
Cell Tracking via Reinforcement Learning with Microscopic
Image Simulator

Toru Nagamura
Graduate School of Information
Science and Technology, Osaka

University
Osaka, Japan

Shigeto Seno
Graduate School of Information
Science and Technology, Osaka

University
Osaka, Japan

senoo@ist.osaka-u.ac.jp

Hironori Shigeta
Graduate School of Information
Science and Technology, Osaka

University
Osaka, Japan

Tomohiro Mashita
Cybermedia Center, Osaka University

Osaka, Japan

Hideo Matsuda
Graduate School of Information
Science and Technology, Osaka

University
Osaka, Japan

ABSTRACT
Recent advances in optical microscopy and fluorescent protein tech-
nology have made it possible to record movies of cells over time
while keeping them alive. Cell tracking is necessary to extract and
analyze cell dynamics from these movies. Tracking-by-detection
methods based on supervised deep learning are widely used for
cell tracking. However, it is necessary to individually adjust the
tracking algorithm for each cell movie that shows various charac-
teristics and, in addition, to prepare a sufficient amount of data for
training. To address these issues, we propose a method for training
cell tracking models based on reinforcement learning with a simu-
lator that imitates cell movies as an environment. The simulator
can generate diverse and voluminous cell movies containing cell
features from the correct trajectory of cell tracking. Through evalu-
ation of the Cell Tracking Challenge dataset, the proposed method
is confirmed to achieve a competitive performance that is better
than the conventional reinforcement-learning tracker.

CCS CONCEPTS
• Computing methodologies→ Tracking.

KEYWORDS
bioimage informatics, object tracking, deep reinforcement learning,
biological imaging, cell movement, generative adversarial network

ACM Reference Format:
ToruNagamura, Shigeto Seno, Hironori Shigeta, TomohiroMashita, andHideo
Matsuda. 2023. Cell Tracking via Reinforcement Learning with Microscopic

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICBET 2023, June 15–18, 2023, Tokyo, Japan
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0743-8/23/06. . . $15.00
https://doi.org/10.1145/3620679.3620682

Image Simulator. In 2023 13th International Conference on Biomedical Engi-
neering and Technology (ICBET 2023), June 15–18, 2023, Tokyo, Japan. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3620679.3620682

1 INTRODUCTION
Recent advancements in technology, including optical microscopy,
fluorescent proteins, and genetic engineering, have facilitated the
ability to observe living cells in real-time and capture them in
movies, a field known as bioimaging. For instance, physiological
processes such as immune cell-mediated wound healing[9][6]and
cancer cell metastasis can now be visually observed. These movies
provide valuable information on cellular dynamics, encompass-
ing cell migration, morphology, division, fusion, adhesion, and
cell death, which have significant implications for drug discovery
and pathological investigation. Consequently, the extraction and
analysis of cell dynamics have emerged as key technologies in
medical and biological research. However, it is worth noting that
bio-imaging techniques rapidly evolve towards high-throughput
methodologies, resulting in the generation of various movies. As a
result, there is a need to automate the extraction of cell dynamics
with sophisticated image processing algorithms.

Cell tracking is the process of locating specific cells in sequential
images. Typically, the input in cell tracking consists of image data,
while the output includes the trajectory. The trajectory represents
the precise path followed by a cell during its motion. Cell tracking
is essential to quantify cell dynamics, such as cell number, morphol-
ogy, division, and fusion. Because of the difficulty of performing
cell tracking manually, current researches focus on developing to
automate it using computers, but there are some challenges. In
particular, factors such as changes in cell shape and cell division
make it difficult to identify cells. In addition, the cell may appear
blurred or as bright spots, making it difficult to distinguish cells in
a densely populated cellular environment.

There are diverse approaches for computational cell tracking[4].
For instance, some techniques utilize probabilistic filtering meth-
ods such as particle filters and correlation filters to estimate the
probability distribution of cell positions in the subsequent frame

16

https://doi.org/10.1145/3620679.3620682
https://doi.org/10.1145/3620679.3620682
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3620679.3620682&domain=pdf&date_stamp=2023-12-19

ICBET 2023, June 15–18, 2023, Tokyo, Japan Nagamura et al.

