
Fermihedral: On the Optimal Compilation for
Fermion-to-Qubit Encoding

Yuhao Liu
liuyuhao@seas.upenn.edu
University of Pennsylvania

United States

Shize Che
shizeche@seas.upenn.edu
University of Pennsylvania

United States

Junyu Zhou
junyuzh@sas.upenn.edu
University of Pennsylvania

United States

Yunong Shi
shiyunon@amazon.com

AWS Quantum Technologies
United States

Gushu Li
gushuli@seas.upenn.edu
University of Pennsylvania

United States

Abstract
This paper introduces Fermihedral, a compiler framework
focusing on discovering the optimal Fermion-to-qubit encod-
ing for targeted Fermionic Hamiltonians. Fermion-to-qubit
encoding is a crucial step in harnessing quantum comput-
ing for efficient simulation of Fermionic quantum systems.
Utilizing Pauli algebra, Fermihedral redefines complex con-
straints and objectives of Fermion-to-qubit encoding into a
Boolean Satisfiability problemwhich can then be solved with
high-performance solvers. To accommodate larger-scale sce-
narios, this paper proposed two new strategies that yield
approximate optimal solutions mitigating the overhead from
the exponentially large number of clauses. Evaluation across
diverse Fermionic systems highlights the superiority of Fer-
mihedral, showcasing substantial reductions in implemen-
tation costs, gate counts, and circuit depth in the compiled
circuits. Real-system experiments on IonQ’s device affirm
its effectiveness, notably enhancing simulation accuracy.

CCS Concepts: • Computer systems organization →
Quantum computing; • Software and its engineering→
Formal methods; • Hardware→ Emerging languages
and compilers.

Keywords: Quantum Computing, Fermion-to-Qubit Encod-
ing, Formal Methods, Boolean Satisfiability
ACM Reference Format:
Yuhao Liu, Shize Che, Junyu Zhou, Yunong Shi, and Gushu Li. 2024.
Fermihedral: On the Optimal Compilation for Fermion-to-Qubit

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0386-7/24/04. . . $15.00
https://doi.org/10.1145/3620666.3651371

Encoding. In 29th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume
3 (ASPLOS ’24), April 27-May 1, 2024, La Jolla, CA, USA. ACM, New
York, NY, USA, 16 pages. https://doi.org/10.1145/3620666.3651371

1 Introduction
Simulating Fermionic systems is one crucial application do-
main of quantum computing. Fermionic systems are com-
posed of Fermions (also known as Fermionic modes), one
basic particle type in nature. Notable examples of Fermions
include electrons, protons, and neutrons. Many physics mod-
els of practical interest are Fermionic systems, such as the
molecule electron structure in quantum chemistry [19], the
Fermi-Hubbard model [14] in condensed matter physics and
material science, the SYK model [31] in quantum field theory.
As a fundamentally quantum system, Fermionic systems are
hard to simulate on classical computers at a large scale due
to their exponential and super-exponential complexity. For
example, in 2020, over one million node-hours were allocated
to chemistry/material science simulation on the Summit su-
percomputer [28], and most of these simulations involve
Fermionic systems.
Quantum computers are naturally suited to solve such

quantum simulation problems. However, encoding a Fermio-
nic system onto a quantum computer requires non-trivial
efforts. The reason is that most quantum computers are com-
posed of qubits, which satisfy a different statistical property
compared with the Fermions in the Fermionic systems. This
difference leads to the fact that Fermionic and qubit systems
are usually described in two distinct languages. As shown
at the top of Figure 1, the Hamiltonian H𝑓 of a Fermionic
system is formulated with an array of creation and annihi-
lation operators {𝑎†

𝑖
}, {𝑎𝑖 } on each Fermionic mode. In the

qubit system, however, the Hamiltonian H (in the middle
of Figure 1) is formulated with Pauli string operators (e.g.,
𝑋𝑌𝑍𝐼 , 𝑍𝑍𝑍𝑍), which will later be compiled into executable
quantum circuits.
A particular transformation called the Fermion-to-qubit

encoding is naturally introduced to mitigate the gap between
the two disparate languages and encode a Fermionic system

ar
X

iv
:2

40
3.

17
79

4v
2

 [
qu

an
t-

ph
]

 2
7

M
ar

 2
02

4

https://doi.org/10.1145/3620666.3651371
https://doi.org/10.1145/3620666.3651371

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Liu et al.

Fermion-to-Qubit Encoding

Fermionic System

Qubit System

Quantum Circuits

Quantum Compilation

Figure 1. Simulating Fermionic systems with qubit systems

onto a quantum computer. This encoding aims to find a
set of Pauli strings representing the creation and annihila-
tion operators. These Pauli strings must satisfy a group of
constraints to ensure that the unique statistical property of
Fermions is preserved in the qubit system. This encoding
is not unique, and different encodings will result in very
different execution overhead (e.g., gate counts, circuit depth,
etc.) on different Fermionic systems. Overall, it is desirable
to have Fermion-to-qubit encodings that can minimize the
cost when implementing the quantum circuit to simulate the
corresponding Fermionic system.
Finding the optimal Fermion-to-qubit encoding for a tar-

geted Hamiltonian is a highly complicated multi-variable
constrained optimization problem. The constraints on a valid
encoding, including the anticommutivity constraints, the
algebraic independence constraints, the vacuum state pre-
serving property, and the Hamiltonian implementation cost,
are represented in linear algebra and natural number theory.
To the best of our knowledge, how to unify and formalize
these constraints together is unknown. Existing Fermion-
to-qubit encodings are mainly theoretically constructed in
a Hamiltonian-independent manner [17]. Although some
encodings [4, 15, 22] have achieved asymptotically optimal
encoding, it is still far from the optimal actual cost because
the Hamiltonian of Fermionic systems from various domains
can be very different.

In this paper, we overcome this challenge and propose Fer-
mihedral, a compiler framework to find the actual optimal
Fermion-to-qubit encoding for a targeted Fermionic Hamil-
tonian. The overview of Fermihedral is shown in Figure 2.
First, by leveraging the Pauli algebra, we can simplify and
convert all the constraints represented in linear algebra and
natural number theory into Boolean variables and expres-
sions with carefully designed encoding. Then, the optimal
Fermion-to-qubit encoding compilation can be formalized
into a Boolean Satisfiability (SAT) problem and solved with
existing high-performance SAT solvers. Second, we iden-
tify the immediate bottleneck in our SAT formulation, the
exponentially large number of clauses. We find two causes
for this problem and propose corresponding techniques, ig-
noring algebraic independence and simulated annealing on

Encoding

SAT + Annealing, Ignore Alg. (Sec. 4)

Algebraic Independence

Boolean Clauses SAT Solver

Hamiltonian Pauli Weight

Anticommutativity Vacuum State Preservation

Full SAT (Sec. 3)

Figure 2. Overview of Fermihedral framework

Hamiltonian-independent optimal encoding. These two tech-
niques can accommodate larger-scale cases by providing
approximate optimal solutions with negligible failing proba-
bility.
We perform a comprehensive evaluation of Fermihedral

on various Fermionic systems. The results show that our
SAT-generated optimal Fermion-to-qubit encoding can out-
perform existing asymptotical optimal encodings [4] and
widely adopted encoding [17] with 10% ∼ 60% lower Hamil-
tonian implementation cost, 15% ∼ 35% lower gate count
and 15% ∼ 60% lower circuit depth in the final compiled
circuits, as well as more precise Fermionic system simula-
tion results on noisy classical simulators. In particular, we
perform real-system experiments showing that our optimal
Fermion-to-qubit encoding can significantly increase the
simulation accuracy on IonQ’s ion trap device.

The major contributions of this paper can be summarized
in the following:

1. We propose Fermihedral, a compilation framework to
find the actual optimal Fermion-to-qubit encoding for
a targeted Fermionic system Hamiltonian.

2. By leveraging the Pauli algebra, we formulate all the
required constraints and implementation costs into
Boolean variables and expressions so that the encoding
can be solved with an SAT solver.

3. We propose two techniques to remove unnecessary
clauses in our SAT formulation. This allows us to find
approximate optimal solutions with negligible failing
probability for larger-size cases.

4. Experimental results show that Fermihedral can out-
perform current asymptotic optimal encodings on both
Hamiltonian-dependent and independent Pauli weight,
embodied by better simulation accuracy in noisy sim-
ulation and real-system study.

2 Background
This section briefly introduces the essential concepts and
their properties to help understand this paper. We start with
the Pauli strings, the key components in quantum simula-
tion, followed by the introduction to the Fermionic quan-
tum systems. We do not cover basic quantum computing
concepts (e.g., qubit, gate, linear operator, circuit) and we
recommend [27] for more details.

Fermihedral: On the Optimal Compilation for Fermion-to-Qubit Encoding ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

2.1 Pauli String
In quantum simulation, Hamiltonians are usually represented
by their decomposition into the sum of Pauli strings. A 𝑁 -
length Pauli string for an 𝑁 -qubit system is defined as the
tensor product of Pauli operators: 𝑃 = 𝜎𝑁 ⊗ 𝜎𝑁−1 ⊗ · · · ⊗ 𝜎1,
where 𝜎𝑖 ∈ {𝐼 , 𝑋,𝑌 , 𝑍 }. Each Pauli operator 𝜎𝑖 operates on
the qubit 𝑖 independently. The 𝑋 , 𝑌 , and 𝑍 are three Pauli
operators and 𝐼 is the identity operator:

𝑋 =

(
0 1
1 0

)
, 𝑌 =

(
0 −𝑖
𝑖 0

)
, 𝑍 =

(
1 0
0 −1

)
, 𝐼 =

(
1 0
0 1

)
2.1.1 Completeness. All the length 𝑁 Pauli strings for-
mulate an orthonormal basis for all the Hamiltonians of 𝑁
qubits. Formally, for all 𝑁 -qubit HamiltonianH , there is a
unique linear decomposition over all length 𝑁 Pauli strings:

H =
∑︁
𝑖

𝑤𝑖𝑃𝑖 ,where𝑤𝑖 ∈ R, 𝑃𝑖 ∈ {𝐼 , 𝑋,𝑌 , 𝑍 }⊗𝑁

2.1.2 Pauli String to Circuit. The goal of quantum simu-
lation is to implement the operator 𝑒𝑥𝑝 (𝑖H𝑡). It is usually
hard to directly implement this many-qubit unitary operator
in the circuit, and we need to compile the 𝑒𝑥𝑝 (𝑖H𝑡) down to
basic single- and two-qubit gates. In practice, this is usually
realized by Trotterization [37]. SupposeH =

∑
𝑗 𝑤 𝑗𝑃 𝑗 where

𝑤 𝑗 ∈ R and {𝑃 𝑗 } are Pauli strings. 𝑒𝑥𝑝 (𝑖H𝑡) can be approxi-
mated by the following trotterization product formula:

𝑒𝑖H𝑡 = 𝑒𝑖𝑡
∑

𝑗 𝑤𝑗𝑃 𝑗 =

(∏
𝑗

𝑒𝑖𝑤𝑗𝑃 𝑗Δ𝑡

)𝑡/Δ𝑡
+𝑂 (𝑡Δ𝑡)

Each term 𝑒𝑥𝑝 (𝑖𝑤 𝑗𝑃 𝑗Δ𝑡) = 𝑒𝑥𝑝 (𝑖𝜆 𝑗𝑃 𝑗) (𝜆 𝑗 = 𝑤 𝑗Δ𝑡) is con-
verted to basic quantum gates.

