
TMC: Near-Optimal Resource Allocation for
Tiered-Memory Systems

Yuanjiang Ni
∗

Alibaba Group

USA

Pankaj Mehra

Elephance Memory, Inc.

USA

Ethan Miller

UC Santa Cruz

Pure Storage

USA

Heiner Litz

UC Santa Cruz

USA

Abstract
Main memory dominates data center server cost, and hence

data center operators are exploring alternative technologies

such as CXL-attached and persistent memory to improve

cost without jeopardizing performance. Introducing multiple

tiers of memory introduces new challenges, such as selecting

the appropriate memory configuration for a given workload

mix. In particular, we observe that inefficient configurations

increase cost by up to 2.6× for clients, and resource stranding
increases cost by 2.2× for cloud operators. To address this

challenge, we introduce TMC, a system for recommending

cloud configurations according to workload characteristics

and the dynamic resource utilization of a cluster. Whereas

prior work utilized extensive simulation or costly machine

learning techniques, incurring significant search costs, our

approach profiles applications to reveal internal properties

that lead to fast and accurate performance estimations. Our

novel configuration-selection algorithm incorporates a new

heuristic, packing penalty, to ensure that recommended con-

figurations will also achieve good resource efficiency. Our

experiments demonstrate that TMC reduces the search cost

by up to 4× over the state-of-the-art, while improving re-

source utilization by up to 17% as compared to a naive policy

that requests optimal tiered memory allocations in isolation.

∗
Work was performed as a graduate student at UC Santa Cruz

This work is licensed under a Creative Commons Attribution International
4.0 License.
SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0387-4/23/11.
https://doi.org/10.1145/3620678.3624667

CCS Concepts
• Information systems→ Storage class memory; • Soft-
ware and its engineering→Memory management.

Keywords
Tiered memory management, Resource allocation

ACM Reference Format:
Yuanjiang Ni, Pankaj Mehra, Ethan Miller, and Heiner Litz. 2023.

TMC: Near-Optimal Resource Allocation for Tiered-Memory Sys-

tems. In ACM Symposium on Cloud Computing (SoCC ’23), October
30–November 1, 2023, Santa Cruz, CA, USA. ACM, New York, NY,

USA, 18 pages. https://doi.org/10.1145/3620678.3624667

1 Introduction
Continuing growth in data center applications’ main mem-

ory requirements [9, 50, 76], along with the slowdown of

DRAM scaling, renders main memory one of the costliest

components of data center infrastructure. Moreover, due to

the strict service level objectives (SLO) imposed by data cen-

ter applications, memory is often over-provisioned. Alibaba

reported [31] CPU and memory utilization of 38% and 88%,

respectively, in their clusters, while Microsoft found [45] that

50% of the provisioned main memory capacity remains un-

touched by virtual machines (VM). Emerging storage class

memories (SCM) [1, 14, 23, 38, 39, 42, 46, 77, 78] promise

higher density and lower energy cost while only moder-

ately degrading performance. Memory disaggregation [4, 30,

47, 48, 76] and Compute Express Link (CXL) attached mem-

ory [16, 45, 50, 64] enable pooled deployment of recycled,

slower, previous-generation memory across a fabric. While

remotememory induces higher access latency, it significantly

reduces costs, as shown in prior work [4, 40, 45]. Disaggre-

gated, CXL-attached, and persistent memories are practical,

as they can be mapped into application virtual address space

and accessed using conventional load-store instructions. Al-

though such tiered-memory systems are now increasingly

supported by operating systems such as Linux [39, 50, 76, 78],

it remains unclear how applications should allocate their data

376

https://doi.org/10.1145/3620678.3624667
https://doi.org/10.1145/3620678.3624667
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3620678.3624667&domain=pdf&date_stamp=2023-10-31

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA Yuanjiang Ni, Pankaj Mehra, Ethan Miller, and Heiner Litz

structures between the faster, more expensive and the slower,

less-expensive tiers for maximizing performance per total

cost of ownership (TCO).

Cloud providers such as Microsoft Azure [53], Amazon

AWS [5], and Google [28] offer Infrastructure as a Service

(IaaS) to satisfy the computing needs of their clients. In

such platforms, optimizing tiered memory systems becomes

even more challenging as the optimal allocation of memory

now depends on multiple applications and their require-

ments. The selection of the right resources benefits the cloud

provider and client. It reduces the overall computation cost,

informs pricing models, and enables providers to build phys-

ical systems with the right amount of DRAM and alternative

memory technologies.

For instance, as we will show in Section 2.1, a wrong con-

figuration increases the TCO by up to 2.6× for the cloud

customer. In addition, the optimization of cloud configura-

tions also determines the overall resource efficiency of a data

center. In particular, to reduce resource stranding, an efficient

tiered-memory configuration policy also needs to consider

the actual available amount of memory in the different tiers.

Optimizing the cloud resource configurations such as the

fast to slow memory ratio in tiered memory systems and

predicting its performance implications is challenging due to

the large search space. Utilizing a brute-force approach, an

infeasible number of configurations covering all fast to slow

memory ratios and hardware resources needs to be evalu-

ated to devise accurate performance and TCO models. Prior

works such as Cherrypick [3] and Selecta [41] have tried to

address this challenge by obtaining end-to-end performance

measurements of a considerable number of configurations

learning the application’s sensitivity to memory bandwidth

and latency. These systems utilize Bayesian Optimization

(BO) and Collaborative Filtering (CF) to reduce the search

space, by predicting the performance of configurations based

on a small set of measurements. Nevertheless, these tech-

niques suffer from several shortcomings. BO, for instance,

does not generate a performance model, and hence it is un-

able to explore Pareto-optimal cost-performance trade-offs

required to minimize the cost for both the cloud provider and

customer (i.e. it predicts only a single performance-optimal

configuration). CF [20, 41] has been applied to reduce search

overheads, however, its complexity still scales linearly with

the number of explored configurations while also failing to

provide a performance model.

To overcome these challenges, we introduce the tiered

memory configurator (TMC), a mechanism to effectively

manage systems with multiple tiers of memory, including

the last-level cache (LLC), slow memory (SCM/CXL/remote),

and the fast memory (DRAM) tier. TMC recommends near-

optimal tiered-memory configurations according to the be-

havior of the application and the real-time utilization of the

<
0.

0,
1>

<
0.

2,
1>

<
0.

4,
1>

<
0.

6,
1>

<
0.

8,
1>

<
1.

0,
1>

<
0.

0,
28
>

<
0.

2,
28
>

<
0.

4,
28
>

<
0.

6,
28
>

<
0.

8,
28
>

<
1.

0,
28
>

0

1

2

3

E
xe

cu
ti

on
ti

m
e

(N
or

m
al

iz
ed

)

Performance

0.0

0.5

1.0

1.5

E
xe

cu
ti

on
co

st
(N

or
m

al
iz

ed
)

Cost

Figure 1: Execution time and cost analysis for 12 〈Slow
memory ratio, LLC capacity〉 configurations (graph500
workload): The slow memory ratio represents the frac-
tion of slow memory in relation to the total memory
capacity. The LLC capacity indicates the number of
LLC ways allocated in each configuration.

data center. Instead of utilizing a machine-learning-based,

black-box approach as in prior works, TMC devises a perfor-

mance model based on the understanding of hardware per-

formance characteristics. Our resulting model only contains

a minimal amount of workload-specific variables, which only

requires three profile runs of an application. This separates

our work from techniques such as simple regression [54],

which requires many profile runs to obtain a predictive

model. To optimize both performance and cost, our method-

ology optimizes for a single metric: performance per TCO. In

particular, we determine the additional hardware resources

that are required to offset a performance degradation to com-

pute the holistic performance per TCO of a system. In addi-

tion, we introduce a new heuristic, packing penalty, which
penalizes the configurations that lead to resource-stranding.

As a result, TMC not only optimizes performance per TCO

for a particular user but also ensures efficient real-time re-

source utilization for the data center operator. In summary,

this paper makes the following contributions:

• We investigate hardware-based profiling that can be used

to unearth the application-specific properties for estimat-

ing performance per TCO.

• We propose a comprehensive memory performance esti-

mation technique that requires only three profile runs.

• We propose a novel optimization mechanism that pro-

duces ideal configurations for both cloud customers and

providers.

• We show that TMC reduces the search overhead by 3×
compared to the state-of-the-art improving resource effi-

ciency in the cloud by 17%.

377

TMC: Near-Optimal Resource Allocation for Tiered-Memory Systems SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

2 Background and Motivation
In this section, we discuss the application ofmultiplememory

tiers in the datacenter. Then we discuss how the selection of

the VM’s memory configuration affects resource efficiency.

2.1 Cost Efficiency for Cloud Customers
Public IaaS cloud providers such as Amazon’s EC2 [5] of-

fer their customers a limited number of predefined VM in-

stance types and charge them on a per-hour basis. On the

other hand, a few IaaS cloud providers, such as Google’s

Compute Engine, further allow cloud users to create a VM

instance with a customized number of vCPUs and amount

of memory [28]. Prior work [84] has shown that enabling

VM customization is beneficial for both the provider and

the user. This work targets a future IaaS cloud incorporat-

ing both traditional DRAM and additional, slower memory

tiers. We expect, that in future clouds, customers will be

able to configure the number of vCPUs, the amount of local

DRAM, the amount of second-tier memory, and the capacity

of the last-level cache (LLC) of their vCPUs in a VM. Cloud

providers have the option to leverage technologies like In-

tel’s cache allocation technology (CAT)[34, 65] or fine-grain

cache partitioning techniques such as vantage[65] to dynam-

ically adjust the sizes of the last-level caches for different

applications. The IaaS cloud then charges the users based on

Equation 1.

Total cost = VM cost × Execution time (1)

Scaling down a VM configuration reduces its hourly VM

cost, however, it also increases the execution time of ap-

plications. To minimize the total cost, one must choose a

proper configuration that optimizes both. Figure 1 shows the

execution time and cost for graph500 utilizing various config-
urations with different allocations of slow and fast memory

as well as different last-level cache sizes. As the fraction of

slow memory increases, the total cost is reduced while the

run time is increased. This is because the hourly cost savings

outweigh the performance penalty of scaling down the VM.

However, the total cost eventually increases as the higher

run time exceeds the savings in hourly cost. Note that in

this experiment, we translate a performance slowdown into

cost by computing the additional total number of VMs re-

quired to offset the performance degradation. This assumes

that applications are throughput-bound, i.e. an increase in

execution time can be offset with additional hardware re-

sources. This assumption is typical for data centers that scale

user request-level throughput with hardware resources or

deploy high fan-out architectures (e.g. Google Websearch)

to distribute the execution time of a request across servers.