Figure 1: Reinforcement learning model for cell tracking is trained with simulator and predict trajectories on the cell movies.
On the right side, the image (T=0) shows the initial location of the target. The image (T=20) shows the iterative action to track
the target cell. The sequential actions control the bounding box in each frame from initial to current target cell position.

for tracking purposes[5]. Recently, a method known as tracking-
by-detection, which entails detecting cells in each frame and estab-
lishing correspondences between cells that are likely to be identi-
cal, has demonstrated superior cell tracking performance. In the
past, cell detection relied on Support Vector Machine (SVM) with
handcrafted features[10], imposing limitations on tracking per-
formance. However, the utilization of deep learning approaches
such as Convolutional Neural Networks (CNN)[3] has significantly
improved tracking performance, as it not only automates feature
design but also enables detection using rich and learned feature
representations[13]. Furthermore, robust tracking can be achieved
across diverse data sets through transfer learning of detection mod-
els trained on large-scale data sets[11]. However, there is a hurdle
to this method as the effectiveness of object tracking depends on
the accuracy of the object detection results. In addition, it has an-
other disadvantage that the appropriate tracking algorithm has to
be designed for each target cell.

On the other hand, there are cell-tracking methods utilizing rein-
forcement learning. Reinforcement learning is an area of machine
learning to get intelligent agents in an environment. The environ-
ment is the world in which the agent lives and interacts. Agent
affects the environment to achieve the objective task. At its core,
any reinforcement learning task is defined by the state, action, and
reward. States represent the current environment. Actions are what
an agent does in the current state. Rewards are feedback about
actions from environment. Based on the current state, the agent
takes appropriate actions, which in turn modify the state of the
environment and result in the agent receiving a reward and a next
state. The objective of reinforcement learning is getting optimal
"policy" which calculates optimal action in a current state. The
policy is obtained to maximize the expected reward value through
agent-environment interaction.

To train a cell-tracking model with reinforcement learning, an
environment is needed in which the correct reward can be cal-
culated for the agent’s actions. To create such an environment,
conventional methods require paired data: a series of microscopic
images and the trajectory of each target cell. However, generating

Figure 2: How to simlate cell movies

such data is an expensive task because it requires manual track-
ing. Preparing a sufficient number of image-trajectory pairs for
reinforcement learning is impractical.

To solve this problem, we used a simulator to generate paired
data. The simulator generates pseudo-microscopic images from
mathematical simulation results of cell migration. Obviously, the
generated dataset consists of paired data of images and cell tra-
jectories. Thus, it is possible to compute the reward needed for
reinforcement learning.

2 METHODS
In this study, we propose a method for training a reinforcement
learningmodel for cell trackingwith a simulator. The agent acquires
model for cell tracking through reinforcement learning on the sim-
ulator and then, the model can be used to track target cells in an
unseen video (Figure 1). The simulator generates imitated movies
from mathematical simulation results of cell migration (Figure 2).
Using neural style transfer architecture, the pseudo-microscopic
imitated images translated from the mask images are equivalent to
the actual set of images to be tracked, and also contain a variety
of cellular features. The agent can learn cell tracking in the simu-
lator as an environment, allowing it to predict trajectories in real
images. The proposed approach offers a notable advantage in that
the simulator can train the cell-tracking model even in the limited
data availability scenario. Furthermore, the simulator automatically

17

Cell Tracking via Reinforcement Learning with Microscopic Image Simulator ICBET 2023, June 15–18, 2023, Tokyo, Japan

adjusts the tracking algorithms to accommodate diverse cell movies,
enhancing its Generalization performance.

In this section, we define cell tracking in the context of rein-
forcement learning, the environment and simulator, and the agent.