Figure 3 shows an example of how the Pauli string evolu-
tion operator 𝑒𝑥𝑝 (𝑖𝜆𝑋𝑍𝑌𝑍) converts to its quantum circuit.
It includes the following steps:

1○. A layer of single-qubit gates is applied to each qubit,
corresponding to its Pauli operator. A𝐻 gate is applied
if the corresponding operator is 𝑋 (𝑞3 in the example),
and𝑌 is applied if the operator is𝑌 (𝑞1 in the example).

2○. A target qubit (𝑞2 in the example) is selected. CNOT
is applied to connect each qubit other than the tar-
get qubit whose corresponding Pauli operator is non-
identity with the target qubit.

3○. A 𝑅𝑧 (2𝜆) rotation is applied to the target qubit (𝑞2 in
the example).

4○. Apply the CNOT gates in 2○ reversely.
5○. Apply the inverse single-qubit gates in 1○. In this ex-

ample, 𝑌 † is applied to 𝑞1 and 𝐻 to 𝑞3.
In general, when a qubit’s corresponding operator is 𝐼 in

the Pauli string 𝑃 , then the circuit to implement the simu-
lation of this Pauli string 𝑒𝑖𝜆𝑃 will not result in any gates
applied on that qubit. Only those qubits whose operators
are Pauli operators will have gates involved. Roughly, the
number of gates in the circuit implementation of 𝑒𝑥𝑝 (𝑖𝜆 𝑗𝑃 𝑗)

is proportional to the number of non-identity Pauli operators
in the Pauli string 𝑃 𝑗 .

① ② ③ ④ ⑤

Figure 3. From Pauli string evolution operator 𝑒𝑖𝜆𝑃 to corre-
sponding circuit

2.1.3 Pauli Weight. The Pauli weight of a Pauli string is
defined by the number of non-identity Pauli operators in
this string. For example, string 𝐼 𝐼𝑋𝑋 has a Pauli weight of
2. As discussed above, the Pauli weight is roughly propor-
tional to the number of gates in the circuit implementation of
𝑒𝑖𝜆𝑃 [18, 39]. Therefore, a HamiltonianH whose Pauli strings
have the minimal sum of Pauli weight will have the minimal
gate count when implementing 𝑒𝑥𝑝 (𝑖H𝑡) before any follow-
up compilation/optimization. Although today’s quantum
compiler involves many complex transformation and opti-
mization passes, providing a good input circuit with minimal
gate count for the downstream compilation/optimizations
can, in general, benefit the final compiled circuit.

2.1.4 Arithmetic. Multiplying Pauli strings follows the
rule of multiplication over tensor product: 𝑃1𝑃2 = (𝜎1

𝑁
𝜎2
𝑁
) ⊗

(𝜎1
𝑁−1𝜎

2
𝑁−1) ⊗ · · · ⊗ (𝜎1

1𝜎
2
1), which is the tensor product of

multiplying their corresponding Pauli operators.
With multiplication, we could define the anticommutator

of two Pauli strings as {𝑃1, 𝑃2} = 𝑃1𝑃2 + 𝑃2𝑃1. Two Pauli
strings anticommute if their anticommutator is 0.

2.2 Fermionic System
The Fermionic quantum system refers to physical systems
composed of Fermions. Typical Fermions include protons,
electrons, and neutrinos. In the digital quantum simulation
of Fermionic systems, the quantum state of Fermions is usu-
ally characterized by the occupation of Fermionic modes.
Since Fermions satisfy the Pauli exclusion principle, each
Fermionic mode can either be unoccupied (denoted by the
|0⟩F) or occupied by at most one Fermion (denoted by the
|1⟩F). Thus, each Fermionic mode has a 2-D state space
𝑠𝑝𝑎𝑛{|0⟩F , |1⟩F}. This is similar to a qubit but fundamentally
different in statistical properties. For example, exchanging
the indices of two Fermionic modes will negate the state vec-
tor, but exchanging the indices of two qubits will not. Thus,
we cannot directly map a Fermionic mode into a qubit when
simulating a Fermionic system on a quantum computer, and
a special Fermion-to-qubit encoding is required.

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Liu et al.

2.2.1 Description of Fermionic Systems. To understand
the Fermion-to-qubit encoding, we first introduce the de-
scription of Fermionic systems. The basic operators to de-
scribe a Fermionic system with 𝑁 Fermionic modes are the
𝑁 creation and 𝑁 annihilation operators: {𝑎†

𝑖
}, {𝑎𝑖 } where

𝑖 = 1 . . . 𝑁 . These operators act on states that are described
by vectors in the Fock space F (C𝑁) (the state space of 𝑁
Fermionic modes), a 2𝑁 -D Hilbert space spanned by a set of
orthonormal basis (Fock basis):

|𝑥1, 𝑥2, . . . 𝑥𝑁 ⟩F ,where 𝑥𝑖 = 1 or 0

Each 𝑥𝑖 is the occupation number of the corresponding
mode 𝑖 , also given by the occupation number operator 𝑎†

𝑖
𝑎𝑖 .

The 2𝑁 creation and annihilation operators act on the basis
vectors as:

𝑎
†
𝑖
|. . . 0𝑖 . . .⟩F = |. . . 1𝑖 . . .⟩F , 𝑎𝑖 |. . . 1𝑖 . . .⟩F = |. . . 0𝑖 . . .⟩F

There exists a vacuum state |𝑣𝑎𝑐⟩F = |0, . . . , 0⟩F such that
any annihilation operator applies on it results in 0:

∀𝑗, 𝑎 𝑗 |𝑣𝑎𝑐⟩F = 0

The creation and annihilation operators in a Fermionic
system must satisfy the Fermionic canonical anticommuta-
tivity:

{𝑎𝑖 , 𝑎 𝑗 } = {𝑎†𝑖 , 𝑎
†
𝑗
} = 0

{𝑎†
𝑖
, 𝑎 𝑗 } = I𝛿𝑖 𝑗

(1)

Here, 𝛿𝑖 𝑗 = 0 when 𝑖 ≠ 𝑗 and 𝛿𝑖 𝑗 = 𝛿𝑖𝑖 = 1 when 𝑖 = 𝑗 . I is
the identity operator.

The Hamiltonian of a Fermionic System is usually a Her-
mitian operator expressed by the addition of production
of the Fermionic creation and annihilation operators. For
example, a 2-Fermionic-mode Hamiltonian can be:

HF = ℎ1𝑎
†
1𝑎1 + ℎ2𝑎

†
2𝑎2

where ℎ1, ℎ2 ∈ R are parameters.

2.2.2 Encoding Fermionic System in Qubit System. To
encode a Fermionic system on a quantum computer com-
posed of qubits, we need to find a set of operators in the
qubits state space that also satisfy the Fermionic canonical
anticommutativitymentioned above. This is usually achieved
by finding Pauli strings for the so-called Majorana operators,
which can later be converted to the Fermionic creation and
annihilation operators.

Majorana operators: The 𝑁 creation and 𝑁 annihilation
operators could be paired into 2𝑁 Majorana operators to
simplify the problem:

𝑀2𝑗 = 𝑎
†
𝑗
+ 𝑎 𝑗 𝑀2𝑗−1 = 𝑖 (𝑎†

𝑗
− 𝑎 𝑗)

⇒ {𝑀𝑖 , 𝑀 𝑗 } = 2I𝛿𝑖 𝑗

Majorana operators are usually set to be Pauli strings. A
simple example is the 2 Fermonic-mode system (𝑁 = 2).With

Jordan-Wigner transformation [17], a widely used Fermion-
to-qubit encoding, the 4 Majorana operators are the follow-
ing 4 Pauli strings:

𝑀1 ↦→ 𝐼𝑌 𝑀2 ↦→ 𝐼𝑋

𝑀3 ↦→ 𝑌𝑍 𝑀4 ↦→ 𝑋𝑍
(2)

Correspondingly:

𝑎
†
1 ↦→ 0.5 · 𝐼𝑋 − 0.5𝑖 · 𝐼𝑌 𝑎1 ↦→ 0.5 · 𝐼𝑋 + 0.5𝑖 · 𝐼𝑌

𝑎
†
2 ↦→ 0.5 · 𝑋𝑍 − 0.5𝑖 · 𝑌𝑍 𝑎2 ↦→ 0.5 · 𝑋𝑍 + 0.5𝑖 · 𝑌𝑍

The anticommutativity could be tested easily, given {𝑎†1, 𝑎1}
as an example:

{𝑎†1, 𝑎1} = {0.5 · 𝐼𝑋 − 0.5𝑖 · 𝐼𝑌 , 0.5 · 𝐼𝑋 + 0.5𝑖 · 𝐼𝑌 }
= 0.25 · ({𝐼𝑋, 𝐼𝑋 } − 𝑖{𝐼𝑌 , 𝐼𝑋 } + 𝑖{𝐼𝑋, 𝐼𝑌 } + {𝐼𝑌 , 𝐼𝑌 })
= 0.5 · 𝐼 𝐼 − 0 + 0 + 0.5 · 𝐼 𝐼 = I

Using this encoding, the Fermionic Hamiltonian exam-
ple in the last section can be converted to a qubits system
Hamiltonian in the following:

HF = ℎ1𝑎
†
1𝑎1 + ℎ2𝑎

†
2𝑎2

↦→ H𝑞𝑢𝑏𝑖𝑡 =
ℎ1 + ℎ2

2
· 𝐼 𝐼 − ℎ1

2
· 𝐼𝑍 − ℎ2

2
· 𝑍𝐼

3 Fermion-to-Qubit Encoding via SAT
The Fermion-to-qubit encoding is not unique. Different en-
codings will result in qubit Hamiltonians with different Pauli
weights and circuit implementation overhead. In this sec-
tion, we introduce Fermihedral to find the optimal Fermion-
to-qubit encoding with minimal Pauli weight. We summa-
rize the constraints and optimization objectives of finding
a Fermion-to-qubit encoding and then introduce how they
can be efficiently formulated into an SAT problem.

3.1 Encoding Constraints and Objectives
As introduced in Section 2.2, the Fermionic creation and an-
nihilation operators on 𝑁 Fermionic modes can be turned
into 2𝑁 Majorana operators via a simple linear transforma-
tion, and the Majorana operators’ constraints are much more
straightforward. As a result, finding a Fermion-to-qubit en-
coding usually involves finding the Majorana operators and
then pairing them to generate the Fermionic operators.

Constraints: In summary, the 2𝑁 Majorana operators for
an 𝑁 -Fermion to 𝑁 -qubit encoding are 2𝑁 Pauli strings {𝑆}
satisfying the following four constraints [19, 30]:
• Anticommutativity: Any two of the 2𝑁 Majorana
operators must anticommute.
∀𝑃𝑖 , 𝑃 𝑗 ∈ {𝑆}, {𝑃𝑖 , 𝑃 𝑗 } = 𝑃𝑖𝑃 𝑗 + 𝑃 𝑗𝑃𝑖 = 2𝛿𝑖 𝑗 (3)

• Linear independence: All the 2𝑁 Majorana opera-
tors must be linear independent.

2𝑁∑︁
𝑖=1

𝛼𝑖𝑃𝑖 = 0 =⇒ 𝛼𝑖 = 0, 1 ≤ 𝑖 ≤ 2𝑁 (4)

Fermihedral: On the Optimal Compilation for Fermion-to-Qubit Encoding ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

• Algebraic independence: All the 2𝑁 Majorana op-
erators must be algebraically independent. For any
two unequal subsets of {𝑆}, the multiplication of all
the Pauli strings in one subset cannot be proportional
to the multiplication of all Pauli strings in the other
subset.