Applications Config 1 Config 2 Config 3

2× slower,

0.7× cost

3× slower,

0.4× cost

4× slower

0.3× cost

cactusBSSN 〈 0.1, 28 〉 〈 0.1, 28 〉 〈 1.0, 28 〉
graph500 〈 0.4, 28 〉 〈 0.4, 28 〉 〈 0.9, 20 〉
memcached 〈 0.0, 2 〉 〈 0.9, 2 〉 〈 0.9, 2 〉
xsbench 〈 0.9, 4 〉 〈 0.9, 3 〉 〈 0.9, 3 〉
canneal 〈 0.6, 2 〉 〈 0.6, 1 〉 〈 0.6, 1 〉
xhpcg 〈 0.0, 1 〉 〈 0.0, 1 〉 〈 0.0, 1 〉

Table 1: Diversity of optimal configurations: Each col-
umn represents the optimal memory configurations
for a specific tiered-memory configuration.

cactusB
SSN

graph500

memcached

xsbench

canneal
xhpcg

0

1

2

T
ot

al
co

st
(N

or
m

al
iz

ed
)

Min. Max.

Figure 2: Costs for best/worst/average configuration,
normalized to the average cost of all configurations.

Table 1 shows the optimal tiered memory ratio and LLC

configuration across six different workloads and three mem-

ory technologies. Each column represents a specific tiered

memory technologywhere the slowmemory is s times slower

and p times cheaper than DRAM. Performance per TCO opti-

mal configurations for each workload are shown in the form

of 〈 slow memory ratio, LLC size 〉. For example, if the slower

memory tier has a 3× higher read latency but 0.4× lower cost,
the cost-optimal configuration for the workload graph500
has a 〈 slow memory ratio = 0.4, LLC size = 28 ways 〉. As we
can see, there exists no configuration that is uniformly best

for all workloads or memory technologies. Figure 2 further

shows the minimum and maximum cost for the different

hardware configurations and workloads (normalized to the

average cost of all configurations). As can be seen, customers

spend 1.2–1.5× less for the optimal configuration compared

to the average configuration and 1.4 - 2.6× less compared to

the worst configuration.

While this work mainly evaluates two memory tiers and

variable LLC capacity, it can be easily extended to handle

additional tiers and other resources such as memory band-

width. We investigate general techniques that can be used

to uncover application-specific properties for the workloads

regardless of the underlying memory technology—the slow

378

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA Yuanjiang Ni, Pankaj Mehra, Ethan Miller, and Heiner Litz

2 4 6 8 10 12 14
Workload mix

0

1

2

P
ac

ki
ng

effi
ci

en
cy

Figure 3: The packing efficiency improvement achieved
by a resource-optimal policy over the naive policy.

memory tier can be locally attached 3DXP or CXL-attached

DRAM/3DXP. Furthermore, while we do not explicitly dis-

cuss latency-critical workloads, we efficiently support them

through customizable objective functions, e.g. TMC can find

the most cost-effective configuration fulfilling a certain SLO

requirement (<X% slowdown).

2.2 Resource Efficiency for Cloud Operators
Cloud customers request VM instances of a specific hardware

configuration. The cloud’s VM scheduler is responsible for

selecting a server that can hold the new VM according to

the hardware requirements and the current availability of

machines in the cluster. One important aspect for optimizing

the cost efficiency of such clouds is to optimize the packing

density [70]. If VMs can be packed into fewer machines at

a given time, idle machines can be powered down to save

energy and cost, or they can be used to run low-priority batch

jobs. Packing inefficiency leads to resource stranding where

one of the resources (e.g. vCPUs) becomes fully utilized while

others (e.g. memory) are not. Existing cluster schedulers [27,

29, 71] consider packing efficiency during job scheduling to

maximize cloud resource utilization. However, they fail to

be effective if the resource demand of the VM workload is

fundamentally unbalanced. For example, if all workloads at

a given moment request disproportionately large amounts

of DRAM, a large amount of second-tier memory can be

left unused. VM configurations need to adapt based on the

real-time resource utilization of the cloud.

We thus investigate the potential upper-bound benefit

of considering packing efficiency when choosing a tiered

memory configuration. In particular, we determine the opti-

mal slow-to-fast memory ratio based on resource availabil-

ity. We evaluate 15 different workload mixes consisting of

4 applications each and compute the benefit provided by

the resource-optimal policy considering packing efficiency

over a naive policy. For additional information regarding the

workload mix, please refer to Section 4. The naive policy re-

quests optimal tiered memory allocations for each individual

application in isolation, whereas the resource-optimal policy

considers the availability of physical hardware resources.

For instance, if a machine contains 3× more slow than fast

memory, the resource-optimal policy reserves 0.5× fast and

1.5× slow memory regardless of what the actual optimal

slow-to-fast memory ratio of an application is. As shown

in Figure 3, the resource-optimal policy achieves up to 2.2×
higher packing efficiency than the naive cost-optimal config-

uration, motivating the consideration of both configuration

cost and packing efficiency.

2.3 Performing Optimal Resource
Allocation

Resource allocation in tiered memory systems must be per-

formed whenever an application is submitted to the cluster,

considering the workload’s requirements and currently avail-

able physical resources. Performing optimal allocations is
generally unfeasible due to the large search space of configu-

rations and resources that need to be explored. It is crucial to

minimize the required time for identifying a good memory

configuration for a workload since the primary objective of

using tiered memory systems is to reduce the total cost of

ownership (TCO). In particular, the runtime cost of deter-

mining a near-optimal configuration should be significantly

lower than executing the workload. Prior works tried to

address this challenge mainly through black-box machine

learning techniques.

Machine learning. Machine learning techniques [52, 58,

67, 69] such as KNN, Support Vector Machines (SVM), or

regression can predict application performance under a spe-

cific machine configuration. However, traditional machine

learning methods are not aware of search cost considerations

and often require a large number of samples.

Collaborative filtering. Collaborative filtering [20, 41]
predicts the performance of an unknown application across

various configurations using sparse performance data ob-

tained from profiling training workloads. However, systems

like Selecta [41] need substantial training on diverse work-

loads and configurations to achieve accurate predictions.

Bayesian Optimization. Previous works [3] propose the
use of Bayesian optimization (BO) to minimize the search

cost in optimizing an objective function that maps a specific

configuration to an execution cost. BO treats the objective

function as a black box and aims to find an optimal solution

with minimal samples. However, incorporating resource effi-

ciency goals with BO is challenging, as it requires initiating a

new search every time resource utilization changes, leading

to increased search costs.

3 TMC Design
In this section we describe how TMC produces tiered mem-

ory and LLC configurations optimizing cost efficiency for

both the cloud provider and user.

379

TMC: Near-Optimal Resource Allocation for Tiered-Memory Systems SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

Figure 4: Workflow of TMC. The frequency table records the memory access rate (MAR) and size of each data
structure, while the cache miss curve estimates the overall memory access rate by considering the number of
allocated last-level cache (LLC) ways.

name description

fastmax 0% slow memory, maximum LLC size

fastmin 0% slow memory, minimum LLC size

slowmax 100% slow memory, maximum LLC size

Table 2: Reference configurations

3.1 Overview
TMC requires 3 inputs: i) the workload submitted by a cloud

customer, ii) the cost model stating the price of slow and fast

memory as well as the cost of an LLC way, and iii) the latest

resource utilization of the available hardware. To enable

its performance predictions, TMC monitors the memory

consumption of an application during a profiling stage. TMC

then automatically determines two VM parameters: the near-

optimal memory ratio of local DRAM and slow memory and

the number of LLC-ways allocated to the VM.

In line with prior work [23, 74], we observe that the charac-

teristics above are almost always data-structure specific. As

a result, our proposed methodology determines application

properties such asmemory access rate on a per data-structure

level and not on raw page data. One advantage of this design

choice is that it takes advantage of application semantics,

allowing for memory data access tracking at a coarser gran-

ularity. This results in reduced memory consumption for

storing access statistics, lower sampling overhead, higher

accuracy, and independence from the OS page size. For ex-

ample, in our applications (as shown in Table 5), we have up

to 30 data structures, which would require only 960 bytes of

memory for storing access statistics, assuming a conservative

overhead of 32 bytes per data structure. Additionally, while it

is challenging to track the access rate for individual pages of

4 KiB or 2 MiB using existing techniques [1, 24, 51, 61] such

as Intel’s precise event-based sampling (PEBS), assessing the

access rate at the data structure level is straight forward.

Being agnostic to the OS page size is also important for ap-

plications that utilize huge pages [51].

To enable data-structure profiling, each memory alloca-

tion needs to be associated with a tag that links to a specific

data structure. In line with prior work [23], our prototype

offers a customized memory allocation interface enabling

the user or an automated script can provide a tag. Memory

allocated for distinct data structures (e.g., sharing the same

tag) will be served from separate memory chunks of coarse-

grained memory units of e.g. 2 MiB. Consequently, data from

different data structures can be prevented from sharing the

same page. The procedure for annotating data structures typ-

ically starts by pinpointing the source-code locations where

substantial memory allocations occur. These allocations are

then substituted with our customized memory allocator that

includes an extra tag passed as an argument. To prevent over-

looking any allocations, one can utilize an LD_PRELOAD

wrapper to intercept all malloc calls and trace the call stack.

Regarding containers, our prototype utilizes a customized

allocator, guaranteeing that all allocations made by these

containers receive appropriate tagging. In our experimental

work, we find ourselves modifying an average of 23 lines

of code for the benchmarks. In Section 3.6, we discuss an

automated approach to assign tags, eliminating any burden

to the programmer.

Figure 4 outlines the workflow of TMC. TMC initially

measures important application properties, including the

memory access rate, observed latency, and memory level

parallelism (MLP), alongside the execution time of the work-

load under three reference configurations (fastmin, fastmax ,

and slowmax). Note that while our current approach selects

only three reference configurations, incorporating additional

reference points would enhance the model’s accuracy, albeit

with an associated increase in search cost. Detailed informa-

tion about these reference configurations can be found in

Table 2. In Section 3.2 and Section 3.3, we demonstrate how

380

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA Yuanjiang Ni, Pankaj Mehra, Ethan Miller, and Heiner Litz

Definition

CPI Cycle Per Instructions

CPI cache CPI in a system with perfect LLC cache

MAR Memory access rate (accesses per instruction)

MARslow Memory access rate to second-tier memory

MLP Effective memory level parallelism

𝐿dram Effective DRAM latency

𝐿slow Effective slow-memory latency

Δ𝐿 Latency increase in slow memory over fast memory

Table 3: Performance metric list with definitions.

TMC utilizes these application properties and the execution

time of the reference configurations, to facilitate efficient

and accurate performance estimation. An accurate perfor-

mance estimation model allows TMC to select appropriate

configurations for the tiered memory. For each configuration

with different sizes of LLC, fast memory, and slow memory,

we utilize Equation 1 to calculate the total cost. It should

be noted that the cost of the virtual machine (VM) for each

configuration is determined by the cloud’s price profile. Fur-

ther details about the price profile used in our experiment

can be found in Section 4.1. Furthermore, in Section 3.4, we

will showcase the application of the estimated performance

profiles in guiding data placement in tiered memory systems.

TMC generates data placement instructions based on data

structure hotness, and a hybrid memory-aware allocator en-

forces per-data structure limits to optimize the efficiency of

the tiered memory system.

3.2 TMC Performance Model
In this section, we analyze prior work on application perfor-

mance modeling and then propose an improved model that

can handle tiered memory systems. Our model is based on

prior work [15] that proposed Eq. 2 to quantify the relation-

ship between off-chip memory accesses and the application

performance in a homogeneous system (e.g. DRAM-only).