2.1 Setup of the Cell Tracking Problem
Reinforcement learning for cell tracking involves learning a policy
that selects the optimal action for tracking the target cell based
on the current state. The agent is designed to output actions that
determine the current location of the target cell. During training,
the agent learns to output the optimal action by taking as input
the state computed from the image and the reward computed from
the accurate trajectory (see Figure 1 on the left). By generating
the action of locating the current position of the cell throughout
the whole movie, the system finally generates the trajectory of the
target cell to be tracked (see Figure 1 on the right). The objective
of the learning process is to acquire a policy for generating the
correct trajectory. The approach used to obtain the policy is deep
reinforcement learning. We use deep reinforcement learning to
obtain the optimal policy for cell tracking. In this approach, the
policy is represented by a neural network and optimized by the
gradient descent method.

From this point on, we will describe the problem setup of rein-
forcement learning for cell tracking described above. we consider
a problem setting in which cells are tracked using boundig box
motion. In this setting, the state, action, and reward are represented
as

• State (𝑠𝑡) : an image with bounding box-area croped
• Action (𝑎𝑡) : indicate the moving direction of bounding box
• Reward (𝑟𝑡) : evaluate action

Let 𝐼𝐿 denote the 𝐿th frame of the cell movie. Let 𝑠𝑇 denote
the bounding-box region extracted from the image. The policy
network determines the action 𝑎𝑇 corresponding to the bounding-
box control method based on the input state 𝑠𝑇 . The state 𝑠𝑡+1 at
the next time step is determined by a state transition that moves
the bounding box based on the action. Furthermore, 𝑠𝑇 and 𝑠𝑇+1 are
compared, and the reward 𝑟𝑇 is calculated as a value to evaluate the
chosen action. This sequence of steps is called a "step," and a total
of 𝑁 steps are processed in one frame. The agent takes action only
𝑁 times while the tracked object moves once, gradually adjusting
the position of the bounding box to capture the cell.

On this setting, each episode consists of 20 frames. an episode
represents a single instance of cellular motion in the training data.
Since 𝑁 = 10 in this study, we consider 200 steps as one episode.

Our approach focuses on tracking a single cell in each episode
during training, although in a real cell video tracking test, tracking
is performed for every frame in which a cell is present in the image.
If multiple cells are present in the image, our single cell tracking
approach is repeated for each cell in order to achieve multi-cell
tracking.

2.1.1 State. The state 𝑠𝑡 corresponds to a rectangular region ex-
tracted from frame 𝐼𝐿 of the cellular video image. The coordinates
of the rectangular region are represented by a 4-dimensional vector
(𝑥𝑡 , 𝑦𝑡 ,𝑤, ℎ). A coordinate system with the origin at the upper left

corner of the image is utilized, where 𝑥𝑡 and 𝑦𝑡 denote the coordi-
nates of the upper left corner of the bounding box at time step 𝑡 ,
while𝑤 and ℎ represent hyperparameters indicating the width and
height of the bounding box.

2.1.2 Action. Action refers to the policy employed to manipulate
the bounding box. The action space defined as five options.

• move bounding box position up or down: 𝒂𝒕 = (±1, 0)
• move bounding box position left or right : 𝒂𝒕 = (0,±1)
• stop bounding box : 𝒂𝒕 = (0, 0)

. the policy selects the optimal action to track the target cell.

2.1.3 State Transition. When action 𝒂𝒕 is chosen under state 𝑠𝑡 at
time step 𝑡 , the subsequent state 𝑠𝑡+1 is determined based on the
movement of the bounding box. The equation is that

(𝑥𝑡+1, 𝑦𝑡+1) = (𝑥𝑡 , 𝑦𝑡) + b𝒂𝒕 (1)

where b is a hyperparameter dictating the amount of movement of
the bounding box in pixels.

2.1.4 Reward. The reward is determined by the Euclidean distance
𝑑𝑡 between the correct and predicted coordinates, as described in
equation

𝑟𝑡 =

1 (𝑑𝑡 ≤ 𝛿)
0.5 (𝑑𝑡 > 𝛿 and 𝑑𝑡 < 𝑑𝑡−1)
0 (𝑑𝑡 > 𝛿 and 𝑑𝑡 > 𝑑𝑡−1)

(2)

The hyperparameter 𝛿 signifies the tolerance for error between the
correct and predicted coordinates, in pixels. Specifically, the reward
is set to 1 when the bounding box is directly above the cell being
tracked, 0.5 when the distance is closer than the previous step, and
0 when the distance is farther.

