
Computer G. Bell
Systems Editor

Synclhronizing
Processors with
Memory-Content-
Generated Interrupts
J. Carver Hill
Lawrence Livermore Laboratory
University of California

Implementations of the "Lock-Unlock" method of
synchronizing processors in a multiproeessor system
usually require uninterruptable, memory-pause type
instructions. An interlock scheme called read-interlock,
which does not require memory-pause instructions, has
been developed for a dual DEC PDP-10 system with
real-time requirements. The read-interlock method does
require a special "read-interlock" instruction in the
repertoire of the processors and a special "read-interlock"
cycle in the repertoire of the memory modules.

When a processor examines a "lock" (a memory
location) with a read-interlock instruction, it will be
interrupted if the lock was already set; examining a lock
immediately sets it if it was not already set (this event
sequence is a read-interlock cycle). Writing into a lock
clears it.

Having the processor interrupted upon encountering
a set lock instead of branching is advantageous if the
branch would have resulted in an effective interrupt.

Key Words and Phrases: interrupts, supervisors,
monitors, debugging, parallel processing, associative
memories, microprogramming

CR Categories: 4.32, 6.29

Copyright © 1973, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

This work was performed under the auspices of the U.S. Atomic
Energy Commission. Author's address: Technical Information
Department, Lawrence Livermore Laboratory, University of Cali-
fornia, P.O. Box 808, Livermore, CA 94550.

350

In multiprocessor systems it is necessary for the
processors to have some unambiguous means of com-
munication so that their use of nonsharable resources
(including impure program segments) can be inter-
locked and their cooperative execution of jobs can be
coordinated. As a simplistic example, suppose there is
a pointer kept in memory which contains the starting
address of the next job to be run. I f two processors
simultaneously at tempt to perform a read-then-update
of this pointer, it is conceivable that both will read the
same pointer value and, as a result, a t tempt to execute
the same job. Confusion will be a certain result.

Common methods of interlocking processors in a
multiprocessing environment are usually variations on
the Lock-Unlock method [2]. In that method, the
processor 's basic instruction set must include LOCK, a
memory-pause type of instruction that will test some
specified lock (read an addressed bit or word in mem-
ory). This instruction will set the lock (i.e. will write in
a one in that bit or word) if it was previously unset
(i.e. at zero), but will branch (possibly to itself) with-
out changing the lock if it was already set. A simple
CLEAR or WRITE instruction can be used as UNLOCK, if
only the process that sets a lock is permitted to clear it.

The crucial feature of the scheme is that, in addi-
tion to being uninterruptable (a sufficient condition for
interlocking processes in a single-processor system),
LOCK must be a memory-pause type of instruction.
That is, after transmitting the content of the lock to a
processor, the memory module containing the lock
must not begin any cycles for other processors until the
original processor has determined and transmitted the
new lock state.

These pause-type memory cycles are longer than
ordinary memory cycles by at least the two-way propa-
gation delay between the processor and the memory
module plus any multiplexing delay that is overlapped
for ordinary cycles. Sometimes this prolongation of
memory cycles is of no consequence, but frequently it
has a deleterious effect upon system operation by in-
creasing the latency of memory-access channels [3].
At best, it causes only a higher incidence of transfer-
timing errors; at worst, it precipitates system thrash-
ing [5].

Recently Zelkowitz published a hardware schema
for a powerful interrupt structure that, among numer-
ous other potential uses, provides a straightforward
method of interlocking processors [6]. The key feature
of the schema is the addition of an associative memory
to each processor that will moni tor all main-memory
references, and interrupt the processor if the contents
of particular referenced locations meet certain criteria.

In solving the processor-interlock problem for the
Nevada Automated Diagnostics System, ~ subject to the
constraint that prolonged or pause-type memory cycles

1 The Nevada Automated Diagnostics System is a multi-
processor (DEC PDP-10's), multiuser time-sharing system for
remote control and monitoring of experimental apparatus, real-
time data acquisition, and problem-time data analysis and display.

Communications June 1973
of Volume 16
the ACM Number 6

http://crossmark.crossref.org/dialog/?doi=10.1145%2F362248.364641&domain=pdf&date_stamp=1973-06-01

could not be employed, an interrupt scheme called
read-interlock was implemented. It is, in a sense, the
lower limit of Zelkowitz's idea. In this case, the associ-
ative memory consists of only one cell, which contains
a fixed pattern called the interlock pattern. The key
principle, of having a processor interrupted or not
interrupted, depending upon the content of a refer-
enced memory location, is preserved.

