
Fig. 3. Possible schedules for accessing the records described in
Figure 2: from left to right, (a) a feasible schedule; (b) an SLTF
schedule; and (c) the minimum latency schedule.

REVOLUTIONS

3 I A ~ ' ' A A

INTERVAL ,S

6 I I

bo t tom before moving on to the next. The shaded areas
in the figure show d rum latency. The record label indi-
cates the period during which a record is being accessed.

Figure 3(b) shows an SLTF schedule for the same
collection. It is not difficult to show that this is the
unique SLTF schedule for this example since no two
records share a starting point. In general, however,
when two or more distinct SErF schedules exist, they
may not all be o f the same length. No te that the SeTF
schedule in Figure 3(b) has less latency time than the
schedule in Figure 3(a).

A Bound on the Near-Optimality of SLTF Schedules

We show that an SLTF schedule for a collection o f
records is never as much as one d rum revolution longer
than an opt imal schedule.

Definition. A critical interval for a schedule o f a
collection of records is any interval in which the schedule
is never latent.

Figure 3(a) has no critical intervals, whereas interval
5 is a critical interval in Figure 3(b).

LEMMA. Every SLTF schedule has at least one critical
interval.

PROOV. Let the initial interval o f the last record in the
schedule be called interval S. We prove that this interval
is a critical interval. For if not, then during some revolu-
t ion prior to the last revolution, the d rum is latent while
it passes interval S. But at this point the last record is
the next record to come under the read head, so it would
have been scheduled here under the SLTF discipline, which
proves the lemma.

Let a d rum for which all informat ion is t ransferred
in records of equal size and whose records are located in
nonover lapping intervals on its surface be called a
paging drum [1]. I t is easy to prove that an SLTF discipline
always minimizes total latency time for a paging drum.
This follows as a trivial consequence of the above dis-
cussion since in every case the SLTF schedule terminates
immediately after the critical interval.

In the general case, existence o f a critical interval
establishes near-opt imali ty of the SLTF discipline.

THEOREM. An SLTF schedule for a collection o f
records is never as much as one drum revolution longer
than an optimal schedule.

PROOF. Since an SLTF schedule has a critical interval,
no schedule can pass the critical interval fewer times

than the SLTF schedule. In the worst possible case, an
SLTF schedule can terminate M - - 1 intervals past the
critical interval, which is just one interval less than a full
d rum revolut ion. An opt imal schedule might terminate
just after the critical interval, but no sooner. This proves
the theorem.

Figure 3(c) shows an opt imal schedule for the collec-
t ion o f records shown in Figure 2. Inspect ion shows
that it is no t an SLTF schedule and that it is five inter-
vals shorter than the SLTF schedule in Figure 3(b).

Received December 1971; revised November 1972

References
1. Denning, P.J. Effects of scheduling on file memory
operations. Proc. 1967 AFIPS SJCC, Vol. 30, AF1PS Press,
Montvale, N.J. pp. 9-21.
2. Fuller, S.H. An optimal drum scheduling algorithm. IEEE
Trans. Comput. C-2I, 11 (Nov. 1972), 1153-1165.

Short Communications
Computer Systems

Adapting Optimal Code
Generation for Arithmetic
Expressions to the Instruction
Sets Available on
Present-Day Computers
Peter F. Stockhausen
Bell Laboratories

Key Words and Phrases: arithmetic expressions,
code generation, compilers, object-code optimization,
register assignment, trees

CR Categories: 4.12, 5.24, 5.32

The October 1970 issue of the Journal o f the A C M
contains an article by Sethi and Ul lman on the genera-
tion o f optimal code. The authors took pains to make
their design relevant to present-day hardware. I quote :

It is important to note that commands of the type

OP [C(storage), C(register)] --+ C(register)

are not permitted. This restriction is in keeping with the instruc-
tion sets of many present-day machines. For example, in a divide
operation, the dividend is constrained to be in a register. Permitting
commands of this type would have the same effect as making all
operators commutative. Commands of type 4 apply an operator

Copyright (~) 1973, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

The work reported here was performed at Bell Laboratories.
Author's present address: Wisconsin Telephone Company, Mil-
waukee, WI 53200.

353 Communications June 1973
of Volume 16
the ACM Number 6

http://crossmark.crossref.org/dialog/?doi=10.1145%2F362248.362260&domain=pdf&date_stamp=1973-06-01

to the contents of two registers, leaving the result in a third (not
necessarily distinct) register.

However, allowing the result of a register-register
operation to be placed into any register makes their
results irrelevant, since such generality is not available
in most present-day machines. Instead, most machines
place the result in the register containing the first
operand. Thus, a division of A by B can have the result
placed only in A. The Sethi-Ullman algorithm as it
stands needs the more flexible instructions to handle
noncommutative operators. For example, an opera-
tion of the form "divide A by B, placing the result in
B" is required by their algorithm for the following
expression: W/(X -- Y • Z).

