
Fig. 3. Possible schedules for accessing the records described in 
Figure 2: from left to right, (a) a feasible schedule; (b) an SLTF 
schedule; and (c) the minimum latency schedule. 
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bo t tom before moving on to the next. The shaded areas 
in the figure show d rum latency. The record label indi- 
cates the period during which a record is being accessed. 

Figure 3(b) shows an SLTF schedule for the same 
collection. It  is not  difficult to show that  this is the 
unique SLTF schedule for this example since no two 
records share a starting point.  In general, however,  
when two or  more  distinct SErF schedules exist, they 
may not  all be o f  the same length. No te  that  the SeTF 
schedule in Figure 3(b) has less latency time than the 
schedule in Figure 3(a). 

A Bound on the Near-Optimality of SLTF Schedules 

We show that  an SLTF schedule for a collection o f  
records is never as much as one d rum revolution longer 
than an opt imal  schedule. 

Definition. A critical interval for a schedule o f  a 
collection of  records is any interval in which the schedule 
is never latent. 

Figure 3(a) has no critical intervals, whereas interval 
5 is a critical interval in Figure 3(b). 

LEMMA. Every SLTF schedule has at least one critical 
interval. 

PROOV. Let the initial interval o f  the last record in the 
schedule be called interval S. We prove that  this interval 
is a critical interval. For  if not,  then during some revolu- 
t ion prior  to the last revolution, the d rum is latent while 
it passes interval S. But at this point  the last record is 
the next record to come under the read head, so it would 
have been scheduled here under  the SLTF discipline, which 
proves the lemma. 

Let a d rum for which all informat ion is t ransferred 
in records of  equal size and whose records are located in 
nonover lapping  intervals on its surface be called a 
paging drum [1 ]. I t  is easy to prove that  an SLTF discipline 
always minimizes total  latency time for a paging drum. 
This follows as a trivial consequence of  the above dis- 
cussion since in every case the SLTF schedule terminates 
immediately after the critical interval. 

In  the general case, existence o f  a critical interval 
establishes near-opt imali ty of  the SLTF discipline. 

THEOREM. An SLTF schedule for  a collection o f  
records is never as much as one drum revolution longer 
than an optimal schedule. 

PROOF. Since an SLTF schedule has a critical interval, 
no  schedule can pass the critical interval fewer times 

than the SLTF schedule. In the worst  possible case, an 
SLTF schedule can terminate  M - - 1  intervals past  the 
critical interval, which is just  one interval less than a full 
d rum revolut ion.  An  opt imal  schedule might  terminate 
just  after the critical interval, but  no  sooner.  This proves 
the theorem. 

Figure 3(c) shows an opt imal  schedule for the collec- 
t ion o f  records shown in Figure 2. Inspect ion shows 
that  it is no t  an SLTF schedule and that  it is five inter- 
vals shorter  than the SLTF schedule in Figure 3(b). 
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The October  1970 issue of  the Journal o f  the A C M  
contains an article by Sethi and Ul lman on the genera- 
tion o f  optimal code. The authors  took  pains to make  
their design relevant to present-day hardware.  I quote :  

It is important to note that commands of the type 

OP [C(storage), C(register)] --+ C(register) 

are not permitted. This restriction is in keeping with the instruc- 
tion sets of many present-day machines. For example, in a divide 
operation, the dividend is constrained to be in a register. Permitting 
commands of this type would have the same effect as making all 
operators commutative. Commands of type 4 apply an operator 
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to the contents of two registers, leaving the result in a third (not 
necessarily distinct) register. 

However, allowing the result of a register-register 
operation to be placed into any register makes their 
results irrelevant, since such generality is not available 
in most present-day machines. Instead, most machines 
place the result in the register containing the first 
operand. Thus, a division of A by B can have the result 
placed only in A. The Sethi-Ullman algorithm as it 
stands needs the more flexible instructions to handle 
noncommutative operators. For example, an opera- 
tion of the form "divide A by B, placing the result in 
B" is required by their algorithm for the following 
expression: W/(X  -- Y • Z). 

The algorithm produces X - -  Y , Z  in the first 
register, W in the second, and divides the second by 
the first placing the result in the first register. The 
algorithm requires any subexpression to place its re- 
sult in the first register available to it. This requirement 
is useful because it allows expressions such as ( - . . )  

- -  W / ( X -  Y .  Z) to be evaluated in a mechanical 
procedure. 

I propose modifying the algorithm so that any 
register-register operation is defined as placing its 
result in the register of the first operand. Hence, the 
quotient of A/B  will be placed into the register con- 
taining ,4. The Sethi-Ullman definition of register- 
register operations then becomes the following. 