∀𝑆𝑎, 𝑆𝑏 ⊆ {𝑆}, 𝑆𝑎 ≠ 𝑆𝑏 =⇒
∏
𝑃𝑎∈𝑆𝑎

𝑃𝑎 ̸∝
∏
𝑃𝑏 ∈𝑆𝑏

𝑃𝑏 (5)

• Vacuum state preserving: The vacuum state |𝑣𝑎𝑐⟩F
of Fock basis is represented by qubit state |0⟩⊗𝑁 . This
restricts the Majorana operators:

∀1 ≤ 𝑗 ≤ 𝑁,
𝑀2𝑗 + 𝑖𝑀2𝑗+1

2
|0⟩⊗𝑁 = 0 (6)

This constraint is optional and will not affect the cor-
rectness/optimality of a Fermion-to-qubit encoding.

Since the Pauli strings naturally formulate an orthonormal
basis (see Section 2.1.1), satisfying the anticommutativity
constraint, which requires all the Pauli strings to be different,
already implies that the linear independence constraint is
satisfied. Consequently, the linear independence constraint
is safely disregarded in the rest of this paper.

Objective:Overall, the optimization objective of a Fermion-
to-qubit encoding is to minimize the overhead of simulating
this Fermionic system on the quantum computer, that is,
the Pauli weight discussed in Section 2.1.3. In this paper, we
adopt two types of objectives:
• Hamiltonian-independent: We only consider the
overhead of implementing the 2𝑁 Majorana operators.
The sum of the Pauli weights of all the 2𝑁 Majorana
operators is minimized. These 2𝑁 Majorana operators
are then used to generate the actual Hamiltonian. This
solution may not be optimal for a specific Hamiltonian
but can generally demonstrate good performance.
• Hamiltonian-dependent:We encode the overhead
of implementing the actual Hamiltonian of the tar-
get Fermionic system in the SAT optimization. This
objective will give us the optimal Fermion-to-qubit
encoding that can achieve minimal implementation
overhead for a specific Hamiltonian.

3.2 Encode Majorana Operators
Majorana operators are Pauli strings, while the SAT problem
is formulated with Boolean variables. Our first step is to
encode the Pauli operators with Boolean variables and then
map the operation of the Pauli operators/strings to Boolean
expressions.
Pauli Operator Encoding: A Pauli operator 𝜎 has four

different possible values 𝜎 ∈ {𝑋,𝑌, 𝑍, 𝐼 } and can be encoded
by a pair of two Boolean variables (two bits). We denote the
encoding by 𝐸:

𝐸 : 𝜎 ↦→ {(0, 0), (0, 1), (1, 0), (1, 1)}

Table 1. Truth table of Pauli operator multiplication 𝜎3 =

𝜎1𝜎2 using the Pauli operator encoding in Equation (7)

𝜎1

𝜎3 𝜎2
𝐼 (0, 0) 𝑋 (0, 1) 𝑌 (1, 0) 𝑍 (1, 1)

𝐼 (0, 0) 𝐼 (0, 0) 𝑋 (0, 1) 𝑌 (1, 0) 𝑍 (1, 1)
𝑋 (0, 1) 𝑋 (0, 1) 𝐼 (0, 0) 𝑖𝑍 (1, 1) −𝑖𝑌 (1, 0)
𝑌 (1, 0) 𝑌 (1, 0) −𝑖𝑍 (1, 1) 𝐼 (0, 0) 𝑖𝑋 (0, 1)
𝑍 (1, 1) 𝑍 (1, 1) 𝑖𝑌 (1, 0) −𝑖𝑋 (0, 1) 𝐼 (0, 0)

A possible encoding strategy 𝐸 is shown:
𝐸 (𝐼) = (0, 0) 𝐸 (𝑋) = (0, 1)
𝐸 (𝑌) = (1, 0) 𝐸 (𝑍) = (1, 1) (7)

Pauli Operator Multiplication Encoding: Given the
specific encoding strategy, multiplication between Pauli op-
erators can then be expressed by Boolean expressions. The
multiplication of two Pauli operators 𝜎3 = 𝜎1𝜎2 is summa-
rized in Table 1. The additional coefficients produced by the
multiplication can be ignored because they do not affect the
algebraic independence and the anticommutativity checking.
As a result, Table 1 can be considered the truth table when
we derive the Boolean expression for the multiplication of
the Pauli operator. The Boolean expression for 𝜎3 = 𝜎1𝜎2 is:

𝐸 (𝜎3).1 = 𝐸 (𝜎1).1 ⊕ 𝐸 (𝜎2).1
𝐸 (𝜎3).2 = 𝐸 (𝜎1).2 ⊕ 𝐸 (𝜎2).2

(8)

where 𝐸 (𝜎).1 and 𝐸 (𝜎).2 denote the first and the second bit
encoding the Pauli operator 𝜎 .
Note that this result indicates that multiplication is sym-

metric regarding the permutation of 𝑋 , 𝑌 , 𝑍 , and 𝐼 . Thus,
any shifting of the encoding strategy would always pro-
duce a similar outcome without possessing unique algebraic
properties, meaning the encoding scheme we selected in
Equation (7) does not lose generality.
Pauli String Encoding: We then extend the Boolean

variable encoding to a Pauli string from an individual Pauli
operator. A Pauli string of length 𝑁 , 𝑃 = [𝜎1, . . . , 𝜎𝑁], has
two equivalent forms of representation used in this paper:
• The operator form:

𝐸𝑜𝑝 (𝑃)𝑖 = 𝐸 (𝜎𝑖)
• The bit sequence form:

𝐸𝑏𝑖𝑡 (𝑃)𝑖 =
{
𝐸 (𝜎 (𝑖+1)/2).1 𝑖 is odd
𝐸 (𝜎𝑖/2) .2 otherwise

Pauli String Multiplication Encoding: The Boolean
expression for the multiplication of two Pauli strings can be
the combination of the Pauli operator multiplication at each
location, following the definition in Section 2.1.4. Suppose
𝑃1 = [𝜎1

1 , . . . , 𝜎
1
𝑁
] and 𝑃2 = [𝜎2

1 , . . . , 𝜎
2
𝑁
]. Then

𝑃1𝑃2 = [𝜎1
1𝜎

2
1 , . . . , 𝜎

1
𝑁𝜎

2
𝑁], 𝐸𝑜𝑝 (𝑃1𝑃2)𝑖 = 𝐸 (𝜎1

𝑖 𝜎
2
𝑖)

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Liu et al.

Table 2. Anticommutativity of Pauli Operators

𝜎2

𝜎1
𝐼 (0, 0) 𝑋 (0, 1) 𝑌 (1, 0) 𝑍 (1, 1)

𝐼 (0, 0) 0 0 0 0
𝑋 (0, 1) 0 0 1 1
𝑌 (1, 0) 0 1 0 1
𝑍 (1, 1) 0 1 1 0

3.3 Anticommutativity Constraints
To encode the anticommutativity constraint, we first encode
the anticommutativity of Pauli operators and then extend to
Pauli strings.
Anticommutativity of Pauli Operators: Suppose we

use 0 and 1 to denote that two Pauli operators 𝜎1 and 𝜎2 are
anticommute or not, respectively, and acomm(𝐸 (𝜎1), 𝐸 (𝜎2))
to denote the Boolean expression to determine the anti-
commutativity of 𝜎1 and 𝜎2. Table 2 shows the truth table
of acomm(𝐸 (𝜎1), 𝐸 (𝜎2)). Notice that 𝐼 does not anticom-
mute with any operator. Then the Boolean expression of
acomm(𝐸 (𝜎1), 𝐸 (𝜎2)) is shown in the following:

acomm(𝐸 (𝜎1),𝐸 (𝜎2)) =
(𝐸 (𝜎1).1 ∧ ¬𝐸 (𝜎2).1 ∧ 𝐸 (𝜎2).2)∨
(𝐸 (𝜎1) .2 ∧ 𝐸 (𝜎2).1 ∧ ¬𝐸 (𝜎2).2)∨
(𝐸 (𝜎2).1 ∧ ¬𝐸 (𝜎1).1 ∧ 𝐸 (𝜎1) .2)∨
(𝐸 (𝜎2).2 ∧ 𝐸 (𝜎1).1 ∧ ¬𝐸 (𝜎1).2)

(9)

Anticommutativity of Pauli Strings: Note that for any
two Pauli operators, they either commute or anticommute:

𝜎𝑖𝜎2 = (+1)𝜎2𝜎1 or 𝜎1𝜎2 = (−1)𝜎2𝜎1
Then, in the anticommute check for two Pauli strings, each
pair of anticommute Pauli operators will introduce one factor
of (−1) in the anticommutivity check of two Pauli strings:

𝑃1𝑃2 + 𝑃2𝑃1 =[𝜎1
1𝜎

2
1 , . . . , 𝜎

1
𝑁𝜎

2
𝑁] + [𝜎2

1𝜎
1
1 , . . . , 𝜎

2
𝑁𝜎

1
𝑁]

[𝜎1
1𝜎

2
1 , . . . , 𝜎

1
𝑁𝜎

2
𝑁] + (−1)𝑎 [𝜎1

1𝜎
2
1 , . . . , 𝜎

1
𝑁𝜎

2
𝑁]

where 𝑎 is the number of anticommute Pauli operator pairs
𝜎1
𝑘
and 𝜎2

𝑘
, 1 ≤ 𝑘 ≤ 𝑁 . The anticommutativity between two

distinct Majorana operators 𝑃𝑖 and 𝑃 𝑗 (whether 𝑃𝑖𝑃 𝑗 +𝑃𝑖𝑃 𝑗 =
0) is equivalent to if they have an odd number 𝑎 of qubits
whose Pauli operators anticommute. For example, the Pauli
operator 𝑋 and 𝑌 anticommute. Then, two Pauli strings
𝑋𝑋 and 𝑌𝑌 will not anticommute because they share two
pairs of anticommute operators 𝑋 and 𝑌 . While the Pauli
strings 𝑋𝑋𝑋 and 𝑌𝑌𝑌 will anticommute because they share
three pairs of anticommute Pauli operators. This principle
is equivalent to all the acomm(𝐸𝑜𝑝 (𝑃𝑖)𝑘 , 𝐸𝑜𝑝 (𝑃 𝑗)𝑘) of index
1 ≤ 𝑘 ≤ 𝑁 xor to 1:

𝑁⊕
𝑘=1

acomm(𝐸𝑜𝑝 (𝑃𝑖)𝑘 , 𝐸𝑜𝑝 (𝑃 𝑗)𝑘) = 1

Since the problem requires all possible pairs of 2𝑁 Majo-
rana operators to be anticommute, the modelM of a valid
Fermion-to-qubit encoding should satisfy the conjunction
of all anticommutativity of Pauli string pairs:

M |=
∧

1≤𝑖< 𝑗≤2𝑁

𝑁⊕
𝑘=1

acomm(𝐸𝑜𝑝 (𝑃𝑖)𝑘 , 𝐸𝑜𝑝 (𝑃 𝑗)𝑘)

3.4 Algebraic Independence Constraints
We first analyze the algebraic independence condition. Sup-
pose we have two sets of Pauli strings 𝑆𝑎 and 𝑆𝑏 , 𝑆𝑎 ≠ 𝑆𝑏 .
If the algebraic independence condition is violated, we will
have

∏
𝑃𝑎∈𝑆𝑎 𝑃𝑎 ∝

∏
𝑃𝑏 ∈𝑆𝑏 𝑃𝑏 . We can ignore the coefficients

in the Pauli string multiplication, and then the condition
becomes equivalence checking of the multiplication results:∏

𝑃𝑎∈𝑆𝑎
𝑃𝑎 =

∏
𝑃𝑏 ∈𝑆𝑏

𝑃𝑏 ⇐⇒
∏
𝑃𝑎∈𝑆𝑎

𝑃𝑎

∏
𝑃𝑏 ∈𝑆𝑏

𝑃𝑏 = 𝐼1𝐼2 . . . 𝐼𝑁

Two Pauli strings are equal if and only if their multiplication
is the all-identity string. Note that if 𝑆𝑎 and 𝑆𝑏 share some
Pauli strings, removing those shared Pauli strings from the
two sets will not change this result. Consequently, we only
need to consider disjoint sets 𝑆𝑎 and 𝑆𝑏 where 𝑆𝑎 ∩ 𝑆𝑏 = ∅.
In this case, the condition is turned into:∏

𝑃∈𝑆𝑎∪𝑆𝑏
𝑃 = 𝐼1𝐼2 . . . 𝐼𝑁

Here 𝑆𝑎 ∪ 𝑆𝑏 can be an arbitrary subset of the 2𝑁 Majorana
operators set, denoted as 𝑆∗.

