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Implementations of the "Lock-Unlock" method of 
synchronizing processors in a multiproeessor system 
usually require uninterruptable, memory-pause type 
instructions. An interlock scheme called read-interlock, 
which does not require memory-pause instructions, has 
been developed for a dual DEC PDP-10 system with 
real-time requirements. The read-interlock method does 
require a special "read-interlock" instruction in the 
repertoire of the processors and a special "read-interlock" 
cycle in the repertoire of the memory modules. 

When a processor examines a "lock" (a memory 
location) with a read-interlock instruction, it will be 
interrupted if the lock was already set; examining a lock 
immediately sets it if it was not already set (this event 
sequence is a read-interlock cycle). Writing into a lock 
clears it. 

Having the processor interrupted upon encountering 
a set lock instead of branching is advantageous if the 
branch would have resulted in an effective interrupt. 
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In multiprocessor systems it is necessary for the 
processors to have some unambiguous means of com- 
munication so that  their use of nonsharable resources 
(including impure program segments) can be inter- 
locked and their cooperative execution of jobs can be 
coordinated. As a simplistic example, suppose there is 
a pointer kept in memory which contains the starting 
address of the next job to be run. I f  two processors 
simultaneously at tempt to perform a read-then-update 
of this pointer, it is conceivable that  both will read the 
same pointer value and, as a result, a t tempt  to execute 
the same job. Confusion will be a certain result. 

Common  methods of interlocking processors in a 
multiprocessing environment are usually variations on 
the Lock-Unlock method [2]. In that method, the 
processor 's basic instruction set must  include LOCK, a 
memory-pause type of instruction that  will test some 
specified lock (read an addressed bit or word in mem- 
ory). This instruction will set the lock (i.e. will write in 
a one in that bit or word) if it was previously unset 
(i.e. at zero), but will branch (possibly to itself) with- 
out changing the lock if it was already set. A simple 
CLEAR or WRITE instruction can be used as UNLOCK, if 
only the process that sets a lock is permitted to clear it. 

The crucial feature of the scheme is that, in addi- 
tion to being uninterruptable (a sufficient condition for 
interlocking processes in a single-processor system), 
LOCK must be a memory-pause type of instruction. 
That  is, after transmitting the content of the lock to a 
processor, the memory  module containing the lock 
must not begin any cycles for other processors until the 
original processor has determined and transmitted the 
new lock state. 

These pause-type memory  cycles are longer than 
ordinary memory  cycles by at least the two-way propa-  
gation delay between the processor and the memory  
module plus any multiplexing delay that is overlapped 
for ordinary cycles. Sometimes this prolongation of 
memory  cycles is of no consequence, but frequently it 
has a deleterious effect upon system operation by in- 
creasing the latency of memory-access channels [3]. 
At best, it causes only a higher incidence of transfer- 
timing errors; at worst, it precipitates system thrash- 
ing [5]. 

Recently Zelkowitz published a hardware schema 
for a powerful interrupt structure that, among numer- 
ous other potential uses, provides a straightforward 
method of interlocking processors [6]. The key feature 
of the schema is the addition of an associative memory  
to each processor that  will moni tor  all main-memory  
references, and interrupt the processor if the contents 
of particular referenced locations meet certain criteria. 

In solving the processor-interlock problem for the 
Nevada Automated Diagnostics System, ~ subject to the 
constraint that prolonged or pause-type memory  cycles 

1 The Nevada Automated Diagnostics System is a multi- 
processor (DEC PDP-10's), multiuser time-sharing system for 
remote control and monitoring of experimental apparatus, real- 
time data acquisition, and problem-time data analysis and display. 
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could not be employed, an interrupt scheme called 
read-interlock was implemented. It is, in a sense, the 
lower limit of Zelkowitz's idea. In this case, the associ- 
ative memory consists of only one cell, which contains 
a fixed pattern called the interlock pattern. The key 
principle, of having a processor interrupted or not 
interrupted, depending upon the content of a refer- 
enced memory location, is preserved. 

The read-interlock scheme requires the addition of 
a read-interlock instruction to the instruction set of the 
processors and a read-interlock cycle to the cycle reper- 
toire of the memory modules. The read-interlock in- 
struction differs from an ordinary read instruction 
(which must also be a member of the instruction set) 
only in that the processor asserts a read-interlock line 
as well as the read-request line of the memory bus. 
Thus no modification of the processor's instruction- 
execution logic is required. 

When the read-interlock line is asserted, the ad- 
dressed memory module fetches the content of the 
addressed word and transmits it to the initiating proces- 
sor as in an ordinary read cycle. But, instead of restor- 
ing the just-read data during the write portion of the 
cycle, as in an ordinary read cycle, the module immedi- 
ately loads the accessed location with the interlock 
pattern (which is available as a hardwired pattern in 
every memory module). This sequence of memory- 
module events is a read-interlock cycle. 

When the processor receives the interlock pattern 
in response to a read-interlock instruction, it is inter- 
rupted. (Data fetched in response to an ordinary read 
instruction that is coincidentally identical to the inter- 
lock pattern does not precipitate an interrupt.) The 
routine entered in response to this interrupt can be an 
executive-level routine not bound by address and in- 
struction restrictions imposed upon lower-level proc- 
esses. Consequently, it may make any response deemed 
suitable by the system designer. An absurdly simple 
but sometimes useful response is to return control of 
the processor to the interrupted process at the location 
of the read-interlock instruction (calculable from the 
contents of Pc). This piece of pure procedure is func- 
tionally equivalent to a LOCK instruction that branches 
to itself if the lock is already set. 

When a processor does not receive the interlock 
pattern in response to a read-interlock instruction, the 
running process will not be interrupted (for that reason), 
and it may leisurely examine the lock location and sub- 
sequently update the lock with new information. If any 
other processor or process examines the lock in the 
interim (with a read-interlock instruction), it will 
obtain the interlock pattern and be interrupted. It 
follows that sophisticated locking procedures, such as 
the dot-product method [4], present no special prob- 
lem. Certainly a great deal can be done with the read- 
interlock feature even without adding embellishments 
such as a free field within the interlock pattern for 
microprogramming. 
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The principal difference between the read-interlock 
scheme and the TEST-SET scheme implemented in the 
260 series is an interrupt (as opposed to a branch) 
response to the lock-set condition. While branching 
alone is faster than interrupting, the end result of the 
branch (if taken) is likely to be an interrupt (a call to 
the operating system to suspend the running job and go 
to the next job in the queue). In that event, evoking the 
interrupt directly from the lock-set condition gets the 
change-of-context bookkeeping off to a headstart. 

However, it is expected that in the vast majority of 
lock-examinations the processor will find the lock clear 
and proceed with no delay of any kind. 

Hopefully, the apparent utility of even so rudimen- 
tary an implementation of a memory-content-generated 
interrupt scheme as read-interlock will encourage other 
implementations and experiments. In their book [1], 
Bell and Newell call this area of intercommunication 
between processes and processors the least understood 
dimension of the computer space. Perhaps that is 
another way of saying that the most powerful innova- 
tions yet to be made in system architecture must be in 
this area. 
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