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ABSTRACT
Deep learning inference on streaming media data, such as

object detection in video or LiDAR feeds and text extraction

from audio waves, is now ubiquitous. To achieve high infer-

ence accuracy, these applications typically require significant

network bandwidth to gather high-fidelity data and exten-

sive GPU resources to run deep neural networks (DNNs).

While the high demand for network bandwidth and GPU

resources could be substantially reduced by optimally adapt-
ing the configuration knobs, such as video resolution and

frame rate, current adaptation techniques fail to meet three

requirements simultaneously: adapt configurations (i) with
minimum extra GPU or bandwidth overhead (ii) to reach

near-optimal decisions based on how the data affects the final

DNN’s accuracy, and (iii) do so for a range of configuration

knobs. This paper presents OneAdapt, which meets these re-

quirements by leveraging a gradient-ascent strategy to adapt

configuration knobs. The key idea is to embrace DNNs’ differ-
entiability to quickly estimate the accuracy’s gradient to each

configuration knob, called AccGrad. Specifically, OneAdapt
estimates AccGrad by multiplying two gradients: InputGrad

(i.e., how each configuration knob affects the input to the

DNN) and DNNGrad (i.e., how the DNN input affects the

DNN inference output). We evaluate OneAdapt across five
types of configurations, four analytic tasks, and five types of

input data. Compared to state-of-the-art adaptation schemes,

OneAdapt cuts bandwidth usage and GPU usage by 15-59%

while maintaining comparable accuracy or improves accu-

racy by 1-5% while using equal or fewer resources.

1 INTRODUCTION
Many real-world applications run deep neural networks

(DNNs) to perform analytics on streaming media data, such

as RGB videos, LiDAR point clouds, depth videos, and audio

waves. For example, autonomous-driving applications rely

on DNNs to detect vehicles in individual video RGB frames

and LiDAR point clouds [1, 12, 13, 15, 23, 49, 58, 68, 77–79].

Similarly, smart-home applications use DNNs to extract text

from audio segments [5, 19, 22]. We focus on these appli-

cations, which we refer to as streaming media analytics
(§2.1). Notably, streaming media analytics encompass the

popular video analytics applications, but not all DNN-based

tasks (e.g., generative tasks).
Many streaming media analytics systems can be resource-

intensive, in network bandwidth or GPU cycles or both.
To achieve high accuracy, they run complex DNN inference

on each frame (or segment) and require data at high fidelity,

which potentially requires high GPU usage and network

bandwidth (if a remote sensor captures the data).

To reduce resource usage, many prior solutions (e.g., [31,
41, 42, 65, 66, 91, 93, 94]) apply input filtering to downsam-

ple or drop redundant data and then run DNN inference to
analyze the filtered input. Ideally, if the input filtering is

configured with an optimal setting for its knobs (e.g., video
frame rate and resolution), the bandwidth usage and GPU

usage can be drastically reduced without affecting inference

accuracy. (Table 2 summarizes some popular filtering knobs.)

The challenge of optimally adapting the filtering knobs is

that the optimal setting of these knobs varies over time as

input data evolves [60, 65, 87, 88, 90, 91]. We call the optimal

setting of these knobs an optimal configuration. For example,

when vehicles stop at the red light, feeding the traffic video at

a low frame rate to a DNN can still accurately detect vehicles,

but when vehicles start moving fast, the DNNmust run more

frequently (e.g., 30fps) to detect the vehicles. In this case, the

frame rate must be adapted over time.

To handle this challenge, an ideal adaptation logic should

meet three requirements:

• (i) Frequent: The adaptation logic can run frequently with

minimum GPU computation and bandwidth overhead.

• (ii) Near-optimal: The adaptation logic can pick a near-

optimal configuration based on how various filtering on

the data will affect the output of a particular final DNN.

• (iii) Generic: The same logic can be applied to a wide range

of analytic tasks, streaming media, and filtering knobs.

Prior approaches: Prior efforts fall short in at least one of

these requirements (detailed discussion in §2.3).

• Profiling-based methods (e.g., [60, 87, 88, 90]) periodically
run extraDNN inferences to profile the accuracy of alterna-

tive configurations, which incur significant GPU overhead.
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Figure 1: Demonstrating the adaptive behavior of OneAdapt
compared to alternatives: OneAdapt quickly adapts to a
near-optimal configuration after the change of input content,
whereas the profiling-based method adapts slowly and the
heuristic-based method adapts quickly but suboptimally.

For example, AWStream [88] profiles different combina-

tions of resolutions, frame rates, and quantization param-

eters. Even after downsampling the combinations, such

profiling still has up to 17× more GPU computation than

regular DNN inference. With limited GPU resources, this

profiling overhead decelerates the adaptation of configura-

tion, leading to outdated configuration when the content

of input data varies over time (as shown in Figure 1).

• Alternatively, many heuristic-based methods (e.g., [31, 41,
42, 65, 66, 80, 91, 93, 94]) avoid extra inference and in-

stead adapt configurations more frequently using cheap

heuristics. These heuristics make simplified assumptions

about which parts of the input are unimportant to the final

DNN, resulting in low accuracy (as shown in Figure1). For

instance, some heuristics filter a new frame for DNN in-

ference when its pixels differ from the last analyzed frame

significantly (e.g., [10, 31, 65]), but the pixel differences can
be on the background rather than any object of interest.

• Moreover, many existing techniques are designed for spe-
cific analytic tasks, streaming media and/or filtering knobs.

For instance, DDS [41] and STAC [83] select which regions

in a frame should be in high quality, but its logic cannot

be directly extended to adapt non-video input data, such

as LiDAR point cloud, depth map, or audio waves.

Our approach: Fast gradient-based adaptation. Wepresent

OneAdapt, a configuration adaptation system that improves

on all three fronts. OneAdapt uses gradient ascent to con-

tinuously tune the filtering knobs to improve the tradeoff

between accuracy and resource usage. It uses a new tech-

nique to cheaply approximate the change of DNN inference

accuracy in response to a small change on each filtering

knob, which we refer to as AccGrad.1
The fast approximation of AccGrad is based on the obser-

vation that filtering knobs influence the inference accuracy

1
Note that we define AccGrad as numerical gradient rather than analytical

gradient, which is used [34, 40, 72] when optimizing discrete system knobs.

through their changes on the DNN’s input. Thus, the Ac-

cGrad of a filtering knob can be decoupled into two parts,

both of which can be computed with low overheads.

1. InputGrad: How the DNN’s input changes with each knob,

which can be done on CPU without GPU compute.

2. DNNGrad:How the DNN’s accuracy changes with its input,

which can be obtained by a single DNN backpropagation.

We further speed up the existing backpropagation operator

by not computing the gradients on DNNweights (§4 for more

cost reduction techniques). Moreover, because DNNGrad

describes DNN’s sensitivity to its input change, regardless

of which knob causes the input change, DNNGrad can be

computed once and then be multiplied with the InputGrad

of different knobs to get their AccGrad.

Since AccGrad can be approximated with minimum extra

GPU compute, OneAdapt updates the estimate of AccGrad

frequently (e.g., every second) and runs a gradient-ascent
strategy to update the configuration frequently in a way

that maximally increases accuracy or reduces resource usage

without hurting accuracy. Like in other similar settings [40],

this gradient-ascent strategy is likely to converge to a near-
optimal configuration, because the configuration-accuracy

relationships are mostly concave.2 §3 offers formal and intu-

itive explanation why AccGrad can be decoupled (§3.3) and

why OneAdapt converges (§3.5).
To put OneAdapt’s contribution into perspective, using

DNN gradient is not new in video analytics systems [83, 92],

but to the best of our knowledge, OneAdapt is the first to en-
able fast approximation of accuracy’s gradient with respect

to a range of popular filtering knobs. As illustrated in Figure 1,

OneAdapt outperforms both profiling-based and heuristic-

based approaches. Unlike profiling-based methods, we esti-

mate AccGrad and adapt more frequently (by default, every

second), while profiling-based methods adapt configuration

after the slow profiling finishes (e.g., every minute [88]).

Unlike heuristics-based methods which either analyze the in-

put data or the outputs of the DNN (including intermediate

outputs [41, 66, 94]), OneAdapt can converge to a closer-
to-optimal configuration as AccGrad directly indicates how

DNN accuracy varies with a change in the configuration.

We evaluateOneAdapt on nine streaming-media analytics

pipelines (Table 3) covering four analytic tasks, five types of

input data and five filtering knobs. We compare OneAdapt
with the latest profiling-based or heuristic-based schemes

designed for individual knob types. Our key results are:

1. OneAdapt reaches similar accuracy while reducing band-

width usage or GPU compute by 15-59%. Alternatively,

2
The concavity can be intuitively explained as: if we increase the knob

by a small amount (e.g., increase frame rate), the gain in accuracy is more

significant when the system is of low accuracy, but the gain diminishes

when the system is already generating accurate inference results.
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OneAdapt improves accuracy by 1-5% without using more

bandwidth usage or GPU usage compared to the baselines.

2. Compared to a straightforward implementation,OneAdapt
reduces the GPU computation overhead and GPU memory

overhead of AccGrad estimation by 87% and 12%, keeping

OneAdapt’s extra computation overhead below 20% of

DNN inference.

3. Unlike solutions that are designed for specific filtering

knobs, OneAdapt achieves its improvement across all fil-

tering knobs using the same adaptation logic.

That said, OneAdapt still has its limitations (§7), such as not

handling non-filtering knobs (e.g., DNN selection) and tasks

outside streaming media analytics (e.g., generative tasks).
This work does not raise any ethical issues.

