, as it efficiently prioritizes isolated pairs or nodes
with a single degree. Astrea-G also performs effectively here,
as its searching method benefits from the sparsity, as it can
prune more number of edges allowing for rapid convergence.

Promatch Succeeds, Astrea-G Struggles: In situations
where decoding subgraph components are closely spaced
but has just enough number of simple matchings, such as
isolated pairs, Promatch outperforms Astrea-G. Astrea-G’s
exhaustive search method becomes less effective under real-
time constraints in these dense environments. It struggles
prune the MWPM graph. Therefore, it cannot effectively
navigate through the tightly packed, yet non-interconnected
components within the strict time limit.

Promatch, on the other hand, excels in these scenarios by
prioritizing safer and easier matchings. Its local approach
focuses on quickly resolving simpler pairings in the imme-
diate vicinity. The remaining, potentially complicated parts

of the syndrome are then managed by the main decoder,
within the remaining time until reaching the 1-𝜇𝑠 threshold.
In Figure 12, we depict an example of these cases, which
components are close to each other but the correct matching
does not have any pairs among separate components. In this
case, Promatch correctly predecodes three pairs, circled in
blue in Figure 12(a), and sends the rest to the main decoder.
On the other hand, as shown in Figure 12(b), Astrea-G’s
solution contains matching among components due to the
closeness of the components which prevent pruning of the
MWPM graph.
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Figure 12. The flipped parity bits are closely spaced. (a)
Promatch localy predecode 3 pairs (circled in blue) and sends
the rest to the main decoder (b) Astrea-G could not prune the
paths among components, resulting in incorrectly matching
flipped bits across components.

Astrea-G Succeeds, Promatch Struggles:While Astrea-
G also employs a greedy algorithm, it shows proficiency in
decoding scenarios where some components of the decod-
ing subgraph are distantly placed, facilitating the pruning
process and reducing the size of the search space. This is par-
ticularly advantageous in cases where certain components
are far enough apart to allow for effective pruning, yet others
are close enough to provide lower matching solutions overall.
Especially, if there exists components with an odd number
of parity bits, which necessitate cross-component match-
ings. Our experiments showed that almost all of samples
that Promatch fails to decode (99.9% for Promatch compared
to 61% for Astrea-G) contains components with odd number
of nodes. In such instances, Astrea-G’s ability to balance
between pruning distant components and exploring close
pairings becomes crucial.
Promatch, with its focus on local pairings, may not effi-

ciently decode these error patterns. It excels in scenarios
with more localized error structures but struggles when the
optimal decoding path involves considering a wider spread
of error components (more than 10 flipped bits so that no
all of them can be passed to the main decoder). Astrea-G’s
method of selectively pruning the search space, while still
considering broader pairings, allows it to uncover decoding
paths that Promatch might miss due to its local focus. See
Figure 13 as an example for such scenarios.
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Figure 13. There exist multiple matchings across compo-
nents (a) Promatch predecode two pairs incorrectly, since
node 5 is not close enough to any of the remaining nodes (b)
Astrea-G near-exhaustive search finds the correct solution.

Both FaceChallenges:Despite their respective strengths,
Promatch and Astrea-G both encounter difficulties in cer-
tain complex scenarios. These challenging situations involve
dense error patterns that require exhaustive searches be-
yond what either algorithm can handle. In these instances,
the error patterns are so densely packed that they exceed the
search capabilities of both Promatch and Astrea-G within
the required timeframe. While such scenarios are infrequent,
they contribute to a slight increase in the LER ( e.g. 10−17 for
𝑑 = 13). However, this impact on the LER is not significant
enough to notably affect the overall decoding performance.
The rarity of these complex cases ensures that the effec-
tiveness of parallel running of Promatch and Astrea-G in
real-time decoding remains high.