2.2 Environment for Cell Tracking
As described in the previous chapter, during training, the environ-
ment uses images and trajectories as input and calculates rewards
for actions. The main idea of this study is to generate data in the
simulator during training in this way. To facilitate reinforcement
learning, we have developed a simulator that simulates the video im-
ages to be tracked and generates a substantial number of episodes.
For accurate cell tracking, it is necessary to reduce the domain
gap between real and simulated images. Hence, our objective is to
imitate real cell migration and morphology on the simulator. In this
section we describe the techniques integrated into the simulator to
achieve the objective.

2.2.1 Biased Persistent Random Walk. In this study, we employ Bi-
ased Persistent RandomWalk (BPRW)[8] as a computational model
for simulating cell migration. BPRW is a sophisticated particle and
cell migration model that incorporates the concepts of bias and
persistence into the traditional Random Walk (RW) model[2]. RW
is a widely used model for describing cell migration, where the
movement of one particle is influenced by another particle, referred
to as "bias," and the movement of a particle is persistently biased
towards maintaining its previous direction of migration, referred to
as "persistence." In comparison to RW, BPRW offers a more accurate
and refined representation of cell migration.

18

ICBET 2023, June 15–18, 2023, Tokyo, Japan Nagamura et al.

Figure 3: Example of experimental dataset. The first and last frames of each dataset are depicted in this figure. Each cell
trajectory is drawn by colored line on the last frame.

2.2.2 simulator. We employ CycleGAN[17] to generate images
within the simulator that imitate migration and morphology pat-
terns with real images. First, we create a "mask image" with ellipses
and other cell-like shapes positioned randomly. Second, we train a
CycleGAN model capable of transforming the "mask image" into a
realistic image. Finally, we generate a "mask image" as a movie that
captures a specific cell migration trajectory, and transform it using
CycleGAN. Through this approach, the simulator is able to gener-
ate movies that imitate temporal cell migration and morphological
changes.

2.2.3 How to train the CycleGAN. To train CycleGAN to replicate
cell morphology, "mask images" are generated, as shown in Figure4
top row, for datasets (a) and (b), respectively. The images that are
not used in the tracking experiment are the training dataset of
CycleGAN. Dataset (a) contains 182 images and dataset (b) contains
228 images. They are augmented 6 times larger by rotating them
by 90, 180, and 270 degrees and by flipping them vertically and
horizontally. Cell migration is assumed to follow BPRW for both
datasets. An example image generated by the proposed procedure
is shown in Figure4 bottom row.

2.2.4 Image Processing for Reinforcement Learning. In order to
optimize the efficiency of reinforcement learning, two additional el-
ements are incorporated into the generated cellular moving images.
Firstly, a checkerboard pattern is introduced into the background
of each frame. As compared to a uniform background color, this al-
lows the agent to discern and establish the relationship between the
action and the rectilinear motion by comparing the checkerboard
pattern of the previous and current frames. Additionally, a cross is
drawn to denote the center of the bounding box. This facilitates the
agent’s comprehension that a reward is obtained when the cross
and the cell overlap.

2.3 Agent for Cell Tracking
2.3.1 Deep Reinforcement Learning and Policy Learning. The agent
endeavors to acquire an optimal policy for cell tracking from the
state-reward pairs. In this investigation, we employ Proximal Policy
Optimization (PPO)[15], a form of policy gradient method[14], as
the algorithm for policy acquisition through reinforcement learning.

The policy gradient method is a type of deep reinforcement learning
that combines the principles of reinforcement learning and deep
learning, and optimizes the policy represented by a neural network
using the gradient descent method.

The policy 𝜋\ is modeled by a policy network with parameter \ ,
which we refer to as the policy network. Let

𝜏 = (𝑠0, 𝑟0, 𝑎0, 𝑠1, 𝑟1, 𝑎1, · · · , 𝑠𝑇 , 𝑟𝑇 , 𝑎𝑇) (3)

denote a time series of state, action, and reward experience data
obtained when an agent has policy 𝜋\ . The discounted reward sum,
referred to as earnings, is defined as follows, where𝛾 is the discount
rate.