2 BACKGROUND
2.1 DNN-based streaming media analytics
DNN-based analytics applications are ubiquitous [1, 5, 19,

22, 23, 49, 58, 68, 77–79]. In this paper, we focus on stream-

ing media analytics, where the analytic tasks (e.g., detec-
tion and segmentation) are performed on streaming media

(e.g., RGB video, LiDAR video, audio, etc). Streaming media

analytics are widely used in applications like autonomous

driving (which requires object detection on RGB and LiDAR

video), human detection (which requires human detection

on InfraRed video at night), and smart home (which requires

word detection on audio data). Note that streaming media an-

alytics include popular video analytics applications though

not all DNN-based applications (e.g., generative AI).
Typically, a streaming media analytic system, depicted in

Figure 2, consists of input filtering (typically at the sensor

side) and DNN inference (typically in edge or cloud). First,

the system collects the raw data, referred to as the input
data. This data is then filtered by the input filtering process.

When the data needs to be sent to a separate analytics server

(in edge or cloud), it will be streamed through a bandwidth-
constraint link. The server then runs DNN inference to get in-

ference results (e.g., vehicle bounding boxes for autonomous

driving) using limited GPU resources. Due to limited GPU re-

sources and network bandwidth, not all data in their highest

fidelity will be analyzed by the DNN.

Objective: The objective of these systems is to reduce re-

source usage (in GPU and bandwidth) without hurting the

inference accuracy, or improve inference accuracy using lim-

ited resources. Following prior work [27, 41, 42, 60, 85, 88],

we define inference accuracy of an inference result as its sim-

ilarity with the inference result obtained under unlimited

bandwidth and/or GPU computation budget (see §5.1 for

detailed definition). This definition of accuracy highlights

the impact of saving resources on inference accuracy.

Streaming media analytic system

Input 
filtering

DNN 
inference
(GPU-

constrained)

Inference results

Vehicle
detection

Audio 
to text

Hi

LiDAR Audio

Streaming media

Video
Network 

(Bandwidth-
constrained)

Figure 2: In streaming media analytics, data from sensors is
processed by the input filtering module before being sent to
theDNN on constrained GPU resources. Given the DNNmodule
might be on a remote device or cloud, data transmission can
occur over a bandwidth-limited network.

Knobs

Spatial vs.

Temporal

Coarse-grained vs.

Fine-grained

Resolution

[33, 41, 60, 73, 87, 88, 90, 91]

Spatial Coarse-grained

Quantization parameter

(QP) [87, 88, 91]

Spatial Coarse-grained

Frame rate

[60, 73, 87, 88, 90]

Temporal Coarse-grained

Frame filtering thresholds

[31, 65, 93]

Temporal Fine-grained

Region-based QP

[20, 41, 42, 63, 66, 92]

Spatial Fine-grained

Audio sampling rate

[45, 54, 55, 57, 69]

Temporal Coarse-grained

Table 1: A list of filtering-related knobs that could be used to
reduce bandwidth usage and/or GPU compute without hurting
inference accuracy.

2.2 Configuration adaptation
Prior work has shown that high accuracy could be obtained
with significantly lower network and/or GPU usage if an

optimal configuration of the filtering parameters (e.g., video
resolution or frame rate) is chosen. We denote these filtering

parameters as knobs. Moreover, the optimal configuration of

these knobs can be highly sensitive to the content of the input
data [42, 60, 88, 91]. For instance, when detecting vehicles in a

traffic video, we can significantly reduce the frame rate if the

vehicles are moving slowly, and the DNN can still accurately

determine the position and movement of the vehicles.

Depending on how knobs filter the input data, Table 1

categorizes the knobs along two dimensions.

• Spatial vs. temporal: A knob can filter (downsample) input

data spatially (e.g., lowering video resolution) or tempo-

rally (e.g., reducing frame rate).

• Coarse-grained vs. fine-grained:A knob, spatial or temporal,

can filter the input data with a coarse or fine granularity.

Importantly, depending on the type of knob, its optimal

configuration can be sensitive to different aspects of the input

data. For instance, when filtering a video for object detection,

a spatial and coarse-grained knob can lower the resolution of

a whole video frame, and its optimal configuration depends

on the size of the objects. A spatial but fine-grained knob can
3



Adaptation
methods

Knob types
Coarse-grained

spatial

Fine-grained

spatial

Coarse-grained

temporal

Fine-grained

temporal

Profiling

[60, 87, 88, 90]

✔ ✔

Pixel-filtering

heuristics

[41, 42, 66, 83, 93]

✔

Frame-filtering

heuristics [31, 65]

✔

Uniform-filtering

heuristics [91]

✔ ✔

OneAdapt
(this work)

✔ ✔ ✔ ✔

Table 2: Unlike prior work that works well only for specific
knobs,OneAdapt can optimize all four types of knobs in Table 1.

Most accurate 
config under 

resource budget

Input filtering Inference 
results

DNN 
Inference

DNN 
inference

Input filtering
Server-side 
input data

Profiling: optimal but too much extra inference

Profile different configs

Input 
data

(a) Profiling: optimal but too much extra inference.

Input filtering Inference 
results

DNN 
Inference

Input 
data

Config selected 
by the heuristics

Cheap heuristics: no extra inference but suboptimal

Cheap 
heuristics

or Cheap 
heuristics

Config selected 
by the heuristics

(b) Heuristics: no extra inference but suboptimal.

Figure 3: Illustrating two types of prior work: profiling and
heuristics. The profiling-based approach can obtain optimal
configuration but runs a lot of extra DNN inferences, while
heuristics run no extra DNN inference but may pick suboptimal
configuration (§2.3).

lower the resolution only in certain regions in a video frame,

and its optimal configuration depends on the location of the

objects. Similarly, a temporal and coarse-grained knob can

uniformly reduce the video frame rate to fit how fast objects
move, whereas a temporal but fine-grained knob can decide

whether each frame should be dropped individually to fit

when objects move.

2.3 Existing adaptation schemes
As the content of input data varies over time, these configura-

tions must be adapted timely. For instance, it has been shown

that increasing the configuration adaptation frequency of

frame rate and video resolution from once every 8 seconds to

once every 4 seconds increases the percentage of frames with

accurate object detection results by 10% [60]. Other works

also frequently adapt the configurations of other knobs, such

as the encoding quality of each spatial region, at a time scale

of a few seconds [41, 42, 66, 91].

Therefore, the key research question is to identify if a

different configuration is better than the current one. There

are two high-level categories of techniques.

Profiling-basedmethods: optimal though slow. The first
approach periodically profiles resource usage and inference

accuracy of different configurations by rerunning the same

input data using these configurations, and then picking the

best configuration (one that yields high inference accuracy

and low resource usage) [60, 87, 88, 90]. Figure 3a illustrates

this process. However, each profiling needs to run multiple

extra DNN inferences and thus significantly increases the

GPU computation overhead. For instance, AWStream [88]

runs full profiling on just 3 knobs (resolution, frame rate, and

quantization parameter) on a 10-second video, and its GPU

computation is equivalent to running normal DNN inference

on more than an 8-minute video (i.e., an almost 50× increase

in GPU usage). As a result, if GPU resource is limited, this

approach must either profile less frequently, causing it to

use outdated configurations when the optimal configuration

changes (as shown in Figure 1), or profile only fewer con-

figurations, which may miss the optimal configuration. §5

will also test smarter variants of profiling (profiling only

top 𝑘 configurations and profiling fewer values per knob)

and shows that they still use much GPU resource for extra

inference and are thus slow to adapt to change in input data.

No extra inference though suboptimal: An alternative

approach [28, 31, 41–43, 65, 66, 83, 91, 93, 94] avoids extra

inference and instead selects new configurations by analyz-

ing either the input data or the DNN intermediate inference

results and filtering out those data that are not of the interest

of the final DNN using simple heuristics. We illustrate this

process in Figure 3b. This approach can adapt frequently as it

does not require extra inference by the final DNN. However,

they may select a suboptimal configuration. Here, we discuss

three types of heuristics.

• Heuristics adapting fine-grained temporal knobs: One line
of work [31, 65, 66] selects the frames most worthy for

analysis by applying fine-grained temporal knobs (e.g., by
computing the difference between the current frame and

previously analyzed frame and sends the current frame

out for DNN inference if the difference is greater than a

threshold). As elaborated in §1, this method fails when the

background pixels in a video change a lot between frames,

making high frame difference a poor signal to decide if a

frame should be analyzed or not.
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• Heuristics adapting fine-grained spatial knobs: Another line
of work [41–43, 66, 93] reduces bandwidth usage by cal-

culating the regions of interest, and assigns these regions

with higher encoding quality. Some of these work identi-

fies regions of interest by running a shallow neural network
on each frame (e.g., MobileNet-SSD [42, 56]). However, as

acknowledged in one of the latest work [42], such shallow

neural network rarely recognizes small vehicles and thus

fails to encode them in high quality. Other heuristics try

to leverage information naturally emitted from the final

DNN, such as region proposals (an intermediate output of

some DNNs indicating which regions in the input data may

contain objects). This approach can also adapt quickly, but

as shown in [42], region proposals only indicate whether

some objects are in the region, rather than whether raising

the quality of that region will likely affect the ability for

the DNN to detect the objects of interest.

• Heuristics adapting coarse-grained knobs: Recent propos-
als also propose heuristics based on reinforcement learn-

ing [91] to adapt coarse-grained knobs such as resolution

and frame rate. This heuristic relies on the file size of the

encoded video to adapt the knobs. However, the file size of

the encoded video cannot indicate whether the object of

interest appears in the video or not, making this approach

unable to timely raise the frame rate and resolution when

the object of interest appears.

