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Problems involving the arrangement of objects in two- or 
three-space where the objective function primarily consists of 
derivatives of the distance between objects or their arrange- 
ment are called space planning problems. The representational 
requirements for this problem area are defined and compared 
with current computer graphic languages. Four alternative data 
structures that allow automated space planning are described 
and compared. 
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1. I n t r o d u c t i o n  

If the computer is to become more to future engineers 
and architects than an elaborate machine for carrying out 
numerical calculations, then means must be developed for 
it to deal with the nonnumerical aspects of design and 
planning problems. 

Many  problems within the general class called "design" 
emphasize topological and metric considerations. They 
consist of location problems in which total performance is 
a function of the distance between the elements being 
located or their arrangement. This aspect of a design 
problem can be called its space planning aspect. Automa- 
tion of space planning requires a means for representing 
this type of problem in a computer. Space planning is also 
a factor in the development of intelligent robots. To deter- 
mine appropriate movements, processing must be carried 
out on an internal map of the space in which the robot is 
located [1, 2]. 

Originally, the advent of cathode-ray tubes controlled 
by computers and the development of computer graphic 
languages (CGLs) were thought  to resolve the major issues 
in representing and manipulating the space planning 
aspects of design problems. But  the current lack of sig- 
nificant programs dealing with space planning is only one 
indication that  existing CGLs do not facilitate computer 
augmentation of this type of problem. In this paper 

* Institute of Physical Planning. This work was supported by the 
Advanced Research Projects Agency of the Office of the Secretary 
of Defense (F 44620-67-C-0058) and is monitored by the Air Force 
Office of Scientific Research. 

computer graphic and other types of data  structures tha t  
conceivably could be used for space planning are reviewed. 
The requirements tha t  a representation must satisfy to 
deal successfully with space planning are offered. Several 
new data structures for this use are described and evalu- 
ated. 

2. T h e  P r o b l e m  

The  form of external representation normally used by 
humans to model physical space and to solve space plan. 
ning problems is a drawing. Particularly used are ortho- 
graphic projections--plans, sections, and elevations. The 
elements represented may vary  from a microcircuit to a 
steam turbine, from a unique pat tern  of specified material, 
such as furniture or machinery in an enclosed space, to 
economic zones in a region, depending upon the problem 
at hand. 

To determine how orthographic drawings are interpreted 
and manipulated, a review was made of a number of care- 
fully reported protocols of designers solving space planning 
problems [3, 4]. The  following insights were gained. Lines 
on paper are generally used to demark disjoint spatial 
domains within a two-dimensional space. Each Cartesian 
point within a drawing corresponds to a like point in a 
proposed or real physical space. Attributes are ascribed to 
each domain. All points enclosed by a line are assumed to 
possess similar attributes; a domain is assumed to be 
homogeneous. All spatial information about  each domain 
- - i t s  dimensions, shape, and at t r ibutes-- is  either directly 
available for processing or easily generated. This is true 
both for domains that  are filled with material and for those 
that  are empty. With all spatial information available for 
every domain, summations of the dimensions of adjacent 
domains may be used to determine the distance between 
any two points or any two domains. They  may also be used 
to determine any desired spatial information for any 
aggregate set of spatial domains. 

The  basic operation for generating alternative solutions 
for space planning problems involved the relocating of a 
single domain or set of domains. The Cartesian points 
represented by a domain were altered, though their 
attributes, shapes, and dimensions remained invariant. 
Sets of domains, grouped by  adjacency, also were relocated. 
A basic test involved in all relocation operations was an 
evaluation of a proposed empty domain to determine if 
the space required to locate the element was completely 
disjoint from all other filled domains. This could be con- 
sidered as a test to ascertain whether an empty domain 
would completely encompass the solid domain it is receiv- 
ing. Alternatively, it could be a test to check whether 
already located solid domains had points in common with 
the solid being located. 

Further  consideration suggested that  any space planning 
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alternative could be generated and evaluated if the follow- 
ing capabilities were available and facilitated. 