Table 3 shows the performance metrics used by the devised

models.

CPI = CPI cache +
MAR × 𝐿dram

MLP
(2)

In Eq 2, CPI cache represents the on-core CPU cycles, while

MAR×𝐿dram
MLP accounts for the off-core cycles spent waiting for

memory accesses. When memory accesses are processed se-

quentially, the off-core cycles are MAR × 𝐿dram e.g. MLP = 1.

However, due to existing memory level parallelism (MLP),

some of the memory latency is amortized, allowing for con-

current memory accesses and reducing the effective off-core

cycles. We expand upon Eq.2 to encompass systems featuring

a tiered memory hierarchy. We incorporate the performance

penalty introduced by a second-tier memory, as depicted in

Eq.3:

CPI = CPI cache +
MAR × 𝐿dram

MLP
+ MARslow × Δ𝐿

MLP
(3)

Equation 3 signifies that various factors influence the per-

formance of applications in tiered memory systems. These

factors include the on-core performance (CPI𝑐𝑎𝑐ℎ𝑒), the mem-

ory access rate (MAR and MARslow), the sensitivity to mem-

ory latency (Δ𝐿), and the presence of memory level paral-

lelism (MLP).
• On-core performance. The on-core cycles (CPI𝑐𝑎𝑐ℎ𝑒) ex-

clusively account for the non-blocking CPU cycles, exclud-

ing the cycles spent waiting for memory stalls. The con-

sumption of on-core cycles by an application depends on

the specific CPU microarchitecture and the nature of the

application, such as whether it is computation-intensive

or memory-intensive.

• Memory access rate. The overall memory access rate

(MAR) is influenced by the application’s memory access

pattern and the size of the CPU cache. In the presence of

memory tiering, a portion of the memory access is fulfilled

by the slower second-tier memory, depending on the size

of the second-tier memory and the data structures placed

within it.

• Memory latency. The effective memory latency can be

highly dependent on the access pattern of the applica-

tion [8, 11, 32, 35, 46, 79]. For instance, the queuing delay

within the memory subsystem depends on the memory

bandwidth, while the access patterns affect the probability

of DRAM row hits. Thus, we assess the average end-to-end

memory latency for each application individually.

• Memory level parallelism. Memory accesses incur sig-

nificant latency and result in prolonged CPU stalls. To

mitigate some of this latency, modern Out-of-Order CPUs

execute multiple memory accesses concurrently. Memory

level parallelism (MLP) denotes the average number of

concurrent, outstanding memory accesses during the ex-

ecution of a program. It is important to note that in this

paper, we refer to MLP as effective MLP, which is deter-

mined not only by the application’s structure (instruction

parallelism) but also by the limitations imposed by the

underlying memory system hardware (such as the instruc-

tion window’s hardware constraints on parallelism).

3.3 Inferring Tiered-Memory Performance
We now describe the methodology of collecting application

properties for informing TMC’s performance model. We

assume that performance properties such as on-core per-

formance (CPI𝑐𝑎𝑐ℎ𝑒), effective MLP, and effective first and

second-tier memory latency (𝐿dram and 𝐿slow) are not affected

by the tiered memory configuration. This assumption is

based on the observation that memory tiers differ on the

381

TMC: Near-Optimal Resource Allocation for Tiered-Memory Systems SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

CPU cycles # Instructions Memory Latency MLP Cache miss curve Access frequency

Granularity app. app. app. app. app. struct.

Table 4: Application properties and their profiling level (application level or data structure level).

memory-system, but not CPU-core level, and has been val-

idated through experiments. Table 4 provides an overview

of the application properties collected during the profiling

stage and outlines the specific granularity at which these

performance properties are observed.

PMUCounters.Our TMC simulator in Section 4 emulates

hardware performance monitoring unit (PMU) counters that

measure on-core, non-blocking CPU cycles, MLP, and mem-

ory access latency. The on-core CPI and MLP are obtained

by averaging measurements of the three reference configu-

rations (Table 2). Additionally, the access latency (𝐿dram) of

the first-tier memory can be measured in either the fastmax
or fastmin reference configuration, while the slow memory’s

latency (𝐿slow) can be measured in slowmax . Contemporary

CPUs offer the following hardware performance counters to

capture the required application properties:

• On-core cycles. All X86 processors support PMU coun-

ters tomeasure the total CPU cycles (CPU_CLK_UNHALTED.CORE)
and memory stalls (CYCLE_ACTIVITY.STALLS_L3_MISS)
from which the on-core CPU cycles can be derived.

• MLP and memory access latency. Due to the lack of

general performance counters in contemporary Intel CPUs

to directly measure MLP and average memory latency,

one approach is to indirectly assess them by computing

the amortized performance penalty using the application

properties collected in fastmax and slowmax . Further details

about this approach can be found in Section 5.

Memory access rate. The memory access rate (or LLC

miss rate), non-linearly depends on the last-level cache (LLC)

size and the spatial and temporal locality characteristics of

an application. To estimate the memory access rate for dif-

ferent LLC sizes (number of ways), we utilize the concept

of cache miss curves proposed by Qureshi [60]. These curves

are derived from per-set hit counters using the LRU stack

property. By measuring a cache miss curve in any of the

three reference configurations, we can approximate the over-

all access rate (MAR) based on the number of allocated LLC

ways. After determining the memory access rate, TMC needs

to estimate the fraction of accesses that are served by the

second-tier memory (MARslow). Therefore, we introduce the
frequency table, which is constructed from application mem-

ory traces during the profiling step, by tracking the accesses

and memory region for each data structure. Each memory

access is mapped back to its corresponding data structure to

update its access count. Data structure access frequencies can

be obtained via Intel’s Precise Event-Based Sampling (PEBS)

and other similar hardware sampling techniques that enable

the recording of LLC-miss addresses directly. We will inves-

tigate the implication of the PEBS sampling rate on accuracy

and performance overheads in Section 5. The frequency ta-

ble enables TMC to rank data structures according to their

“hotness”, which is used for determining data placement in

the fast and slow memory tiers (Section 3.4). In particular,

the slow-memory access rate is estimated as the cumulative

access rate of data structures placed in the slow memory. In

the example shown in Figure 4, assuming a working-set size

of 2.5 GiB, when the slow memory ratio is 20% (512 MiB), the

data structures Hash (384 MiB) and List1 (128 MiB) will be

placed in the slow memory. Therefore, the access rate to the

second-tier memory can be estimated as the accumulated

access rate of Hash and List1 (i.e. 0.8).
LLC-specific memory access rate. To determine the

optimal number of LLC-ways for an application, TMC needs

to estimate the slow-memory access rate for a given LLC size.

A naive approach would be to measure the slow-memory

access rate under every configuration, collecting a frequency
table for each LLC-size configuration introducing a signifi-

cant profiling overhead. We address this challenge through

an approximation methodology that requires only two fre-
quency tables obtained when running fastmin and fastmax . We

define the 𝑟% slow-memory miss curve as a curve depicting
how the slow-memory access rate changes over the LLC size

with a slow memory ratio of 𝑟%. The approximation is based

on the assumption that all slow-memory miss curves of an
application are likely to have the same slope. For instance,

the "knee" in the 50% slow-memory miss curve is expected
to occur at the same position (e.g. LLC ways = 3) as in the

cache miss curve. The process is detailed in Figure 5. First, for

each slow memory ratio 𝑟%, the access rate to the second-tier

memory is known only for 〈 slow memory=r%, LLC=MIN 〉
and 〈 slow memory=r%, LLC=MAX 〉, which constitute the

start and end points of the 𝑟% slow-memory miss curve. To
approximate the complete miss curve for the target ratio, we

first align the cache miss curve with the start point of the

slow-memory miss curve (step 2) and then scale it vertically

to fit the endpoint (step 3).

3.4 Data Placement
While the presented methodology above enables TMC to

determine a near-optimal slow-to-fast memory ratio and the

number of LLC ways, we must also devise a policy to decide

which data structures should be placed in fast, respectively,

382

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA Yuanjiang Ni, Pankaj Mehra, Ethan Miller, and Heiner Litz

Figure 5: Estimating LLC-specific memory access rate
with the cache miss curve. The approximation assumes
that all slow-memory miss curves of an application
exhibit a similar slope.

slow memory. TMC utilizes a policy based on the access

count per MiB as determined by
𝐴𝑐𝑐𝑒𝑠𝑠 𝐶𝑜𝑢𝑛𝑡

𝑆𝑖𝑧𝑒
to represent the

hotness of a data structure.

As illustrated in Figure 4, in addition to determining the

tieredmemory configuration, TMC generates data placement

instructions that are utilized at runtime. These instructions

take into account the optimal allocation between the first

and second-tier memory, as well as the hotness of each data

structure. Based on this information, we can determine the

appropriate allocation of first-tier memory for each data

structure. For example, in the case presented in Figure 4, as-

suming the determined optimal slow memory capacity is 256

MiB and fast memory capacity is 1024 MiB, TMC allocates

130 MiB of fast memory and 256 MiB of slow memory for

the Hash data structure while placing all other data struc-

tures into fast memory since they are considered hotter. At

runtime, a hybrid memory-aware TMC memory allocator

enforces the per-data structure limit on DRAM capacity. This

allocator ensures that the allocated memory for each data

structure adheres to the defined limits optimizing the tiered

memory system efficiency. In our present implementation,

we utilize Jemalloc hooks to allocate data structures within

distinct arenas. The differentiation is achieved through tags

assigned either by programmers or the language runtime, as

elaborated in Section 3.6.

While prior work such as X-MEM [23] has proposed more

complex policies that consider MLP for data structure place-

ment, we observed that such an approach only provides a few

performance improvements over a policy based on access

count. In addition, X-MEM introduces a 40× slowdown as it

must use expensive application instrumentation to analyze

continuous memory access traces in order to distinguish

memory access patterns e.g. pointer chasing, sequential, or
random.

3.5 Optimizing Packing Efficiency
The performance estimation model, as discussed in Sec-

tion 3.2 and Section 3.3, serves the purpose of predicting the

execution time for a given configuration. To determine the

Algorithm 1 Configuration Selection Algorithm

𝐶𝑜𝑛𝑓𝑖 ⊲ The i’th candidate configuration

𝐶𝑖 ⊲ Total execution cost for 𝑐𝑜𝑛𝑓𝑖
𝐶𝑚𝑖𝑛 ⊲ Minimum execution cost (estimated)

𝑅 ⊲ Total resource capacity in a machine

𝑈 ⊲ Overall resource utilization in a cloud

𝑁 ⊲ Number of candidate configurations

𝑇 ⊲ Acceptable cost deviation from optimal

procedure Optimization(...)
⊲ First round: optimize the cost for the customers

for each 𝑖 ∈ {1...𝑁 } do
if 𝐶𝑖

𝐶𝑚𝑖𝑛
− 1 ≤ 𝑇 then

𝑜𝑝𝑡 .insert(𝐶𝑜𝑛𝑓𝑖)

end if
end for

⊲ Second round: optimize the resource efficiency

for each 𝑖 ∈ {1...𝑆} do ⊲ S is the size of 𝑜𝑝𝑡

𝐷𝑖 ← {
𝑜𝑝𝑡𝑖,𝑐𝑝𝑢

𝑅𝑐𝑝𝑢
,
𝑜𝑝𝑡𝑖,𝑑𝑟𝑎𝑚
𝑅𝑑𝑟𝑎𝑚

,
𝑜𝑝𝑡𝑖,𝑠𝑙𝑜𝑤
𝑅𝑠𝑙𝑜𝑤

,
𝑜𝑝𝑡𝑖,𝑙𝑙𝑐
𝑅𝑙𝑙𝑐
}

𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑖 = 𝐷𝑖 ·𝑈
end for
Sort the 𝑜𝑝𝑡 according the 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (increase)

return 𝑜𝑝𝑡0
end procedure

values of 𝐶𝑖 and 𝐶𝑚𝑖𝑛 for use in Algorithm 1, one can lever-

age the estimated execution time and unit cost associated

with the specific configuration, as described in Equation 2.