For certain 𝑆∗, the deduced algebraic dependence could be
tested via the equality in bit sequence form. The left side
follows the encoding of operator multiplication, which is the
xor of all corresponding bits:

𝐸𝑏𝑖𝑡

(∏
𝑃∈𝑆∗

𝑃

)
=

⊕
𝑃∈𝑆∗

𝐸𝑏𝑖𝑡 (𝑃)

The bit sequence of 𝐼 implies that all bits are 0, which is
enforced by:

𝑁∧
𝑗=1
¬

(⊕
𝑃∈𝑆∗

𝐸𝑏𝑖𝑡 (𝑃) 𝑗

)
= 1 (10)

The encoding modelM should not allow any algebraic
dependence for 𝑆∗ ⊆ 𝑆 . Thus, for any 𝑆∗ in the power set
of 𝑆 (denoted as P(𝑆)), logic not of Equation (10) must be
satisfied:

M |=
∧

𝑆∗∈P(𝑆)
¬

𝑁∧
𝑗=1
¬

(⊕
𝑃∈𝑆∗

𝐸𝑏𝑖𝑡 (𝑃) 𝑗

)
=

∧
𝑆∗∈P(𝑆)

𝑁∨
𝑗=1

(⊕
𝑃∈𝑆∗

𝐸𝑏𝑖𝑡 (𝑃) 𝑗

)
Since 𝑆 has 2𝑁 elements, its power setP(𝑆) has 22𝑁 elements.
The constraint of algebraic independence thus incurs a large

Fermihedral: On the Optimal Compilation for Fermion-to-Qubit Encoding ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

overhead by generating 22𝑁 clauses. We will later show how
to reduce such complexity in Section 4.1.

3.5 Vacuum State Preservation
Vacuum state preservation requires the encoding maps the
vacuum state |𝑣𝑎𝑐⟩F to |0⟩⊗𝑁 . It sets requirements for the
mapped annihilation operators:

𝑎 𝑗 |𝑣𝑎𝑐⟩F = 0 =⇒
𝑀2𝑗 + 𝑖𝑀2𝑗+1

2
|0⟩⊗𝑁 = 0 (11)

A simple case where Equation (11) holds is when there
exists at least one index 𝑘 such that (𝑀2𝑗)𝑘 + 𝑖 (𝑀2𝑗+1)𝑘 = 0,
which indicates that at such index 𝑘 , the Pauli operators
(𝑀2𝑗)𝑘 and (𝑀2𝑗+1)𝑘 , is a pair of 𝑋 and 𝑌 . This property
could be imposed by assuming the final solution produced
by the SAT solver is correctly paired; that is,𝑀𝑘 = 𝑃𝑘 . The
creation and annihilation operators are:

𝑎
†
𝑗
=
𝑃2𝑗 − 𝑖𝑃2𝑗−1

2
, 𝑎 𝑗 =

𝑃2𝑗 + 𝑖𝑃2𝑗−1
2

(12)

The above condition could thus be encoded via Boolean
constraints. The existence of𝑋𝑌 pair between Pauli operator
𝜎1 and 𝜎2 could be tested by the following in our encoding:

pair(𝐸 (𝜎1), 𝐸 (𝜎2)) =
¬𝐸 (𝜎1).1 ∧ 𝐸 (𝜎1).2 ∧ 𝐸 (𝜎2).1 ∧ ¬𝐸 (𝜎2).2

A clause is generated for each Majorana operator pair 𝑃2𝑗
and 𝑃2𝑗+1, which should have at least one 𝑋𝑌 pair across all
possible indexes. The final encoding modelM is expected to
satisfy each Majorana operator pair 𝑃2𝑗 , 𝑃2𝑗+1 for 𝑗 = 1 to 𝑁 :

M |=
𝑁∧
𝑗=1

𝑁∨
𝑘=1

pair(𝐸𝑜𝑝 (𝑃2𝑗)𝑘 , 𝐸𝑜𝑝 (𝑃2𝑗+1)𝑘)

3.6 Hamiltonian-Independent Weight Constraint
A widely used Hamiltonian-independent optimization objec-
tive is to minimize the sum of the Pauli weights of all the 2𝑁
Majorana operators. Recall the Pauli weight of a Pauli string
is the number of non-identity Pauli operators in the string
(Section 2.1.3). A single Pauli operator will contribute to the
total Pauli weight if and only if it is not an identity. Using
our Pauli operator encoding in Equation (7), the weight of a
Pauli operator is:

weight(𝐸 (𝜎)) = 𝐸 (𝜎).1 ∨ 𝐸 (𝜎).2

The total weight then accumulates the weight of each
single operator, and this is our optimization target:

min
𝑃1,...,𝑃2𝑁

2𝑁∑︁
𝑘=1

𝑁∑︁
𝑖=1

weight(𝐸𝑜𝑝 (𝑃𝑘)𝑖)

subject to all the constraints mentioned earlier in this section.
Note that a SAT solver cannot automatically optimize for

such a target. In practice, we set a maximum Pauli weight of

Algorithm 1 SolveM with Optimal Pauli Weight
Require: 𝐶 : Clauses
Require: M : Model |= 𝐶

Ensure: M : Model |= 𝐶 ∧min𝑤
whileM′ ← solve(𝐶) == SAT do
M ←M′
𝑆 = {𝑃𝑘 } ← decode(M)
𝑤 ← ∑

𝑘=1...2𝑁
∑
𝑖=1...𝑁 weight(𝐸𝑜𝑝 (𝑃𝑘)𝑖)

𝐶 ← ∑
𝑘=1...2𝑁

∑
𝑖=1...𝑁 weight(𝐸𝑜𝑝 (𝑃 ′𝑘)𝑖) < 𝑤 ∧𝐶

end while
return M

𝑤 and encode this as a constraint in the model:
2𝑁∑︁
𝑘=1

𝑁∑︁
𝑖=1

weight(𝐸𝑜𝑝 (𝑃𝑘)𝑖) < 𝑤

An SAT solver can determine whether a solution exists for
a given 𝑤 . We start from a larger 𝑤 and gradually reduce
𝑤 until the SAT solver cannot find a satisfactory solution
in a given time. This will give the minimal𝑤 where a valid
Fermion-to-qubit encoding could exist. The overall proce-
dure is summarized in Algorithm 1.
To obtain the initial feasible solution, we have to start

with a total weight𝑤0 such that it could produce a solution
but also close enough to the minimum weight to reduce the
solving time. In practice, we start from the Pauli weight of
the baseline Bravyi-Kitaev transformation [4].

3.7 Hamiltonian-Dependent Weight Constraint
The Hamiltonian-independent weight constraint can find
the set of Majorana operators with minimal Pauli weight.
Generally, we can implement the Hamiltonian simulation
using these Majorana operators with relatively small over-
head. However, this is still not the optimal Pauli weight for
a specific Hamiltonian because different Majorana operators
are multiplied and added in different ways with real Hamil-
tonians. For example, a molecular electron Hamiltonian has
the following form:

H =
∑︁
𝑖, 𝑗

ℎ𝑖 𝑗𝑎
†
𝑖
𝑎 𝑗 +

1
2

∑︁
𝑖, 𝑗,𝑘,𝑙

ℎ𝑖 𝑗𝑘𝑙𝑎
†
𝑖
𝑎
†
𝑗
𝑎𝑘𝑎𝑙 (13)

The multiplication 𝑎
†
𝑖
𝑎 𝑗 and 𝑎

†
𝑖
𝑎
†
𝑖
𝑎𝑘𝑎𝑙 makes it possible to

cancel out Pauli operators at specific indices. This is not con-
sidered in the Hamiltonian-independent weight constraint.
To achieve the optimal Pauli weight for a specific Hamil-
tonian, the Fermion-to-qubit encoding should consider the
structure of the targeted Hamiltonian and encode it in the
SAT problem.
We first find the Boolean expression for the actual total

weight of a Hamiltonian. A Hamiltonian is in the form of
the summation of the multiplication of the creation and
annihilation operators. The multiplication of several creation

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Liu et al.

and annihilation operators is denoted as:

𝑎
(†)
𝑖

𝑎
(†)
𝑗
𝑎
(†)
𝑘

. . . ,where 𝑖 ≠ 𝑗 ≠ 𝑘 ≠ . . .

Each creation/annihilation operator would be decomposed
into two Majorana operators 𝑀2𝑖 and 𝑀2𝑖−1 (Equation 12).
Thus, the total Pauli weight of such multiplication would be
calculated as:

weight(𝑎 (†)
𝑖

𝑎
(†)
𝑗
𝑎
(†)
𝑘

. . .) =∑︁
𝑥=2𝑖,2𝑖−1;𝑦=2𝑗,2𝑗−1;𝑧=2𝑘,2𝑘−1;...

weight(𝑀𝑥𝑀𝑦𝑀𝑧 . . .) (14)

This Hamiltonian-dependent weight constraint encodes the
total Pauli weight of implementing a specific Hamiltonian.
We can use this new weight constraint in the SAT formula-
tion to find the optimal encoding for a targeted Hamiltonian.
The other constraints and overall structure of Algorithm 1
remain the same.

3.8 CNF Conversion and Solving
Our entire encoding framework only uses Boolean variables
with no natural number theory. This allows us to transform
the weight constraints into pure Boolean expressions. Along
with other conditions, pure SAT solvers could solve the prob-
lem entirely, which would typically be dramatically faster
than solving the SMT version of the problem. The last step
towards a pure SAT problem is to convert clauses into the
Conjunctive Normal Form. Directly unfolding 𝑥𝑜𝑟 ’s would
cause an exponential explosion in clause size and be un-
bearable even on a small scale. Here, we adopt the Tseitin
transformation [38] to solve such conversion in linear time
of number of clauses by introducing additional Boolean vari-
ables polynomial in the size of the original formula. For a
Hamiltonian with 𝑁 Fermionic modes, the number of vari-
ables is O(4N2) and the number of clauses is O(4N).