OP [C(register 1), C(register 2)] ~ C(register 1) 

The new algorithm works with a vector b of N cells, 
each of which contains a register number. If  b(m), 
b(m + 1 ) , . . . ,  b(N) are available for evaluating a 
subexpression, the result will be placed in the register 
specified by b(m). 

Algorithm for Optimal Code Generation 
(1) For each node n_ of the tree assign a label, L(n_), 

from the bottom up. 
(A) If  n__ is a leaf, set L(n_) to 0 if n_ is the right de- 
scendant of its parent, and to 1 if it is the left de- 
scendant or the only descendant. 
(B) If  n_ has descendants with labels L1 and L2, 
set L(n_) to the larger of L~ and L2, provided L~ 
L2 ; if L1 -- L2, set L(_n) to L1 + 1. 

(2) Apply (3) to the root with registers b(1), b(2), 
. . . ,  b(N) available. Routine (3) will evaluate the 
expression represented by the subtree extending 
from the node to which it is applied. The result 
will appear in the register identified by b(1). 

(3) Evaluate node n with label L > 0 using registers 
b(m), b ( m + l ) , . . . ,  b(N), where 1 < m_< N. 

First, suppose that L = 1. 
(A) If  _n is a leaf it must be a left descendant. Gen- 
erate [_n---~b(m)], so that the initial storage value 
of n is loaded into the register identified by b(m). 
(B) If  n__ is not a leaf, its right descendant must be a 

leaf, else n's label would be at least 2. Apply (3) 
to its left descendant with registers b(m), b(m+l) ,  
. . . ,  b(N) available. The value of the left de- 
scendant will be returned in the register identified 
by b(m); the value of the right descendant, S, 
must be a leaf, in storage. Generate [b(m) OP S --~ 
b(m)]. 

For L > 1, let the descendants of n have labels 
L1 , L2 . 
(C) If L1, L2 >_ N apply (3) to the right descend- 
ant with registers b(m), b ( m + l ) , . . . ,  b(N) avail- 
able. Store the value of the right descendant in a 
temporary location, _t. Apply (3) to the left de- 
scendant with registers b(m), b ( m + l ) , . . . ,  b(N) 
available, obtaining the result in b(m). Generate 
[b (m) OP t_---~b (m) ]. 
(D) If  L1 >_ L2 and L2 < N, apply (3) to the left 
descendant with registers b(m), b ( m + l ) , . . . ,  
b(N) available. If  L2 > 0, apply (3) to the right 
descendant with registers b ( m+ l ) ,  b ( m + 2 ) , . . . ,  
b(N) available, and generate [b(m) OP b(m+l)---~ 
b(m)]. If  L2 = 0, generate [b(m) OP S---~b(m)], 
where S is the storage value of n__'s right descendant, 
which must be a leaf, in storage. 
(E) If Lx < L2 and L1 < N, apply(3) to the right 
descendant of n with registers b(mq-1), b(m), 
b(m+2),  b ( m + 3 ) , . . . ,  b(N) available, obtaining 
the result in b ( m+ l ) .  Apply (3) to the left de- 
scendant with registers b(m), b(m+2),  b(mq-3), 
. . . ,  b(N) available, obtaining the result in b(m). 
Generate [b(m) OP b(m+ 1)---~b(m)]. 

As an example, observe the code generated by the 
original and by the new algorithm for the expression 
.4 - ( B / ( C - D / E ) ) .  

Original Modified Original Modified 
1. D ---~1 D --+2 5. B --~2 B ---+2 
2. 1/E--~ 1 2 / E ~ 2  6. 2/1 --+ 1 2/1 ---2 
3. C ---~2 C --~1 7. .4 ---~2 .4 --~l 
4. 2-1 ~ 1 1-2 ~ 1 8. 2-1 ~ 1 1-2 --~ 1 

Severalpoints should be noted. The new algorithm 
produces code in the same manner as the old one, with 
the same number of registers available at each node 
of the tree. The novelty of this algorithm is that it 
uses indirect register specification. As a result, the 
registers can be ordered to fit the instruction set of 
present day machines. To use the code produced by 
the old algorithm for the example above, instructions 
4, 6, and 8 would have to be extended to several in- 
structions on most current machines, making it no 
longer an optimal strategy. 

The old algorithm was accompanied by proofs 
of its correctness and optimality. These proofs are 
still valid for the improved algorithm since the new 
algorithm does not violate any of the hypotheses of 
those proofs. 
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