Bayesian Optimization: Though less explored in the liter-

ature of streaming media analytics systems, an alternative

method can treat the analytic system as a black box and use

Bayesian Optimization (BO) to search for the best configura-

tion [14, 82]. In contrast, gradient-based optimization, which

our work belongs to, has been shown to converge faster

than BO in a discrete configuration space with a concave

objective function. In theory, after evaluating 𝑘 configura-

tions, gradient-based optimization’s function value has a gap-

to-optimal of 𝑂 ( 1
𝑘2
) [70, 76] whereas BO’s gap-to-optimal

is 𝑂 ( 1√
𝑘
) [38, 64]. As a result, gradient-based optimization,

rather than BO, has been widely used in various discrete

spaces with concave functions (e.g., [34, 35, 72, 89]).
In the case of streaming media analytics, the configuration

values are discrete and, as shown later in §3.5, the objective

function between the configuration and accuracy is mostly

concave. Thus, we choose to use gradient-based optimization,

rather than BO, and utilize DNN’s differentiability to estimate

the (numerical) gradients without extra DNN inference.

Designed for specific configurations or DNNs: More-

over, most techniques are studied and evaluated only on RGB

video feeds, and it is unclear whether they will be effective

on other types of data (e.g., LiDAR point cloud, depth map,

or audio waves). Even in video analytics, the heuristics often

Input data
@time 𝑡

Sensor Input filtering
w/ config 𝑘!

Server DNN 
inference

Cheap 
backprop

Re-run input filtering 
w/ different configs

Inference results @time 𝑡

Estimate AccGrad using
InputGrad⊗AccGrad

⋯

Time

Time

InputGrad

DNNGradNetwork

Input data
@time 𝑡 + 1

Figure 4: Illustrating how OneAdapt estimates AccGrad using
InputGrad and DNNGrad using the sensor and the server.

work well only for specific knobs (we show the applicabil-

ity of prior works on different types of knobs in Table 2).

For example, Reducto [65]’s frame-different detector is ill-

suited to tune the encoding quality parameter of each frame,

which depends on the content of the new frame, rather than

how it differs from the previous frame. Likewise, DDS [41]

tunes the encoding quality parameters of each fine-grained

spatial block to improve inference accuracy on each frame,

but it is not aware of whether the current frame is redun-

dant given past inference results, thus it cannot generalize to

knobs such as frame selection. Also, as the amount of extra

inference scales with the number of knobs, profiling-based

approach [60, 87, 88, 90] is suboptimal when handling more

than 10 knobs (which is the case for fine-grained knobs).

Summary: In short, previous work fails to meet at least one

of the three requirements: (i) adapt timely, (ii) converges to
a near-optimal configuration, and (iii) apply to a wide range

of configurations and applications.

3 DESIGN OF ONEADAPT
We present OneAdapt, a configuration adaptation system

that aims at improving along the three requirements men-

tioned above — frequent, near-optimal adaptation on various

configuration knobs. The basic idea of OneAdapt is to fre-

quently estimate the gradient of how inference accuracy

changes with each configuration knob, which we refer to

as AccGrad. OneAdapt then performs gradient ascent based

on AccGrad to update the configuration, with an objective

metric that combines inference accuracy and resource usage

(§3.2). To efficiently estimate AccGrad, OneAdapt approxi-
mates it by estimating OutputGrad, another metric that can

be efficiently calculated by leveraging DNN’s inherent differ-

entiability (§3.3) and statistically correlated with AccGrad

(§3.4). Finally, we will discuss the caveats of OneAdapt’s
gradient-based adaptation (§3.5).

3.1 Terminology
To adapt configuration for various DNN pipelines , we intro-

duce a unified terminology to describe their input and output.

Table 4 summarizes the notations and their meanings.

We split the input data into fixed-length (by default, one-

second-long) intervals, called adaptation intervals. In the 𝑡 th

adaptation interval, the input data x𝑡 is first preprocessed
5



with the current configuration k𝑡 (e.g., video resolution and

frame rate) to get the DNN input y(k𝑡 ;x𝑡 ), and the DNN

takes it as input and returns 𝑅𝑒𝑠 (k𝑡 ;x𝑡 ) as output. DNN
output 𝑅𝑒𝑠 (k𝑡 , x𝑡 ) contains multiple elements. For the DNNs
in our considered tasks, each element is associated with

a confidence score, and only elements with a score over a

confidence threshold 𝜃 will be counted towards accuracy.

The definitions of an element 𝑒 and input data x vary

with the considered application. An element is a detected

object in object detection, a detected text in audio-to-text

translation, or a segmented mask of a detected instance in

instance segmentation. Input data can be a sequence of RGB

frames in videos, point-cloud frames in LiDAR, or an audio

wave segment in audio data.

Based on these notations, we define:

• 𝐴𝑐𝑐 (k𝑡 ;x𝑡 ) is the accuracy of the inference results gener-

ated using input data x𝑡 and configuration k𝑡 . Following

prior work [25, 27, 41, 42, 60, 88], we define accuracy as

the similarity between the current inference results and

the inference results generated from the most resource-

consuming configuration k∗.3

• z(k𝑡 ;x𝑡 ) is the output utility of the inference results gen-

erated using input data x𝑡 and configuration k𝑡 . We define

output utility as the number of elements with confidence

scores above the confidence threshold (see §3.3).

• r(k𝑡 ) is the resource usage (bandwidth and/or GPU cycles,

defined per application) at the 𝑡 th adaptation interval.

We may omit the time label 𝑡 and the input data x𝑡 for
simplicity when the corresponding variables are of the same

interval as the current input data x𝑡 .

3.2 Adaptation goal and gradient-ascent
The adaptation goal of OneAdapt is to pick the configura-

tions for all adaptation intervals such that the following

weighted sum between the accuracy 𝐴𝑐𝑐 and the resource

usage r is maximized:

𝑇∑︁
𝑡=1

𝐴𝑐𝑐 (k𝑡 )︸   ︷︷   ︸
accuracy of 𝑡𝑡ℎ interval

−𝜆 r(k𝑡 )︸︷︷︸
resource usage of 𝑡𝑡ℎ interval

, (1)

where 𝜆 is a hyperparameter that governs the tradeoff be-

tween accuracy and resource usage: higher 𝜆 will empha-

size resource-saving and lower 𝜆 will emphasize accuracy

improvement. We will vary 𝜆 and examine its effect on

OneAdapt in §5. Note that this objective can be extended to

perform budgeted optimization (e.g., to maximize accuracy

under a budget of resource usage, we can add a change the

3
This notion of accuracy is well studied in the literature. While it does

not compare DNN output with human-annotated ground truth, it better

captures the impact of adapting configurations on inference results.

term r(k𝑡 ) to a large penalty when resource usage extends

the budget). We leave this extension to future work.

To optimize towards this goal, OneAdapt uses an on-

line gradient-ascent strategy (illustrated in Figure 4). Con-

cretely,OneAdapt derives a new configuration k𝑡+1 based on
the current configuration k𝑡 using the following Equation:

𝑘𝑡+1,𝑖 = 𝑘𝑡,𝑖 + 𝛼

©­­­­­­«
𝐴𝑐𝑐 (k𝑡 + Δ𝑘𝑖 ) − 𝐴𝑐𝑐 (k𝑡 )

Δ𝑘𝑖︸                              ︷︷                              ︸
grad. of accuracy (AccGrad)

−𝜆 r(k𝑡 + Δ𝑘𝑖 ) − r(k𝑡 )
Δ𝑘𝑖︸                      ︷︷                      ︸

grad. of resource usage

ª®®®®®®¬
,

(2)

where 𝑘𝑡+1,𝑖 is the configuration of the 𝑖𝑡ℎ knob in the next

adaptation interval, Δ𝑘𝑖 is a small increase on the 𝑖𝑡ℎ knob, 𝛼

is the learning rate. We will discuss the convergence of this

gradient-ascent strategy and extend it to discrete configura-

tion values in §3.5. For now, we assume the configuration

of each knob can be tuned continuously. Also, while more

advanced gradient-based optimization (e.g., Nesterov’s Ac-
celerated Gradient Descent [70]) exists, OneAdapt chooses a
standard gradient-ascent strategy to make sure the source of

improvement is from the gradient itself instead of advanced

optimization techniques.

The gradient-ascent strategy in Equation 2 requires cal-

culating the gradient of accuracy (hereinafter AccGrad) and

the gradient of resource usage along each knob 𝑖 . We cal-

culate the gradient of resource usage by using its defini-

tion (i.e., we directly calculate the bandwidth and GPU com-

putation consumption of configuration k𝑡 + Δ𝑘𝑖 and then

calculate
r(k𝑡+Δ𝑘𝑖 )−r(k𝑡 )

Δ𝑘𝑖
)
4
.

However, if we calculate AccGrad by its definition, it

would be prohibitively expensive (see Figure 5a). Obtaining

𝐴𝑐𝑐 (k) of any configuration kwill require running inference

on the most resource-intensive configuration k∗. Moreover,

to get the AccGrad of each knob would require running

an extra inference to test the impact of a small change in

configuration on DNN output.

3.3 Fast approximation of AccGrad
To estimate AccGrad efficiently, we introduce a new metric,

called OutputGrad, to approximate it. Here, we define Out-

putGrad and explain how to calculate it efficiently. The next

subsection will show its statistical correlation with AccGrad.