4 Scaling up the SAT Method
As discussed above, the number of clauses grows exponen-
tially as the number of Fermionic modes increases, which
becomes the immediate bottleneck of our framework. To
solve larger-scale Fermion-to-qubit encodings, we identify
two optimization opportunities and propose corresponding
techniques to reduce the number of clauses.

4.1 Ignoring Algebraic Independence
The first cause of the large number of clauses is the algebraic
independence constraints (Section 3.4). To deal with this
overhead, we made the following key observations:
The constraint of algebraic independence could be ignored

when 𝑁 is large.
We find that the probability for our SAT-based framework

to generate an invalid encoding without considering the al-
gebraic independence constraints is only 1

4𝑁 , where 𝑁 is the
number of Fermionic modes. To understand this, we define

0 2 4 6 8 10 12
Modes/n

10−4

10−3

10−2

10−1

100

Pr
ob

ab
ili
ty

n=1

n=2

n=3

n=4

n=5

Figure 4. Probability of 𝑛 𝐴𝑘 ’s holds simultaneously

solutions found under reduced constraints as approximate
solutions. Consider the probability that a subset of Majorana
operators forms an algebraic dependence. It means all cor-
responding Pauli operators at each index 𝑘 multiply to 𝐼

(coefficient ignored):

∀1 ≤ 𝑘 ≤ 𝑁,
∏
(𝑀𝑖)𝑘 = 𝐼

𝐴𝑘 :
∏
(𝑀𝑖)𝑘 = 𝐼 (15)

For a certain𝑘 , Equation (15) holds when the quantity of𝑋 ,
𝑌 , and 𝑍 are all even or odd, which, the probability is approx-
imately 1/4 under the assumption that all Pauli operators are
distributed uniformly and randomly. Moreover, if the Pauli
operator distributions are independent at each index, the
probability that all the𝐴𝑘 ’s hold simultaneously to break the
algebraic independence constraints is 1

4𝑁 for 𝑁 Fermionic
modes. This exponentially small failing probability indicates
that when 𝑁 is significant, the 2𝑁 Majorana operators are
most likely algebraic independent, and it would be safe to
ignore such constraints to remove their exponentially large
number of clauses.
All the discussion above assumes that the Pauli operator

distributions are independent at each index. Figure 4 shows
numerical evidence for this assumption. For small-scale cases
with 1 to 11 Fermionic modes, we select the first 50 optimal
Fermion-to-qubit encodings generated from our framework
with the algebraic independence constraints applied. We
evaluate the probability of 𝑛 𝐴𝑘 ’s holds simultaneously over
the sampled optimal encodings. The data in Figure 4 perfectly
matches our observation that the probability of 𝑛 𝐴𝑘 ’s holds
simultaneously is 1

4𝑛 . Therefore, we are confident that the
failing probability after removing the algebraic independence
constraints is 1

4𝑁 for 𝑁 Fermionic modes.

4.2 Simulated Annealing
We observe that the second cause of the large number of
clauses is the Hamiltonian-dependent Pauli weight. Based
on Equation (13), second-quantization terms usually grow
exponentially with Fermion modes. Our solution to this prob-
lem is to remove this part from the SAT formulation. We

Fermihedral: On the Optimal Compilation for Fermion-to-Qubit Encoding ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Algorithm2 Solve Hamiltonian PauliWeight byAnnealing
Require: H : 𝑁 −mode Hamiltonian
Require: 𝑇0 : initial temperature,𝑇1 : final temperature
Require: 𝛼 : temperature step
Require: 𝑖 : iterations
Require: 𝑚 : 2𝑁 Majorana operators
Ensure: 2𝑁 Majorana operators
𝑇 ← 𝑇0
𝑤 = 𝑝𝑎𝑢𝑙𝑖_𝑤𝑒𝑖𝑔ℎ𝑡 (𝑚,H)
while 𝑇 ≥ 𝑇1 do
for 1 . . . 𝑖 do
𝑥,𝑦 = 𝑟𝑎𝑛𝑑𝑖𝑛𝑡 (1, 𝑁)
𝑠𝑤𝑎𝑝 (𝑥,𝑦,𝑚)
𝑤 ′ = 𝑝𝑎𝑢𝑙𝑖_𝑤𝑒𝑖𝑔ℎ𝑡 (𝑚,H)
if 𝑟𝑎𝑛𝑑𝑜𝑚() ≥ 𝑒−

(𝑤′−𝑤)𝑘
𝑇 then

𝑠𝑤𝑎𝑝 (𝑥,𝑦,𝑚) /* undo the swap */
end if

end for
𝑇 ← 𝑇 − 𝛼

end while
return 𝑚

can first find 2𝑁 Majorana operators with the Hamiltonian-
independent Pauli weight, then find the pairing of the Majo-
rana operators to the creation/annihilation operators.
We adopt the simulated annealing algorithm to solve

this assignment problem, shown in Algorithm 2. Given an
𝑁 mode Fermionic system, we could obtain the general
Fermion-to-qubit encoding via the original method and try
different sequences of Majorana operators to form the cor-
responding 𝑁 creation and 𝑁 annihilation operators. The
annealing process takes the Hamiltonian Pauli weight as
“energy”, and two Majorana operators are swapped in each
iteration. Several classic oracles used in the algorithm are:
• 𝑟𝑎𝑛𝑑𝑖𝑛𝑡 (𝑖, 𝑗): return a random integer in [𝑖, 𝑗].
• 𝑟𝑎𝑛𝑑𝑜𝑚(): return a random real number in [0, 1].
• 𝑝𝑎𝑢𝑙𝑖_𝑤𝑒𝑖𝑔ℎ𝑡 (𝑚,H): calculates the Hamiltonian Pauli
weight with given 2𝑁 strings, where the creation and
annihilation operators are paired as Equation (12).
• 𝑠𝑤𝑎𝑝 (𝑖, 𝑗,𝑚): swap the 𝑖𝑡ℎ and 𝑗𝑡ℎ creation and annihi-
lation operators, that is, swapping the 2𝑖 with 2 𝑗 string
and 2𝑖 + 1 with 2 𝑗 + 1 string. This swap does not break
the vacuum state preservation property since we are
not breaking any existing pairing.

4.3 Complexity Analysis
The SAT problem of finding 𝑁 -mode Fermion-to-qubit en-
coding requires 𝑂 (𝑁 2) Boolean variables, 𝑂 (4𝑁) clauses for
algebraic independence constraints, 𝑂 (𝑁 2) clauses for an-
ticommutativity constraints, and 𝑂 (𝑁) clauses for vacuum
state preservation. The number of clauses for Hamiltonian-
dependent Pauli weight depends on the specific Hamiltonian.

Table 3. Number of variables and clauses w/ and w/o alge-
braic independence in the generated SAT instances

Fermionic
Modes 𝑁

#Vars #Clauses Average
#Vars/#Clauses

w/ w/o w/ w/o w/ w/o
2 70 46 459 331 3.65 3.72
3 417 129 2436 1147 3.58 3.72
4 2224 352 10926 3014 3.41 3.98
5 10570 610 46925 5801 3.29 4.03
6 49902 1158 210064 10601 3.23 4.02
7 230503 1687 948732 16608 3.21 4.05
8 1050544 2704 4283375 25693 3.21 4.04
9 N/A 3600 N/A 36037 N/A 4.06
10 N/A 5230 N/A 50798 N/A 4.05
11 N/A 6589 N/A 66593 N/A 4.06
12 N/A 8976 N/A 88440 N/A 4.05
13 N/A 10894 N/A 111129 N/A 4.06
14 N/A 14182 N/A 141504 N/A 4.05
15 N/A 16755 N/A 172132 N/A 4.06
16 N/A 21088 N/A 211938 N/A 4.06
17 N/A 24412 N/A 252025 N/A 4.06
18 N/A 29934 N/A 302793 N/A 4.06

For the benchmark Hamiltonians used later in the Evaluation
Section of this paper, the numbers of clauses for Hamiltonian-
dependent Pauli weight are 𝑂 (𝑁 4) for electronic structure
problems [19] and SYK model [31], and𝑂 (𝑁 2) for the Fermi-
Hubbard model [14]. Applying our two optimizations in
Section 4 will reduce the number of clauses to 𝑂 (𝑁 2).

To better understand the effect of eliminating the clauses
for algebraic independence, Table 3 shows the intermediate
data in the formulated SAT instances, including the number
of variables, the number of clauses, and the average number
of variables per clause w/ and w/o the algebraic indepen-
dence constraints when using the Hamiltonian-independent
weight constraint. (N/A denotes that generating the corre-
sponding SAT instance takes over 1 hour.) It can be observed
that eliminating algebraic independence can significantly
simplify the generated SAT instance by reducing the number
of variables and clauses.

5 Evaluation
This section evaluates our SAT-based optimal Fermion-to-
qubit encoding on various benchmarks with compilation
output, noisy simulation, and real system testing.

5.1 Experiment Setup
Benchmark: First, we have evaluated Majorana operator
sets of various sizes as the Hamiltonian-independent bench-
mark. Then, we prepare three representative Hamiltonians
from different domains, all of which are widely used in quan-
tum simulation studies: a) molecule electron structure prob-
lem from quantum chemistry [19], b) 1-D Fermi-Hubbard
model with periodic boundary condition from condensed

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Liu et al.

H𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐 =
𝑁∑︁
𝑖, 𝑗

ℎ𝑖 𝑗𝑎
†
𝑖
𝑎 𝑗 +

1
2

𝑁∑︁
𝑖, 𝑗,𝑘,𝑙

ℎ𝑖 𝑗𝑘𝑙𝑎
†
𝑖
𝑎
†
𝑗
𝑎𝑘𝑎𝑙

H𝐹𝑒𝑟𝑚𝑖−𝐻𝑢𝑏𝑏𝑎𝑟𝑑 = −𝑡
∑︁

𝜎∈{↑,↓}

𝑁 /2∑︁
𝑖, 𝑗

(𝑎†
𝑖𝜎
𝑎 𝑗𝜎 + 𝑎†𝑗𝜎𝑎𝑖𝜎)

+𝑈
𝑀/2∑︁
𝑖

𝑎
†
𝑖↑𝑎𝑖↑𝑎

†
𝑖↓𝑎𝑖↓

H𝑆𝑌𝐾 =
1

4 × 4!

𝑁∑︁
𝑖, 𝑗,𝑘,𝑙=1

𝑔𝑖 𝑗𝑘𝑙𝑀𝑖𝑀𝑗𝑀𝑘𝑀𝑙

Figure 5. The three types of benchmark Hamiltonians used
in this paper. 𝑎†∗ and 𝑎∗ are the creation and annihilation
operators.𝑀∗ is the Majorana operator.

matter physics [14], and c) four-body SYK model from quan-
tum field theory [31]. Their second quantized [10, 16] Hamil-
tonians, as introduced in Section 2.2, are listed in Figure 5.
We generate the multiplication and summation structure of
creation and annihilation operators, transform them into
Majorana operators, and fit in the optimal Hamiltonian Pauli
weight solver.