Algorithm 1 shows the pseudo-code of our configuration

selection. Our selection algorithm consists of two rounds.

In the first round, we identify all configurations that satisfy

the cost-performance objective of the customer. If the esti-

mated cost of a configuration is within a threshold T of the
estimated optimal cost, we consider it as a cost-optimal. In

the second round, we pick a configuration that maximizes

the resource efficiency for the cloud provider. We propose a

new heuristic, packing penalty, to evaluate the impact of a

configuration on the resource efficiency in the cloud: a con-

figuration with a lower packing penalty makes more efficient

usage of cloud resources and vice versa.

The packing penalty is calculated as the dot product of the

two vectors 𝑈 and 𝐷 . The vector 𝑈 represents the overall

resource utilization of each configuration, while the vector𝐷

represents the resource demand of each configuration. The

dimensions of these vectors correspond to the number of

resource types, which is four in our work (e.g., CPU, LLC,

slow memory, fast memory). The rationale behind the pack-

ing penalty is to penalize configurations that heavily utilize

scarce resources. For example, let’s consider a simplified

383

TMC: Near-Optimal Resource Allocation for Tiered-Memory Systems SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

scenario with two resource types: fast memory and slow

memory. We have identified two cost-optimal candidate con-

figurations: Config_1 requires 0.2 GiB of fast memory and

0.8 GiB of slow memory, while Config_2 requires 0.8 GiB of

fast memory and 0.2 GiB of slow memory. Suppose the fast

memory is under high pressure (e.g. 70% utilization), while

the slow memory is relatively idle (e.g. 20% utilization). In

this case, we would prefer Config_1 due to its lower packing

penalty (0.2 × 0.7 + 0.8 × 0.2 = 0.3) compared to Config_2
(0.8 × 0.7 + 0.2 × 0.2 = 0.6).

3.6 Discussion
Application transparency.Wenow explore several options

to alleviate the adoption of the TMCmethodology. First, TMC

can by implemented as part of the language runtime, elimi-

nating the need for developers to annotate memory alloca-

tions manually. In modern C++, heapmemory objects are typ-

icallymanaged using smart pointers (e.g. std::make_unique<T>)
or STL containers (e.g. std::vector<T>). Therefore, we can
delegate the tagging responsibility to the language runtime.

For example, the STL container can utilize the type informa-

tion T as the tag for its memory allocation. Alternatively, we

can allow the memory allocator to dynamically generate a

tag at runtime by examining the call stack. This approach

leverages the fact that the same memory allocation call site

always allocates memory objects of the same type.

Bandwidth. Our prediction model assumes that the end-

to-end memory latency of an application is relatively stable

across different configurations. We found that this assump-

tion holds as long as the memory bandwidth of the system is

not overly saturated, particularly less than 80% of the peak.

As demonstrated in prior studies [25, 35, 36, 79], there is

a “knee” in the bandwidth-latency curve at around 80% of

the maximal bandwidth. For most of the operating range,

memory latency is relatively flat, however, it increases ex-

ponentially after the “knee”. As reported in [35], the “knee”

for 3DXP when dealing with random read workload is at

around 10 GiB/s where the latency increases from 300ns

to 400ns. Our technique assumes that the cloud provider

enforces workload mixes via scheduling that consumes at

most 80% of a machine’s DRAM bandwidth. This has been

naturally the case for all workload mixes evaluated in this

paper. Google has reported [37] that data center applications

are almost exclusively DRAM latency and not bandwidth

limited.

Tail latency. While TMC predicts latency (execution

time), it currently does not allow predicting tail latency. We

assume that other tail-latency mitigating techniques are de-

ployed [19] and as a result, the application is not too tail-

latency sensitive. This approach should apply to sufficient

application areas, as Google has reported that high-priority

workloads run on dedicated and not shared machines [7].

Prior works predicting optimal configurations also do not

consider tail latency [3, 41].

Application specificMLP. Prior work has proposed mea-

suring data structure specific MLP by extending the memory

controller [46] or by adding expensive instrumentation [23].

However, our study indicates that replacing application spe-

cific MLP with data structure specific MLP provides little

improvement over the prediction accuracy (less than 1%).

Hence, our workmeasures theMLP of the application, assum-

ing MLP is identical across different memory configurations.

Our approach has shown to be accurate when applied in real

systems for predicting application performance (Section 5).

Noisy profiles. If the profiling runs of an application hap-

pen to be scheduled on a machine that is under abnormal

conditions e.g. overloaded, TMC might produce a perfor-

mance model that is not representative of the machines in

the cluster. To overcome this problem, we can design a micro-

benchmark that performs operations exercising different re-

sources in the system, and that is executed periodically in the

machines of the cluster, reporting back the representative

metrics. We will schedule the profiling runs on a machine

whose condition is consistent with the common machines

in the cluster.

Dynamic tiering. In data centers, applications are recom-

piled, deployed, and profiled multiple times a day, enabling

TMC to adapt to changing inputs, application characteristics,

and hardware resources. Google [13] has shown that input

characteristics change slowly and that profiles only become

outdated over weeks. TMC can be deployed as an always-on

system that constantly profiles and re-allocates memory for

new application invocations based on the existing hardware

resources. TMC provides accurate predictions with low PEBS

sampling overhead as demonstrated in Section 5. In such a

dynamic environment, the improved search time provided

by TMC over prior work is particularly important.

Practicality in Cloud Deployments. In private clouds

PEBS access is not an issue. Linux supports PMU virtualiza-

tion with vPMU. AWS supports the virtualization of core-

PMUs. Finally, Clients can also pre-profile their workloads

on native machines and then submit the information to the

cloud operator.

4 Evaluation in Simulation
In this section, we first present our experiment methodology.

We then analyze the effectiveness of TMC.

4.1 Experimental setup
Cloud VM simulation. We simulate physical hardware

in the cloud using the cycle-accurate simulator Scarab [33].

We modify Scarab to implement the required performance

384

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA Yuanjiang Ni, Pankaj Mehra, Ethan Miller, and Heiner Litz

#

Structs.

Description

CactusBSSN [12] 30 Model a vacuum flat space-time

Graph500 [55] 5 BFS search on an undirected graph

Memcached [17] 3 Workload C in YCSB

XSBench [68] 5 Monte Carlo neutron transport

Canneal [10] 10 Opt. routing cost of a chip design

XHPCG [21] 13 Preconditioned conjugate gradient

Table 5: Description of the benchmarks including the
required number of annotated data structures (i.e. tags)
for each application.

counters for capturing cache miss curves and application-

specific properties (see Section 3.3) required by TMC. The

simulated machines in our study contain 12 cores, 12 MiB

48-way associative LLC and 24 GB DRAM. Existing machines

support 16-20 LLC ways which is insufficient for realizing

optimal configurations. This motivates us to evaluate a larger

number of LLC ways to enable fine-grained LLC allocation.

Alternatively, future systems can also employmore advanced,

fine-grain cache partitioning techniques such as vantage [65].

Although our work makes no assumption on the type of me-

dia that will be used in the slow memory tier, we simulate

the performance characteristics of 3DXP memory by default

i.e. 3× [35, 79] the DRAM latency (100 ns). In our experi-

ment, the slower memory tier is provisioned by attaching

a 128 GiB 3DXP DIMM to a server, except for Section 4.5

where we explore the effectiveness of TMC in other memory

tiering architectures. In particular, we simulate a fast mem-

ory tier (DRAM) and a CXL-attached memory pool as the

slow tier. Our CXL-based disaggregated system provides a

shared memory pool for each 8-node rack. Similar to prior

work [45], we add an additional latency of 85 ns to each

CXL access i.e. the end-to-end memory latency is comprised

of the CXL delay and the access latency of the second tier

memory. New allocated VMs are added to a queue in order

of their arrival. Every time a new virtual machine is created,

the scheduler checks all machines to find one with sufficient

resources. TMC analyzes the machines in random order, and

places the job on the first one that has the required available

resources.

IaaS cloud. We assume that customers can choose a slow

memory ratio out of 11 slow memory ratios (0%, 10%, 20%,

... , 100%) and an LLC size out of seven configurations (1,

2, 3, 4, 12, 20, 28) utilizing technology such as Intel’s cache

allocation technology (CAT) [34, 65]. In total, there exist 77

candidate configurations. We obtain the hourly cost for a

single vCPU and 1 GB of DRAM by using the least square

method to solve a system of equations derived from all VM

instances in the Msv2-series of Microsoft Azure. We assume

cactusB
SSN

graph500

memcached

xsbench

canneal
xhpcg

Avg.
0.0

0.2

0.4

In
cr

ea
se

in
ex

ec
ut

io
n

co
st

Rand BO TMC

Figure 6: Execution cost increase over exhaustive
search

the cost of 3DXP memory is 0.4× that of DRAM. Following

the methodology described in [83], we obtain the hourly cost

for a unit of LLC capacity according to the estimated area

percentage of the LLC in a CPU chip.

Workloads. Theworkloads used in our experiments cover

a broad spectrum of applications. The specifics of these work-

loads are available in Table 5. We modify the applications to

utilize our custom memory allocator that assigns each data

structure with a tag. For each application, we performed a

basic-block vector-based analysis (Simpoint-like), determin-

ing that 2 billion instructions are representative in regards

to IPC, MPKI, branches, and other metrics. We pick four

out of the six workloads to form a workload mix resulting

in 15 workload mixes in total. We believe four workloads

strike a good balance between mix diversity and the total

number of workloads in a mix. A workload mix represents

the workloads that will be submitted to the cluster in an

experiment. We select one of the workloads of the mix as the

newly submitted workload. After a new workload arrives

(randomly selected from the workload mix), TMC finds an

appropriate VM configuration for the new workload. The

new VM request is submitted to the cluster scheduler. After

completing a certain number of workloads (5000 in our evalu-

ation), we report the average execution cost for all workloads

submitted to the cloud.

Baselines.We compare TMC with the following strate-

gies: i) Exhaustive search (ES) finds cost-optimal configura-

tions by running all the configurations. It provides an up-

per bound on the overall performance. ii) Random (Rand)

selects a configuration randomly from a set of candidate

configurations without any test runs. iii) Bayesian Optimiza-

tion (BO) is a state-of-the-art solution that has been used in

prior work [3] to reduce the number of samples to reach a

cost-optimal configuration. In our experiment, we set the Ex-

pected Improvement (EI) to 5% and use three initial samples.