(1) Representation of domains of any shape. 
(2) Determination of any dimension or attribute of a 

represented domain. 
(3) Identification of any desired set of adjacent domains. 
(4) Determination of any dimension or attribute of a set 

of adjacent domains. 
Complex constraints seemed derivable from these types 

of capabilities. For instance, connectivity between any two 
points (e.g. to complete a circuit or to identify if accessibil- 
ity exists between two points) is the search for a given 
state where a set of adjacent domains also include the 
given points. The sofa problem, formulated by Howden 
[5], is the search for a set of adjacent empty domains of a 
specifiable size and arrangement (possibly complex) that 
also are adjacent to two specified domains. Similarly, a 
test to determine if a clear view exists between two points 
is an evaluation of the attributes of domains (e.g. empty or 
solid) which are intersected by a vector connecting the two 
points. Lighting, acoustics, and material costs are also 
functions whose parameters include distance measures of 
single or adjacent sets of domains. 

The determination of a location for a design element is 
facilitated by the above capabilities. In the attempt to 
aggregate a set of empty domains whose total dimensions 
are equal to or less than those of a solid to be located, over- 
laps with other solids are automatically excluded. The 
processing of adjacent domains requires the rules designat- 
ing adjacency to be well defined. Most commonly, adjacent 
dimensions are summed parallel to the two Cartesian 
coordinates. 

The above capabilities seemed to define well those 
needed for space planning. According to the above premises, 
the power of a representation to handle space planning is 
determined by the ease in which information about dimen- 
sions or adjacencies of a single domain or set of domains can 
be acquired. 

3. Why Existing Graphic Languages Are Unsuitable 
for Space Planning 

The data structures originally conceived to respond to 
the general needs of computer-augmented design were the 
CGLs developed for the generation of drawings on a 
cathode-ray tube. I t  was implicitly assumed that space 
planning was facilitated by such representations. 

The graphic aspects of all CGLs are generally organized 
as follows. Physical elements are defined by a list of line 
segments that identify the spatial boundaries of the ele- 
ment. The line segments are connected head to tail, de- 
fining a continuous path. The electron beam of the CRT 
follows the path defined by these line segments, producing 
graphic output. Attributes of each element can be ap- 
pended to the list to complete the specification of the 
element. The total list for an element is connected end-to- 
end so as to create a ring. The ring allows entrance at any 
point in the structure to have access to all other points and 

for rings to intersect one another. Thus particular attri- 
butes of different elements can be strung on a ring that 
links element rings together. In this way, rings can be 
used to generate a variety of topological organizations that 
allow multiple kinds of search and processing. For in- 
stance, design elements may be grouped into sets by a 
connecting ring. Those sets may also be grouped, allowing 
the definition of a hierarchy of ring structures. A diagram 
of the typical data structure thus produced is shown in 
Figure 1. (For a more extensive review of CGLs, see [6, 
7, 8].) 

F r ~  P r e v i o u s  
Element 

El = El t T N t 
Point 

FIG. 1. A typical list s tructure for representing one line of an ele- 
ment  in a computer  graphle language. 

An element or set of elements in the hierarchical data 
structure provided by a CGL can be accessed in a variety 
of ways. The usual operators available for manipulating 
CGLs include: 

(1) Inserting an element at a specified place in the 
structure. 

(2) Deleting an element and collapsing the gap left in 
the structure. 

(3) Merging one ring structure with another (in a 
specified way). 

(4) Performing some operation on all members of a ring 
or group of rings. 

Such a structure and such operations have value in 
analyzing various kinds of clearly structured systems, such 
as hydraulic processes or electrical circuits. Elements in 
the system can be linked by attaching the appropriate 
ring to it. Analysis of flows through different topological 
organizations of diverse sets of elements is facilitated. But 
the analyses and operations required for space planning 
are not facilitated by such a data structure. 

The limitations of using a CGL for space planning derive 
from the following characteristics. 

(1) Only elements located in a space are represented in 
a data structure. The voids between elements are ignored. 

(2) Line segments specify an element. Domains must 
be derived from these lines. 

(3) The specification of each element is ordered in the 
data structure according to a programmer-defined topo- 
logical organization, not spatially. 

Because no specification exists of the size and shape of 
empty spaces it is not possible to test directly if an empty 
space may hold a particular solid. Required is a search of 
the total data structure for domain overlaps. Four types of 
algorithms have thus far been identified for checking 
overlaps. One, the data structure describing existing ele- 
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merits may be searched for line intersections with the new 
element. Two, an empty domain can be scanned dimen- 
sionally to determine if it can completely encompass the 
solid it is to hold. Three, the areas within the line segments 
may be subdivided into convex domains, allowing testing 
for disjointedness, such as by the method of determinants. 
And four, a point can be checked for disjointedness with a 
domain by counting the boundaries crossed by a line 
segment connecting the point in question and a point 
exterior to the domain. If an even number of boundaries of 
the domain are crossed, the point is on the exterior of the 
domain. 