DNN output utility: Recall from §3.1 that the DNN output

contains multiple elements, each associated with a confidence
score. An element can be a detected object in object detec-

tion or a detected text in audio-text translation. Since only

elements with a score over the confidence threshold will be

4
Note the calculating the resource usage of a configuration does not require

DNN inference, as calculating the bandwidth usage requires no inference,

and the GPU computation largely depends on the shape of DNN input rather

than the content of the input.
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(a) Calculating OutputGrad using its definition
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(b) Calculating OutputGrad using OneAdapt

Figure 5: Comparison between calculating OutputGrad
naively and calculating OutputGrad using OneAdapt.
OneAdapt calculates OutputGrad with no extra inference.

counted towards accuracy, we define output utility of a DNN
output by the number of elements in an adaptation interval

whose confidence scores exceed the confidence threshold

(see Equation 4 for a formal definition).
5
We use z(k𝑡 ) to

denote the output utility of DNN output 𝑅𝑒𝑠 (k𝑡 ;x𝑡 ) under
configuration k𝑡 .

Output utility offers a single-value summarization of the

DNN output whose change indicates the change in inference

accuracy (More rationale of output utility in §3.4).

OutputGrad definition: OutputGrad is defined as how

much a small change in the current value of each knob

changes the output utility. The OutputGrad of knob 𝑘𝑖 can

be written as

Δz
Δ𝑘𝑖

=
z(. . . , 𝑘𝑡,𝑖 + Δ𝑘𝑖 , . . . ) − z(. . . , 𝑘𝑡,𝑖 , . . . )

(𝑘𝑡,𝑖 + Δ𝑘𝑖 ) − 𝑘𝑡,𝑖
.

To help understand OutputGrad, we use a simple video

analytics system that feeds each video frame to a vehicle de-

tection DNN, using a confidence score of 0.5. Figure 5a illus-

trates OutputGrad in this example. Following prior work [60,

87, 90, 91], we assume the system can tune two configuration

knobs, frame rate, and resolution. Suppose that the current

configuration is 10 frames per second (fps) and 480p. When

taking 1-second input, the DNN outputs 34 vehicle bounding

boxes with confidence scores greater than 0.5 on these 10

frames, an average of 3.4 vehicles per frame. If we slightly in-

crease the frame rate from 10fps to 15fps, the DNN outputs 66

vehicle bounding boxes with confidence scores greater than

5
This definition applies to all applications mentioned in Table 3, but future

work is needed to extend the definition to a wider range of applications.

0.5, on average 4.4 vehicles per frame. Then the OutputGrad

of the current frame rate is

Δz
Δframerate

=
z(480𝑝, 15𝑓 𝑝𝑠 ) − z(480𝑝, 10𝑓 𝑝𝑠 )

15𝑓 𝑝𝑠 − 10𝑓 𝑝𝑠
=

4.4 − 3.4

15 − 10

= 0.2.

Similarly, the OutputGrad of the resolution is:

Δz
Δresolution

=
z(720𝑝, 10𝑓 𝑝𝑠 ) − z(480𝑝, 10𝑓 𝑝𝑠 )

720𝑝 − 480𝑝
=

5.8 − 3.4

720 − 480

= 0.01.

How to calculate OutputGrad efficiently: The insight of

OneAdapt is that OutputGrad can be computed efficiently

with no extra DNN inference by taking advantage of the

differentiability of DNNs. As our considered application

pipelines affect the inference results by altering the DNN in-

put through knobs, the OutputGrad of a knob can be written

as the inner product of two separate gradients (illustrated in

Figure 4), each can be computed efficiently:

1. DNNGrad: How the DNN’s output changes with respect

to the DNN’s input.

2. InputGrad: How the DNN’s input changes with respect to

the knob’s configuration.

Formally, the OutputGrad of 𝑘𝑖 on x can be expressed by:

Δz
Δ𝑘𝑖︸︷︷︸

OutputGrad

= Δz
Δy(k)︸    ︷︷    ︸
DNNGrad

⊗ Δy(k)
Δ𝑘𝑖︸    ︷︷    ︸

InputGrad

,

where ⊗ means inner product, and y(k) is the DNN input

of configuration k.
The decouplingmakes the calculation of OutputGradmuch

more resource-efficient for three reasons:

• DNNGrad can be estimated by running one backpropaga-

tion . This is a constant GPU-time operation without extra

inference as it reuses the layer-wise features computed as

part of the DNN inference of the current configuration. §4

will further reduce the overhead of backpropagation.

• DNNGrad only needs to be calculated once and can be re-

used to derive OutputGrad of different knobs without extra

DNN inference. This is because the DNNGrad describes

DNN’s sensitivity to its input and thus remains largely

similar if the change in DNN input is not dramatic. For

instance, the DNNGrad of an object-detection DNN is high

on pixels associated with key visual features of an object.

• Finally, computing InputGrad does not require running

the final DNN.

To reuse the same example from Figure 5a, Figure 5b shows

how OutputGrad is calculated from DNNGrad and Input-

Grad:

z(480𝑝,15𝑓 𝑝𝑠 ) − z(480𝑝,10𝑓 𝑝𝑠 )
15𝑓 𝑝𝑠 − 10𝑓 𝑝𝑠

≈
y(480𝑝,15𝑓 𝑝𝑠 ) − y(480𝑝,10𝑓 𝑝𝑠 )

15𝑓 𝑝𝑠 − 10𝑓 𝑝𝑠
⊗ Δz

Δy

����
y=y(480𝑝,10𝑓 𝑝𝑠 )

,

z(720𝑝,10𝑓 𝑝𝑠 ) − z(480𝑝,10𝑓 𝑝𝑠 )
720𝑝 − 480𝑝

≈
y(720𝑝,10𝑓 𝑝𝑠 ) − y(480𝑝,10𝑓 𝑝𝑠 )

720𝑝 − 480𝑝
⊗ Δz

Δy

����
y=y(480𝑝,10𝑓 𝑝𝑠 )

,
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where ⊗ represents inner product and
Δz
Δy |y=y(480𝑝,10𝑓 𝑝𝑠 ) is

DNNGrad of the current configuration (480𝑝, 10𝑓 𝑝𝑠). Fig-
ure 5b shows that OneAdapt saves extra GPU inference by

running backpropagation once and re-using the backprop-

agation results for different knobs. This example has two

knobs, thus the saving may seem marginal, but our evalua-

tion shows more savings when OneAdapt is used to adapt

more knobs in more realistic DNN analytics systems (Fig-

ure 9).

3.4 Relationship between OutputGrad and
AccGrad

The definitions of OutputGrad and AccGrad differ, yet they

are closely related both theoretically and empirically This

can be intuitively explained as follows: a high OutputGrad

means a great change in the inference output, which often

causes a greater change in accuracy and thus a high AccGrad.

Theoretical correlation: To formalize this correlation be-

tween OutputGrad and AccGrad, we prove that they are

statistically correlated under specific assumptions.
• First, we define the accuracy of DNN output as the number

of correctly-identified elements (including both true posi-

tive and true negative), minus the number of wrongfully-

identified elements (in our proof we use a differentiable

approximation of this accuracy function, see Equation 3

for formal definition). Acknowledging that this definition

of accuracy differs from the metric that is widely used in

prior work (e.g., F1 score [27, 41, 42, 60, 66, 87, 88, 90, 91]),
we observe that, if a configuration has higher accuracy

than another configuration under one accuracy metric, it

is likely that this configuration also has higher accuracy

under other accuracy metrics.

• Second, the accuracy of DNN output increases when a

knob changes towards using more resources (e.g., higher
resolution or selecting more frames). This observation

aligns with prior work [25, 41, 42, 60, 65, 66, 87, 88, 90].

• Third, different elements do not overlap (e.g., object bound-
ing boxes do not mutually overlap, or the detected words

in the audio do not overlap). This assumption holds as

a wide range of DNNs perform non-maximum suppres-

sion [39, 52, 71] to remove overlapped elements.

Formally, if these assumptions hold, we can formally prove

that

𝜕𝐴𝑐𝑐 (k)
𝜕k︸    ︷︷    ︸

AccGrad

=

���� 𝜕z(k)
𝜕k︸ ︷︷ ︸

OutputGrad

����
. The proof can be found in §E.

While there can be exceptions to the conditions required

by our proof, these conditions corroborate the observations

0.4 0.6 0.8 1.0
Cosine similarity
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0.50

0.75

1.00

C
D

F

Figure 6: The CDF of the cosine similarity between AccGrad
and OutputGrad across different configurations and videos.
The average cosine similarity is over 0.91.

in previous studies. For instance, higher encoding resolution

leads to higher bandwidth usage and likely more accurate

inference, or higher frame rate leads to higher GPU usage and

likely more accurate results [25, 41, 42, 60, 65, 66, 87, 88, 90].

Empirical correlation: We empirically validate the corre-

lation between AccGrad and OutputGrad using a streaming

media analytics pipeline (pipeline a○ ) from the Downtown
dataset (refer to §5 for details). For each configuration in

pipeline a○ , we derive AccGrad from its definition and Out-

putGrad through backpropagation on the first 10 seconds

of each video in Downtown dataset. Since both AccGrad

and OutputGrad are vectors (with each element being the

gradient for a knob), we measure their correlation by co-

sine similarity. Figure 6 displays the CDF of cosine similarity

across different configurations and videos. The average co-

sine similarity exceeds 0.91, indicating a strong correlation

between AccGrad and OutputGrad.

3.5 Caveats and benefits
While our evaluation shows OneAdapt’s gradient-ascent

strategy performs well for a wide range of DNN tasks, in-

put data types, and configuration knobs, it is important to

understand its limits and why it works in practice.

