
Scientific Applications c.L. LAWSON, Editor

Representations for Space
Planning

CHARLES 1~. EASTMAN
Carnegie-Mellon University,*Pittsburgh, Pe~nsylvania

Problems involving the arrangement of objects in two- or
three-space where the objective function primarily consists of
derivatives of the distance between objects or their arrange-
ment are called space planning problems. The representational
requirements for this problem area are defined and compared
with current computer graphic languages. Four alternative data
structures that allow automated space planning are described
and compared.

KEY WORDS AND PHRASES: automated design, data structures, computer
graphics, computer-aided design, engineering design, architectural design,
robots
CR CATEGORIES: 3.20, 3.22, 3.26, 3.41, 3.63

1. I n t r o d u c t i o n

If the computer is to become more to future engineers
and architects than an elaborate machine for carrying out
numerical calculations, then means must be developed for
it to deal with the nonnumerical aspects of design and
planning problems.

Many problems within the general class called "design"
emphasize topological and metric considerations. They
consist of location problems in which total performance is
a function of the distance between the elements being
located or their arrangement. This aspect of a design
problem can be called its space planning aspect. Automa-
tion of space planning requires a means for representing
this type of problem in a computer. Space planning is also
a factor in the development of intelligent robots. To deter-
mine appropriate movements, processing must be carried
out on an internal map of the space in which the robot is
located [1, 2].

Originally, the advent of cathode-ray tubes controlled
by computers and the development of computer graphic
languages (CGLs) were thought to resolve the major issues
in representing and manipulating the space planning
aspects of design problems. But the current lack of sig-
nificant programs dealing with space planning is only one
indication that existing CGLs do not facilitate computer
augmentation of this type of problem. In this paper

* Institute of Physical Planning. This work was supported by the
Advanced Research Projects Agency of the Office of the Secretary
of Defense (F 44620-67-C-0058) and is monitored by the Air Force
Office of Scientific Research.

computer graphic and other types of data structures tha t
conceivably could be used for space planning are reviewed.
The requirements tha t a representation must satisfy to
deal successfully with space planning are offered. Several
new data structures for this use are described and evalu-
ated.

2. T h e P r o b l e m

The form of external representation normally used by
humans to model physical space and to solve space plan.
ning problems is a drawing. Particularly used are ortho-
graphic projections--plans, sections, and elevations. The
elements represented may vary from a microcircuit to a
steam turbine, from a unique pat tern of specified material,
such as furniture or machinery in an enclosed space, to
economic zones in a region, depending upon the problem
at hand.

To determine how orthographic drawings are interpreted
and manipulated, a review was made of a number of care-
fully reported protocols of designers solving space planning
problems [3, 4]. The following insights were gained. Lines
on paper are generally used to demark disjoint spatial
domains within a two-dimensional space. Each Cartesian
point within a drawing corresponds to a like point in a
proposed or real physical space. Attributes are ascribed to
each domain. All points enclosed by a line are assumed to
possess similar attributes; a domain is assumed to be
homogeneous. All spatial information about each domain
- - i t s dimensions, shape, and at t r ibutes-- is either directly
available for processing or easily generated. This is true
both for domains that are filled with material and for those
that are empty. With all spatial information available for
every domain, summations of the dimensions of adjacent
domains may be used to determine the distance between
any two points or any two domains. They may also be used
to determine any desired spatial information for any
aggregate set of spatial domains.

The basic operation for generating alternative solutions
for space planning problems involved the relocating of a
single domain or set of domains. The Cartesian points
represented by a domain were altered, though their
attributes, shapes, and dimensions remained invariant.
Sets of domains, grouped by adjacency, also were relocated.
A basic test involved in all relocation operations was an
evaluation of a proposed empty domain to determine if
the space required to locate the element was completely
disjoint from all other filled domains. This could be con-
sidered as a test to ascertain whether an empty domain
would completely encompass the solid domain it is receiv-
ing. Alternatively, it could be a test to check whether
already located solid domains had points in common with
the solid being located.

Further consideration suggested that any space planning

242 Communicat ions of the ACM Volume 13 / Number 4 / April, 1970

http://crossmark.crossref.org/dialog/?doi=10.1145%2F362258.362281&domain=pdf&date_stamp=1970-04-01

alternative could be generated and evaluated if the follow-
ing capabilities were available and facilitated.

(1) Representation of domains of any shape.
(2) Determination of any dimension or attribute of a

represented domain.
(3) Identification of any desired set of adjacent domains.
(4) Determination of any dimension or attribute of a set

of adjacent domains.
Complex constraints seemed derivable from these types

of capabilities. For instance, connectivity between any two
points (e.g. to complete a circuit or to identify if accessibil-
ity exists between two points) is the search for a given
state where a set of adjacent domains also include the
given points. The sofa problem, formulated by Howden
[5], is the search for a set of adjacent empty domains of a
specifiable size and arrangement (possibly complex) that
also are adjacent to two specified domains. Similarly, a
test to determine if a clear view exists between two points
is an evaluation of the attributes of domains (e.g. empty or
solid) which are intersected by a vector connecting the two
points. Lighting, acoustics, and material costs are also
functions whose parameters include distance measures of
single or adjacent sets of domains.