4.3 Comparison of Promatch with Prior Predecoders
In the realm of predecoders for surface codes, variousmethod-
ologies have been explored. The hierarchical predecoder [20]
and Clique [49] adopt a greedy strategy, matching each
flipped parity bit with its neighbors. It operates on a non-
syndrome-modified basis: if it fails to decode all flipped bits,
it forwards the entire syndrome unaltered to the main de-
coder. These predecoders do not adequately address the issue
of high Hamming weight syndromes, as they do not modify
these complex syndromes before passing them to the main
decoder. Promatch, in contrast, modifies syndromes in such
a way that the main decoder can process them within the
remaining time, thus easing the decoding process for high
distance codes (𝑑 > 9).

Neural network-based predecoders, represented by Cham-
berland et al. [11] and NEO-QEC [62], modify syndromes but
are not designed for real-time decoding due to latency issues
on FPGAs [11] and relying on emerging technologies [62].
Promatch offers an advantage over these methods by be-
ing optimized for real-time decoding on FPGAs, solving the
latency issues inherent in these approaches.
Belief propagation represents a novel approach in prede-

coding proposed by Caune et al. [9], targeting high accuracy

and coverage. However, its effectiveness relies on the algo-
rithm’s ability to converge to a solution. When it does not
achieve convergence, the algorithm partially decodes the
syndrome, modifies it, and adjusts the weights of the decod-
ing graph before sending the remainder to the main decoder.
This process, involving complex message passing among the
nodes of the decoding graph, presents significant challenges
for real-time implementation. To date, a real-time execution
of belief propagation on hardware, particularly on FPGA,
has not been demonstrated. Promatch, in contrast, offers a
simpler and more reliable solution. It employs a straightfor-
ward logic that has been effectively implemented on FPGA,
ensuring consistent predecoding performance without the
complexities of message passing.The qualitative differences
among various predecoders are summarized in Table 1, with
respect to accuracy, coverage, and real-time (RT) capability.

Table 1. Comparison of Promatch with Prior Predecoders

Predecoder Accuracy Coverage RT
Promatch High Sufficient Yes
Clique [49]1 High Low Yes
Hierarchical [20]1 High Low Yes
Smith et al. [55] Low High Yes
Chamberland et al. [11] Low High No
NEO-QEC [62] Low High No
Belief Propagation [9] High High No
1Despite having high accuracy, due to very low coverage, the accuracy of final
LER of these methods is very low, due to the limitations of RT-MWPM.

5 Evaluation Methodology
5.1 Surface Code
We consider rotated surface codes for distance 11 and 13.
Given that the recent Astrea-G decoder achieves RT-MWPM
up to 𝑑 = 9, we seek to achieve RT-MWPM up to 𝑑 = 13.

5.2 Evaluation Baseline
As our goal is to demonstrate RT-MWPM up to 𝑑 = 13, we
use idealized MWPM as a baseline. The closer a decoder’s
logical error rate is to MWPM’s logical error rate, the better.
We also use Astrea-G [66] decoder, Clique [49], and Smith
et al. predecoders [55] as other baselines.

5.3 Noise Model and Simulation Infrastructure3

We adopt a uniform circuit-level noise model with a physical
error rate ranging from 𝑝 = 10−4 to 5 × 10−4. This model
includes (1) start-of-round depolarizing errors (with equal
probabilities for 𝐼 , 𝑋,𝑌 , 𝑍 ) on data qubits, (2) depolarizing
errors following gate operations on all qubit operands, (3)
measurement errors, and (4) reset initialization errors, each
3The source code of our implementation is available for access at https:
//github.com/nargesalavi/Promatch.
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occurring with probability 𝑝 . The use of a uniform phys-
ical error rate is widely acknowledged in quantum-error-
correction research, as evidenced by several studies [10, 18,
23, 26, 45, 49, 66]. Additionally, employing a circuit-level
error model is considered reflective of real-device perfor-
mance, aligning with the standards set in recent research
[1, 23, 24, 27, 41, 66]. We use Google’s Stim framework [24]
for our evaluations due to its status as an industry-scale
simulator, well-established in quantum error correction stud-
ies [26, 45, 66]. This ensures the reliability and relevance
of our experimental approach. In these state-preservation,
or memory, experiments [2, 13, 17, 18, 32, 51, 57, 61, 63, 66],
we initialize a logical qubit in the |0⟩ state and perform syn-
drome extraction over 𝑑 rounds, followed by measurement
in the computational basis. The success of each experiment,
and the estimation of the decoder’s LER, is based on whether
the measurement outcome aligns with the decoder’s correc-
tion. Repeating these experiments across millions of trials
allows for an accurate estimation of logical error rates4.
To simulate the expected low LER (i.e. in the order of