The algorithm produces X - - Y , Z in the first
register, W in the second, and divides the second by
the first placing the result in the first register. The
algorithm requires any subexpression to place its re-
sult in the first register available to it. This requirement
is useful because it allows expressions such as (- . .)

- - W / (X - Y . Z) to be evaluated in a mechanical
procedure.

I propose modifying the algorithm so that any
register-register operation is defined as placing its
result in the register of the first operand. Hence, the
quotient of A/B will be placed into the register con-
taining ,4. The Sethi-Ullman definition of register-
register operations then becomes the following.

OP [C(register 1), C(register 2)] ~ C(register 1)

The new algorithm works with a vector b of N cells,
each of which contains a register number. If b(m),
b(m + 1) , . . . , b(N) are available for evaluating a
subexpression, the result will be placed in the register
specified by b(m).

Algorithm for Optimal Code Generation
(1) For each node n_ of the tree assign a label, L(n_),

from the bottom up.
(A) If n__ is a leaf, set L(n_) to 0 if n_ is the right de-
scendant of its parent, and to 1 if it is the left de-
scendant or the only descendant.
(B) If n_ has descendants with labels L1 and L2,
set L(n_) to the larger of L~ and L2, provided L~
L2 ; if L1 -- L2, set L(_n) to L1 + 1.

(2) Apply (3) to the root with registers b(1), b(2),
. . . , b(N) available. Routine (3) will evaluate the
expression represented by the subtree extending
from the node to which it is applied. The result
will appear in the register identified by b(1).

(3) Evaluate node n with label L > 0 using registers
b(m), b (m + l) , . . . , b(N), where 1 < m_< N.

First, suppose that L = 1.
(A) If _n is a leaf it must be a left descendant. Gen-
erate [_n---~b(m)], so that the initial storage value
of n is loaded into the register identified by b(m).
(B) If n__ is not a leaf, its right descendant must be a

leaf, else n's label would be at least 2. Apply (3)
to its left descendant with registers b(m), b(m+l) ,
. . . , b(N) available. The value of the left de-
scendant will be returned in the register identified
by b(m); the value of the right descendant, S,
must be a leaf, in storage. Generate [b(m) OP S --~
b(m)].

For L > 1, let the descendants of n have labels
L1 , L2 .
(C) If L1, L2 >_ N apply (3) to the right descend-
ant with registers b(m), b (m + l) , . . . , b(N) avail-
able. Store the value of the right descendant in a
temporary location, _t. Apply (3) to the left de-
scendant with registers b(m), b (m + l) , . . . , b(N)
available, obtaining the result in b(m). Generate
[b (m) OP t_---~b (m)].
(D) If L1 >_ L2 and L2 < N, apply (3) to the left
descendant with registers b(m), b (m + l) , . . . ,
b(N) available. If L2 > 0, apply (3) to the right
descendant with registers b (m+ l) , b (m + 2) , . . . ,
b(N) available, and generate [b(m) OP b(m+l)---~
b(m)]. If L2 = 0, generate [b(m) OP S---~b(m)],
where S is the storage value of n__'s right descendant,
which must be a leaf, in storage.
(E) If Lx < L2 and L1 < N, apply(3) to the right
descendant of n with registers b(mq-1), b(m),
b(m+2), b (m + 3) , . . . , b(N) available, obtaining
the result in b (m+ l) . Apply (3) to the left de-
scendant with registers b(m), b(m+2), b(mq-3),
. . . , b(N) available, obtaining the result in b(m).
Generate [b(m) OP b(m+ 1)---~b(m)].

As an example, observe the code generated by the
original and by the new algorithm for the expression
.4 - (B / (C - D / E)) .

Original Modified Original Modified
1. D ---~1 D --+2 5. B --~2 B ---+2
2. 1/E--~ 1 2 / E ~ 2 6. 2/1 --+ 1 2/1 ---2
3. C ---~2 C --~1 7. .4 ---~2 .4 --~l
4. 2-1 ~ 1 1-2 ~ 1 8. 2-1 ~ 1 1-2 --~ 1

Severalpoints should be noted. The new algorithm
produces code in the same manner as the old one, with
the same number of registers available at each node
of the tree. The novelty of this algorithm is that it
uses indirect register specification. As a result, the
registers can be ordered to fit the instruction set of
present day machines. To use the code produced by
the old algorithm for the example above, instructions
4, 6, and 8 would have to be extended to several in-
structions on most current machines, making it no
longer an optimal strategy.

The old algorithm was accompanied by proofs
of its correctness and optimality. These proofs are
still valid for the improved algorithm since the new
algorithm does not violate any of the hypotheses of
those proofs.

Received May 1972; revised September 1972

354 Communications June 1973
of Volume 16
the ACM Number 6