385

TMC: Near-Optimal Resource Allocation for Tiered-Memory Systems SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

cactusB
SSN

graph500

memcached

xsbench

canneal
xhpcg

Avg.
0.00

0.05

0.10

0.15

S
ea

rc
h

co
st

(N
or

m
al

iz
ed

)

BO TMC

Figure 7: Search cost of TMC and BO, normalized to
the search cost of exhaustive search (ES). ES and Rand
are omitted as they are one and zero.

4.2 Execution and Search Cost
In this workwe aim to learn cost-optimal tiered-memory con-

figurations with minimal search overheads. For each work-

load in Table 5, we utilize TMC and the baseline techniques

to recommend a VM configuration and the run the work-

load with the recommended configuration. We repeat the

experiment 10 times and report the average number of test

runs (search cost) and execution cost. Figure 6 shows the

execution cost of the VM, LLC, fast and slow memory config-

uration determined by TMC and the baseline techniques. As

can be seen, TMC reduces the execution cost by 1.3× over

Rand and by 1.05× over BO in average. TMC only incurs a

2% higher TCO per performance than the ES’s cost-optimal

configuration. While ES provides the best performance in

terms of cost minimization, it also incurs the highest search

cost of all approaches as shown in Figure 7. For ES, every

configuration needs to be run at least once. For instance, if

an application has a one-minute average execution time and

there are 77 candidate configurations in our experimental

setup, it would require 77 minutes of profiling. Our TMC

provides 26× lower search cost than ES and 3× lower search

cost than BO. Rand imposes no search overhead by simply

choosing a configuration randomly, however, it has no way

of controlling the quality of the recommended configuration,

and, as a result, it increases TCO by up to 50% and 33% on

average compared to ES.

4.3 Improving Packing Efficiency
The second goal of TMC is to increase packing efficiency

for the cloud operator without introducing a significant cost

increase for the customer. For the cost increase, we set the

threshold T to 2.5% so that the recommended configuration

can be at most 2.5% more costly than the optimal configura-

tion. The compact cluster size [70] refers to the minimum

cluster size required to accommodate a given workload. In

our work, we utilize the compact cluster size as a metric to

assess the packing efficiency of the cloud. We determine the

compact cluster size by progressively reducing the cluster

size until the job is rejected due to insufficient available ma-

chines. A smaller compact size indicates a higher level of

packing efficiency, as it indicates fewer machine resources

are required to sustain the workload.

Figure 8 compares the compact cluster size and the average

running cost achieved by the evaluated schemes. Since the

Bayesian Optimization (BO) methodology does not prioritize

resource efficiency and only tries to optimize the search cost,

we do not include it in this comparison. The compact clus-

ter size and the average running cost are normalized to the

ES configuration. As can be seen in Section 4.2, exhaustive

search recommends actual cost-optimal configurations, how-

ever, it entails significant search overheads. As compared to

ES, TMC reduces the compact cluster size by 17% and intro-

duces only a 1.5% higher cost. In addition, we also observe

that TMC can indeed control the quality of the recommended

configurations and achieve a significantly lower execution

cost compared to a randomly selected configuration.

4.4 Threshold Sensitivity Study
We next study the impact of the threshold T. A larger thresh-

old T allows more configurations to be deemed cost-optimal,

enabling TMC to increase further resource efficiency. Ad-

ditional details about the threshold T can be found in Sec-

tion 3.5. For example, when the T increases from 0% to 2.5%

(resp., 7.5%), TMC can boost resource efficiency by reducing

the compact cluster size by 25% (resp., 32%) as shown in

Figure 8. On the other hand, increasing T also lowers the

stand overall performance of the cost-optimal configurations,

increasing the execution cost. For example, the average cost

execution of the configurations recommended by the TMC

is 1.1%, 2.6%, and 7.9% higher than the optimal cost when

the threshold T is 0%, 2.5% and 7.5% respectively.

4.5 Memory Tiering Sensitivity Analysis
This experiment investigates the effectiveness of TMC under

various tiered memory architectures. The two Local con-
figurations deploy slow memory locally via DIMMs: 128L
attaches one 128 GiB 3DXP module and 256L attaches two

128 GiB modules to each node. The current 3DXP modules

only come in capacities of 128GB, 256GB and 512GB. As

a result, Local can only increase the memory capacity at a

very coarse granularity. The four Pool configurations explore
rack-scale pooled deployment enabled by the emerging CXL

technology to connect slow memories to 8 nodes via a CXL

fabric: 128P / 384P / 640P / 896P respectively provide 128 / 384

/ 640 / 896 GiB of 3DXP memory in the pool. For each such

far memory configuration, we evaluate two configurations

of local DRAM with either 24 GiB or 48 GiB per machine.

386

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA Yuanjiang Ni, Pankaj Mehra, Ethan Miller, and Heiner Litz

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg.

Workload mix

0.0

0.5

1.0

1.5

C
om

pa
ct

cl
us

te
r

si
ze ES Rand TMC (T = 0%) TMC (T = 2.5%) TMC (T = 7.5%)

(a) compact cluster size

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg.

Workload mix

0.0

0.5

1.0

1.5

E
xe

cu
ti

on
C

os
t

ES Rand TMC (T = 0%) TMC (T = 2.5%) TMC (T = 7.5%)

(b) execution cost

Figure 8: Efficiency of TMC’s configuration selection (normalized to ES). TMC increases the efficiency while
minimizing the cost penalty for the customer.

128L
256L

128P
384P

640P
896P

Avg.
128L

256L
128P

384P
640P

896P
Avg.

0
20
40
60
80

100
120
140

C
om

pa
ct

cl
us

te
r

si
ze DRAM = 48 GiB DRAM = 24 GiB

ES Rand TMC (T = 0%) TMC (T = 2.5%) TMC (T = 7.5%)

Figure 9: Effectiveness of TMC under various configu-
rations of tiered memory.

We run the 15 workload mixes under various tiered mem-

ory configurations to observe the average compact cluster

size of each configuration shown in Figure 9. First, we demon-

strate that TMC improves resource efficiency in nearly all

architectures as compared to other approaches. For exam-

ple, TMC reduces the compact cluster size on average by

30% (resp. 13%) as compared to ES when the DRAM size

per machine is 48 GiB (resp. 24 GiB). Second, we observe

that the 384P and 640P already allow TMC to achieve opti-

mal resource efficiency when the size of the local DRAM is

24 GiB and 48 GiB respectively. 384P and 640P effectively

provision 48 GiB and 80 GiB far memory per node. On the

other hand, Local only allows the memory to be expanded

at the coarser 128 GiB granularity, potentially leading to the

over-provisioning and stranding of slow memory. Finally,

data center operators must comprehensively consider both

platform cost and resource efficiency in order to find an

cactuBSSN

graph500

memcached

xsbench

canneal
xhpcg

mean
0

25

50

75

100

O
ve

rh
ea

d
(%

)

SI = 2 SI = 103 SI = 10007

Figure 10: PEBS sampling overhead. We choose prime
SIs to avoid bias from periodicities like prior work [49].

optimal server configuration. We particularly note two inter-

esting examples: i) Doubling the local DRAM from 24 GiB to

48 GiB reduces the compact cluster size for all approaches;

However, it also introduces significantly higher per-machine

costs, ii) 640P reduces platform cost by requiring 37.5% less

3DXP memory as compared to 128L; however, TMC (T=7.5%)
achieves 14% lower resource efficiency in a 640P.

5 Real System Experiments
Simulation allows us to easily observe any application prop-

erties and thus enables us to quickly verify our proposed

techniques on the performance estimation and the config-

uration selection. In this section, we introduce a proof-of-

concept implementation and partly verify the applicability

of using TMC in real systems. In particular, we build a work-

ing prototype that can predict how the run time changes

387

TMC: Near-Optimal Resource Allocation for Tiered-Memory Systems SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

0 20 40 60 80 100
Slow memory (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

es
s

ra
te

(N
or

m
al

iz
ed

)

Ground-truth

Prediction

(a) cactusBSSN

0 20 40 60 80 100
Slow memory (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

es
s

ra
te

(N
or

m
al

iz
ed

)

Ground-truth

Prediction

(b) graph500

0 20 40 60 80 100
Slow memory (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

es
s

ra
te

(N
or

m
al

iz
ed

)

Ground-truth

Prediction

(c) xsbench

0 20 40 60 80 100
Slow memory (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

es
s

ra
te

(N
or

m
al

iz
ed

)

Ground-truth

Prediction

(d) xhpcg

Figure 11: Accuracy of estimating the slow memory access frequency in a real system using profiling.

0 20 40 60 80 100
Slow memory (%)

0

100

200

300

400

500

600

R
un

ti
m

e
(s

)

Ground-truth

Prediction

(a) cactusBSSN

0 20 40 60 80 100
Slow memory (%)

0

200

400

600

800

1000

1200

R
un

ti
m

e
(s

)

Ground-truth

Prediction

(b) graph500

0 20 40 60 80 100
Slow memory (%)

0

50

100

150

200

250

R
un

ti
m

e
(s

)

Ground-truth

Prediction

(c) xsbench

0 20 40 60 80 100
Slow memory (%)

0
25
50
75

100
125
150
175

R
un

ti
m

e
(s

)

Ground-truth

Prediction

(d) xhpcg

Figure 12: Accuracy of estimating the execution performance in a real system using profiling.

with the size of the slow memory. As hardware monitors for

learning the cache miss curve [60] become available, TMC

can be completely implemented in software. In the following

section, we consider the following three main questions:

• What is the overhead of PEBS sampling?

• Can we accurately estimate the access frequencies?

• Can we accurately estimate the performance impact?

We utilize precise event-based sampling (PEBS) to inter-

cept samples of memory accesses to estimate the access fre-

quency of data structures. PEBS captures a snapshot of the

processor state upon certain configurable hardware events.

We program PEBS to monitor MEM_LOAD_RETIRED.L3_MISS
events. PEBS can be configured with a sampling interval

(SI). For a sampling interval of 𝑛, PEBS captures every 𝑛𝑡ℎ

event into a buffer. When the PEBS buffer is full, an interrupt

is triggered, during which TMC records the CPU state in a

software-accessible buffer.We only record the virtual address

accessed by CPU misses. The sampled memory accesses are

then written to a file in a separate thread. As discussed in

Section 3.3, we count the sampled accesses to different data

structures in the offline analysis. We multiply the number

of sampled memory accesses by the sampling interval (n) to

estimate the actual access frequencies.

Due to the lack of general, well-documented performance

counters that allow us to measure the MLP as well as the

average memory latency in contemporary Intel CPUs, our

current implementation measures MLP and the latency sen-

sitivity of an application indirectly. In particular, we measure

the amortized performance penalty introduced by accessing

the slow memory. The amortized performance penalty takes

into consideration both the latency-sensitivity as well as the

effect of memory level parallelism on an application. We

measure the CPI of an application in the DRAM-only config-

uration (𝐶𝑃𝐼𝑑𝑟𝑎𝑚), CPI in the configuration where all data is

placed in the slow memory (𝐶𝑃𝐼𝑠𝑙𝑜𝑤), as well as the number

of accesses to the slow memory (𝑀𝑃𝐼𝑠𝑙𝑜𝑤). The amortized

performance penalty can then be computed via Eq. 4. The

performance impact associated with placing data to the slow

memory can be estimated by simply multiplying the access

rate to the slow memory (estimated) and the amortized per-

formance penalty.