The determination of a location for a design element is
facilitated by the above capabilities. In the attempt to
aggregate a set of empty domains whose total dimensions
are equal to or less than those of a solid to be located, over-
laps with other solids are automatically excluded. The
processing of adjacent domains requires the rules designat-
ing adjacency to be well defined. Most commonly, adjacent
dimensions are summed parallel to the two Cartesian
coordinates.

The above capabilities seemed to define well those
needed for space planning. According to the above premises,
the power of a representation to handle space planning is
determined by the ease in which information about dimen-
sions or adjacencies of a single domain or set of domains can
be acquired.

3. Why Existing Graphic Languages Are Unsuitable
for Space Planning

The data structures originally conceived to respond to
the general needs of computer-augmented design were the
CGLs developed for the generation of drawings on a
cathode-ray tube. I t was implicitly assumed that space
planning was facilitated by such representations.

The graphic aspects of all CGLs are generally organized
as follows. Physical elements are defined by a list of line
segments that identify the spatial boundaries of the ele-
ment. The line segments are connected head to tail, de-
fining a continuous path. The electron beam of the CRT
follows the path defined by these line segments, producing
graphic output. Attributes of each element can be ap-
pended to the list to complete the specification of the
element. The total list for an element is connected end-to-
end so as to create a ring. The ring allows entrance at any
point in the structure to have access to all other points and

for rings to intersect one another. Thus particular attri-
butes of different elements can be strung on a ring that
links element rings together. In this way, rings can be
used to generate a variety of topological organizations that
allow multiple kinds of search and processing. For in-
stance, design elements may be grouped into sets by a
connecting ring. Those sets may also be grouped, allowing
the definition of a hierarchy of ring structures. A diagram
of the typical data structure thus produced is shown in
Figure 1. (For a more extensive review of CGLs, see [6,
7, 8].)

F r ~ P r e v i o u s
Element

El = El t T N t
Point

FIG. 1. A typical list s tructure for representing one line of an ele-
ment in a computer graphle language.

An element or set of elements in the hierarchical data
structure provided by a CGL can be accessed in a variety
of ways. The usual operators available for manipulating
CGLs include:

(1) Inserting an element at a specified place in the
structure.

(2) Deleting an element and collapsing the gap left in
the structure.

(3) Merging one ring structure with another (in a
specified way).

(4) Performing some operation on all members of a ring
or group of rings.

Such a structure and such operations have value in
analyzing various kinds of clearly structured systems, such
as hydraulic processes or electrical circuits. Elements in
the system can be linked by attaching the appropriate
ring to it. Analysis of flows through different topological
organizations of diverse sets of elements is facilitated. But
the analyses and operations required for space planning
are not facilitated by such a data structure.

The limitations of using a CGL for space planning derive
from the following characteristics.

(1) Only elements located in a space are represented in
a data structure. The voids between elements are ignored.

(2) Line segments specify an element. Domains must
be derived from these lines.

(3) The specification of each element is ordered in the
data structure according to a programmer-defined topo-
logical organization, not spatially.

Because no specification exists of the size and shape of
empty spaces it is not possible to test directly if an empty
space may hold a particular solid. Required is a search of
the total data structure for domain overlaps. Four types of
algorithms have thus far been identified for checking
overlaps. One, the data structure describing existing ele-

V o l u m e 13 / N u m b e r 4 / Apr i l , 1970 C o m m u n i c a t i o n s o f t h e ACM 243

merits may be searched for line intersections with the new
element. Two, an empty domain can be scanned dimen-
sionally to determine if it can completely encompass the
solid it is to hold. Three, the areas within the line segments
may be subdivided into convex domains, allowing testing
for disjointedness, such as by the method of determinants.
And four, a point can be checked for disjointedness with a
domain by counting the boundaries crossed by a line
segment connecting the point in question and a point
exterior to the domain. If an even number of boundaries of
the domain are crossed, the point is on the exterior of the
domain.

When it is recognized that a location trial is the most
common operation in space planning, any representation
must place a heavy weight on facilitating this operation.
CGLs do not. Other operations such as the calculation of
the amount of clear space adjacent to a given element,
similarly require scanning the total data structure because
adjacent domains are not directly accessible. In general, the
shortcoming of CGLs is that they do not hold spatial
information in a form related to the processing required for
space planning. Significant processing costs are required to
generate the information necessary for those operations
used most often.

Because of these shortcomings, no significant programs
written in a CGL are known that deal with space planning.
No extensions of CGLs are known that include facilities
needed for space planning.