Implementation:We implement the proposed SAT-based
Fermion-to-qubit encoding and execute our experiments
with the following key components:
• SAT Solver: We use two solvers: a) the Z3 [8] solver
for formulating constraints and applying the Tseitin
transformation, and b) the Kissat [2] solver as the stan-
dalone high-performance SAT solver. Cadical [1] is a
backup solver when Kissat behaves abnormally. The
SAT solver runs on CPUs only.
• Simulation Platform: We use the Qiskit Aer simu-
lator [29] to execute the noisy simulations. The SAT
solver and the noisy simulator run on a server with
one AMD EPYC CPU (96 cores, frequency 2.4 GHz)
and 768 GB memory.
• Real System Study: We perform an actual system
study on the IonQ Aria-1 quantum computer, available
through Amazon Braket. This device has 25 fully con-
nected ion-trap qubits. It has 99.99% single-qubit gate
fidelity, 98.91% two-qubit gate fidelity, and a 98.82%
readout fidelity.

Baseline: Our baseline is the Jordan-Wigner (JW) [17]
and the Bravyi-Kitaev (BK) transformation [36] implemented
by Qiskit [29].

Metrics: We generally use the Pauli Weight to indicate
the performance of a Fermion-to-qubit encoding. Also, we
evaluate the gate count as another indicator of the quality
of our Fermion-to-qubit encoding compilation. We use the
energy of simulated states for noisy simulation and real
system studies and compare it with theoretical results.

1 2 3 4 5 6 7 8
Modes/n

1

2

3

Pa
ul

i W
ei

gh
t/

n

Bravyi-Kitaev
Full SAT
0.73log2(N)+0.94
0.56log2(N)+0.95

Figure 6. Average Pauli weight per-Majorana operator
(small scale)

Configurations: We have three experimental configura-
tions: 1) Full SAT is encoding all applicable constraints in
SAT (Section 3.7). 2) SAT w/o Alg. is to simplify the SAT
solving by removing the algebraic constraints (Section 4.1).
3) SAT + Anl. is further assigning the Majorana operators
with simulated annealing rather than encoding Hamiltonian-
dependent weight into the SAT (Section 4.2).

5.2 Hamiltonian-Independent Encoding
In this section, we evaluate the performance of Hamiltonian-
independent Fermion-to-qubit encoding. We first compare
Full SAT with BK at a small scale (up to 8 Fermionic modes).
Figure 6 shows the average Pauli weight per Majorana oper-
ator from 1 to 8 Fermionic modes. On average, our method
shows a 11.16% reduction in per-operator Pauli weight on a
small scale. We also plot the regression of the data points.

We then evaluate the larger scale cases (9 to 19 Fermionic
modes) where we compare SAT w/o Alg. with BK (Full
SAT requires too many clauses for algebraic independence
at this range). The average Pauli weight per Majorana opera-
tor is shown in Figure 7. It can be observed that both BK and
our method demonstrate a 𝑂 (log𝑁) per-Majorana operator
Pauli weight, while our method is consistently smaller. The
performance of BK varies for different numbers of Fermions,
while our method can deliver the optimal performance sta-
bly. On average, our method can reduce the Pauli weight by

8 10 12 14 16 18 20
Modes/n

3

4

5

Pa
ul

i W
ei

gh
t/

n

Bravyi-Kitaev
SAT w/o Alg.

8 10 12 14 16 18 20
Modes/n

5

15

25

Im
pr

ov
em

en
t/

%

Figure 7. Average Pauli weight per-Majorana operator
(larger scale)

Fermihedral: On the Optimal Compilation for Fermion-to-Qubit Encoding ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Table 4. Hamiltonian-dependent total Pauli weight (small scale), BK vs. SAT+Anl. vs. Full SAT

Case Modes (𝑁) Bravyi-Kitaev SAT+Anl. Reduction Full SAT Reduction

Electronic Structure 4 934 988 −5.78% 790 15.42%
6 9004 6878 23.61% 6354 29.43%

Fermi-Hubbard
4 90 104 −15.56% 72 20%
6 284 202 28.87% 182 35.92%
8 474 430 9.28% 342 27.85%

Four-Body SYK

3 140 60 57.14% 60 57.14%
4 496 432 12.90% 312 37.10%
5 1848 1440 22.08% 896 51.52%
6 4760 2568 46.05% 2440 48.74%
7 9876 6148 37.75% 4988 49.50%

17.36% at 9-19 Fermionic modes while our regression coeffi-
cient indicates that we can expect around 36.38% reduction
in per-Majorana operator Pauli weight between BK and the
optimal Pauli weight as the number of Fermions increases.

5.3 Hamiltonian-Dependent Encoding
We then evaluate the Pauli weight for Hamiltonian-dependent
Fermion-to-qubit encoding. We still start from small-size
cases where Full SAT can be applied. Table 4 shows the total
Pauli weight of the three types of Hamiltonian benchmarks
after using the BK encoding and our SAT-based encoding.
The Full SAT can consistently outperform BK with an av-
erage 37.26% Pauli weight reduction. The SAT+Anl. is sub-
optimal and can provide 21.63% Pauli weight reduction on
average against BK. Notice that the SAT+Anl. is only worse
than BK on extremely small cases withmerely four Fermionic
modes. This does not matter because we can always use Full
SAT as this scale. For large-size cases, SAT+Anl. is constantly
better than BK. For those cases of 9 to 19 Fermionic modes,
we compare BK with SAT+Anl.. The results are shown in
Table 5. Compared with BK, SAT+Anl. can reduce the total
Pauli weight by 23.71% on average (up to 40%).

5.4 End-to-End Real Hamiltonian Simulation
To understand the end-to-end benefit of optimal Fermion-to-
qubit encoding, we evaluate executing quantumHamiltonian
simulation programs with noisy simulation and a real quan-
tum computer.We select three benchmarks: the𝐻2 molecules
(4 qubits), the 3 × 1 (6 qubits), and 2 × 2 (8 qubits) Fermi-
Hubbard Models with periodic boundary conditions. We
compare three encodings: Jordan-Wigner (JW [17]), Bravyi-
Kitaev (BK [4]), and our Full SAT. The initial state is prepared
to the energy eigenstate. All the generated Hamiltonians are
optimized and compiled into quantum circuits with Paulihe-
dral [18] and Qiskit level 3 optimization [29] with evolution
time 𝑡 = 1. For the real system study, we only evaluated 𝐻2
molecule on the IonQ Aria-1 quantum computer due to the
limited fidelity of available real quantum computers.

Table 5. Hamiltonian Pauli weight of different problems
(continue, SAT+Anl. only)

Case 𝑁 BK SAT+Anl. Reduction

Electronic
Structure

8 24310 22210 8.64%
10 54156 43618 19.46%
12 151548 117534 22.44%

Fermi
-Hubbard

10 876 682 22.15%
12 1404 1094 22.08%
14 1978 1488 24.77%
16 2626 2216 15.61%
18 3436 2738 20.31%

Four-Body
SYK

8 17376 12848 26.06%
9 31952 23328 26.99%
10 55208 32976 40.27%
11 85436 54924 35.71%

5.4.1 Compilation Output. Table 6 shows the gate count
in the final compiled quantum circuits from different Fermion-
to-qubit encoding methods, where Single refers to the single-
qubit gate and CNOT is the two-qubit CNOT gate. On aver-
age, our Full SAT shows around ∼ 20% reduction on single
qubit gates and ∼ 35% reduction on CNOT gates compared
with BK. The significant reduction will later translate to an
increase in simulation accuracy.

5.4.2 Noisy Simulation. We simulated the time evolution
of 𝐻2 and both Fermi-Hubbard models from different energy
eigenstates under noise, where single-qubit gate fidelity is
fixed to 99.99%, and double-qubits gate varies from 99.99% to
99%. We re-run the circuit for multiple shots for each fidelity
setting for a more precise calculation of the observed energy
and its variance. The number of shots is 3000 for𝐻2 and 1000
for Fermi-Hubbard under each setting.
Our noisy simulation starts from the energy eigenstates.

Energy eigenstates are stationary under time evolution, mean-
ing the system should retain and measure the same energy
after a while. However, due to noise in the quantum circuit,
the system would inevitably shift to other states for some

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Liu et al.

Table 6. Gate count of compiled quantum circuits

Case Gates BK Full SAT Reduction

𝐻2

Single 26 22 7.69%
CNOT 26 21 19.23%
Total 52 43 17.31%
Depth 39 33 15.38%

3 × 1
Fermi-
Hubbard

Single 58 41 29.31%
CNOT 56 31 44.64%
Total 114 72 36.84%
Depth 76 26 65.79%

2 × 2
Fermi-
Hubbard

Single 56 41 26.79%
CNOT 53 31 41.51%
Total 109 72 33.94%
Depth 73 26 64.38%

small probabilities and cause the observed energy to drift.
Lower noise should reduce such drifting and variance in
measuring the final energy.

H2: Figure 8 shows the simulation result of 𝐻2 molecule.
Each row shows the result starting from a different energy
eigenstate (𝐸0 to 𝐸3). The X-axis is the 2-qubit gate error. The
Y-axis is the measured energy after the time evolution circuit.
The shadows in the left column represent the standard devia-
tion of the measured energy, which is also plotted in the right
column. It can be observed that Full SAT can outperform BK
and JW with the lowest drifting (closer to the energy level)
and measuring variance thanks to the fewer gate counts due
to lower Pauli weight in the optimal encoding.

Fermi-Hubbard: Figure 9 shows the simulation result of
3 × 1 and 2 × 2 square lattice Fermi-Hubbard model with
periodic boundary condition. For both models, we start the
simulation from the ground energy eigenstate. The represen-
tation of the X/Y-axis is the same as 𝐻2. Similarly, Full SAT
can demonstrate the lower drifting.

5.4.3 Real System Study. Figure 10 shows the time evo-
lution of 𝐻2 molecule from ground energy 𝐸0 eigenstate on
IonQ Aria-1 quantum computer. The Y-axis is the measured
energy. The circle size represents the number sampled to
a certain value. Full SAT can achieve the closest average
energy (−1.56 vs. −1.54 vs. −1.49) with the smallest variance
compared with BK and JW.

5.5 Time-to-Solution and Scalability Discussion
We also compare the time cost to solve the problem with
and without algebraic independence using the SAT solver.
Figure 11 (a), (b) shows the time consumption of construct-
ing and solving the SAT problem with/without algebraic
independence. Note that we exclude the time for the SAT
solver to prove that a Pauli weight lower than optimal is
unsatisfiable since it usually triggers a fixed timeout termi-
nation. Removing the algebraic independence constraints

−2.0

−1.5

−1.0

E0 0.2

0.3

0.4

−1.6

−1.2

−0.8

E
ne

rg
y E1

0.40

0.45

0.50

¾
 (
Ã

be
tt

er
)

−1.2
−0.9
−0.6

E2

0.40

0.45

0.50

10−4
10−3

10−2
−0.9

−0.5

−0.1 E3

10−4
10−3

10−2

0.2
0.3
0.4

2-Qubits Gate Error Rate
Bravyi-Kitaev Jordan-Wigner Full SAT

Figure 8. Noisy simulation of 𝐻2, initial state 𝐸0 ∼ 𝐸3 (black
line marks the theoretical energy, shadow marks ±1𝜎 mea-
surement S.D.)

−2

2

6

E
ne

rg
y E0

3£ 1

3.6

3.8

4.0

¾
 (
Ã

be
tt

er
)

3£ 1

10−4
10−3

10−2

−2
2
6

E0

2£ 2

10−4
10−3

10−2

4.3

4.5

4.7
2£ 2

2-Qubits Gate Error Rate
Bravyi-Kitaev Jordan-Wigner Full SAT

Figure 9. Noisy simulation of 3× 1 and 2× 2 Fermi-Hubbard
Model, initial state 𝐸0 (black line marks the theoretical en-
ergy, shadow marks ±1𝜎 measurement S.D.)

significantly reduced the time to construct and solve the SAT
problem.