𝑃𝑒𝑟 𝑓 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 =
Δ𝐿

𝑀𝐿𝑃
=
𝐶𝑃𝐼𝑠𝑙𝑜𝑤 −𝐶𝑃𝐼𝑑𝑟𝑎𝑚

𝑀𝑃𝐼𝑠𝑙𝑜𝑤
(4)

5.1 Evaluation
Setup. To evaluate the proposed scheme, we use a server

equipped with a Xeon Gold 5218 processor and a tiered mem-

ory hierarchy with six 32 GiB DRAM DIMMs (192 GiB in

total) and a 128 GiB intel DC Persistent Memory.

Overhead. We first study the overhead introduced by

PEBS which is important as it impacts the search cost of

TMC. Figure 10 shows the sampling overhead for different

388

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA Yuanjiang Ni, Pankaj Mehra, Ethan Miller, and Heiner Litz

SIs compared to the application execution time without PEBS

monitoring. The PEBS sampling overhead is comprised of

induced pipeline flushes due to the PEBS assist, and the over-

head for handling extra interrupts [2]. High sampling rates

results in substantial performance overhead.With a SI of two,

the performance overhead can be as high as 102.1% (41.4%

on average). We configure PEBS to use a large sampling in-

terval (10007). With such a large SI, we observe virtually no

overhead (< 1%) due to PEBS sampling across all workloads.

Access-rate estimation. In our experiment, we move

data structures of an application to the slow memory tier one

by one in a random order and then measure the ground-truth

number of accesses to the slowmemory and the ground-truth

run-time. Figure 11 shows the number of accesses to slow

memory depending on the amount of data allocated in slow

memory. We show the ground-truth and estimated number

of accesses to the slow memory. As we can see, we achieve

high accuracy in estimating the access frequencies even at a

relatively low sampling rate (SI = 10007). The inaccuracies

in the workload xhpcg is likely caused by the shadow effect

of PEBS [80].

Performance estimation. Figure 12 shows the ground-
truth and estimated run-time depending on the amount of

application data allocated in slow memory. Overall, TMC

achieves high accuracy in estimating the amortized perfor-

mance penalty of different applications and, as a result, is

capable of producing accurate predictions on the execution

time of the application. This observation demonstrates that

our assumption on theMLP and thememory latency as stated

in Section 3.2 holds in most of the cases. However, we also

observe that there is a relatively high prediction error (7%)

on the performance although TMC achieves high accuracy

in estimating the access rate for the cactusBSSN workload

as shown in Figure 11a. The cactusBSSN workload presents

an interesting example where the assumption that MLP /

memory latency is identical across different memory con-

figurations might not hold. However, we argue that adding

new hardware [46] or using costly instrumentation [23] (40×
slowdown) to capture the data structure specific MLP just for

improving the accuracy for a few applications is not justified.

6 Related Work
Data tiering solutions. Hybrid memory systems have been

proposed to allocate performance-sensitive data in first-tier

memory and performance-insensitive data in second-tier

memory, seeking to maintain performance at a lower cost.

Given a fixed allocation between the first and second tier

memory, prior work [1, 14, 23, 38, 39, 42, 46, 77, 78] can

determine the best memory type for a given data item. While

these prior works can provide raw performance guarantees,

they are insufficient in the cloud setting, where operators

and customers need to consider optimal cost efficiency as

well.

Prior work on online data migration is complementary to

ourwork.Meta’s TPP [50] distinguishes between anonymous

and file-backed allocations, preferring to place file-backed

allocations in the slow tier. Increasingly, researchers [43, 50,

76] try to implement a proactive demotion approach that

achieves two goals: the first is to always have free memory

in the hot tier for hot pages by choosing separate high water

mark and low water mark for the hot tier; the second is

to use machine learning to guide proactive freeing of that

memory [43, 45].

Memory profiling methodology. Previous research [1,

24, 51, 61, 72, 73, 78] has investigated different techniques

for capturing application access patterns. Linux’s page man-

agement approach [72, 73, 78] utilizes the hardware access

bit to distinguish between hot and cold pages, aiding page

replacement decisions. However, relying solely on scanning

the accessed bit cannot accurately estimate the access rate

of pages. It can only indicate recent access without counting

the number of accesses. Frequent analysis of the access bit re-

quiring TLB shootdowns is infeasible due to the performance

overhead.

Another approach to assess the data access frequency is

page sampling and poisoning, employed by works including

Thermostat [1], TPP [51] and AutoNUMA [62]. These works

utilize TLB misses as a proxy for memory accesses, which

can introduce substantial inaccuracies for measuring the

access rate.

Application [23] instrumentation represents another ap-

proach used for memory tracing and determining the ac-

cess frequencies of different data structures. However, this

method introduces substantial profiling overheads, resulting

in a slowdown of up to 40 times. Additionally, it fails to ac-

count for the memory hierarchy, in particular, it is unaware

of the filtering effect of CPU caches.

PEBS has been considered an effective option for tracking

hot pages and has been explored inworks such asHeMem [61]

and TMTS [24]. However, our work differs in focus. While

those works aim to select hot pages, our goal is to accurately

measure the access rate. TMTS recognizes that some hot

pages may be missing from PEBS sampling and resorts to

page scanning as a last resort. This is not necessary in our

approach. By leveraging application semantics, our method

tracks memory access at a coarse granularity (data structure

level), allowing for an accurate assessment of the access rate

with minimal overhead.

Tiered-memory in data centers. Some data center op-

erators [43, 76] have chosen to implement the slow memory

tier using compressed DRAM or RDMA [4, 30, 59, 63] in-

stead of new, directly-accessible memory technologies, such

as 3DXP [56, 57] and CXL, considered in this paper. Linux

389

TMC: Near-Optimal Resource Allocation for Tiered-Memory Systems SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

Zswap and related mechanisms compress swapped pages but

are not fast enough for load/store-based interfaces. Other pre-

vious works [1, 50] dynamically tune the capacity of different

memory tiers to improve cost efficiency while maintaining

the service level objective. However, they offer no general

solution on how to estimate the run time for a memory con-

figuration. Mnemo [22] is a memory sizing tool designed

only for key-value stores such as Memcached, Redis, and

DynamoDB and cannot be used with general applications.

HNVM [82] employs a hybrid of fast NVM (BBNVM) and

slow NVM (PCM) as a persistent, compute-side cache. It op-

timizes the fast-NVM & slow-NVM ratio for an application.

Unlike our work, HNVM utilizes costly exhaustive searches

to build application performance profiles. In the context of

computational memory, Sidekick [44] leverages Genetic Al-

gorithms to optimize the placement of computations, tailor-

ing placement decisions for each function invocation context

individually.

Selecting cloud configurations. Machine learning tech-

niques [52, 58, 67, 69] such as KNN, Support Vector Machines

(SVM), or regression can be used to predict application perfor-

mance under a certain machine configuration. However, tra-

ditional machine learning is not conscious of the search cost

and may require a large number of samples. Ernest [69] has

investigated reducing the amount of training data with ex-

perimental experiment design. However, the usage of Ernest

is limited as it can only be used to predict the optimal num-

ber of instances for analytic workloads. CherryPick [3] relies

on Bayesian optimization to reduce the number of samples

that are necessary to reach a cost-optimal configuration. Our

work instead utilizes the application-specific properties, and,

as a result, minimizes the number of test runs required for

performance estimation. While Selecta [41] focuses on se-

lecting storage configurations, our work investigates how to

select memory configurations for the cloud with heteroge-

neous memories.

Data center scheduling and resource allocation. Prior
work on cloud scheduling is complementary to our research.

Existing work on cloud schedulers [26, 27, 29, 66, 71, 81] typ-

ically tries to increase the resource efficiency using heuris-

tics; However, optimizations on the scheduler can be useless

if the VM workload as determined by the selection of ma-

chine configurations is fundamentally unbalanced. Optimiza-

tions [6, 18, 75] such as resource harvesting and oversubscrib-

ing that further improve resource utilization are orthogonal

to our work.

7 Conclusions
This work investigates how to quickly identify ideal mem-

ory configurations for applications in tiered-memory cloud

systems. TMC captures application-specific properties with

existing performance monitoring hardware and uses them

for accurate performance prediction. We demonstrate that

TMC reduces the search cost by up to 4× while recommend-

ing high-quality configurations. Our approach additionally

improves resource efficiency by 17% on average versus a

naive policy that requests optimal allocations for each ap-

plication in isolation. As a result, TMC provides the tools to

efficiently support emerging tiered memory systems and to

reap both performance and cost benefits.

Acknowledgments
We extend our gratitude to our shepherd Baptiste Lepers

and the anonymous reviewers for their valuable insights

and improvement suggestions. This work was generously

supported by Samsung and NSF grants CCF-1942754 and

CNS-1841545.

References
[1] Neha Agarwal and Thomas F Wenisch. 2017. Thermostat: Application-

transparent page management for two-tiered main memory. In Pro-
ceedings of the 2017 International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS). 631–644.

[2] Soramichi Akiyama and Takahiro Hirofuchi. 2017. Quantitative eval-

uation of intel pebs overhead for online system-noise analysis. In

Proceedings of the 7th International Workshop on Runtime and Operat-
ing Systems for Supercomputers ROSS 2017. 1–8.

[3] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen, Shivaram

Venkataraman, Minlan Yu, and Ming Zhang. 2017. CherryPick: Adap-

tively Unearthing the Best Cloud Configurations for Big Data Analytics.

In Proceedings of the 13th Symposium on Networked Systems Design and
Implementation (NSDI ’17). 469–482.

[4] Emmanuel Amaro, Christopher Branner-Augmon, Zhihong Luo, Amy

Ousterhout, Marcos K Aguilera, Aurojit Panda, Sylvia Ratnasamy,

and Scott Shenker. 2020. Can far memory improve job throughput?.

In Proceedings of the 15th European Conference on Computer Systems
(EuroSys ’20). 1–16.

[5] Amazon. [n. d.]. Amazon elastic compute cloud. https://aws.amazon.

com/ec2.

[6] Pradeep Ambati, Íñigo Goiri, Felipe Frujeri, Alper Gun, KeWang, Brian

Dolan, Brian Corell, Sekhar Pasupuleti, Thomas Moscibroda, Sameh

Elnikety, et al. 2020. Providing 𝑆𝐿𝑂𝑠 for Resource-Harvesting𝑉𝑀𝑠

in Cloud Platforms. In Proceedings of the 14th Symposium on Operating
Systems Design and Implementation (OSDI ’20). 735–751.

[7] Grant Ayers, Jung Ho Ahn, Christos Kozyrakis, and Parthasarathy

Ranganathan. 2018. Memory hierarchy for web search. In Proceedings
of the 24th Int’l Symposium on High-Performance Computer Architecture
(HPCA-24). IEEE, 643–656.

[8] Grant Ayers, Heiner Litz, Christos Kozyrakis, and Parthasarathy Ran-

ganathan. 2020. Classifying memory access patterns for prefetching.