10−15), which would otherwise require trillions of trials, we
use an alternate approach [48]. For up to𝑘 = 24 random error
injections, we generate millions of syndromes and calculate
the decoding failure probability, 𝑃𝑓 (𝑘), and the occurrence
probability, 𝑃𝑜 (𝑘), of these errors. The logical error rate is
then estimated using Equation (1), based on our error model.

Logical Error Rate =
∑︁
𝑘

𝑃𝑜 (𝑘) × 𝑃𝑓 (𝑘) (1)

6 Evaluations
We evaluate Promatch and Promatch || AG for 𝑑 = 11 and
𝑑 = 13, for 𝑝 = 10−4 to 5 × 10−4.

6.1 Logical Error Rate of Promatch
Table 2 shows the LER of Promatch, idealizedMWPM, Astrea-
G [66], and Smith et al. [55] predecoder for𝑑 = 11 and𝑑 = 13.
Smith et al. predecoder is only applied to high-Hamming
weight (HW > 10) syndromes and uses Astrea as the main de-
coder (same as Promatch). Smith predecoder cannot improve
the LER of Astrea beyond 𝑑 = 11 due to its low accuracy and
not guaranteeing enough coverage. For 𝑑 = 11, Promatch
gains similar LER to Astrea-G for 𝑝 = 10−4. For 𝑑 = 13,
Promatch outperforms Astrea-G by 5.6×. Furthermore, we
observe parallel running of Promatch and Astrea-G achieves
practically identical performance to MWPM, outperforming
the setting which Smith is running in parallel to Astrea-G.

We also experimented with the Clique [49] predecoder in
two settings: 1) Astrea as the main decoder (Clique + Astrea),
2) Astrea-G as the main decoder (Clique+AG). In both cases,
the predecoder is only applied on High-Hamming weight

4In this paper, we use only 𝑍 memory experiments, equivalent to 𝑋 experi-
ments with qubit initialization to |+⟩ and Hadamard basis measurement.

Table 2. Logical Error Rate for 𝑑 = 11 and 𝑑 = 13 at 𝑝 = 10−4

Decoder 𝑑 = 11 𝑑 = 13

MWPM (Ideal) 1.8 × 10−13 3.4 × 10−15

Promatch1 || AG 1.8 × 10−13 (1×) 3.4 × 10−15 (1×)
Promatch + Astrea 4.5 × 10−13 (2.5×) 2.6 × 10−14 (7.7×)
Astrea-G (AG) 4.5 × 10−13 (2.5×) 1.4 × 10−13 (43×)
Smith1 || AG 2.5 × 10−13 (1.3×) 1.5 × 10−14 (4.5×)
Smith + Astrea 4.4 × 10−11 (240×) 6.9 × 10−11 (20412×)

1The main decoder in this setting is Astrea. In other words, structure of this
design is (predecoder + Astrea) || AG

syndromes, as syndromes with low Hamming weights can
perfectly be decoded by the main decoder (same as Pro-
match). Table 3 shows the LER for Clique. Clique+Astrea
has a high LER as Clique is a non-modified predecoder that
does not handle complex patterns. As distance increases, the
probability of encountering complex patterns, particularly at
high-Hamming weight syndromes (HW > 10) increases. In
these instances, Clique forwards these syndromes to Astrea.
Astrea cannot decode any of them because it is optimized
for decoding only low-HW (HW ≤ 10) syndromes (this re-
sults in the LER of Clique + Astrea becomes too high, in the
order of 𝑝 , for distance 13). The LER of Clique+AG is equal
to the LER of AG. This shows Clique cannot improve the
performance of main decoders due to its too low coverage.
Therefore, we do not analyze Clique any further in our study.

Table 3. Clique’s Logical Error Rate for 𝑑 = 11 and 𝑑 = 13,
and 𝑝 = 10−4.