Convergence of OneAdapt on changing input data:
OneAdapt takes a gradient-ascent strategy to adapt con-

figurations, where OneAdapt derives a new configuration

based on the input data of the current adaptation interval

and applies it to the next interval. This approach will not

converge if the input changes dramatically between inter-

vals. That said, the input data in our benchmark (and other

papers [60, 88]) incurs drastic change on the scale of tens of

seconds (e.g., when driving in the countryside, the vehicle

appears on a scale of tens of seconds), whereas OneAdapt
empirically converges to a near-optimal configuration within

3-5 intervals (seconds) as shown in Figure 14. Thus, as long

as the best configuration lasts for at least a few seconds,

OneAdapt can identify the best configuration faster than

profiling-based methods.
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The reason behind the convergence of OneAdapt is that
the relationship between configuration k and its correspond-

ing accuracy𝐴𝑐𝑐 (k) is roughly concave, allowing the gradient-
ascent strategy of OneAdapt to converge to a near-optimal

configuration. This concavity also appears in prior work [41,

42, 66, 88]. This concavitymeans that as configuration changes

in the direction of using more resources, the improvement

in accuracy will diminish as accuracy approaches 100%. For

example, as a video analytic system increases the video en-

coding resolution, the pixel change becomes more marginal

(mostly on “high-frequency” details), causing the DNN out-

put to stabilize (objects’ confidence scores will change more

slowly and less frequently cross the confidence threshold,

leading to fewer newly detected objects) and leading to less

improvement on accuracy [60, 87, 88, 90, 91]. A well-known

consequence of such concavity is that gradient-ascent can

eventually converge to a global optimal configuration [9, 44].

Why OneAdapt beats alternatives: OneAdapt outper-
forms previous work on all three requirements (i.e., adapt
frequently, converge to a near-optimal configuration, and

generalize to different types of knobs and analytic tasks).

First, compared to profiling-based work, OneAdapt adapts
much more frequently (as OneAdapt updates its configura-
tion at every second but profiling-based work updates its con-

figuration once every minute [88]) and earlier (as OneAdapt
adapts to the change of input content right at the next sec-

ond but the profiling-based work need to wait till the next

profiling).

Second, compared to heuristics-basedmethods,OneAdapt’s
gradient ascent can converge to a closer-to-optimal configura-
tion. Most heuristics used in prior work adapt configuration

by analyzing only the input data, rather than how the data

might affect the final DNN’s output and accuracy. By con-

trast, AccGrad directly indicates that DNN accuracy varies

with a small change in the configuration.

Third, we show that OneAdapt can generalize to 4 ana-

lytic tasks (vehicle detection, human detection segmentation,

audio-to-text), 5 types of input data (e.g., LiDAR videos, au-

dio waves), and 5 types of knobs (e.g., video codec knobs,

frame filtering thresholds) in our evaluation (§5). That said,

we have not tested if OneAdapt will work for applications

outside streaming media analytics (e.g., text generation and

image generation) and knobs that alter the final DNN itself

(e.g., DNN selection).

We want to clarify that similar to prior work [60, 88, 91],

OneAdapt leverages idle time to perform adaptation. Thus,

OneAdapt does not delay the generation of inference results.

Running gradient ascent over discrete configuration
space: Before runningOneAdapt, we first linearly normalize

all knob values to [0,1] and make sure that the increase in

knob value corresponds to the increase in resource usage.

We then calculate the updated knob value (Equation 2) and

configure each knob using the configuration value closest to

the updated value. We want to clarify that running gradient

ascent on top of discrete configuration space can converge

to a near-optimal configuration when the objective function

(i.e., the weighted sum between accuracy and resource usage)

is concave [34, 72].

4 OPTIMIZATION OF ONEADAPT
Though OutputGrad estimation in OneAdapt does not in-
volve extra DNN inference, it imposes three types of over-

head:

1. GPU overhead to run backpropagation and obtainDNNGrad.
2. CPU overhead to filter input data multiple times and com-

pute InputGrad of each knob.

3. Bandwidth overhead to stream the DNNGrad from the DNN

back to the sensor (as shown in Figure 4).

The first two overheads are present in both the distributed

setting (where the sensor streams DNN input through a

bandwidth-constraint link to a server for DNN inference)

and non-distributed settings (where the sensor and DNN

co-locate). The third overhead is specific to the distributed

setting. This section presents the optimizations used by

OneAdapt to reduce each overhead.

We want to clarify that similar to prior work [60, 88, 91],

OneAdapt leverages idle time to adapt. Thus, these overheads

of OneAdapt do not delay the generation of inference results.

4.1 Reducing GPU computation overhead
OneAdapt uses two techniques to reduce the GPU overhead

of backpropagation.

Removing unneeded computation: The standard imple-

mentation of DNN backpropagation is designed for DNN

training, which computes not only gradients with respect

to the DNN input (i.e., DNNGrad) but also gradients with

respect to DNN weights. While the gradients with respect to

DNNweights are crucial for DNN training (in order to update

DNN weights), they are unnecessary to compute DNNGrad.

We note that this optimization does not change DNNGrad.
DNNGrad reusing: To further reduce GPU computation

overhead, we run backpropagation to compute DNNGrad on

the last frame or segment of the current adaptation interval,

and reuse this DNNGrad on other data frames in the current

adaptation interval. In the context of video analytics, it can

be intuitively understood that although the exact value of

DNNGrad may vary across different frames, the spatial areas
that have high DNNGrad tend to be stable within several con-

secutive frames. Though DNNGrad reusing alters DNNGrad,

Figure 12 shows that this optimization has little impact on

the resource–accuracy trade-off of OneAdapt.
Summary: After removing unneeded computation and

DNNGrad reusing, OneAdapt’s GPU computation overhead
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is below 20% of DNN inference (as shown in Figure 11) and

the GPU memory overhead is reduced by 12%.

4.2 Reducing CPU overhead
OneAdapt requires encoding the video multiple times to ob-

tain InputGrad for each knob, incurring high CPU overhead.

OneAdapt reduces such overhead to one single encoding

for those knobs that operate on non-overlapping spatial areas
of DNN input (note that OneAdapt only uses this technique

on a specific set of knobs like the encoding qualities of differ-

ent spatial blocks and it may not generalize to other knobs.).

For example, say the analytic system contains two knobs

𝑘1, 𝑘2, where 𝑘1 is the encoding quality of the left half of the

video, and 𝑘2 is the encoding quality of the right half of the

video. As a result, 𝑘1 mainly changes the left half of the input

video, and 𝑘2 mainly changes the right half of the video
6
. To

calculate the InputGrad of 𝑘1 and 𝑘2, We can change 𝑘1 and

𝑘2 simultaneously and then use the change of the left half

of the input video to compute the InputGrad of 𝑘1, and the

right half to compute the InputGrad of 𝑘2.

4.3 Reducing network overhead
OneAdapt imposes high network overhead as it streams the

DNNGrad from the server back to the sensor. This over-

head can be substantial. For instance, the DNNGrad of an

object detector on a frame will be as large as the original

raw, uncompressed frame size.

To compress DNNGrad, our observation is: modern codecs

(e.g., video codecs [37, 81]) typically partition the data into

small groups, calledMinimum Coded Units (MCUs), and then

decide the compression scheme on top of these groups. In

other words, the data inside each MCU will share the same

compression scheme, thus there is no need to further dis-

tinguish between the data inside each MCU. Based on this

observation, for each MCU, OneAdapt takes the absolute

value of DNNGrad and averages the values of each data in-

side the MCU. For example, when the input video stream

is encoded by H.264 [81] video codec, each MCU will be a

16 × 16 pixel block. OneAdapt then averages the DNNGrad

values inside each 16 × 16 pixel block and obtains only one

DNNGrad number for each pixel block, which compresses

DNNGrad by 16
2× and makes the bandwidth overhead of

streaming DNNGrad negligible. We note that this optimiza-

tion does not apply to all existing codecs, but it does cover

a wide range of existing codecs (e.g., video codecs [37, 81],

image codecs [7] and audio codecs [11]) and it covers all

codecs that OneAdapt is using in its evaluation.

5 EVALUATION
In our evaluation, we show that:

6𝑘1 may slightly change the right half of the video. However, such change

is minor compared to how much 𝑘2 changes the right half of the video

• OneAdapt achieves similar accuracy while reducing re-

source usage by 15-59% or improves accuracy by 1-5%

with the same or less resource usage when compared to

state-of-the-art adaptation approaches. This accuracy im-

provement is substantial, as the system needs to consume

much more resources to improve accuracy by 1-5% (e.g., 2x
more bandwidth (Figure 7g) only improves 4% accuracy).

This improvement is also on par with prior work [41, 42].

• The extra GPU overhead caused by OneAdapt is compara-

ble to or lower than existing adaptation approaches.

• OneAdapt achieves more resource reduction when there

are more configuration knobs to tune.

Our code is available in [8].

5.1 Evaluation setup
Applications and DNNs: We target four types of applica-

tions: vehicle detection with FasterRCNN for autonomous

driving [39, 75], vehicle segmentation employing MaskR-

CNN for traffic analytics [39, 53], human detection using

YoLo for home security [18, 74] and audio-to-text utilizing

Wav2Vec for smart home applications [6, 26]. Note that both

detection and segmentation applications categorize objects

as either of interest or not.

Accuracy metrics: We use F1 score [41, 60, 88, 91] for ve-

hicle detection, vehicle segmentation, and audio-to-text. For

human detection, we use mean IoU (mIoU [66]). Following

prior work [25, 27, 41, 42, 60, 88], we define accuracy as the

similarity between the current inference results and the in-

ference results generated from the most resource-consuming

configuration to measure the impact of adapting configura-

tions on inference results.

Input settings: For all our applications we use 10FPS from

the respective sensors (except for audio-to-text, where we

chunk the raw audio into one-second segments and send

them to the DNN for analytics). Note that while 30FPS and

60FPS are typical for video content intended for human view-

ing [3], 10FPS is prevalent in real-time analytic applications

such as autonomous driving [4, 21, 47, 84].