A variety of other data structures have been developed
that more directly respond to the needs of space planning.
Each of these structures represents both filled and empty
space. Each specifies the adjacency of spatial domains.
Each also provides facilities for checking the overlap of
domains.

~i A ~L4. •

IO:O"

E

Fro. 2. Orthographic projection of the plan of a room.

24~ Communications of the ACM

4. S i m p l e Arrays

The only representation widely utilized in mechanically
solving space planning problems is the two-dimensional
array. In this representation each subscripted variable i n

a predefined array represents a rectangular unit area, thus
a domain. The subscripts of the domain provide the de-
finition of its x and y Cartesian coordinates. The value of
a variable in the array denotes its state. If its value is
zero, then the domain is empty; if it has the value of

__+

i

--+~.

I

t

l

- - -F -

i

t

i

;

i

--F--

I

I ZIZZIIIZZIzlzlzl "-I-
FIG. 3(a). The domains used by an array to represent the room
in Figure 2. 1089 domains are used. Maximum error is 8.5 inches.

=
y

4.

x -.t

8 8 8 8 8 8 8 8 8 8 8 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 1 1 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B 0 0 0 1 1 1 1 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
) 0 0 1 1 1 1 1 1 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 0 0 0 0 0 8 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 8
0 8
0 . 8
0 8
0 8

3 0 8
3 0 8

0 8
0 8
0 8
2 2 2 2 0 3 3 3 3 3 8
2 2 2 2 0 3 3 3 3 3 8
2 2 2 2 0 3 3 3 3 3 8
2 2 2 2 0 0 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 3 8
2 2 2 2 0 3 3 3 3 3 8
2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 3 3 3 3 3 8
2 2 2 2 0 3 3 3 3 3 8
2 2 2 2 0 3 3 3 3 3 8
2222222222220000000000000333338
2222222222220000000000000333338
2222222222220000000000000333338
2222222222220000000000000333338
8

FIG. 3 (b). The actual array used to represent the room.

Volume 13 / Number 4 / April, 1970

twelve, the contents of all point locations within the do-
main are "Element Twelve."

In this representation, all domains are rectangular and
of a single predetermined size. Both empty and filled
domains are represented. Locations are directly addressable
according to the subscripts of a domain. Adjacency is
identified through the sequential ordering of the sub-
scripts. A single domain size allows the subscripted
variables to determine both the location and the dimen-
sions of a set of domains. An example floor plan is shown in
Figure 2. The domains used to represent it with a plain
array are shown in Figure 3(a). The corresponding array
is shown in Figure 3 (b).

Operations on such a representation are straightforward.
For example, one possible operation for locating an empty
space of a given size and mapping a new element defined
as an array into it is shown in Figure 4. Written in ALGOL
60, it generates an exhaustive search of the problem space
scanning the columns vertically from left to right. (Other
sequences for such a search are easily defined.) In this
program, an initial location is identified when two of the
required empty domains are found. An exact check is
made as each domain of the object is mapped into the
problem space. The objects are represented by values
between ten and fifteen, and their access space by values
between five and six. Thus an overlap between two solids
or a solid and access space is designated by a value greater
than fifteen, but access spaces may overlap. Additional
Boolean conditions or evaluation functions can easily be
used to evaluate or compare location trials.

The array has been used to represent space in a variety
of facilities planning applications [9, 10, 11]. I t has been
applied in integrated circuit design [12]. I t has also been
used in experiments involving the design of intelligent
robots [1, 13]. Most of these applications involve two-
dimensional arrays, though some explorations have been
made in three-dimensional applications [11].

T h e limitations of the array are self-evident. Its dimen-
sional accuracy is determined by the size of the domain.
Greater accuracy requires more domains in the representa-
tion and thus increases memory requirements. As opera-
tions must act on one domain at a time, any increase in
accuracy requires a large increase in computing time. Also,
all domains must be of square or rectangular shape. Thus
irregular forms can only be approximated.*

Variations of the basic array representation have been
developed that lessen memory requirements and processing
time. The simplest compensation is to use arrays t h a t
comprise bytes instead of whole words [1]. A more elaborate
scheme has been developed at Stanford Research Institute
for use as a robot's internal representations of the world
[2, 14]. Instead of a single predefined grid, they use a
method of subdividing any given rectangular domain into
4 X 4 grid cells. Each cell can be further subdivided into

* For a special purpose application using three domain sizes, see
[15J. Generally, similar costs and benefits are involved in all
representations using predefined domains.

4 X 4 grids recursively. (Currently, their system is limited
to three recursions, or a 64 X 64 array.) Homogeneous
domains are not subdivided. Subdivision is only required
at the boundaries of elements. A diagram of the domains
expressed in such a representation is presented in Figure 5.
(The representation shown subdivides domains recursively
into 2 X 2 grids.) We call this representation a hierarchica l

array . The efficiency of the hierarchical array is its ability
to define large homogeneous domains efficiently. More
detail can be handled with a given amount of memory and
processing time than in the plain array.