Decoder 𝑑 = 11 𝑑 = 13

Clique + Astrea 2.2 × 10−5 (108×) > 10−4 (> 109×)
Clique + AG 4.5 × 10−13 (2.5×) 1.4 × 10−13 (43×)
Astrea-G (AG) 4.5 × 10−13 (2.5×) 1.4 × 10−13 (43×)

6.2 Sensitivity to Physical Error Rate
Figures 14 and 15 present the LER for idealized MWPM, Pro-
match, Astrea-G (AG), Smith, Smith || AG, and Promatch || AG
over physical error rates from 10−4 to 5 × 10−4. Promatch
maintains an LER within 5.9× to 202× of MWPM’s LER for
𝑑 = 11 and 13, respectively. This performance significantly
outperforms Astrea-G, whose LER is up to 22× and 2064×
higher than MWPM’s for distance 11 and 13, respectively.
Promatch || AG remains in 1.1× and 13.9× of MWPM’s LER
for distance 11 and 13, respectively, significantly outperforms
Smith || AG which remains in 25× and 152× of MWPM’s LER
for distance 11 and 13, respectively.
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Figure 14. LER of non-real-time MWPM, Promatch, As-
treaG(AG), Smith, Smith || AG, Promatch || AG for 10−4 ≤
𝑝 ≤ 5 × 10−4 for 𝑑 = 13. Promatch || AG remains in 1.1× of
MWPM’s LER.
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Figure 15. LER of non-real-time MWPM, Promatch, As-
treaG(AG), Smith, Smith || AG, Promatch || AG for 10−4 ≤
𝑝 ≤ 5 × 10−4 for 𝑑 = 13. Promatch || AG remains in 13.9× of
MWPM’s LER.

6.3 Hamming Weight Reduction of Syndromes
Figures 16 and 17 show the HW distribution before and after
applying syndrome-modified predecoding methods, namely
Promatch, and Smith et al. [55] for 𝑑 = 11 and 𝑑 = 13. In
our experiments, the predecoding only applies to high-HW
syndromes (𝐻𝑊 > 10), as Astrea [66] can decode low-HW
syndromes in real-time. Unlike Smith et al [55], Promatch
always predecodes high-HW down to HWs of 6, 8, or 10.
Promatch consistently achieves sufficient coverage, ensuring
Astrea can decode all post-predecoding syndromes.

6.4 Latency of Promatch and Its Impact on LER
The latency of Promatch depends on the number of edges
in the decoding subgraph since the pipeline iterates multi-
ple times over these edges. During each cycle, Promatch’s
pipeline analyzes one edge of the subgraph and decides
whether or not to match the syndrome bits connected by this
edge. If two syndrome bits are matched, the edges linked to
the recently matched bits are removed from the decoding
graph. Consequently, in the next predecoding round of that
syndrome, the Promatch pipeline operates over fewer edges.
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Figure 16. Promatch consistently lowers syndrome Ham-
ming weight to 10 or less, allowing Astrea to accurately
decode distance 11 surface codes, unlike the Smith et al. pre-
decoder, for 𝑝 = 10−4
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Figure 17. Unlike Smith et al. predecoder, Promatch reduces
the syndrome Hamming weight up to 10 such that the main
decoder (Astrea) can decode distance 13 surface codes accu-
rately for 𝑝 = 10−4.

Based on this pipeline structure, we estimated the number
of consumed cycles for each syndrome by summing the edge
numbers in the decoding subgraphs across all predecoding
rounds prior to sending the syndrome to the main decoder.
When utilizing Step 3 of Promatch, we add the maximum
value of the following: the number of paths from singletons
to flipped bits or the number of edges.
If the duration exceeds 1𝜇s, it is categorized as a logical

error, prompting an abort of Promatch. We have allocated 10
cycles for the final comparison of the solution with Astrea-
G [66] in the Promatch || AG design. Thus, in our simulations,
Promatch, inclusive of the main decoder, is allotted a time
budget of 960𝑛𝑠 (operating at 250MHz).