Dataset: Weuse the following datasets to evaluateOneAdapt,
with the goal of covering various application scenarios and

streaming media (summarized in Table 5):

• Autonomous driving: our dataset covers two driving con-
texts (downtown driving and country driving) and two

main types of sensors (RGB video sensor and LiDAR sen-

sor). Specifically, we obtain 10 downtown driving RGB

videos [16] and 8 country driving RGB videos [16] using

an anonymous YouTube search, and 6 urban driving LiDAR

videos from KITTI dataset [46].

• Traffic analytics: We collect 5 traffic camera video footag

by anonymous YouTube searche [16].
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ID

Target

application

Analytic

task
Dataset

Streaming

media type
DNN

Accuracy

metric
Configuration knobs

Trade-off

between

accuracy and

Baselines

Showing the

generalizability of

OneAdapt across

a○
Autonomous

driving

Vehicle

detection

Downtown [16]
RGB

Faster-

RCNN

F1 score

Fine-grained encoding

quality assignment
Bandwidth

usage

DDS [41]

EAAR [66]

AccMPEG [42]

Different

configuration
knobs

b○ Video codec knobs

Chameleon [60]

CASVA [91]

AWStream [88]

c○ Country [16] Frame filtering knobs

GPU

computation

Profiling [60, 88]

Reducto [65]

d○ Autonomous

driving

Vehicle

detection
KITTI [46] LiDAR

Point-

Pillars
F1 score

Fine-grained encoding

quality assignment

Bandwidth

usage

Region-based [41, 66]

Uniform quality

Different types of

streaming mediae○
Home

security

Human

detection

PKU-MMD [36]

RGB,

Depth,

InfraRed

Yolo mIoU

Fine-grained encoding

quality assignment on

DNN features

Bandwidth

usage

Region-based [41, 66]f○
g○

h○ Smart

home

Audio-

to-text

Google

AudioSet [2]
Audio Wav2Vec F1 score Audio sampling rate

Bandwidth

usage

Profiling [60, 88]

Voice detection [59]
Different

analytic tasks
i○ Traffic

analytics

Vehicle

segmentation
Traffic [16] RGB

Mask-

RCNN
F1 score

Fine-grained encoding

quality assignment

Bandwidth

usage

DDS [41]

AccMPEG [42]

Table 3: Overview of the experimental setup. Each row represents an analytic pipeline we used to evaluate OneAdapt.

• Home security: We use three types of sensor data (RGB

video sensor, InfraRed sensor, and depth sensor), with 10

videos each from PKU-MMD dataset [36]. The inclusion of

InfraRed and depth data is vital for enhancing night-time

human detection accuracy in home security applications.

• Smart home:We randomly sample 200 audio clips in Google

AudioSet [2].

Pipelines: We use nine analytic pipelines (pipeline a○ - i○ ).

These analytic pipelines show the applicability of OneAdapt
across configuration knobs (pipeline a○ - c○ ), types of stream-

ing media (pipeline d○ - g○ ) and applications (pipeline h○ - i○
). Table 3 summarizes these pipelines, including their target

applications, analytic tasks, datasets, streaming media types,

DNNs, and accuracy metrics.

Knobs and baselines: We describe the knobs and the cor-

responding baselines of these pipelines one by one:

• Pipeline a○ : This pipeline saves bandwidth by adjust-

ing the encoding quality within each 16x16 pixel mac-

roblocks [42, 81]. We benchmark against three methods.

DDS [41] uses a low-quality video for initial inference,

then refines specific regions with high-quality encoding.

EAAR [66] uses results from the previous frame to iden-

tify current frame regions needing high-quality encoding.

AccMPEG [42] runs a sensor-side neural network to deter-

mine regions for high-quality encoding.

• Pipeline b○ : This pipeline optimizes bandwidth using

three knobs: resolution, QP, and B-frame selection like-

lihood [28, 31, 41–43, 60, 65, 66, 87, 88, 90, 91, 93]), all

supported in prevalent video codecs [24, 37, 81]. We im-

plement three baselines for this pipeline. Chameleon [60]

periodically profiles top-k configurations and picks the one

with the highest accuracy under the current bandwidth

budget. AWStream [88] periodically profiles a downsam-

pled subset of configurations and chooses the one that

maximizes accuracy within bandwidth limits. CASVA [91]

runs a reinforcement learning model on the sensor to de-

termine the new configuration.

• Pipeline c○ : This pipeline reduces the GPU computa-

tion usage by running frame filtering using two frame

filtering knobs (pixel difference threshold and area dif-

ference threshold [65]). As for baselines, we implement

Reducto [65], together with a profiling-based baseline [88].

• Pipeline d○ : This pipeline saves bandwidth when stream-

ing LiDAR point clouds by segmenting the 3D space around

the LiDAR sensor into spatial blocks and streaming k% of

LiDAR points from each. The value of 𝑘 can vary between

blocks. While this encoding mechanism is basic, our goal

is not to establish a best practice, but to showcase the ad-

vantage of configuration adaptation. To ensure robustness,

we average results from five repeated experiments. We

compare against two baselines: a region-based method ex-

tended from [66] and a uniform-quality approach, which

applies a fixed encoding quality across blocks.

• Pipeline e○ f○ g○ : These pipelines transform videos into

feature vectors using a sensor-side DNN and then stream

them for server analysis [20]. To reduce bandwidth us-

age, we vary encoding qualities across the spatial blocks

of feature vectors. Traditional heuristics are not directly

applicable on DNN-generated features, so we introduce a

region-based heuristic that prioritizes blocks with recent

human activity [41, 66]. Note that given the 16 configu-

ration knobs in this pipeline, profiling methods fall short,

even when configurations are aggressively downsampled.

As evidence, we implement Chameleon [60] in pipeline e○
as the profiling baseline, which, despite 8x more GPU re-

sources than OneAdapt and only tuning 4 knobs, still fails

to outperform OneAdapt.
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• Pipeline h○ : This pipeline optimizes the delay between

a user’s speech and its transcription into text by reduc-

ing bandwidth usage. We use the audio sampling rate

as our knob. We implement a profiling-based baseline

(Chameleon [60]) and a heuristics baseline that raises the

audio sampling rate when detecting human voice [59].

• Pipeline i○ : This pipeline aims to reduce the bandwidth

usage of running traffic analytics, by assigning different

encoding quality to different spatial areas. We use the

baselines same as pipeline a○ except for EAAR, as EAAR

is not directly applicable to vehicle segmentation DNNs.

Resource usage: For those pipelines that aim to minimize

bandwidth usage, we measure the bandwidth usage by the

bandwidth needed to send one-second worth of data, while

constraining the GPU computation as being able to analyze

1.5-second worth of data per second (we relax this constraint

for one baseline (DDS [41]) as it needs to examine the same

one-second data twice for each second). For those pipelines

that aim to minimize GPU computation usage, we measure

the GPU computation by the number of video frames that

need to be analyzed per second
7
) and we do not constraint

the bandwidth usage of OneAdapt and other baselines.

Hardware settings: We use one Intel Xeon 4100 Silver CPU

as the CPU and NVIDIA RTX 2080 as the GPU.

5.2 Experimental results
Better trade-off between accuracy and resource: We

show that OneAdapt achieves a better trade-off between

accuracy and resource usage across 9 different pipelines in

Figure 7. We see that across these applications, OneAdapt
achieves 15-59% resource usage reduction compared to the

baselines without decreasing inference accuracy, or improves

the accuracy by 1-5% without inflating resource usage. We

highlight that in Figure 7e, a profiling-based baseline (Chameleon)

with 8x more GPU compute than OneAdapt still has a sub-
optimal trade-off between resource usage and accuracy.

Adaptation behavior of OneAdapt: We compared the

adaptability of OneAdapt against two baselines (heuristics-

based and profiling-based) using the audio-to-text pipeline

(pipeline h○ ). As shown in Figure 8, up to the 42
𝑛𝑑

sec-

ond, there is no human voice and all methods use a low

audio sampling rate while maintaining 100% accuracy. At

the 42
𝑛𝑑

second, the accuracy of all methods drops due to

the continued use of the low sampling rate. OneAdapt then
identifies a large AccGrad and promptly raises the sampling

rate, achieving 100% accuracy at the 45
𝑡ℎ

second. In contrast,

the profiling baseline persists with the outdated low sam-

pling rate until its profiling completes at the 47
𝑡ℎ

second.

7
The backpropagation overhead of OneAdapt is also transformed to the

number of frames analyzed per second (by using backpropagation runtime

divided by the runtime of analyzing one frame).
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Figure 7: Demonstrating the trade-off between accuracy and
resource usage of of OneAdapt and several baselines. OneAdapt
achieves higher accuracy with 15-59% resource usage reduction
or 1-5% higher accuracy with less resource usage compared to
the baselines on 9 different pipelines. We note that the results
in each figure are averaged across 5-10 videos or 200 audios
(depending on the dataset used for each figure) and thus have
statistical confidence.

The voice-detection heuristics, being overly cautious, uses a

conservative sampling rate, resulting in suboptimal accuracy.
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Figure 8: Comparing the behavior of OneAdapt against the
profiling-based baseline and heuristic-based baseline. The ac-
curacy of OneAdapt and all baselines drop upon the person
starts talking, but OneAdapt quickly adapts to the audio con-
tent change and improves its accuracy, while the accuracy of
the baselines stays low for a while, as it profiles every 5 seconds.
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width reduction of OneAdapt (the bandwidth usage of the
region-based baseline, divided by the bandwidth usage of
OneAdapt when OneAdapt is of higher accuracy) grows larger.
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Figure 10: Comparing the server-side compute overheads of
OneAdapt against the baselines (measured by the number of
frames inferred by the server per second).