5. S t r i n g R e p r e s e n t a t i o n s

A major disadvantage of the plain array as a spatial
representation is its reliance on a single domain size. T h e
hierarchical array is one attempt at resolution. I t utilizes a
regular method of decomposition and the sequential sum-
mation of nested arrays to determine distance. Other
solutions are also possible.

If the domains themselves carry information about their
size, then a single size is not necessary. Distances and
possibly even location could be determined by summing
the appropriate dimensions of adjacent domains. For
example, one could make scans of a single unit width across
a figure and group all like points into single domains. Like

B E G I N FOR A := 1, A+I W H I L E (QX=O) V (QY=O) DO
B E G I N I F OBJ[A,1] > 10 T H E N QX := A;

I F OBJ[1,A] > 10 T H E N QY := A
E N D ;
FOR A := 1 S T E P 1 U N T I L RMX--OBX + 1 DO
FOR B := 1 S T E P 1 U N T I L RMY-OBY + 1 DO
B E G I N I F (RM[A+QX-1,B]<10) A (RM[A,B--kQY-1]<10)

T H E N
FOR C := 1 S T E P 1 U N T I L OBX DO
B E G I N FOR D := 1 S T E P 1 U N T I L OBY DO

B E G I N RM[A+C--1,B+D--1] := RM[A+C-1,B+D-1]
OBJ[C,D];

I F RM[A+C--1,B+D--1] > 15 T H E N ERR := 1
E N D ;
I F E R R = 1 T H E N
B E G I N FOR F := C S T E P --1 U N T I L 1 DO

FOR G := 1 S T E P 1 U N T I L OBY DO
RM[A+F-I,B+G-I] :-- RM[A+F--I,B+G-I]
-- OBJ[F,G];

E R R := O;
GO TO SCAN

E N D
E N D ;
GO TO OUT;
S CAN:

E N D ;
OUT:

E N D ;

FIG. 4. An ALGOL routine that locates a space and maps one array
into another. OBX and OBY are the greatest Cartesian distances
of the mapped array OBJ. RM is the space receiving the object.
QX and QY are two arbitrarily chosen spaces that must be empty
for a space to receive the object. They lead to the more detailed
domain by domain evaluation.

Volume 13 / N u m b e r 4 / April , 1970 C o m m u n i c a t i o n s o f t h e AC2Yl 245

I |

FIG. 5. The hierarchical set of domains defined by the SRI array.
It requires 411 domains to represent the room in Figure 2 with a
maximum error of 8.5 inches.

FIG. 6 (a). The domains used in the string representation to express
the room. It uses 65 domains and has a maximum error of 4.2
inches.

scans then could be grouped. Applying this domain
definition technique to the floor plan shown in Figure 2
produces the domains shown in Figure 6(a). The actual
data structure is presented in Figure 6(b). In Figure
6(b), a real number represents the relative distance be-
tween domain transitions. The letter suffix expresses the
state of previous blocks: W, A, B, C, E represent walls,
objects A, B and C, and empty space, respectively. The
prefix defines the vertical extent of a set of domains. Thus
a prefix, along with each symbol string within commas,
defines a domain. We call this a string representation.

By explicitly dimensioning domains, a string representa-
tion is able to express forms more efficiently than the
array, e.g. with fewer domains. Horizontal distances are
no longer limited to multiples of a predefined domain, bu t
can be real distances measured to any desired degree of
accuracy. All domains are rectangular in shape. Skewed
elements still require approximation according to a grid.

In a string representation, domains are defined accord-
ing to a particular strategy for collecting homogeneous
point locations. The state of a particular point location is
determined by summing row prefixes in the y-coordinate
and scanning the appropriate rows in the x-coordinate.
The different t rea tment of each coordinate complicates
most search strategies. Many operations such as distance
calculations or scanning walls for a spatial at tr ibute require
an operator to search one coordinate at a time. Because
searches in the two coordinates rely on information
organized in different ways, it has been found useful to
generate two problem spaces on which to operate, one
rotated 90 degrees from the other. After a transformation

.5 (6.5W, 10.OE)

.5(.5W, 2.1E, .5A, 2.9E, .5W, 10.0E)

.5(.5W, 1.6E, 1.4A, 2.5E, .5W, 10.0E)

.5(.5W, 1.1E, 2.3A, 2.1E, .5W, 10.0E)

.5(.5W, .6E, 3.1A, 1.$E, .5W, 10.0E)

.5(.5W, .3E, 3.1A, 2.1E, .5W, 10.0E)

.5(.5W, .5E, 2.4A, 2.6E, 5W, 10.0E)

.5(.5W, 1.1E, 1.3A, 3.1E, .5W, 10.0E)
1.0(.5W, 5.5E, .5W, 10.0E)
1.0(.5W, 5.5E, 10.5W)
4.5(.5W, 15.5E, .5W)
4.3(.5W, 1.8B, ll.2E, 2.5C, .5W)
1.2(.5W, 6.0B, 7.0E, 2.5C, .5W)
.5(16.5w)

Fm. 6(b). The actual data structure used in the string representa-
tion.

has been made in one representation, its isomorph is
regenerated. The alternative is to have duplicate opera-
tions for the two coordinates.