Tables 4 and 5 depict themaximal and average latencies for
predecoding and the combined predecoding + main decoder,
respectively. It’s crucial to note that all provided numbers
pertain to decoding high Hamming weight syndromes where
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HW ≥ 10. Is important to note that in Tables 5, the maximum
latency shows that there are cases that Promatch reaches
its maximum budget, while there is a very low probability
1.5×10−17 for𝑑 = 13which Promatch exceeds 1𝜇𝑠 , negligibly
impacts the LER. Moreover, as Promatch is a lightweight
predecoder, one can run multiple number of its pipeline in
parallel for reducing the latency further.

Table 4. Latency of Predecoding High-HW Syndromes (𝑛𝑠)

Distance 11 13

Max 824 928

Average 68.2 70.0

Table 5. Latency of Decoding High-HW Syndromes using
Promatch (𝑛𝑠)

Distance 11 13

Max 904 960

Average 524.2 526.0

6.5 Usage of Each Steps of Promatch
Different steps of Promatch is utilized with different rates
because of different probabilities of Hamming weights in the
syndrome and different rate of simple and complex patterns.
Table 6 illustrates the proportion of samples, for d=11 and
d=13, that are processed up to each of four distinct steps in
the algorithm. The value associated with each step signifies
the frequencies of samples that needed to be processed up
to that point. It shows an overview of the efficiency of each
step of Promatch, reflecting how often each step is necessary
to reach the final LER. For 𝑑 = 11 and 13, 99.56% and 99.83%
of samples require only Step 1 of the algorithm, respectively.
Nonetheless, other steps of the Promatch play an important
role in the predecoding process due to the very low LER val-
ues. The last step, which is utilized with the least frequency,
is still employed with higher frequency than LER for all the
distances, which shows the importance of all the steps of the
algorithm in reaching the desired LER.

6.6 FPGA Utilization and Storage Overhead of
Promatch

We synthesize Promatch on a Kintex UltraScale+ FPGA. The
utilization details are shown in Table 7. Promatch’s efficient
use of resources underscores Promatch’s practicality for near-
term real-time decoding.
Table 8 shows the memory needed for storing the Edge

table and the Path table of Promatch. For storing the Path

Table 6. Frequency of each step during the decoding process

Steps d = 11 d = 13

Step 1 0.9956 0.9983

Step 2 0.00439 0.00167

Step 3 6.1 × 10−11 7.3 × 10−11

Step 4 2.4 × 10−11 1.8 × 10−11

Table 7. FPGA Utilization of Promatch

Resource LUT FF Frequency
Edge-Processing Pipeline 3% 1% 250 MHz

Table, we optimize the required memory by categorizing the
paths into four groups as Promatch is not sensitive to the
exact weight of the paths.