Scalability is a major concern of SAT as it is NP-complete,
and the time-to-solution, even on small scales, is rather
long. However, we only apply a single-thread SAT solver
on a small server. Employing a distributed SAT solver on a
high-performance cluster could help solve larger-size cases,
but confirming such speed-up requires further experiments.

Fermihedral: On the Optimal Compilation for Fermion-to-Qubit Encoding ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

JW BK Full SAT
−2

−1

0
E

ne
rg

y

¾=0:50

E= ¡ 1:49

¾=0:57

E= ¡ 1:54

¾=0:48

E= ¡ 1:56
E0

circle size / n samples

Figure 10. Measured energy of 𝐻2 simulation on IonQ Aria-
1, initial state 𝐸0 (gray line)

More importantly, our method can reveal the structure of
optimal Fermion-to-qubit encoding for different Hamiltoni-
ans and thus guide future work in similar directions, e.g.,
approximate-optimal encodingswith lower complexity, archi-
tecture-aware compilations, etc.

6 Related Works
Fermion-to-Qubit Encoding: Previously, Fermion-to-qubit
encoding has been studied from a theoretical and construc-
tive perspective. General encoding schemes include Jordan-
Wigner transformation [17], Bravyi-Kitaev transformation [4],
Parity [3], ternary tree [15, 22], and they have been widely
implemented in many quantum software frameworks like
Qiskit [29] and OpenFermion [20]. Among them, the Bravyi-
Kitaev transformation [4] ([36] compares Bravyi-Kitaev with
Jordan-Wigner) and ternary tree [15, 22] have achieved the
asymptotical optimal Pauli weight per Majorana operator
𝑂 (log𝑁) for 𝑁 Fermionic modes. But they are still far from
the actual optimal solutions. Moreover, the actual Hamil-
tonian structure is not considered in these approaches. This
paper formulates the entire Fermion-to-qubit encoding along
with the Hamiltonian-dependent cost into an SAT problem
and thus can provide the optimal solution. Recently, the su-
perfast encoding [5, 32] is proposed for a particular type of
Fermionic systemswith only local Fermionicmode and cyclic
structured interactions. This work, however, can process any
weakly (Fermi-Hubbard) and strongly (SYK, electronic struc-
ture) interacted systems, especially since it considers the
Hamiltonian structure in the SAT formulation.
Generic Quantum Compiler Optimization: Today’s

quantum compilers (e.g., Qiskit [29], Cirq [9], Q# [21]) usu-
ally run multiple passes to optimize a quantum circuit. Typi-
cal passes include gate cancellation [26], gate rewrite [33],
and routing [23, 24]. These optimization methods (passes)
are usually small-scale local circuit transformations. They
cannot optimize the Fermion-to-qubit encoding as it will
rewrite the entire Hamiltonian simulation circuit.

Compilation for Quantum Simulation: Recently, sev-
eral works have identified domain-specific compiler opti-
mization opportunities in quantum simulation. These opti-
mizations include the Pauli string ordering [12, 13], architec-
tural-aware synthesis for Pauli string [18, 39], simultaneous
diagonalization on commutative Pauli strings [6, 7, 40]. All

2 3 4 5 6 7 810−2

10−1

100

101

102

103

104

105

106 (b) Solving

w/ w/o

0

10

20

30

40

50

Speedup

2 3 4 5 6 7 810−3

10−2

10−1

100

101

102

103

Ti
m

e/
s

(a) Constructing

0

100

200

300

400

500

600

Speedup
Modes/n

Figure 11. Time to construct and solvew, w/o Alg. (Proving
unsatisfactory time is excluded)

these works happen at the Pauli string level after finish-
ing the Fermion-to-qubit encoding. This work optimizes the
Fermion-to-qubit encoding, which happens before the simu-
lation problem is turned into Pauli strings, and can naturally
be combined with all these works.
Formal Methods in Quantum Compilation: Several

previous works bring the SAT method to qubit mapping and
routing on connectivity-constrained architectures by differ-
ent constraint encoding, including [11, 23, 34, 35, 41], and
[25] (SMT based). These methods focus on different aspects
(fidelity, gate count, and circuit depth) and still optimize the
gates in the final quantum circuit. To the best of our knowl-
edge, this work is the first to formalize the Fermion-to-qubit
encoding finding into an SAT problem.

7 Conclusion
In summary, this paper introduces Fermihedral, a novel com-
piler framework that addresses the challenge of efficiently
simulating complex Fermionic systems on quantum com-
puters. Fermihedralconverts the problem of finding optimal
Fermion-to-qubit encoding into an SAT problem with care-
fully designed constraint/objective encoding and solves it
with high-performance SAT solvers. Moreover, it offers ap-
proximate optimal outcomes for larger-scale scenarios by
overcoming the complexities of the exponentially large num-
ber of clauses involved in this encoding process. The ex-
tensive evaluation across diverse Fermionic systems shows
its superiority over existing methods, notably reducing im-
plementation costs and enhancing efficiency in quantum
simulations. This work marks a substantial step forward,
providing a robust solution for encoding Fermionic systems
onto quantum computers and advancing quantum simula-
tion capabilities across scientific domains.

Acknowledgments
We thank the anonymous reviewers for their insightful feed-
back and our shepherd Yipeng Huang for guidance. This
work was in part supported by NSF CAREER Award 2338773
and Amazon Web Service Cloud Credit.

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Liu et al.

A Artifact Appendix
A.1 Abstract
The artifact contains the code of our Fermihedral framework
and other scripts to prepare the environment and reproduce
our key results and figures (Figures 4, 6, 7, 8, 9, and 10; Ta-
bles 4 and 5. It requires a regular x86-64 Linux server with
at least 32GB RAM and 10GB available harddrive. A CUDA
GPU is recommended to speed up some of the experiments.
Gate counts in Table 5 cannot be automatically reproduced
due to break changes and version conflict in Qiskit with
Paulihedral. We also provide instructions on how to run
the circuit on the IonQ quantum computer device, which
requires extra manual work, as well as the entire software
dependencies list and generated Hamiltonian model. Since
randomization is applied in simulated annealing, the result
in Tables 3 and 4 could be deviated.

A.2 Artifact check-list (meta-information)
• Algorithm: Fermihedral has following core algorithms:
– Solving the Fermion-to-qubit encoding problem with SAT
(Section 3) is implemented in the file ‘fermihedral/majorana.py’,
DescentSolver and MajoranaModel.

– Solving Hamiltonian-dependent Pauli weight with Full
SAT or SAT+Anl. method (Section 3.7) is implemented in
the file ‘fermihedral/majorana.py’, HamiltonianSolver.

• Program: Noisy simulation subroutines are implemented
in the file ‘fermihedral/fock.py‘.
• Run-time environment: Python, Jupyter Notebook
• Hardware: Single x86-64 CPU Linux server, preferably with
a CUDA GPU, to run the noisy simulation faster.
• Metrics: We consider the following metrics and could be
directly observed from the output figures:
– Pauli weight
– Observed system energy
• Output: The output contains the Fermion-to-qubit encod-
ing schema. The output is adapted to the FermionicMapper
interface in Qiskit.
• Experiments: There are three notebooks for different sets
of experiments:
1. singleshot.ipynb: Figures 4, 6, and 7. The time to run

this notebook could be extremely long.
2. simulation.ipynb: Figures 8, 9, and 10.
3. hamiltonian-weight.ipynb: Table 4 and 5. The time to

run this notebook could be extremely long.
• Disk space required: 10GB
• Time to prepare workflow: 5 minutes
• Time to complete experiments: 1 to 2 weeks
• Publicly available: Yes
• Code licenses: MIT License
• Workflow framework used: Python, Qiskit, Jupyter Note-
book
• Archived: 10.5281/zenodo.10854557

A.3 Description
A.3.1 How to access. The artifact is available at the fol-
lowing GitHub repository https://github.com/acasta-yhliu/

fermihedral.git or with DOI https://doi.org/10.5281/zenodo.
10854557. You can clone the repository or submit issues if
there is any problem.

A.3.2 Hardware dependencies. A regular server with a
single CPU and preferably a CUDA GPU can run our artifact.
RAM is not strictly limited but is recommended to 32GB or
above. We also recommend using a powerful CPU to speed
up the SAT solver.

A small part of our results (Figure 10) requires execution
on the real IonQ quantum computer (available through Ama-
zon Web Service). If you wish to run the quantum circuit
simulating𝐻2 molecule on this real IonQ quantum computer,
the cost should be around $600 (charged by Amazon) with
our setup. Consequently, we exclude this part from artifact
evaluation, and the exclusion will not affect the major results
of this paper.

A.3.3 Software dependencies. The artifact is implement-
ed in Python 3.10. We also require Python packages, includ-
ing z3-solver 4.12.2.0, Qiskit 1.0.1 accompanied by Qiskit-
nature 0.7.2, Qiskit-algorithm 0.3.0, and OpenFermion 1.5.1.
BothQiskit packages require Numpy 1.25.2. The list of Python
packages and other assistant packages can be found in the
requirements.txt.

We require a SAT solver to solve the model. To install and
compile the kissat SAT solver, make and a C compiler are
required. We used GCC 11.4.0 in our experiments.

A.4 Installation
You can clone the repository to your local machine and pre-
pare the environment needed by our artifact with the follow-
ing command (script):

$ python3 prepare.py

A.5 Experiment workflow
After cloning the repository and preparing the environment
in the installation setup, you can execute the Jupyter Note-
books in the virtual environment to reproduce the result
(order does not matter).

1. singleshot.ipynb: Figures 4, 6, and 7.
2. simulation.ipynb: Figures 8, 9, and 10.
3. hamiltonian-weight.ipynb: Table 4 and 5.

The results are produced in the exact order of the figures and
tables. Please note that the time to execute experiments in
singleshot.ipynb and hamiltonian-weight.ipynb could
be extremely long (around weeks).

A.6 Evaluation and expected results
Notebooks should reproduce the exact figures as in our paper.
The results are directly printed for Tables 4 and 5.

https://github.com/acasta-yhliu/fermihedral.git
https://github.com/acasta-yhliu/fermihedral.git
https://doi.org/10.5281/zenodo.10854557
https://doi.org/10.5281/zenodo.10854557

Fermihedral: On the Optimal Compilation for Fermion-to-Qubit Encoding ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

A.7 Experiment customization
If a CUDA GPU is available, uncomment the following line
in the first code cell in simulation.ipynb to enable GPU
acceleration:

uncomment this line to enable GPU support
config_device("GPU")

Solving the SAT problem at a large scale takes an ex-
tremely long time. If the time is a problem, it is possible
to limit the problem scale in singleshot.ipynb by lower-
ing the number of MAX_MODES at the beginning of cells. The
timeout number of the SAT solver can also be adjusted to fit
the local machine’s performance.

For hamiltonian-weight.ipynb, you can also adjust the
models it solves. FULL_SAT_MODELS controls Full SATmethod
and ANNEALING_MODELS controls SAT+Anl. method. Your
model must follow the format:

1. First line marks the model name, modes, and format
(ac or mj). Hamiltonians characterized by creation and
annihilation operators are marked by ac, while mj
indicates Majorana operators characterize the Hamil-
tonian.

2. Each line is considered as a production of operators.
Creation operators are positive numbers, while an-
nihilation operators are negative numbers. Majorana
operators are all positive operators.