𝐺 (𝜏) = 𝑟0 + 𝛾𝑟1 + 𝛾2𝑟2 · · · + 𝛾𝑇 𝑟𝑇 . (4)
The objective of the policy gradient method is to optimize the
parameter \ in order to obtain a policy that maximizes the returns.
Since the returns are stochastic, the objective function of the neural
network is

𝐽 (\) = 𝐸𝜏∼𝜋\ [𝐺 (𝜏)], (5)
where the measure 𝜋\ is a probability distribution that selects an
action based on the current state. Additionally, 𝜏 follows a probabil-
ity distribution 𝜋\ and 𝐸 represents the expectation operator. The
gradient is

∇𝐽\ (\) = ∇\𝐸𝜏∼𝜋\ [𝐺 (𝜏)] (6)

= 𝐸𝜏∼𝜋\

[
𝑇∑︁
𝑡=0

𝐺 (𝜏)∇ log𝜋\ (𝑎𝑡 , 𝑠𝑡)
]
.

To update the parameters of the neural network, we can utilize the
gradient ∇𝐽\ (\), which is

\ = \ + 𝜔∇𝐽\ (\), (7)

where 𝜔 represents the learning rate.
There are two approaches for updating neural networks using the

policy gradient method: experience replay and frame stacking[12].
In experience replay, mini-batches are randomly sampled from the
empirical data pre-stored in a buffer during training. This miti-
gates data bias between different mini-batches, resulting in stable
learning. On the other hand, frame stacking involves overlapping
multiple consecutive frames and feeding them as a single state

19

Cell Tracking via Reinforcement Learning with Microscopic Image Simulator ICBET 2023, June 15–18, 2023, Tokyo, Japan

Table 1: Hyperparameters of agent in an experiment

Parameter Values
Total number of learning steps 100,000
Experience replay buffer size 4,096
Mini batch size 512
Number of epochs 8
Reward discount rate (𝛾) 0.99
Learning rate(𝜔) 0.00025
bounding box move(b) 2 (pixel)
limit of reward prediction error(𝛿) 6 (pixel)

input to the neural network. This approach is essential when stack-
ing multiple states, such as in video frames, in order to select the
optimal action.

2.3.2 Policy network architecture. The policy network comprises of
three convolutional layers and one fully connected layer. Softmax
functions are applied in the output layer, while ReLU (Rectified
Linear Unit) functions are utilized in the other layers. The param-
eters of each layer are initialized randomly. The input image is a
stack of three consecutive frames acquired from the video output of
the simulator. As each frame is an RGB image, the total number of
channels is 9. Image normalization is employed as a preprocessing
step. The output layer generates a probability distribution for the
action. The remaining hyperparameters necessary for training are
detailed in Table1. The mini-batch size in the table indicates the
amount of data used for a single gradient update, and the number of
epochs signifies the frequency at which mini-batches are employed
for gradient updates.

3 RESULTS AND DISSCUSSION
3.1 Experimental setup
Experiments about cell tracking on two datasets are conducted to
confirm the efficacy of the proposed approach. The comparative
methods are itemized below.

• ADNet[16] : An object tracking method based on reinforce-
ment learning.

• Baseline : Proposed method traied by only real image.
• Ours (without CycleGAN) : Proposed method but CycleGAN
is not used in the simlator.

• Ours (with CycleGAN) : Proposed method that CycleGAN is
used in the simlator.

In ADNet, a pre-trained model for general object tracking is trans-
ferred to cell tracking, and the training is solely carried out on
real images. Conversely, the proposed method without CycleGAN
constructs a simulator by overlaying single cell images extracted
from the ground truth onto the ellipse on a "mask image".