When it is recognized that a location trial is the most 
common operation in space planning, any representation 
must place a heavy weight on facilitating this operation. 
CGLs do not. Other operations such as the calculation of 
the amount of clear space adjacent to a given element, 
similarly require scanning the total data structure because 
adjacent domains are not directly accessible. In general, the 
shortcoming of CGLs is that they do not hold spatial 
information in a form related to the processing required for 
space planning. Significant processing costs are required to 
generate the information necessary for those operations 
used most often. 

Because of these shortcomings, no significant programs 
written in a CGL are known that deal with space planning. 
No extensions of CGLs are known that  include facilities 
needed for space planning. 

A variety of other data structures have been developed 
that  more directly respond to the needs of space planning. 
Each of these structures represents both filled and empty 
space. Each specifies the adjacency of spatial domains. 
Each also provides facilities for checking the overlap of 
domains. 
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E 

Fro. 2. Orthographic projection of the plan of a room. 
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4. S i m p l e  Arrays 

The only representation widely utilized in mechanically 
solving space planning problems is the two-dimensional 
array. In this representation each subscripted variable i n  

a predefined array represents a rectangular unit area, thus 
a domain. The subscripts of the domain provide the de- 
finition of its x and y Cartesian coordinates. The value of 
a variable in the array denotes its state. If its value is 
zero, then the domain is empty; if it has the value of 
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FIG. 3(a). The domains used by an array to represent the room 
in Figure 2. 1089 domains are used. Maximum error is 8.5 inches. 
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8 8 8 8 8 8 8 8 8 8 8 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
8 0 0 0 0 1 1 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
B 0 0 0 1 1 1 1 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
) 0 0 1 1 1 1 1 1 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

0 1 1 1 1 1 1 1 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 1 1 1 1 1 0 0 0 0 0 8 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 0 0 0  
0 0 1 1 1 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 1 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 8  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8  

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8  
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8  
2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 3 8  
2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 3 8  
2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 3 8  
2 2 2 2 0 0 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 3 8  
2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 3 8  
2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 3 3 3 3 3 8  
2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 3 8  
2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 3 8  
2222222222220000000000000333338 
2222222222220000000000000333338 
2222222222220000000000000333338 
2222222222220000000000000333338 
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8  

FIG. 3 (b). The actual array used to represent the room. 
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twelve, the contents of all point locations within the do- 
main are "Element Twelve." 

In this representation, all domains are rectangular and 
of a single predetermined size. Both empty and filled 
domains are represented. Locations are directly addressable 
according to the subscripts of a domain. Adjacency is 
identified through the sequential ordering of the sub- 
scripts. A single domain size allows the subscripted 
variables to determine both the location and the dimen- 
sions of a set of domains. An example floor plan is shown in 
Figure 2. The domains used to represent it with a plain 
array are shown in Figure 3(a). The corresponding array 
is shown in Figure 3 (b). 

Operations on such a representation are straightforward. 
For example, one possible operation for locating an empty 
space of a given size and mapping a new element defined 
as an array into it is shown in Figure 4. Written in ALGOL 
60, it generates an exhaustive search of the problem space 
scanning the columns vertically from left to right. (Other 
sequences for such a search are easily defined.) In this 
program, an initial location is identified when two of the 
required empty domains are found. An exact check is 
made as each domain of the object is mapped into the 
problem space. The objects are represented by values 
between ten and fifteen, and their access space by values 
between five and six. Thus an overlap between two solids 
or a solid and access space is designated by a value greater 
than fifteen, but access spaces may overlap. Additional 
Boolean conditions or evaluation functions can easily be 
used to evaluate or compare location trials. 

The array has been used to represent space in a variety 
of facilities planning applications [9, 10, 11]. I t  has been 
applied in integrated circuit design [12]. I t  has also been 
used in experiments involving the design of intelligent 
robots [1, 13]. Most of these applications involve two- 
dimensional arrays, though some explorations have been 
made in three-dimensional applications [11]. 