Table 8. Storage Requirements of Promatch

Storage Type d = 11 d = 13
Edge Table 3.6 KB 6 KB
Path Table 129 KB 345 KB

7 Related Work
We discuss prior work on real-time decoding and compare
and contrast them with Promatch.

7.1 Decoders for Surface Code
Error decoding has been an active area of research, with
several decoding algorithms proposed in the literature. The
different classes of decoding algorithms:
Lookup Table (LUT) Decoder: This method uses a lookup
table (LUT) to store corrections for every syndrome. Typi-
cal LUT implementations has scalability challenges due to
exponential storage overheads.
MinimumWeight Perfect Matching (MWPM): This de-
coder uses a graph pairing algorithm and is considered to
be one of the most effective in terms of accuracy. There has
been significant recent research to improve the latency and
scalability of MWPM especially for smaller distance codes.
Machine Learning (ML) Decoders: These designs train
neural networks with a set of syndrome vectors and the re-
sulting error location and types [4–7, 12, 15, 16, 19, 40, 43, 44,
46, 58, 60, 64, 65, 67]. They key challenges with these designs
is the lack of training data for large distance codes and the
substantial resource requirements (memory, compute, time),
making them unappealing for large distance codes.
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7.2 Real-Time Decoding
Real-time decoding is necessary to achieve quantum fault-
tolerance, and thus much prior work has been dedicated
to achieving accurate decoding in real-time. Recent imple-
mentations of MWPM decoding, such as Sparse-Blossom
and Fusion-Blossom [31, 69], have achievedmean latencies
of 1𝜇s per syndrome extraction round. While such results
are impressive, quantum fault-tolerance will likely require a
worst case latency of 1𝜇s to avoid unnecessarily stalling the
quantum computer, and thus such implementations are in-
sufficient for real-time decoding. Consequently, much recent
work has proposed hardware implementations. LILLIPUT
is capable of decoding up to 𝑑 = 5 with the same accuracy
as MWPM [17]. However, the lookup tables of LILLIPUT
are difficult to scale beyond 𝑑 = 5. Decoders such as NISQ+
and QECOOL/QULATIS leverage superconducting logic to
achieve low latencies [32, 61, 63]. However, these decoders
cannot handle arbitrary measurement errors, thus causing
significant inaccuracy. The AFS decoder implements the
union-find algorithm [18]. AFS is comparable to MWPM at
extremely low error rates, but for the near-term error rate of
10−4 evaluated in this paper, AFS is inaccurate compared to
MWPM decoding as the underlying union-find algorithm is
inaccurate in this regime [21]. Astrea is a recent implemen-
tation of MWPM decoding restricted to distances 7 and 9, but
has poor performance for 𝑑 = 11 and beyond [66]. Promatch
achieves real-time decoding up to 𝑑 = 13 with comparable
accuracy to MWPM and is the first decoder to do so.

7.3 Predecoding for Reduced Bandwidth
Predecoding has emerged as a strategy for (1) reducing band-
width requirements and (2) improving the latency of de-
coders. Delfosse [20] demonstrated that predecoding can
offer significant bandwdith reduction without sacrificing
accuracy. Recently, the Clique decoder provided an imple-
mentation of Delfosse’s design in superconducting logic [49].
However, while both Delfosse’s proposal and the Clique de-
coder reduce bandwidth requirements, they do not improve
worst-case decoder latency. Smith et al. has proposed a pre-
decoder which greedily filters syndromes sent to the main
decoder, allowing for better coverage compared to Delfosse’s
original proposal [55]. Concurrently, Chamberland et al. pro-
posed a predecoder to filter syndromes, but uses neural net-
works instead of a greedy strategy [11]; NEO-QEC is an
implementation of Chamberland et al.’s proposal in super-
conducting logic [62]. However, the limitation of these works
is that they sacrifice accuracy to improve coverage. In con-
trast, Promatch adaptively finds the highest accuracy at a
good-enough coverage to ensure real-time decoding.

8 Conclusion
Decoders used in quantum error correction must accurately
identify errors in real-time (typically within a 1𝜇𝑠 on su-
perconducting systems) to prevent the backlog of errors.
Although the Minimum Weight Perfect Matching (MWPM)
decoder is widely recognized for its effectiveness in decoding
surface codes, achieving MWPM accuracy beyond distance
9 remains an open problem because the complexity of de-
coding grows with the distance of the code. This paper intro-
duces Promatch to expand the reach of real-time MWPM up
to distance 13. Promatch uses predecoding to transform high
Hamming-weight syndromes into lowHamming-weight that
are amenable to real-time MWPM decoders.
Designing an accurate yet high-coverage predecoder is

challenging. Aggressive predecoding leads to inaccurate
matches, whereas conservative predecoding does not reduce
the complexity of the decoding graph substantially and re-
mains bottlenecked by the complexity of the main decoder.
Promatch attains a sweet-spot between these two extremes
by leveraging the following insights. First, most syndrome bit
flips are matched to other flipped syndrome bits in their local
neighborhood. Second, predecoding must be performed only
until the syndrome Hamming weight reaches a point beyond
which it can be fully handled by the MWPM decoder. Pro-
match enables locality-aware adaptive predecoding that ad-
justs the number of prematches depending on the syndrome
Hamming weight to ensure high accuracy while simultane-
ously meeting the real-time latency constraints. Promatch
achieves logical error rate of 4.5×10−13 and 2.6×10−14 for dis-
tance 11 and 13, respectively. Promatch also achieves MWPM
accuracy for up to distance 13 when it runs in parallel with
Astrea-G (logical error rate of 3.4 × 10−15).
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