To assess the effectiveness of the simulator, training is performed
on a dataset consisting of simulator-generated images mixed with
real images, with varying percentages of simulator-generated im-
ages, namely 25%, 50%, 75%, and 90%. This percentage denotes the
total number of simulator-generated videos relative to the total
number of videos utilized for training. For instance, if there are
10 real images and the simulator percentage is set at 50%, there

Table 2: Overview of datasets

Dateset (a) (b)
Image size (pixel) 1,024×1,024 696×520
Pixel size (µm) 0.24 0.65
Number of videos 2 2
Interval between shots (minutes) 5 15
Number of frames 91 114
Number of cells with GT 58, 28 8, 6

will be 10 simulator-generated images. By extracting the 20 frames
required for an episode from the video images present in each
dataset, approximately 360 episodes can be generated for dataset
(a), and 77 episodes for dataset (b). Based on this, the number of
simulator-generated images is determined proportionally.

3.1.1 Dataset. Illustrative examples of images from the two datasets
utilized in our experiment are presented in Figure3. The dataset (a)
and (b) consist of time-lapse images of stem cells from GFP-GOTW1
mice and stellate tumor cells cultured on polyacrylamide substrate,
respectively. Detailed information about the dataset is provided in
Table2. Both datasets are in grayscale and were resized to 512 × 512
pixels, preprocessed with gamma correction, and used as the green
channel of the RGB image for training and prediction purposes. Ev-
ery dataset possesses a correct trajectory. During training with real
images, we use this information. The experiment was conducted
through the process of cross-validation.

3.1.2 Evaluation Metrics. We adopt the One Pass Evaluation (OPE)
metric for assessing the performance of single-object tracking. OPE
measures the percentage of matched cells in a given tracking se-
quence, where a match is defined as the Euclidean distance between
the center coordinates of the true and predicted values in a frame
being less than a certain threshold value. In this study, the threshold
was set to 20 pixels for dataset (a) and 30 pixels for dataset (b).

3.1.3 Implementation. All simulators and agents involved in the
proposed method are implemented using the Python programming
language and the reinforcement learning framework OpenAI Gym
and stable baselines3 [1]. All experiments are conducted on a com-
puter equipped with an Intel Core i9-10900X CPU@ 3.70GHz, 64GB
RAM, and a Geforce RTX2080 GPU.

3.2 Results
Figure 5 shows the experimental results. In both datasets, ours
outperforms the ADNet and baseline OPEs when the percentage
of simulator images is 50% and 75%, respectively. In dataset (a),
ours (with CycleGAN) recorded the third highest OPE, about 83%.
dataset (b), ours(with CycleGAN) achieved the largest OPE among
the comparison methods, approximately 81%.

The fact that ours outperforms ADNet and baseline confirms the
effectiveness of the proposed method for cell tracking.

3.3 Discussion
Our proposed method with CycleGAN, has demonstrated superior
performance compared to ADNet and the baseline, substantiating

20

ICBET 2023, June 15–18, 2023, Tokyo, Japan Nagamura et al.

Figure 4: CycleGAN-generated images. Dataset (a) is on the left and dataset (b) is on the right. The mask image in dataset (b) has
two overlapping circles indicate the cell membrane and nucleus.

its effectiveness in our experimental evaluation. Especially, the pro-
posed method was more successful for dataset (b). Cells in dataset
(a) have less cell migration and deformation. In addition, cells and
background are also easy to distinguish. This means that cell track-
ing in dataset (a) is relatively easy. Therefore, the effect of increasing
the variation of the training data via the simulator was considered
to be limited. On the contrary, the cells in dataset (b) exibit a more
complex structure, such as nuclei and membranes. Cells move more
drastically and form differently. The contrast between cells and
background is not sufficient. These results suggest that our method
is more effective in situations where tracking is difficult. The simu-
lator leads to better training in the situation because it can increase
variation of the data.

We also found that the proportion of simulated images in the
training data also affects the tracking accuracy. Higher accuracy
can be achieved by mixing real data and imitated data in a rea-
sonable proportion. Including imitated data increases the number
of episodes that can be used for training. This leads to a gradual
improvement in accuracy because a wider variety of patterns can
be learned. On the other hand, too much ratio of imitated data
results in decreased accuracy. The reason is that the imitated im-
ages generated by the simulator deviate from the real data more
or less. The accuracy was improved by using the data generated
with CycleGAN rather than the data generated without CycleGAN
(just copying and pasting texture of cells). These results indicatesd
that there is a certain significance in extending the information
on the appearance of cells, and there is a possibility of further
improvement in accuracy by using a more powerful simulator.