In Proceedings of the Twenty-Fifth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems.
513–526.

[9] Grant Ayers, Nayana Prasad Nagendra, David I August, Hyoun Kyu

Cho, Svilen Kanev, Christos Kozyrakis, Trivikram Krishnamurthy,

Heiner Litz, Tipp Moseley, and Parthasarathy Ranganathan. 2019. As-

mdb: understanding and mitigating front-end stalls in warehouse-scale

computers. In Proceedings of the 46th International Symposium on Com-
puter Architecture. 462–473.

390

https://aws.amazon.com/ec2
https://aws.amazon.com/ec2

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA Yuanjiang Ni, Pankaj Mehra, Ethan Miller, and Heiner Litz

[10] Christian Bienia. 2011. Benchmarking Modern Multiprocessors. Ph. D.
Dissertation. Princeton University.

[11] Peter Braun and Heiner Litz. 2019. Understanding memory access pat-

terns for prefetching. In International Workshop on AI-assisted Design
for Architecture (AIDArc), held in conjunction with ISCA.

[12] James Bucek, Klaus-Dieter Lange, and Jóakim v. Kistowski. 2018. SPEC

CPU2017: Next-generation compute benchmark. In Companion of the
2018 ACM/SPEC International Conference on Performance Engineering.
41–42.

[13] Dehao Chen, David Xinliang Li, and Tipp Moseley. 2016. AutoFDO:

Automatic feedback-directed optimization for warehouse-scale appli-

cations. In Proceedings of the 2016 International Symposium on Code
Generation and Optimization. 12–23.

[14] Chia Chen Chou, Aamer Jaleel, and Moinuddin K Qureshi. 2014.

Cameo: A two-level memory organization with capacity of main mem-

ory and flexibility of hardware-managed cache. In Proceedings of the
47th Annual IEEE/ACM International Symposium on Microarchitecture.
IEEE, 1–12.

[15] Russell Clapp, Martin Dimitrov, Karthik Kumar, Vish Viswanathan,

and Thomas Willhalm. 2015. Quantifying the performance impact of

memory latency and bandwidth for big data workloads. In 2015 IEEE
International Symposium onWorkload Characterization. IEEE, 213–224.

[16] Compute Express Link Consortium. 2020. Compute Express

Link: The breakthrough CPU-to-Device Interconnect. https://www.

computeexpresslink.org/.

[17] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,

and Russell Sears. 2010. Benchmarking cloud serving systems with

YCSB. In Proceedings of the 1st ACM symposium on Cloud computing.
143–154.

[18] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus

Fontoura, and Ricardo Bianchini. 2017. Resource central: Understand-

ing and predicting workloads for improved resource management in

large cloud platforms. In Proceedings of the 26th ACM Symposium on
Operating Systems Principles (SOSP ’17). 153–167.

[19] Jeffrey Dean and Luiz André Barroso. 2013. The tail at scale. Commun.
ACM 56, 2 (2013), 74–80.

[20] Christina Delimitrou and Christos Kozyrakis. 2013. Paragon: QoS-

aware scheduling for heterogeneous datacenters. ACM SIGPLAN No-
tices 48, 4 (2013), 77–88.

[21] Jack Dongarra, Piotr Luszczek, and M Heroux. 2013. HPCG technical

specification. Sandia National Laboratories, Sandia Report SAND2013-
8752 (2013).

[22] Thaleia Dimitra Doudali and Ada Gavrilovska. 2019. Mnemo: Boost-

ing memory cost efficiency in hybrid memory systems. In 2019 IEEE
International Parallel and Distributed Processing Symposium Workshops
(IPDPSW). IEEE, 412–421.

[23] Subramanya R Dulloor, Amitabha Roy, Zheguang Zhao, Narayanan

Sundaram, Nadathur Satish, Rajesh Sankaran, Jeff Jackson, and Karsten

Schwan. 2016. Data tiering in heterogeneous memory systems. In Pro-
ceedings of the 11th European Conference on Computer Systems (EuroSys
’16). 1–16.

[24] Padmapriya Duraisamy, Wei Xu, Scott Hare, Ravi Rajwar, David Culler,

Zhiyi Xu, Jianing Fan, Christopher Kennelly, Bill McCloskey, Danijela

Mijailovic, et al. 2023. Towards an Adaptable Systems Architecture

for Memory Tiering at Warehouse-Scale. In Proceedings of the 2023
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). 727–741.

[25] Sadagopan Srinivasan Li Zhao Brinda Ganesh, Bruce Jacob, and Mike

Espig Ravi Iyer. 2009. CMP Memory Modeling: How Much Does Ac-

curacy Matter?. In Fifth Annual Workshop on Modeling, Benchmarking
and Simulation. 24–33.

[26] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott

Shenker, and Ion Stoica. 2011. Dominant resource fairness: Fair alloca-

tion of multiple resource types. In Proceedings of the 8th Symposium
on Networked Systems Design and Implementation (NSDI ’11).

[27] Ionel Gog, Malte Schwarzkopf, Adam Gleave, Robert NM Watson, and

Steven Hand. 2016. Firmament: Fast, centralized cluster scheduling

at scale. In Proceedings of the 12th Symposium on Operating Systems
Design and Implementation (OSDI ’16). 99–115.

[28] Google. [n. d.]. Create a VM with a custom machine type.

https://cloud.google.com/compute/docs/instances/creating-instance-

with-custom-machine-type.

[29] Robert Grandl, Ganesh Ananthanarayanan, Srikanth Kandula, Sriram

Rao, and Aditya Akella. 2014. Multi-resource packing for cluster

schedulers. ACM SIGCOMM Computer Communication Review 44, 4

(2014), 455–466.

[30] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury,

and Kang G Shin. 2017. Efficient memory disaggregation with infin-

iswap. In Proceedings of the 13th Symposium on Networked Systems
Design and Implementation (NSDI ’17). 649–667.

[31] Jing Guo, Zihao Chang, Sa Wang, Haiyang Ding, Yihui Feng, Liang

Mao, and Yungang Bao. 2019. Who limits the resource efficiency of my

datacenter: An analysis of Alibaba datacenter traces. In Proceedings
of the 27th International Workshop on Quality of Service (IWQoS ’19).
IEEE, 1–10.

[32] Milad Hashemi, Kevin Swersky, Jamie Smith, Grant Ayers, Heiner Litz,

Jichuan Chang, Christos Kozyrakis, and Parthasarathy Ranganathan.

2018. Learning memory access patterns. In International Conference
on Machine Learning. PMLR, 1919–1928.

[33] HPS. 2020. scarab. https://github.com/hpsresearchgroup/scarab.

[34] Intel. 2016. Introduction to cache allocation technology in the intel

xeon processor e5 v4 family. https://www.intel.com/content/www/

us/en/developer/articles/technical/introduction-to-cache-allocation-

technology.html.

[35] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amir-

samanMemaripour, Yun Joon Soh, ZixuanWang, Yi Xu, Subramanya R

Dulloor, et al. 2019. Basic Performance Measurements of the Intel Op-

tane DC Persistent Memory Module. arXiv preprint arXiv:1903.05714
(2019).

[36] Bruce Jacob. 2009. The memory system: you can’t avoid it, you can’t

ignore it, you can’t fake it. Synthesis Lectures on Computer Architecture
4, 1 (2009), 1–77.

[37] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ran-

ganathan, Tipp Moseley, Gu-Yeon Wei, and David Brooks. 2015. Pro-

filing a warehouse-scale computer. In Proceedings of the 42nd Annual
International Symposium on Computer Architecture. 158–169.

[38] Hiwot Tadese Kassa, Jason Akers, Mrinmoy Ghosh, Zhichao Cao, Vaib-

hav Gogte, and Ronald Dreslinski. 2021. Improving Performance of

Flash Based {Key-Value} Stores Using Storage Class Memory as a

Volatile Memory Extension. In Proceedings of the 2021 USENIX Annual
Technical Conference. 821–837.

[39] Jonghyeon Kim, Wonkyo Choe, and Jeongseob Ahn. 2021. Exploring

the Design Space of Page Management for Multi-Tiered Memory Sys-

tems. In Proceedings of the 2021 USENIX Annual Technical Conference.
715–728.

[40] Ana Klimovic, Heiner Litz, and Christos Kozyrakis. 2017. Reflex: Re-

mote flash == local flash. ACM SIGARCH Computer Architecture News
45, 1 (2017), 345–359.

[41] Ana Klimovic, Heiner Litz, and Christos Kozyrakis. 2018. Selecta:

Heterogeneous cloud storage configuration for data analytics. In Pro-
ceedings of the 2018 USENIX Annual Technical Conference. 759–773.

391

https://www.computeexpresslink.org/
https://www.computeexpresslink.org/
https://cloud.google.com/compute/docs/instances/creating-instance-with-custom-machine-type
https://cloud.google.com/compute/docs/instances/creating-instance-with-custom-machine-type
https://github.com/hpsresearchgroup/scarab
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-cache-allocation-technology.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-cache-allocation-technology.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-cache-allocation-technology.html

TMC: Near-Optimal Resource Allocation for Tiered-Memory Systems SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

[42] Apostolos Kokolis, Dimitrios Skarlatos, and Josep Torrellas. 2019. Page-

seer: Using page walks to trigger page swaps in hybrid memory sys-

tems. In Proceedings of the 25th Int’l Symposium on High-Performance
Computer Architecture (HPCA-25). IEEE, 596–608.

[43] Andres Lagar-Cavilla, Junwhan Ahn, Suleiman Souhlal, Neha Agarwal,

Radoslaw Burny, Shakeel Butt, Jichuan Chang, Ashwin Chaugule, Nan

Deng, Junaid Shahid, et al. 2019. Software-defined far memory in

warehouse-scale computers. In Proceedings of the 2019 International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS). 317–330.

[44] Sanghoon Lee, Jongho Park, Minho Ha, Byung Il Koh, Kyoung Park,

and Yeseong Kim. 2023. Sidekick: Near Data Processing for Cluster-

ing Enhanced by Automatic Memory Disaggregation. In 2023 60th
ACM/IEEE Design Automation Conference (DAC). IEEE, 1–6.

[45] Huaicheng Li, Daniel S Berger, Stanko Novakovic, Lisa Hsu, Dan Ernst,

Pantea Zardoshti, Monish Shah, Ishwar Agarwal, Mark Hill, Marcus

Fontoura, et al. 2022. First-generation Memory Disaggregation for

Cloud Platforms. arXiv preprint arXiv:2203.00241 (2022).
[46] Yang Li, Saugata Ghose, Jongmoo Choi, Jin Sun, Hui Wang, and Onur

Mutlu. 2017. Utility-based hybrid memory management. In Proceedings
of the 2017 IEEE International Conference on Cluster Computing. IEEE,
152–165.

[47] Kevin Lim, Jichuan Chang, Trevor Mudge, Parthasarathy Ranganathan,

Steven K Reinhardt, and Thomas F Wenisch. 2009. Disaggregated

memory for expansion and sharing in blade servers. In Proceedings
of the 36th annual international symposium on Computer architecture.
267–278.