The algorithm in Figure 7 describes the operations made
on a string representation that corresponds to the replace-
ment operations for the string array shown in Figure 4. The
algorithm generates a depth-first tree search. Upon find-
ing an instance of an empty space large enough in one
coordinate to hold the new element, it "builds up" a space
by connecting empty spaces to it in the other coordinate.
Whenever it fails to find a space of the required size and
location to further the buildup, the algorithm backtracks
to the previous instance of an empty space and looks for
another instance to build upon. When a space of appro-
priate size is built up, one space is mapped onto the other.

246 Communications of the ACM Volume 13 / Number 4 / April, 1970

I I
spas. CS :ffi hor£z, span
oue dlmens£en of object

CS found?

•y es

I ° 1
redefine recelvlug space
to object

~4

no
pref ix of next s tr ing -
receiving s p ~ e ?

~o
pref ix of next s t r i ng > Y ~

, I s i r i u s b e l ~ cs > one

asz cs

l

[CS := l eas t wldCh 0£ overlap ,[
m

replace object stri~with 2]
strings, prefix of first
pref ix of receiviug string

I 'oct I

FIG. 7. The search s t r a t egy for s t r ings t h a t correspond to the one
shown in Figure 4.

~BLOCK INDEX ~ ~ pOINTER TO ~ORZ~ CORZSSPONDI~O

~PE NWmZR EAST~ LATTICE

SI~IAR TO
WEST SIDE

COORDINATE VALUE
OF WEST SIDE

CONTIGUOUS BLOCKS
o~ T~S SlVE

FIG. 8. List s t ruc tu re for a single domain using the adjacency
s t ruc tu red representa t ion .

Most operations on the string representation require the
building up of individual domains so as to meet particular
spatial requirements.

The use of strings to represent space location problems
has been explored by the author, using SNOBOI.A as the
base language [16].

6. R e p r e s e n t a t i o n s U s i n g A d j a c e n c y S truc tures and
Variable S ize D o m a i n s

In arrays, locations are available through direct address-
ing in both coordinates. Strings, on the other hand, utilize
both direct addressing and adjaeency to find the state of a
particular point location. Because accessing rules are dis-
similar in the two coordinates, different operators are
required for each. A single rule of adjacency in both
coordinates allowing a single accessing rule suggests a new
representation. Specifically, apply the rule that only single
domains may be adjacent to each other in either co-
ordinate. A program using this representation has been

written by Moran in LmP1.5 [17, 18, 19]. Much of the
following description is based upon his efforts.

In such a representation, the four coordinate boundaries
of a block are explicitly represented within it on a list. The
list structure for representing a rectangular domain is
shown in Figure 8. Those blocks adjacent to each other in
either coordinate are linked. For instance, the space
shown in Figure 2 is connected into domains as shown in
Figure 9. A location may be determined by summing the
sizes of adjacent domains in both x- and y-coordinates.
As in the string representation, finding a particular sized
space in an adjacency-structured representation usually
requires the building up of domains in both the x- and
y-coordinates.

An interesting feature of Moran's program is that, in-
stead of building up groups of domains dynamically during
the search for a particular sized space, it has been con-
ceived so as to organize automatically all combinations
of domains into an always available group lattice. The
organization of this lattice is as follows. All domains of
each type, e.g. empty or Type Twelve, form a set. Partially
ordered subsets, related by set inclusion, can be topologi-
cally ordered for adjacent domains of each type. For
example, the space shown in Figure 10 can be defined by
the group lattice as shown below. The total form T has as
atomic domains A, B, C, D, E, F, G. Using the concepts
of least upper bound and greatest lower bound, the do-
main sets represented by FC, FG, DG, DE, BE, AD,
CD, and AB are grouped as unions of adjacent atomic

~-FI 1 i I
i 1

1

FIG. 9. An adjacency structured representation using rectangular
domains and a single rule of adjacency. The maximum error is 8.5
inches when 225 domains are used to represent the plan in Figure 2.

Volume 13 / Number 4 / April, 1970 Communications of the ACM 247

blocks.' Further such ordering produces ADG, CDE,
CDFG, and ABDE. Each group designates a block set
and is itself made up of smaller domains. This lattice is
incorporated into the basic definition of the form being
processed using the data structure shown in Figure 11.
The search for a domain of any size only requires scanning
the already organized lattice. I t is so organized that only
portions of it require searching at any time. The cost of
having such information available is paid in the constant
bookkeeping required to update it.

The locating of an element consists of redefining the
boundaries of a set of blocks in the lattice into a new subset
which perfectly matches the space requirements of the
element. Replacement is then carried out by redefining all
the designated domains in the lattice.