T h e  limitations of the array are self-evident. Its dimen- 
sional accuracy is determined by the size of the domain. 
Greater accuracy requires more domains in the representa- 
tion and thus increases memory requirements. As opera- 
tions must act on one domain at a time, any increase in 
accuracy requires a large increase in computing time. Also, 
all domains must be of square or rectangular shape. Thus 
irregular forms can only be approximated.* 

Variations of the basic array representation have been 
developed that lessen memory requirements and processing 
time. The simplest compensation is to use arrays t h a t  
comprise bytes instead of whole words [1]. A more elaborate 
scheme has been developed at Stanford Research Institute 
for use as a robot's internal representations of the world 
[2, 14]. Instead of a single predefined grid, they use a 
method of subdividing any given rectangular domain into 
4 X 4 grid cells. Each cell can be further subdivided into 

* For a special purpose application using three domain sizes, see 
[15J. Generally, similar costs and benefits are involved in all 
representations using predefined domains. 

4 X 4 grids recursively. (Currently, their system is limited 
to three recursions, or a 64 X 64 array.) Homogeneous 
domains are not subdivided. Subdivision is only required 
at the boundaries of elements. A diagram of the domains 
expressed in such a representation is presented in Figure 5. 
(The representation shown subdivides domains recursively 
into 2 X 2 grids.) We call this representation a hierarchica l  

array .  The efficiency of the hierarchical array is its ability 
to define large homogeneous domains efficiently. More 
detail can be handled with a given amount of memory and 
processing time than in the plain array. 

5. S t r i n g  R e p r e s e n t a t i o n s  

A major disadvantage of the plain array as a spatial 
representation is its reliance on a single domain size. T h e  
hierarchical array is one attempt at resolution. I t  utilizes a 
regular method of decomposition and the sequential sum- 
mation of nested arrays to determine distance. Other 
solutions are also possible. 

If the domains themselves carry information about their 
size, then a single size is not necessary. Distances and 
possibly even location could be determined by summing 
the appropriate dimensions of adjacent domains. For 
example, one could make scans of a single unit width across 
a figure and group all like points into single domains. Like 

B E G I N  FOR A := 1, A+I W H I L E  (QX=O) V (QY=O) DO 
B E G I N  I F  OBJ[A,1] > 10 T H E N  QX := A; 

I F  OBJ[1,A] > 10 T H E N  QY := A 
E N D ;  
FOR A := 1 S T E P  1 U N T I L  RMX--OBX + 1 DO 
FOR B := 1 S T E P  1 U N T I L  RMY-OBY + 1 DO 
B E G I N  I F  (RM[A+QX-1,B]<10) A (RM[A,B--kQY-1]<10) 

T H E N  
FOR C := 1 S T E P  1 U N T I L  OBX DO 
B E G I N  FOR D := 1 S T E P  1 U N T I L  OBY DO 

B E G I N  RM[A+C--1,B+D--1] := RM[A+C-1,B+D-1] 
OBJ[C,D]; 

I F  RM[A+C--1,B+D--1] > 15 T H E N  ERR := 1 
E N D ;  
I F  E R R  = 1 T H E N  
B E G I N  FOR F := C S T E P  --1 U N T I L  1 DO 

FOR G := 1 S T E P  1 U N T I L  OBY DO 
RM[A+F-I,B+G-I] :-- RM[A+F--I,B+G-I] 
-- OBJ[F,G]; 

E R R  := O; 
GO TO SCAN 

E N D  
E N D ;  
GO TO OUT; 
S CAN: 

E N D ;  
OUT: 

E N D ;  

FIG. 4. An ALGOL routine that locates a space and maps one array 
into another. OBX and OBY are the greatest Cartesian distances 
of the mapped array OBJ. RM is the space receiving the object. 
QX and QY are two arbitrarily chosen spaces that must be empty 
for a space to receive the object. They lead to the more detailed 
domain by domain evaluation. 
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FIG. 5. The hierarchical set of domains defined by the SRI array. 
It  requires 411 domains to represent the room in Figure 2 with a 
maximum error of 8.5 inches. 

FIG. 6 (a). The domains used in the string representation to express 
the room. It uses 65 domains and has a maximum error of 4.2 
inches. 

scans then could be grouped. Applying this domain 
definition technique to the floor plan shown in Figure 2 
produces the domains shown in Figure 6(a). The  actual 
data structure is presented in Figure 6(b). In  Figure 
6(b), a real number represents the relative distance be- 
tween domain transitions. The  letter suffix expresses the 
state of previous blocks: W, A, B, C, E represent walls, 
objects A, B and C, and empty space, respectively. The  
prefix defines the vertical extent of a set of domains. Thus 
a prefix, along with each symbol string within commas, 
defines a domain. We call this a string representation. 