[48] Heiner Litz, Maximilian Thuermer, and Ulrich Bruening. 2010. TC-

Cluster: A Cluster Architecture Utilizing the Processor Host Interface

as a Network Interconnect. In 2010 IEEE International Conference on
Cluster Computing. IEEE, 9–18.

[49] Liang Luo, Akshitha Sriraman, Brooke Fugate, Shiliang Hu, Gilles

Pokam, Chris J Newburn, and Joseph Devietti. 2016. Laser: Light,

accurate sharing detection and repair. In Proceedings of the 22th Int’l
Symposium on High-Performance Computer Architecture (HPCA-22).
IEEE, 261–273.

[50] Hasan Al Maruf, Hao Wang, Abhishek Dhanotia, Johannes Weiner,

Niket Agarwal, Pallab Bhattacharya, Chris Petersen, Mosharaf Chowd-

hury, Shobhit Kanaujia, and Prakash Chauhan. 2022. TPP: Transparent

Page Placement for CXL-Enabled Tiered Memory. arXiv preprint
arXiv:2206.02878 (2022).

[51] Hasan Al Maruf, Hao Wang, Abhishek Dhanotia, Johannes Weiner,

Niket Agarwal, Pallab Bhattacharya, Chris Petersen, Mosharaf Chowd-

hury, Shobhit Kanaujia, and Prakash Chauhan. 2023. TPP: Transparent

Page Placement for CXL-Enabled Tiered-Memory. In Proceedings of the
2023 International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). 742–755.

[52] Andréa Matsunaga and José AB Fortes. 2010. On the use of machine

learning to predict the time and resources consumed by applications.

In 2010 10th IEEE/ACM International Conference on Cluster, Cloud and
Grid Computing. IEEE, 495–504.

[53] Microsoft. [n. d.]. Microsoft Azure: Cloud Computing Services. https:

//azure.microsoft.com/.

[54] Douglas C Montgomery, Elizabeth A Peck, and G Geoffrey Vining.

2021. Introduction to linear regression analysis. John Wiley & Sons.

[55] Richard C Murphy, Kyle BWheeler, Brian W Barrett, and James A Ang.

2010. Introducing the graph 500. Cray Users Group (CUG) 19 (2010),
45–74.

[56] Yuanjiang Ni and Shuo Chen. 2020. Closing the performance gap

between dram and pm for in-memory index structures. Technical
report (2020).

[57] Yuanjiang Ni, Jishen Zhao, Heiner Litz, Daniel Bittman, and Ethan L

Miller. 2019. SSP: Eliminating redundant writes in failure-atomic

NVRAMs via shadow sub-paging. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture. 836–848.

[58] Oliver Niehorster, Alexander Krieger, Jens Simon, and Andre

Brinkmann. 2011. Autonomic resource management with support

vector machines. In 2011 IEEE/ACM 12th International Conference on
Grid Computing. IEEE, 157–164.

[59] Yifan Qiao, Chenxi Wang, Zhenyuan Ruan, Adam Belay, Qingda

Lu, Yiying Zhang, Miryung Kim, and Guoqing Harry Xu. 2023.

Hermit:{Low-Latency},{High-Throughput}, and Transparent Remote

Memory via {Feedback-Directed} Asynchrony. In Proceedings of the
20th Symposium on Networked Systems Design and Implementation
(NSDI ’23). 181–198.

[60] Moinuddin K Qureshi and Yale N Patt. 2006. Utility-based cache

partitioning: A low-overhead, high-performance, runtime mechanism

to partition shared caches. In 2006 39th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO’06). IEEE, 423–432.

[61] Amanda Raybuck, Tim Stamler, Wei Zhang, Mattan Erez, and Simon

Peter. 2021. Hemem: Scalable tiered memory management for big data

applications and real nvm. In Proceedings of the 28th ACM Symposium
on Operating Systems Principles (SOSP ’21). 392–407.

[62] Red Hat, Inc. 2012. AutoNUMA. https://mirrors.edge.kernel.

org/pub/linux/kernel/people/andrea/autonuma/autonuma_bench-

20120530.pdf.

[63] Zhenyuan Ruan, Malte Schwarzkopf, Marcos K Aguilera, and Adam

Belay. 2020. AIFM: High-performance, application-integrated far mem-

ory. In Proceedings of the 14th Symposium on Operating Systems Design
and Implementation (OSDI ’20). 315–332.

[64] Samsung. 2015. Samsung Unveils Industry-First Memory Module

Incorporating New CXL Interconnect Standard. https://news.samsung.

com/global/samsung-unveils-industry-first-memory-module

-incorporating-new-cxl-interconnect-standard.

[65] Daniel Sanchez and Christos Kozyrakis. 2011. Vantage: Scalable and

efficient fine-grain cache partitioning. In Proceedings of the 38th Int’l
Symposium on Computer Architecture. 57–68.

[66] Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and John

Wilkes. 2013. Omega: flexible, scalable schedulers for large compute

clusters. In Proceedings of the 8th European Conference on Computer
Systems (EuroSys ’13). 351–364.

[67] Akbar Sharifi, Shekhar Srikantaiah, Asit K Mishra, Mahmut Kandemir,

and Chita R Das. 2011. METE: meeting end-to-end QoS in multicores

through system-wide resource management. In Proceedings of the 2011
SIGMETRICS Conference on Measurement and Modeling of Computer
Systems. 13–24.

[68] John R Tramm, Andrew R Siegel, Tanzima Islam, and Martin Schulz.

2014. XSBench-the development and verification of a performance

abstraction for Monte Carlo reactor analysis. The Role of Reactor
Physics toward a Sustainable Future (PHYSOR) (2014).

[69] Shivaram Venkataraman, Zongheng Yang, Michael Franklin, Benjamin

Recht, and Ion Stoica. 2016. Ernest: Efficient Performance Prediction

for {Large-Scale} Advanced Analytics. In Proceedings of the 12th Sym-
posium on Networked Systems Design and Implementation (NSDI ’16).
363–378.

[70] Abhishek Verma, Madhukar Korupolu, and John Wilkes. 2014. Evalu-

ating job packing in warehouse-scale computing. In Proceedings of the
2014 IEEE International Conference on Cluster Computing. IEEE, 48–56.

[71] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppen-

heimer, Eric Tune, and John Wilkes. 2015. Large-scale cluster man-

agement at Google with Borg. In Proceedings of the 10th European
Conference on Computer Systems (EuroSys ’15). 1–17.

392

https://azure.microsoft.com/
https://azure.microsoft.com/
https://mirrors.edge.kernel.org/pub/linux/kernel/people/andrea/autonuma/autonuma_bench-20120530.pdf
https://mirrors.edge.kernel.org/pub/linux/kernel/people/andrea/autonuma/autonuma_bench-20120530.pdf
https://mirrors.edge.kernel.org/pub/linux/kernel/people/andrea/autonuma/autonuma_bench-20120530.pdf
https://news.samsung.com/global/samsung-unveils-industry-first-memory-module
https://news.samsung.com/global/samsung-unveils-industry-first-memory-module
-incorporating-new-cxl-interconnect-standard

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA Yuanjiang Ni, Pankaj Mehra, Ethan Miller, and Heiner Litz

[72] Vladimir Davydov. 2015. idle memory tracking. https://lwn.net/

Articles/643578/.

[73] Carl A Waldspurger. 2002. Memory resource management in VMware

ESX server. ACM SIGOPS Operating Systems Review 36, SI (2002),

181–194.

[74] Chenxi Wang, Huimin Cui, Ting Cao, John Zigman, Haris Volos, Onur

Mutlu, Fang Lv, Xiaobing Feng, and Guoqing Harry Xu. 2019. Panthera:

Holistic memory management for big data processing over hybrid

memories. In Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation. 347–362.

[75] YawenWang, Kapil Arya,Marios Kogias,Manohar Vanga, Aditya Bhan-

dari, Neeraja J Yadwadkar, Siddhartha Sen, Sameh Elnikety, Christos

Kozyrakis, and Ricardo Bianchini. 2021. SmartHarvest: harvesting

idle CPUs safely and efficiently in the cloud. In Proceedings of the 16th
European Conference on Computer Systems (EuroSys ’21). 1–16.

[76] Johannes Weiner, Niket Agarwal, Dan Schatzberg, Leon Yang, Hao

Wang, Blaise Sanouillet, Bikash Sharma, Tejun Heo, Mayank Jain,

Chunqiang Tang, et al. 2022. TMO: transparent memory offloading in

datacenters. In Proceedings of the 2022 International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems
(ASPLOS). 609–621.

[77] Kai Wu, Yingchao Huang, and Dong Li. 2017. Unimem: Runtime

data managementon non-volatile memory-based heterogeneous main

memory. In Proceedings of the 2015 International Conference for High
Performance Computing, Networking, Storage and Analysis (SC17). 1–
14.

[78] Zi Yan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee.

2019. Nimble page management for tiered memory systems. In Pro-
ceedings of the 2019 International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS). 331–345.

[79] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and

Steve Swanson. 2020. An empirical guide to the behavior and use of

scalable persistent memory. In Proceedings of the 16th USENIX Confer-
ence on File and Storage Technologies (FAST ’20). 169–182.

[80] Jifei Yi, Benchao Dong, Mingkai Dong, and Haibo Chen. 2020. On the

precision of precise event based sampling. In Proceedings of the 11th
ACM SIGOPS Asia-Pacific Workshop on Systems. 98–105.

[81] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled Elmele-

egy, Scott Shenker, and Ion Stoica. 2010. Delay scheduling: a simple

technique for achieving locality and fairness in cluster scheduling.

In Proceedings of the 5th European Conference on Computer Systems
(EuroSys ’10). 265–278.

[82] Yanqi Zhou, Ramnatthan Alagappan, Amirsaman Memaripour,

Anirudh Badam, and David Wentzlaff. 2017. HNVM: Hybrid NVM

enabled datacenter design and optimization. Microsoft Research TR
(2017).

[83] Yanqi Zhou, Henry Hoffmann, and David Wentzlaff. 2016. CASH:

Supporting IaaS Customers with a Sub-core Configurable Architecture.

In Proceedings of the 43th Int’l Symposium on Computer Architecture.
682–694.

[84] Yanqi Zhou and David Wentzlaff. 2014. The sharing architecture:

sub-core configurability for IaaS clouds. In Proceedings of the 2014
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’14). 559–574.

393

https://lwn.net/Articles/643578/
https://lwn.net/Articles/643578/

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Cost Efficiency for Cloud Customers
	2.2 Resource Efficiency for Cloud Operators
	2.3 Performing Optimal Resource Allocation

	3 TMC Design
	3.1 Overview
	3.2 TMC Performance Model
	3.3 Inferring Tiered-Memory Performance
	3.4 Data Placement
	3.5 Optimizing Packing Efficiency
	3.6 Discussion

	4 Evaluation in Simulation
	4.1 Experimental setup
	4.2 Execution and Search Cost
	4.3 Improving Packing Efficiency
	4.4 Threshold Sensitivity Study
	4.5 Memory Tiering Sensitivity Analysis

	5 Real System Experiments
	5.1 Evaluation

	6 Related Work
	7 Conclusions
	Acknowledgments
	References