More knobs, more gain: We show thatOneAdapt achieves
higher bandwidth reduction

8
compared to the baseline in

8
We define bandwidth reduction as the bandwidth usage of the region-based

approach, divided by the bandwidth usage of OneAdapt when OneAdapt
has higher accuracy
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Figure 11: Benchmarking the effectiveness of removing un-
needed computation and DNNGrad reusing on a 10-frame video
chunk using pipeline a○ . OneAdapt reduces the GPU runtime
overhead by 87% and the GPU memory overhead by 12%.
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Figure 12: Benchmarking the impact of DNNGrad reusing on
pipeline a○ . DNNGrad reusing does not reduce the accuracy
or increase the resource usage of OneAdapt.

pipeline e○ . In Figure 9, encoding qualities are assigned

to 4, 16, 64 spatial blocks, resulting in 4, 16, 64 knobs to

adapt. We show that the bandwidth reduction of OneAdapt
grows larger when there are more configuration knobs. This

is because OneAdapt near-optimally handles more knobs

without adding GPU computation (sinceOneAdapt only runs
one backpropagation, regardless of the number of knobs)

or CPU computation (by using the optimization for non-

overlapping knobs in §4.2). However, the heuristics encode

similar areas in high quality regardless of number of knobs

and thus cannot significantly improve the resource–accuracy

trade-off when there are more knobs.

Overhead of OneAdapt: We measure the sensor-side

CPU computation and the server-side GPU computation of

OneAdapt9 using the CPU computation divided by the CPU

computation of processing one frame (or 1/10 worth of data

in other data formats), and the GPU computation divided by

the GPU computation of analyzing one frame. We mark the

adaptation overhead of OneAdapt in the hatched area. From

Figure 10, we see that the server-side GPU computation of

OneAdapt is comparable to or lower than the baselines, and

the adaptation overhead of OneAdapt is negligible.
That said, the sensor-side CPU overhead of OneAdapt is

high. ThoughOneAdapt has equal or lower CPU overhead in

9
Note that the bandwidth overhead of streaming DNNGrad from the server

to the client is negligible as it contains >7000x less amount of data after

sampling and compression of DNNGrad.
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pipeline c○ h○ than the baselines,OneAdapt needs to encode
the input data 3 times (in pipeline a○ d○ e○ f○ g○ i○ , even

4 times in pipeline b○ ), resulting in more CPU computation

overhead than the baselines. One may worry thatOneAdapt
imposes too much CPU overhead on the sensor that may

exceed the sensor-side computation capability. To answer

this question, we measure the encoding speed on an Intel

Xeon 4100 Silver CPU and find that it has enough compute

to encode 103.2 video frames per second, which translates to

encoding the input data 10 times (as the input data is 10FPS)

and is sufficient for OneAdapt in our evaluation setup.

Effectiveness of GPU overhead reduction: OneAdapt
introduces two optimizations (§4.1) to reduce the GPU over-

head caused by backpropagation: removing unneeded com-

putation and DNNGrad reusing. Figure 11 tests how these

two techniques reduce the backpropagation overhead of

OneAdapt in terms of GPU runtime and GPU memory on

pipeline a○ , on a 10-frame video chunk. OneAdapt reduces
the GPU runtime overhead of backpropagation by 87% and

the GPU memory overhead by 12%. Though removing un-

needed computation does not change theDNNGrad, DNNGrad

reusing does and may reduce the accuracy or increase the re-

source usage of OneAdapt. To address this concern, we show
that in Figure 12, DNNGrad reusing has negligible impact

on the accuracy and resource usage of OneAdapt.

6 RELATEDWORK
ML application systems: Almost each ML application,

from object detection [28, 31, 41–43, 51, 60–62, 65, 66, 88, 91,

93] to segmentation [41, 42, 65, 66], has seen recent efforts

towards efficient systems that with high inference accuracy

and reduced resource usage in compute (model inference)

and bandwidth/storage (moving data from sensors/sources

to the DNNmodel). They commonly entail various configura-

tions that heavily influence resource usage and/or inference

accuracy. For instance, Chameleon [60] incorporates only

two video coding parameters (resolution and frame rate), and

one parameter that chooses between DNNs. For instance,

Elf [94] proposes a new type of knob that partitions the video

into different slides and distributes them to a different server

for faster inference. Recent work [27, 51, 62] expands system

designs with online model training as another configuration,

in order to handle the drift of the input content.

Instead of proposing a new system, we design OneAdapt
to better adapt a range of existing configurations. That said,

OneAdapt as-is does not support for all configurations, such
as those that modify the analytical DNN model itself.

Adaptation in video analytics systems: To cope with

dynamic video input and resource availability, video analyt-

ics systems need to timely and optimally set various con-

figurations [27, 41, 42, 60, 80, 86–88, 90, 91]. Two general

approaches exist. One relies on (offline or periodic) profiling

to search the configuration space for the optimal configu-

ration [88] and leveraging the spatial-temporal locality of

the input content to reduce the profiling frequency [60].

However, as elaborated in §2.3, the high overhead of such

profiling makes frequent adaptation infeasible. On the other

hand, many heuristic-based solutions forgo profiling and

instead select configurations based on historical DNN out-

puts [41, 66, 94] (including the intermediate outputs) or by

analyzing the input data using cheap models [28, 42, 65, 80,

91, 93]. This approach adapts quickly, but as shown in §2.3,

this approach generally sacrifices optimality and has low

accuracy.

Different from prior work, OneAdapt harnesses the dif-
ferentiability of DNN for configuration adaptation. We use

the differentiability of the DNN to cheaply calculate Output-

Grad on all knobs with no extra inference and with constant

GPU overhead, allowing OneAdapt to frequently adapt to a

near-optimal configuration.

7 LIMITATION
Though OneAdapt can optimize a wide range of knobs in

streaming media analytics, we have not tested if OneAdapt
will work for applications beyond streaming media analytics

(such as generative tasks), or knobs that alter the final DNN

itself (e.g., DNN selection [60] and DNN customization [27]).

We show that the gradient-ascent strategy of OneAdapt
can adapt the configurations when the content of input data

changes frequently (e.g., in autonomous driving scenarios).

However, this strategy may be sub-optimal when the input

content changes too fast (e.g., in car racing scenarios).

When handling more knobs, though the GPU overhead

of OneAdapt does not inflate (since OneAdapt only runs

one backpropagation), the CPU overhead of OneAdapt still
linearly increases for those knobs that the CPU overhead

optimization (§4.2) do not apply, constraining the maximum

number of knobs that OneAdapt can tune.

Also, the GPUmemory overhead of OneAdapt (introduced
by running backpropagation) is not negligible. That said, this

overhead can be efficiently optimized by gradient checkpoint-

ing [30, 50], gradient compression [29, 67] and reversible neu-

ral networks [32, 48] and we leave optimizing this overhead

to future work.

8 CONCLUSION
OneAdapt addresses a common need of DNN-based appli-

cations to timely adapt key configurations over time. The

key insight is to harness the differentiability of most DNN

models, which allows precise estimation of the gradient of

accuracy with respect to all configuration knobs with one

backpropagation operation. OneAdapt’s improvement (in
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lower resource usage, or higher accuracy, or both) is vali-

dated in four applications, five types of configuration knobs,

and five types of streaming media.
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Notation Definition Example
𝑛 Number of knobs 𝑛 = 2

𝑡
𝑡 th adaptation interval (by default,

each interval is 1 second)

𝑡 = 1

𝑇
Total number of adaptation inter-

vals

𝑇 = 60

k𝑡
Configuration: a vector of knobs

with their selected values at inter-

val 𝑡

k1 =(frame rate=10, resolu-

tion=480p)

𝑘𝑖,𝑡
The value of 𝑖th knob in configura-

tion k𝑡
𝑘2,1=480p

Δ𝑘𝑖 A small increase on the 𝑖th knob Δ𝑘2=120p
x𝑡 input data at interval t

r(k𝑡 ; x𝑡 )
or

r(k𝑡 )

Resource usage of config k𝑡 under

x𝑡 . We omit x𝑡 for simplicity

r(k1 ) =5Mbps

𝑅𝑒𝑠 (k𝑡 ; x𝑡 )
or

𝑅𝑒𝑠 (k𝑡 )

Inference results of config k𝑡 un-

der x𝑡 . We omit x𝑡 for simplicity.

𝑅𝑒𝑠 (k1 ) = {
(obj1, “car”, score: 0.2),

(obj2, “bike”, score: 0.8)

}

𝑒

An element in the inference results

(e.g., a detected object). Each el-

ement is associated with a confi-

dence score.

𝑒 =

(obj1, “car”, score: 0.2)

𝜃 Confidence threshold 𝜃 = 0.5 (default)

y(k𝑡 ; x𝑡 )
or

y(k𝑡 )

DNN input generated by configu-

ration k𝑡 using input data x𝑡 . We

omit x𝑡 for simplicity.

z(k𝑡 ; x𝑡 )
or

z(k𝑡 )

Output utility: number of above-

confidence-threshold elements.

We omit x𝑡 for simplicity.

z(k1 ) = 1

𝐴𝑐𝑐 (k𝑡 ;𝑥𝑡 )
or

𝐴𝑐𝑐 (k𝑡 )

Accuracy of the configuration k𝑡
under input data x𝑡 , defined as the
similarity between the current in-

ference result 𝑅𝑒𝑠 (k𝑡 ) and the in-

ference results generated using the

most resource-demanding config-

uration.

𝐴𝑐𝑐 (k1 ) = 100%

𝛼 Learning rate of OneAdapt 𝛼 = 0.5 (default)

𝜆

The hyperparameter that trade-off

between accuracy and resource us-

age.