The read-interlock scheme requires the addition of
a read-interlock instruction to the instruction set of the
processors and a read-interlock cycle to the cycle reper-
toire of the memory modules. The read-interlock in-
struction differs from an ordinary read instruction
(which must also be a member of the instruction set)
only in that the processor asserts a read-interlock line
as well as the read-request line of the memory bus.
Thus no modification of the processor's instruction-
execution logic is required.

When the read-interlock line is asserted, the ad-
dressed memory module fetches the content of the
addressed word and transmits it to the initiating proces-
sor as in an ordinary read cycle. But, instead of restor-
ing the just-read data during the write portion of the
cycle, as in an ordinary read cycle, the module immedi-
ately loads the accessed location with the interlock
pattern (which is available as a hardwired pattern in
every memory module). This sequence of memory-
module events is a read-interlock cycle.

When the processor receives the interlock pattern
in response to a read-interlock instruction, it is inter-
rupted. (Data fetched in response to an ordinary read
instruction that is coincidentally identical to the inter-
lock pattern does not precipitate an interrupt.) The
routine entered in response to this interrupt can be an
executive-level routine not bound by address and in-
struction restrictions imposed upon lower-level proc-
esses. Consequently, it may make any response deemed
suitable by the system designer. An absurdly simple
but sometimes useful response is to return control of
the processor to the interrupted process at the location
of the read-interlock instruction (calculable from the
contents of Pc). This piece of pure procedure is func-
tionally equivalent to a LOCK instruction that branches
to itself if the lock is already set.

When a processor does not receive the interlock
pattern in response to a read-interlock instruction, the
running process will not be interrupted (for that reason),
and it may leisurely examine the lock location and sub-
sequently update the lock with new information. If any
other processor or process examines the lock in the
interim (with a read-interlock instruction), it will
obtain the interlock pattern and be interrupted. It
follows that sophisticated locking procedures, such as
the dot-product method [4], present no special prob-
lem. Certainly a great deal can be done with the read-
interlock feature even without adding embellishments
such as a free field within the interlock pattern for
microprogramming.

351

The principal difference between the read-interlock
scheme and the TEST-SET scheme implemented in the
260 series is an interrupt (as opposed to a branch)
response to the lock-set condition. While branching
alone is faster than interrupting, the end result of the
branch (if taken) is likely to be an interrupt (a call to
the operating system to suspend the running job and go
to the next job in the queue). In that event, evoking the
interrupt directly from the lock-set condition gets the
change-of-context bookkeeping off to a headstart.

However, it is expected that in the vast majority of
lock-examinations the processor will find the lock clear
and proceed with no delay of any kind.

Hopefully, the apparent utility of even so rudimen-
tary an implementation of a memory-content-generated
interrupt scheme as read-interlock will encourage other
implementations and experiments. In their book [1],
Bell and Newell call this area of intercommunication
between processes and processors the least understood
dimension of the computer space. Perhaps that is
another way of saying that the most powerful innova-
tions yet to be made in system architecture must be in
this area.

Received October 1971; revised August 1972

References
1. Bell, C.G., and Newell, A. Computer Structures: Readings and
Examples. McGraw-Hill, New York, 1961, p. 83.
2. Dennis, J.B., and Van Horn, E.C. Programming semantics for
multiprogrammed computations. Comm. ACM 9, 3 (Mar. 1966),
143-155.
3. Hill, J.C. Cycle-allocation disciplines for multi-access memory
systems. In Proc. IEEE lnternt. Conf. on Syst. Networks and
Computers (Jan. 1971), 688-692.
4. Shoshani, A., and Bernstein, A.J. Synchronization in a parallel-
accessed data base. Comm. ACM 12, 1l (Nov. 1969), 604-607.
5. Staudhammer, J., Combs, C.A., and Wilkinson, G. Analysis of
computer peripheral interference. Proc. ACM 22nd Nat. Conf.,
1967 ACM, New York, pp. 97-101.
6. Zelkowitz, Marvin. Interrupt driven programming. Comm.
ACM 14, 6 (June 1971), 417-418.

Communications June 1973
of Volume 16
the ACM Number 6