The basic domain and adjacency structure of Moran's
program may be implemented without resorting to list-
type data structures. The structure involved includes
variable sized rectangular domains connected by adjacency
relations in the two coordinates. An array can be used to
express this structure. Each subscripted variable represents
a domain of a different size. Because only one domain may
be adjacent to another in the x- and y-coordinates, domain
sizes are consistent for each row and column. A zero vector
in the x- and y-coordinates can be used to express all
domain dimensions. Adjaceneies can still be determined
from the subscripted variables. The representation shown
in Figure 12 is functionally equivalent to Moran's but can
be processed with routines readily constructed in common
algorithmic languages. We call this representation the
variable array. The replacement algorithm shown in
Figure 7 is applicable to the variable array. While not as
efficient as a string representation in the number of do-
mains required to represent a given form, its adjacency
structure is the same in both coordinates. The variable
array is relatively efficient in both memory and processing
requirements.

7. C o m p a r i s o n

Plain arrays, hierarchical arrays, string representations,
and variable arrays all explicitly express both empty and
filled spatial domains. All also store information about
domains in a topological structure based on spatial loca-
tion. Thus distances or shape information never requires
processing of the total representation; only relevant areas
need be operated on. Each of the above representations
uses a different method to define domains and possesses
different memory requirements. Each also explicitly stores
different location and shape information, facilitating dif-
ferent kinds of processing. The details of these differences
follow.

The plain array represents all space in terms of a single
domain size, each domain being addressible according to its
absolute location. Because contents are not directly

The greatest lower bound of the two blocks x and y is defined as
the largest block z, which is included in blocks x and y. The least
upper bound of two blocks x and y is the smallest block z, which
includes blocks x and y.

l t
AI

I
cLo
FIG

t
IOTAL

/ / ' °7\° ' \

Fze. 10. The domains A, B, C, D, E, F, G are those used to define
this form at the top of the figure. The lattice hierarchy and groups
make up the form shown.

~ i i ~ cATI°N

FIe. II. List structure of one node in the group hierarchy used in
Moran's adjacency structured representation.

X~t

o

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0) l 2

.5 .5

.5 8 8

.5 8 0

.5 8 0

.5 8 0

.5 8 0

.5 8 1

.5 8 0

.5 8 0

.5 8 0

.5 8 0

.5 8 0

4.5 8 0

4.25 8 2

1.25 8 2
.5 8 8

3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4

. 5 . 5 . 5 . 5 . 5 . 5 . 5 1 . 5 . 5 7 . 0 2 . 5 . 5

8 8 8 8 8 8 8 8 8 0 0 0

0 0 0 1 1 0 0 0 8 0 0 0

0 0 1 1 1 1 0 0 8 0 0 0

0 1 1 1 1 1 1 0 8 0 0 0

1 1 1 1 1 1 1 0 8 0 0 0

1 1 1 1 1 1 0 0 8 0 0 0

1 1 1 1 1 0 0 0 8 0 0 0

0 1 1 1 0 0 0 0 8 0 0 0

0 0 1 0 0 0 0 0 8 0 0 0

0 0 0 0 0 0 0 0 8 0 0 0

0 0 0 0 0 0 0 0 8 8 8 8

0 0 0 0 0 0 0 0 0 0 0 8

2 2 2 0 0 0 0 0 0 0 3 8

2 2 2 2 2 2 2 2 2 0 3 8

8 8 8 8 8 8 8 8 8 8 8 8

Fro. 12. An array of variable sized domains. This array is opera-
tionally isomorphic to the adjacency structured representation.

24~ C o m m u n i c a t i o n s o f t h e ACM V o l u m e 13 / Number 4 / Apri l , 1970

TABLE I. A COMPARISON OF FOUR SPACE
PLANNING REPRESENTATIONS

 s NTArioN
Adjacency

array array ,~":~n st f//~Sur~

Number of domains re- 1089 411 65 225
quired to represent ex-
ample arrangement

Greates t error in repre- 8.5 8.5 4.2 8.5
senta t ion of elements
not parallel to coordi-
nate

Greates t error in repre- 6.0 6.0 0.0 0.0
senta t ion for elements
parallel to coordinate

Domains require defini- no yes yes yes
tion?

Structure similar in both yes yes no yes
coordinates?

addressible, most applications of the array representation
also incorporate a secondary memory which stores the
location of each element. 3 Though this data structure is
simple, the large number of domains it utilizes requires
both extensive memory and processing times. In it, the
accuracy expressed is proportional to the square of the
number of domains used. I t has been usefully applied to
problems where all elements are highly modular. I t is
easily implemented in the most common algorithmic
languages. The hierarchically subdivided array used at
SRI removes some of the above limitations.