References
[1] Armin Biere, Katalin Fazekas, Mathias Fleury, and Maximillian

Heisinger. CaDiCaL, Kissat, Paracooba, Plingeling and Treengeling
entering the SAT Competition 2020. In Tomas Balyo, Nils Froleyks,
Marijn Heule, Markus Iser, Matti Järvisalo, and Martin Suda, editors,
Proc. of SAT Competition 2020 – Solver and Benchmark Descriptions,
volume B-2020-1 of Department of Computer Science Report Series B,
pages 51–53. University of Helsinki, 2020.

[2] Armin Biere and Mathias Fleury. Gimsatul, IsaSAT and Kissat entering
the SAT Competition 2022. In Tomas Balyo, Marijn Heule, Markus Iser,
Matti Järvisalo, and Martin Suda, editors, Proc. of SAT Competition 2022
– Solver and Benchmark Descriptions, volume B-2022-1 of Department
of Computer Science Series of Publications B, pages 10–11. University of
Helsinki, 2022.

[3] Sergey Bravyi, Jay M. Gambetta, Antonio Mezzacapo, and Kristan
Temme. Tapering off qubits to simulate fermionic hamiltonians, 2017.

[4] Sergey Bravyi and Alexei Kitaev. Fermionic quantum computation.
Annals of Physics, 298(1):210–226, May 2002. arXiv:quant-ph/0003137.

[5] Riley W. Chien, Sha Xue, Tarini S. Hardikar, Kanav Setia, and James D.
Whitfield. Analysis of superfast encoding performance for electronic
structure simulations. Physical Review A, 100(3), sep 2019.

[6] Alexander Cowtan, Silas Dilkes, Ross Duncan, Will Simmons, and
Seyon Sivarajah. Phase gadget synthesis for shallow circuits. Electronic
Proceedings in Theoretical Computer Science, 318:213–228, may 2020.

[7] Alexander Cowtan, Will Simmons, and Ross Duncan. A generic com-
pilation strategy for the unitary coupled cluster ansatz, 2020.

[8] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient smt solver.
In C. R. Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms
for the Construction and Analysis of Systems, pages 337–340, Berlin,
Heidelberg, 2008. Springer Berlin Heidelberg.

[9] Cirq Developers. Cirq, July 2023.

[10] P. A. M. Dirac. The quantum theory of the emission and absorption of
radiation. Proceedings of the Royal Society of London. Series A, Contain-
ing Papers of a Mathematical and Physical Character, 114(767):243–265,
1927.

[11] Daniel Große, Robert Wille, Gerhard W. Dueck, and Rolf Drechsler.
Exact multiple-control toffoli network synthesis with sat techniques.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 28(5):703–715, May 2009.

[12] Kaiwen Gui, Teague Tomesh, Pranav Gokhale, Yunong Shi, Frederic T.
Chong, Margaret Martonosi, and Martin Suchara. Term grouping and
travelling salesperson for digital quantum simulation, 2021.

[13] Matthew B. Hastings, Dave Wecker, Bela Bauer, and Matthias Troyer.
Improving quantum algorithms for quantum chemistry. Quantum Info.
Comput., 15(1–2):1–21, jan 2015.

[14] J. Hubbard and Brian Hilton Flowers. Electron correlations in narrow
energy bands. Proceedings of the Royal Society of London. Series A.
Mathematical and Physical Sciences, 276(1365):238–257, 1963.

[15] Zhang Jiang, Amir Kalev, Wojciech Mruczkiewicz, and Hartmut Neven.
Optimal fermion-to-qubit mapping via ternary trees with applications
to reduced quantum states learning. Quantum, 4:276, June 2020.

[16] P. Jordan and E. Wigner. Über das paulische äquivalenzverbot.
Zeitschrift für Physik, 47(9):631–651, Sep 1928.

[17] P. Jordan and E. Wigner. Über das Paulische Äquivalenzverbot.
Zeitschrift für Physik, 47(9):631–651, September 1928.

[18] Gushu Li, Anbang Wu, Yunong Shi, Ali Javadi-Abhari, Yufei Ding, and
Yuan Xie. Paulihedral: A generalized block-wise compiler optimization
framework for quantum simulation kernels. In Proceedings of the 27th
ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS ’22, page 554–569,
New York, NY, USA, 2022. Association for Computing Machinery.

[19] Sam McArdle, Suguru Endo, Alán Aspuru-Guzik, Simon C. Benjamin,
and Xiao Yuan. Quantum computational chemistry. Rev. Mod. Phys.,
92:015003, Mar 2020.

[20] Jarrod R McClean, Nicholas C Rubin, Kevin J Sung, Ian D Kivlichan,
Xavier Bonet-Monroig, Yudong Cao, Chengyu Dai, E Schuyler Fried,
Craig Gidney, Brendan Gimby, Pranav Gokhale, Thomas Häner, Tarini
Hardikar, Vojtěch Havlíček, Oscar Higgott, Cupjin Huang, Josh Izaac,
Zhang Jiang, Xinle Liu, Sam McArdle, Matthew Neeley, Thomas
O’Brien, Bryan O’Gorman, Isil Ozfidan, Maxwell D Radin, Jhonathan
Romero, Nicolas P D Sawaya, Bruno Senjean, Kanav Setia, Sukin Sim,
Damian S Steiger, Mark Steudtner, Qiming Sun, Wei Sun, Daochen
Wang, Fang Zhang, and Ryan Babbush. Openfermion: the electronic
structure package for quantum computers. Quantum Science and Tech-
nology, 5(3):034014, jun 2020.

[21] Microsoft. Q# Language Specification, 2020.
[22] Aaron Miller, Zoltán Zimborás, Stefan Knecht, Sabrina Maniscalco,

and Guillermo García-Pérez. The Bonsai algorithm: grow your own
fermion-to-qubit mapping, December 2022. arXiv:2212.09731 [quant-
ph].

[23] Abtin Molavi, Amanda Xu, Martin Diges, Lauren Pick, Swamit Tannu,
and Aws Albarghouthi. Qubit Mapping and Routing via MaxSAT,
August 2022. arXiv:2208.13679 [quant-ph].

[24] Prakash Murali, Jonathan M. Baker, Ali Javadi Abhari, Frederic T.
Chong, and Margaret Martonosi. Noise-adaptive compiler mappings
for noisy intermediate-scale quantum computers, 2019.

[25] Prakash Murali, Ali Javadi-Abhari, Frederic T. Chong, and Mar-
garet Martonosi. Formal constraint-based compilation for noisy
intermediate-scale quantum systems. Microprocessors and Microsys-
tems, 66:102–112, April 2019.

[26] Yunseong Nam, Neil J. Ross, Yuan Su, Andrew M. Childs, and Dmitri
Maslov. Automated optimization of large quantum circuits with con-
tinuous parameters. npj Quantum Information, 4(1), may 2018.

[27] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and
Quantum Information: 10th Anniversary Edition. Cambridge University

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Liu et al.

Press, 2010.
[28] Oak Ridge National Lab. ALCC program awards nearly

6 million summit node hours across 31 projects. https:
//www.olcf.ornl.gov/2020/08/05/alcc-program-awards-nearly-6-
million-summit-node-hours-across-31-projects/, 2020. Accessed:
2020-08-16.

[29] Qiskit contributors. Qiskit: An open-source framework for quantum
computing, 2023.

[30] Venkat K. Raman. Handbook of Computational Quantum Chemistry
By David B. Cook. Oxford University Press: New York. 1998. 743 pp.
ISBN 0-19-850114-5. $140.00. Journal of Chemical Information and
Computer Sciences, 40(3):882–882, May 2000. Publisher: American
Chemical Society.

[31] Subir Sachdev and Jinwu Ye. Gapless spin-fluid ground state in
a random quantum heisenberg magnet. Physical Review Letters,
70(21):3339–3342, May 1993.

[32] Kanav Setia, Sergey Bravyi, Antonio Mezzacapo, and James D. Whit-
field. Superfast encodings for fermionic quantum simulation. Phys.
Rev. Res., 1:033033, Oct 2019.

[33] Mathias Soeken and Michael Kirkedal Thomsen. White dots do matter:
Rewriting reversible logic circuits. In Proceedings of the 5th Inter-
national Conference on Reversible Computation, RC’13, page 196–208,
Berlin, Heidelberg, 2013. Springer-Verlag.

[34] Bochen Tan and Jason Cong. Optimal layout synthesis for quantum
computing. In Proceedings of the 39th International Conference on
Computer-Aided Design, ICCAD ’20. ACM, November 2020.

[35] Bochen Tan and Jason Cong. Optimal qubit mapping with simultane-
ous gate absorption. In 2021 IEEE/ACM International Conference On
Computer Aided Design (ICCAD). IEEE, November 2021.

[36] Andrew Tranter, Peter J. Love, FlorianMintert, and Peter V. Coveney. A
comparison of the bravyi–kitaev and jordan–wigner transformations
for the quantum simulation of quantum chemistry. Journal of Chemical
Theory and Computation, 14(11):5617–5630, 2018. PMID: 30189144.

[37] H. F. Trotter. On the product of semi-groups of operators. Proceedings
of the American Mathematical Society, 10(4):545–551, 1959.

[38] G. S. Tseitin. On the Complexity of Derivation in Propositional Calculus,
pages 466–483. Springer Berlin Heidelberg, Berlin, Heidelberg, 1983.

[39] Arianne Meijer van de Griend and Ross Duncan. Architecture-aware
synthesis of phase polynomials for nisq devices, 2020.

[40] Ewout van den Berg and Kristan Temme. Circuit optimization of hamil-
tonian simulation by simultaneous diagonalization of pauli clusters.
Quantum, 4:322, sep 2020.

[41] Robert Wille, Lukas Burgholzer, and Alwin Zulehner. Mapping quan-
tum circuits to ibm qx architectures using the minimal number of swap
and h operations. In Proceedings of the 56th Annual Design Automation
Conference 2019, DAC ’19, New York, NY, USA, 2019. Association for
Computing Machinery.

https://www.olcf.ornl.gov/2020/08/05/alcc-program-awards-nearly-6-million-summit-node- hours-across-31-projects/
https://www.olcf.ornl.gov/2020/08/05/alcc-program-awards-nearly-6-million-summit-node- hours-across-31-projects/
https://www.olcf.ornl.gov/2020/08/05/alcc-program-awards-nearly-6-million-summit-node- hours-across-31-projects/

	Abstract
	1 Introduction
	2 Background
	2.1 Pauli String
	2.2 Fermionic System

	3 Fermion-to-Qubit Encoding via SAT
	3.1 Encoding Constraints and Objectives
	3.2 Encode Majorana Operators
	3.3 Anticommutativity Constraints
	3.4 Algebraic Independence Constraints
	3.5 Vacuum State Preservation
	3.6 Hamiltonian-Independent Weight Constraint
	3.7 Hamiltonian-Dependent Weight Constraint
	3.8 CNF Conversion and Solving

	4 Scaling up the SAT Method
	4.1 Ignoring Algebraic Independence
	4.2 Simulated Annealing
	4.3 Complexity Analysis

	5 Evaluation
	5.1 Experiment Setup
	5.2 Hamiltonian-Independent Encoding
	5.3 Hamiltonian-Dependent Encoding
	5.4 End-to-End Real Hamiltonian Simulation
	5.5 Time-to-Solution and Scalability Discussion

	6 Related Works
	7 Conclusion
	Acknowledgments
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results
	A.7 Experiment customization

	References