4 CONCLUSION
In this study, we have proposed a novel approach for training cell
tracking models using reinforcement learning via a simulator that
simulates cell movies. We have introduced a method using Cycle-
GAN, which transforms the "mask image" into a realistic image
to create the simulator. The simulator is capable of generating an

infinite number of videos containing distinctive cell features and
accurate trajectories. This simulator acts as an environment to cal-
culate the reward for the action chosen by the agent. This approach
provides a robust framework for reinforcement learning, allowing
us to depart from the conventional supervised learning paradigm
that focuses on determining cell identity across successive frames.
Instead, our method approaches the problem from the perspective
of acquiring an intelligent agent that can select appropriate actions
for tracking a target. Remarkably, the agents acquired by our pro-
posed method demonstrate performance comparable to existing
methods developed for object tracking.

Future objectives are the integration of additional action types
and refinement of the simulator construction method. In the pro-
posed approach, tracking is executed through an agent that selects
diverse actions. The principal advantage of this technique is the
potential to adapt to varying circumstances by adding a repertoire
of actions. Cells have diverse dynamics beyond mere migration,
including division, fusion, cell death, and adhesion. To extract these
cynamics with supervised learning, significant modifications, such
as algorithmic design and network incorporation for dynamics
detection, are needed. However, our proposed approach, which
employs a simulator and reinforcement learning, has an ability to
detect cell dynamics without requiring fundamental alterations to
the method. The reason is that defining the states, actions, and re-
wards leads to obtaining the optimal policy to extract the multiple
and complex cell dynamics.

Furthermore, there is considerable room for enhancement in
the construction of the simulator. In the experiments detailed in
this manuscript, migration was characterized solely by a single
model denoted as BPRW. Although this model is efficacious for
microscopic observation of cultured cells, it falls short in compre-
hensively capturing cell dynamics in complex environments such
as in vivo. Consequently, we intend to estimate a cell migration
model through employment of a simulator, wherein the utilization
of SimGAN [7] holds potential. This approach not only broadens

21

Cell Tracking via Reinforcement Learning with Microscopic Image Simulator ICBET 2023, June 15–18, 2023, Tokyo, Japan

Figure 5: Expermental results

the applicability of the methodology, but also enhances tracking
performance as the simulator generates realistic images, thereby
minimizing the domain gap between the simulator and reality.

ACKNOWLEDGMENTS
Thisworkwas supported by JSPS KAKENHIGrant Number JP18K19842,
JP22H05085.

REFERENCES
[1] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-

man, Jie Tang, and Wojciech Zaremba Openai. 2016. OpenAI Gym. (jun 2016).
https://doi.org/10.48550/arxiv.1606.01540 arXiv:1606.01540

[2] Edward A. Codling, Michael J. Plank, and Simon Benhamou. 2008. Random walk
models in biology. Journal of the Royal Society Interface 5, 25 (2008), 813–834.
https://doi.org/10.1098/rsif.2008.0014

[3] Jia Deng,Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition. Ieee, 248–255.

[4] Neda Emami, Zahra Sedaei, and Reza Ferdousi. 2021. Computerized cell tracking:
Current methods, tools and challenges. Visual Informatics 5, 1 (2021), 1–13.
https://doi.org/10.1016/j.visinf.2020.11.003

[5] Kenji Fujimoto, Shigeto Seno, Hironori Shigeta, Tomohiro Mashita, Masaru Ishii,
and Hideo Matsuda. 2020. Tracking and analysis of fucci-labeled cells based on
particle filters and time-to-event analysis. IJBBB (2020).