The string representation for space planning is a hybrid.
While domains are content addressible in both coordinates,
direct determination of adjaceneies is possible in the x-
coordinates only. Sequential processing of domains in the
two coordinates differs, and thus requires either dual
operators or an operation that rotates the data structure
so that a single operator can be applied. While the string
representation is the most efficient representation yet dis-
covered, in terms of the number of domains required to
express a configuration, it requires more complex opera-
tions. When a new element is located, the boundaries of
the affected rows must be regenerated. Searching for a
particular configuration of space is also time-consuming
because of the varying structure in the x- and y-co-
ordinates. The string representation may turn out to be
particularly useful in graphic systems using horizontal
raster line generation and halftone displays [20].

Moran's adjacency structured representation is com-
pletely content addressible. While its structure is con-
sistent in both coordinates, its operations are complex and
slow, partly due to the constant updating required of its
adjacency and lattice structure. On the other hand, the
variable array, which is its isomorph, expresses adj aeencies
automatically and stores the sizes of domains efficiently.
I t allows significantly faster processing and less memory.

s Location addressible means tha t memory locations are defined
according to an absolute Cartesian location. Content addressible
means tha t memory locations are assoeiatively s t ruc tured and
can only be identified by an appropriately s t ruc tured sequential
s c a n .

The variable array has been found to be a reasonable com-
promise allowing detail as well as efficient processing. I t is
easily implemented in almost any algorithmically oriented
language.

The major differences between the representations that
have been described are shown in Table I. The relative
efficieneies of each are shown. Of the presented space
planning representations, only the plain array has been
extensively used for space planning. Yet each of the others
offers significant efficiencies that should make them super-
ior to the array for particular applications. With appro-
priate selection, these representations should allow
significant space planning applications to be implemented
on a computer.

8. E x t e n s i o n s

All the presented representations rely on rectangular
convex polyhedrons for the expression of domains. They
incorporate domains whose edges are perpendicular to the
coordinates so that very simple computations may sum
distances and areas of adjacent domains. This rule fails
to deal with elements located nonparallel with the co-
ordinates. I t also cannot accurately deal with curvilinear
forms.

To express irregular shapes more accurately, non-
rectangular domains must be utilized. One possibility is to
use triangular domains which are still convex but allow
expression of complex shapes. But to make use of triangular
domains, we must develop a strategy to sum adjacent
domains. Another approach might be to use line segments,
such as are used in CGLs, but subdivide all domains into
convex shapes by an appropriate decomposition rule.
Again, the summation of adjacent domains is a major
issue. These or other extensions of space planning repre-
sentations will require significant information to be stored
about each domain's shape so that summations will still be
possible without extensive processing.

In review, it seems that a suitable representation for
space planning must include the following characteristics:

(1) Both filled and empty domains must be directly
available for processing.

(2) Domains should be structured by adjacency or some
other derivative of location. A consistent rule for summing
the spatial characteristics of adjacent domains should be
available.

(3) Domains should be defined so that overlaps between
domains are easily identified. One such rule is that all
domains be convex.

Only further efforts at data structure construction will
produce a completely general and efficient representation
for space planning; nevertheless, a trade-off between
complexity and detail is likely to remain.

The representation requirements presented here also
suggest that efforts in the linguistic processing of pictures
may benefit from a review of the operational characteristics
of the picture being processed. By analyzing what opera-
tions are carried out on a language, its structure is implied.

V o l u m e 13 / N u m b e r 4 / Apr i l , 1970 C o m m u n i c a t i o n s o f t h e ACCIVI 249

The analysis presented here suggests that spatial domains
are the primitive element of this particular graphic
language. In this light, the common assumption that line
segments are the primitives of many graphic languages
may require revision.

RECEIVED JUNE, 1969; REVISED OCTOBER, 1969

REFERENCES
1. GRoss, MAURICE, AND NIVAT, MAURICE. A command

language for visualization and articulated movements. In
Computer and Information Sciences II, Julius T. Tou (Ed),
Academic Press, New York, 1967.

2. NILSSON, NILS J. A mobile automaton: An application of
artificial intelligence techniques. Proc. Int. Joint Conf.
Artificial Intelligence, May 1969, Washington, D. C.

3. EASTMAN, CHARLES M. Explorations of the cognitive proc-
esses of design, Dep. of Comput. Sci., Carnegie-Mellon U.,
Feb. 1968, ARPA Rep. DDC No. AD671158, Clearinghouse,
Springfield, VA 22151.

4. EASTMAN, CHARLES M. Cognitive processes and ill-defined
problems: A case study from design, Proc. Int . Joint Conf.
Artificial Intelligence, May 1969, Washington, D. C.

5. HOWDEN, W. E. The sofa problem. Comput. 3". 11, 3 (Nov.
19687, 299-301.

6. SUTHERLAND, I. E. Sketchpad: a man-machine graphical
communication system. Prec. AFIPS 1963 Spring Joint
Comput. Conf., Vol. 23, Spartan Books, New York, pp. 329-
346.