𝜆 = 1

Table 4: Summary of the notations used in OneAdapt
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B IMPLEMENTATION OF CONVOLUTION
Beyond the existing GPU optimization, we also provide an-

other optimization that further reduces the GPU computa-

tion and memory cost of backpropagation. We contrast the

implementation of the convolution operator between normal

backpropagation and the backpropagation in OneAdapt in
Algorithm 1 and Algorithm 2.

Algorithm 1 Convolution

function forward(cache, input, kernel)

output← convolution(input, kernel)
cache.push(input, kernel)

end function
function backward(cache, outputGrad)

input, kernel← cache.pop()

inputGrad← convGradInput(gradOutput, kernel)
kernelGrad← convGradKernel(outputGrad, input)

end function

Algorithm 2 Optimized Convolution

function forward(cache, input, kernel)

output← convolution(input, kernel)
cache.push(kernel.abs().mean(dim=‘channel’))

end function
function backward(cache, outputGrad)

kernel← cache.pop()

inputGrad← convGradInput(outputGrad, kernel)
kernelGrad← convGradKernel(outputGrad, input)

end function

The intuition is thatOneAdapt focuses on the DNNGrad of
different spatial areas instead of different channels between

different channels in the DNN input (e.g., the RGB color

channel). We empirically find that this optimization has little

impact on the bandwidth–accuracy trade-off of OneAdapt.

C REUSING DNNGRAD
The intuition of reusing DNNGrad is that: although the exact

value of DNNGrad may vary across different frames, the spa-

tial areas that have high DNNGrad tend to be stable within

several consecutive frames. To verify this intuition, we ob-

serve how the similarity (we use cosine similarity) between

the saliency of two frames changes with respect to the dis-

tance between these two frames (measured by the absolute

difference of the video frame id) on a three-second video

in our dataset. As shown in Figure 13, we observe that this

similarity decreases when the frame distance becomes larger,

but the similarity is still greater than 80% when the frame

distance is less than 10.

Dataset

Streaming

media type

#videos/

#audios

Total

length

Description

Traffic [16]
RGB

5 5min Traffic camera footage

Downtown [16] 10 20min Driving in downtwon

Country [16] 8 18min Driving in countryside

PKU-MMD [36]

RGB 10 20min

Human moving

in a static scene

Depth 10 20min

Infrared 10 20min

KITTI [46] LiDAR 6 4min Driving on city streets

Google

AudioSet [2]

Audio 200 33min

Advertisement and

leisure activities

Table 5: Summary of our dataset.
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Figure 13: The similarity of the saliency remains higher than
80% when the frame distance is less than 10.
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Figure 14: Empirically OneAdapt converges within 3-5 sec-
onds.

D SUMMARIZING THE DATASET
Table 5 summarizes the dataset used in OneAdapt.

E THEORETICAL CORRELATION
BETWEEN OUTPUTGRAD AND
ACCGRAD

In this section, we prove the correlation between AccGrad

and OutputGrad by treating them as the analytical gradient

(so the chain rule of derivative holds). We are actively work-

ing on refining the proof to extend it to numerical gradient

case [17].

Definitions: For a given input, we let 𝑅𝑒𝑠 (k) denote the
output under a configuration k. We define its accuracy as

𝐴𝑐𝑐 (k) =
∑︁

𝑒∈𝑅𝑒𝑠 (k)
𝑓 (𝑒)𝐶 (𝑒), (3)

and the output utility as

z(k) =
∑︁

𝑒∈𝑅𝑒𝑠 (k)
𝑓 (𝑒). (4)
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where 𝑓 (𝑒) is a differentiable function that returns a value

close to 1 when 𝑒 is confidently detected (i.e., the confidence
score of 𝑒 is greater than the confidence threshold 𝜃 ) and

close to −1, otherwise10, and 𝐶 (𝑒) = 1 if 𝑒 is confidently

detected under the most expensive configuration, and𝐶 (𝑒) =
−1 otherwise.
Theorem: For any knob 𝑘 in configuration k, we have

𝜕𝐴𝑐𝑐 (k)
𝜕𝑘︸    ︷︷    ︸

AccGrad

=

���� 𝜕z(k)𝜕𝑘

����︸  ︷︷  ︸
OutputGrad

.

under the following assumptions:

1. For each 𝑘 in the configuration k and any element 𝑒 in

𝑅𝑒𝑠 (k), we have:

𝜕𝑓 (𝑒)𝐶 (𝑒)
𝜕𝑘

≥ 0. (5)

2. For any element 𝑒 in 𝑅𝑒𝑠 (k), there exists a binary matrix

𝑀 (𝑒) s.t.

𝑀 (𝑒) × 𝜕z(k)
𝜕y

= 𝑀 (𝑒) ×
𝜕
∑

𝑒′∈𝑅𝑒𝑠 (k) 𝑓 (𝑒′)
𝜕y

=
𝜕𝑓 (𝑒)
𝜕y

, (6)

where × means element-wise multiplication and y refers

to DNN input.

3. Finally, we assume

���� 𝜕z(k)𝜕y
⊗ 𝜕y

𝜕𝑘

���� = ���� 𝜕z(k)𝜕y

���� ⊗ ���� 𝜕y𝜕𝑘 ���� (7)

Proof:

10
Note that in our evaluationwe use 𝑓 (𝑒 ) = 2𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (20(𝑒.𝑠𝑐𝑜𝑟𝑒 − 𝜃 ) )−

1 (where 𝑒.𝑠𝑐𝑜𝑟𝑒 is the confidence score of 𝑒 and 𝜃 is the confidence thresh-

old), but the choice of 𝑓 does not affect the validity of our proof.

𝜕𝐴𝑐𝑐 (k)
𝜕𝑘

=
𝜕
∑

𝑒∈𝑅𝑒𝑠 (𝑘 ) 𝑓 (𝑒 )𝐶 (𝑒 )
𝜕𝑘

(definition of accuracy)

=
∑︁

𝑒∈𝑅𝑒𝑠 (𝑘 )

𝜕𝑓 (𝑒 )𝐶 (𝑒 )
𝜕𝑘

(linearity of derivative)

=
∑︁

𝑒∈𝑅𝑒𝑠 (𝑘 )

���� 𝜕𝑓 (𝑒 )𝐶 (𝑒 )𝜕𝑘

���� (equation 5)

=
∑︁

𝑒∈𝑅𝑒𝑠 (𝑘 )

���� 𝜕𝑓 (𝑒 )𝜕𝑘

���� ( |𝐶 (𝑒 ) | = 1)

=
∑︁

𝑒∈𝑅𝑒𝑠 (𝑘 )

���� 𝜕𝑓 (𝑒 )𝜕y
⊗ 𝜕y

𝜕𝑘

���� (chain rule,y is DNN input)

=
∑︁

𝑒∈𝑅𝑒𝑠 (𝑘 )

����𝑀 (𝑒 ) × 𝜕z(k)
𝜕y

⊗ 𝜕y
𝜕𝑘

���� (equation 6)

=
∑︁

𝑒∈𝑅𝑒𝑠 (𝑘 )
𝑀 (𝑒 ) ×

���� 𝜕z(k)𝜕y
⊗ 𝜕y

𝜕𝑘

���� (𝑀 (𝑒 )is binary matrix)

=
∑︁

𝑒∈𝑅𝑒𝑠 (𝑘 )
𝑀 (𝑒 ) ×

���� 𝜕z(k)𝜕y

���� ⊗ ���� 𝜕y𝜕𝑘 ���� (equation 7)

=
©­«

∑︁
𝑒∈𝑅𝑒𝑠 (𝑘 )

𝑀 (𝑒 ) ×
���� 𝜕z(k)𝜕y

����ª®¬ ⊗
���� 𝜕y𝜕𝑘 ���� (linearity of inner product)

=
©­«©­«

∑︁
𝑒∈𝑅𝑒𝑠 (𝑘 )

𝑀 (𝑒 )ª®¬ ×
���� 𝜕z(k)𝜕y

����ª®¬ ⊗
���� 𝜕y𝜕𝑘 ���� (distributivity)

=

������©­«
∑︁

𝑒∈𝑅𝑒𝑠 (𝑘 )
𝑀 (𝑒 )ª®¬ × 𝜕z(k)

𝜕y

������ ⊗
���� 𝜕y𝜕𝑘 ���� (𝑀 (𝑒 ) is non-negative)

=

������ ∑︁
𝑒∈𝑅𝑒𝑠 (𝑘 )

𝑀 (𝑒 ) × 𝜕z(k)
𝜕y

������ ⊗
���� 𝜕y𝜕𝑘 ���� (distributivity)

=

������ ∑︁
𝑒∈𝑅𝑒𝑠 (𝑘 )

𝜕𝑓 (𝑒 )
𝜕y

������ ⊗
���� 𝜕y𝜕𝑘 ���� (equation 6)

=

���� 𝜕∑𝑒∈𝑅𝑒𝑠 (𝑘 ) 𝑓 (𝑒 )
𝜕y

���� ⊗ ���� 𝜕y𝜕𝑘 ���� (linearity of derivatives)

=

���� 𝜕z(k)𝜕y

���� ⊗ ���� 𝜕y𝜕𝑘 ���� (definition of z (k), we

estimates AccGrad this way)

=

���� 𝜕z(k)𝜕y
⊗ 𝜕y

𝜕𝑘

���� (equation 7)

=

���� 𝜕z(k)𝜕𝑘

���� (chain rule)

Empirically, we show in Figure 6, the cosine similarity

between AccGrad and OutputGrad still remains over 0.91,

indicating that they still have high correlation.
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