[6] Yusri Dwi Heryanto, Chin-Yi Cheng, Yutaka Uchida, Kazushi Mimura, Masaru
Ishii, and Ryo Yamada. 2021. Integrated analysis of cell shape and movement in
moving frame. Biology Open 10, 3 (mar 2021). https://doi.org/10.1242/bio.058512

[7] Yifeng Jiang, Tingnan Zhang, Daniel Ho, Yunfei Bai, C. Karen Liu, Sergey
Levine, and Jie Tan. 2021. SimGAN: Hybrid Simulator Identification for Do-
main Adaptation via Adversarial Reinforcement Learning. (oct 2021), 2884–2890.
https://doi.org/10.1109/ICRA48506.2021.9561731 arXiv:2101.06005

[8] Phoebe J.M. Jones, Aaron Sim, Harriet B. Taylor, Laurence Bugeon, Magaret J.
Dallman, Bernard Pereira, Michael P.H. Stumpf, and Juliane Liepe. 2015. Inference
of random walk models to describe leukocyte migration. Physical biology 12, 6
(sep 2015). https://doi.org/10.1088/1478-3975/12/6/066001

[9] Daniel Kreisel, Ruben G. Nava, Wenjun Li, Bernd H. Zinselmeyer, Baomei Wang,
Jiaming Lai, Robert Pless, Andrew E. Gelman, Alexander S. Krupnick, and Mark J.
Miller. 2010. In vivo two-photon imaging reveals monocyte-dependent neu-
trophil extravasation during pulmonary inflammation. Proceedings of the National
Academy of Sciences of the United States of America 107, 42 (2010), 18073–18078.
https://doi.org/10.1073/pnas.1008737107

[10] Shohei Kumagai and Kazuhiro Hotta. 2015. Particle detection in intracellular
images and radius estimation by circle fitting. IEEJ Transactions on Electrical and
Electronic Engineering 10, 2 (2015), 181–185.

[11] Tim Meinhardt, Alexander Kirillov, Laura Leal-Taixe, and Christoph Feichten-
hofer. 2022. Trackformer: Multi-object tracking with transformers. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition. 8844–8854.

[12] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing Atari with
Deep Reinforcement Learning. (2013), 1–9. arXiv:1312.5602 http://arxiv.org/abs/
1312.5602

[13] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-net: Convolutional
networks for biomedical image segmentation. In International Conference on
Medical image computing and computer-assisted intervention. Springer, 234–241.

[14] John Schulman, Sergey Levine, Philipp Moritz, Michael Jordan, and Pieter Abbeel.
2015. Trust Region Policy Optimization. 32nd International Conference on Machine
Learning, ICML 2015 3 (feb 2015), 1889–1897. https://doi.org/10.48550/arxiv.1502.
05477 arXiv:1502.05477

[15] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov
Openai. 2017. Proximal Policy Optimization Algorithms. (jul 2017).
arXiv:1707.06347 https://arxiv.org/abs/1707.06347v2

[16] Sangdoo Yun, Jongwon Choi, Youngjoon Yoo, Kimin Yun, and Jin Young Choi.
2017. Action-decision networks for visual tracking with deep reinforcement
learning. Proceedings – 30th IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2017 2017-Janua (2017), 1349–1358. https://doi.org/10.1109/
CVPR.2017.148

[17] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. 2017. Unpaired
image-to-image translation using cycle-consistent adversarial networks. In Pro-
ceedings of the IEEE international conference on computer vision. 2223–2232.

22

https://doi.org/10.48550/arxiv.1606.01540
https://arxiv.org/abs/1606.01540
https://doi.org/10.1098/rsif.2008.0014
https://doi.org/10.1016/j.visinf.2020.11.003
https://doi.org/10.1242/bio.058512
https://doi.org/10.1109/ICRA48506.2021.9561731
https://arxiv.org/abs/2101.06005
https://doi.org/10.1088/1478-3975/12/6/066001
https://doi.org/10.1073/pnas.1008737107
https://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
https://doi.org/10.48550/arxiv.1502.05477
https://doi.org/10.48550/arxiv.1502.05477
https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347v2
https://doi.org/10.1109/CVPR.2017.148
https://doi.org/10.1109/CVPR.2017.148

	Abstract
	1 Introduction
	2 Methods
	2.1 Setup of the Cell Tracking Problem
	2.2 Environment for Cell Tracking
	2.3 Agent for Cell Tracking

	3 Results and disscussion
	3.1 Experimental setup
	3.2 Results
	3.3 Discussion

	4 Conclusion
	Acknowledgments
	References