7. GRAY, J. C. Compound data structure for computer aided
design: a survey, Proc. ACM 22nd Nat. Conf. 1967, Thomp-
son Book Co., Washington, D. C., pp. 355--365.

8. THOMAS, E. M. GRASP--~ graphic service program. Proc.
ACM 22nd Nat. Conf., 1967, MDI Publications, Wayne, Pa.,
pp. 395-402.

9. ARMOUR, GORDON C., AND BUFFA, Elwoov. A heuristic
algorithm and simulation approach to relative location of
facilities. Man. Sci. (Jan. 1963), 244-309.

10. LEE, R. B. AND MOORE, J. M. CORELAP--computerized
relationship layout planning, J . Indust. Eng., 18, 3 (Mar.
1967) 195-200.

11. SIMPSON, M. G., ET AL. The planning of multi-storybuildings:
a systems analysis and simulation approach. Proc. European
Meeting on Statistics, Econometrics and Management
Science, Amsterdam, Sept. 1968.

12. BARKEN, ROBERT. A set of algorithms for automatically
laying out hybrid integrated circuits. Internal working doc.,
Bell Telephone Lab., Holmdel, N. J., Aug. 1968.

13. NILSSON, N. J., AND RAPHAEL, B. Preliminary design of an
intelligent robot. In Computer and Information Sciences II,
Julius T. Tou (Ed.), Academic Press, New York, 1967.

14. ROSEN, C. A., AND NILSSON, N. J. Application of intelligent
automata to reconnaisance. SRI Project 5953, Third Interim
Report, Rome Air Develop. Center, Rome, N. Y., Dec. 1967.

15. FAIR, G. R., FLOWERDEW, ET AL. Note on the computer as
an aid to the architect. Comput. J . 9, 1 (June 1966).

16. GRISWOLD, R., POAGE, J., AND POLONSKY, I. The SNOBOIA
programming language. Bell Telephone Lab., Holmdel,
N. J., Aug., 1968.

17. McCARTHY, JOHN, ET AL. LISP1.5 Programmer's Manual.
MIT Press, Cambridge, Mass., 1965.

18. MORAN, THOMAS. Structuring three-dimensional space for
computer manipulation. Dep. Comput. Sci. working
paper, Carnegie-Mellon U., Pittsburgh, Pa., June, 1968.

19. MORAN, THOMAS. A model of a multi-lingual designer. In
Emerging Methods in Environmental Design and Planning,
G. Moore (Ed.), MIT Press, Cambridge, Mass. (in press).

20. WYLIE, C. ROMNEY, ET AL. Halftone perspective drawings by
computer. Teeh. Rep. 4-2, Comput. Sci. Dep., U. of Utah,
Salt Lake City, Utah, Feb. 1968.

T

Hansen--cont'd from page 241

The excessive times for the start and removal of an internal
process are due to the peculiar storage protection system of
the RC 4000, which requires the setting of a protection key
in every storage word of a process.

9. Conc lus ion

Ideas similar to those described here have been sug-
gested by others [4-6]. We have presented our system
because we feel that, taken as a whole, it represents a sys-
tematic and practical approach to the design of replaceable
operating systems. As an inspiration to other designers, it
is perhaps most important that it illustrates a sequence of
design steps leading to a general system nucleus, namely,
the definition of the process concept, the communication
scheme, and the dynamic creation and structuring of
processes.

We realize, of course, that a final evaluation of the sys-
tem can only be made after it has been used to design a
number of operating systems.

250 Communicat ions of the ACM

Acknowledgments. The design philosophy was de-
veloped by J~rn 5ensen, S~ren Lauesen, and the author.
Leif Svalgaard participated in the implementation and
testing of the final product.

Regarding fundamentals, we have benefited greatly from
Dijkstra's analysis of cooperating sequential processes.

RECEIVED JULY, 1969; REVISED JANUARY, 1970

REFERENCES

1. RC $000 Soflware: Multiprogramming System. P. Brinch Hansen
(Ed.). A/S Regnecentralen, Copenhagen, 1969.

2. RC 4000 Computer: Reference Manual. P. Brinch Hansen (Ed.).
A/S Regnecentralen, Copenhagen, 1969.

3. DIJKSTRA, E. W. Cooperating Sequential Processes. Math.
Dep., Technological U., Eindhoven, Sept. 1965.

4. I'IARRISON, M. C., AND SCHWARTZ, J. W. SHARER, a time
sharing system for the CDC 6600. Comm. ACM 10, (Oct. 1967),
659.

5. I'IUXTABLE, D. H. R., AND WARWICK, M. T. Dynamic super-
visors--their design and construction. Proc. ACM Syrup. on
Operating System Principles, Gatlinburg, Tenn., Oct. 1--4,
1967.

6. WICHMANN, B. A. A modular operating system. Proc. I F I P
Cong. 1968, North Holland Pub. Co., Amsterdam, p. C48.

Volume 13 / Number 4 / Apri|,r1970