By explicitly dimensioning domains, a string representa- 
tion is able to express forms more efficiently than the 
array, e.g. with fewer domains. Horizontal distances are 
no longer limited to multiples of a predefined domain, bu t  
can be real distances measured to any desired degree of 
accuracy. All domains are rectangular in shape. Skewed 
elements still require approximation according to a grid. 

In  a string representation, domains are defined accord- 
ing to a particular strategy for collecting homogeneous 
point locations. The  state of a particular point location is 
determined by  summing row prefixes in the y-coordinate 
and scanning the appropriate rows in the x-coordinate. 
The  different t rea tment  of each coordinate complicates 
most search strategies. Many  operations such as distance 
calculations or scanning walls for a spatial at tr ibute require 
an operator to search one coordinate at a time. Because 
searches in the two coordinates rely on information 
organized in different ways, it  has been found useful to 
generate two problem spaces on which to operate, one 
rotated 90 degrees from the other. After a transformation 

.5 (6.5W, 10.OE) 

.5(.5W, 2.1E, .5A, 2.9E, .5W, 10.0E) 

.5(.5W, 1.6E, 1.4A, 2.5E, .5W, 10.0E) 

.5(.5W, 1.1E, 2.3A, 2.1E, .5W, 10.0E) 

.5(.5W, .6E, 3.1A, 1.$E, .5W, 10.0E) 

.5(.5W, .3E, 3.1A, 2.1E, .5W, 10.0E) 

.5(.5W, .5E, 2.4A, 2.6E, 5W, 10.0E) 

.5(.5W, 1.1E, 1.3A, 3.1E, .5W, 10.0E) 
1.0(.5W, 5.5E, .5W, 10.0E) 
1.0(.5W, 5.5E, 10.5W) 
4.5(.5W, 15.5E, .5W) 
4.3(.5W, 1.8B, ll.2E, 2.5C, .5W) 
1.2(.5W, 6.0B, 7.0E, 2.5C, .5W) 
.5(16.5w) 

Fm. 6(b). The actual data structure used in the string representa- 
tion. 

has been made in one representation, its isomorph is 
regenerated. The alternative is to have duplicate opera- 
tions for the two coordinates. 

The algorithm in Figure 7 describes the operations made 
on a string representation that  corresponds to the replace- 
ment operations for the string array shown in Figure 4. The  
algorithm generates a depth-first tree search. Upon find- 
ing an instance of an empty space large enough in one 
coordinate to hold the new element, it  "builds up"  a space 
by connecting empty spaces to it  in the other coordinate. 
Whenever it  fails to find a space of the required size and 
location to further the buildup, the algorithm backtracks 
to the previous instance of an empty space and looks for 
another instance to build upon. When a space of appro- 
priate size is built  up, one space is mapped onto the other. 
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FIG. 7. The  search s t r a t egy  for s t r ings  t h a t  correspond to the  one 
shown in Figure  4. 
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o~ T~S SlVE 

FIG. 8. List  s t ruc tu re  for a single domain using the adjacency 
s t ruc tu red  representa t ion .  

Most operations on the string representation require the 
building up of individual domains so as to meet particular 
spatial requirements. 

The use of strings to represent space location problems 
has been explored by the author, using SNOBOI.A as the 
base language [16]. 

6. R e p r e s e n t a t i o n s  U s i n g  A d j a c e n c y  S truc tures  and  
Variable  S ize  D o m a i n s  

In arrays, locations are available through direct address- 
ing in both coordinates. Strings, on the other hand, utilize 
both direct addressing and adjaeency to find the state of a 
particular point location. Because accessing rules are dis- 
similar in the two coordinates, different operators are 
required for each. A single rule of adjacency in both 
coordinates allowing a single accessing rule suggests a new 
representation. Specifically, apply the rule that only single 
domains may be adjacent to each other in either co- 
ordinate. A program using this representation has been 

written by Moran in LmP1.5 [17, 18, 19]. Much of the 
following description is based upon his efforts. 

In such a representation, the four coordinate boundaries 
of a block are explicitly represented within it on a list. The 
list structure for representing a rectangular domain is 
shown in Figure 8. Those blocks adjacent to each other in 
either coordinate are linked. For instance, the space 
shown in Figure 2 is connected into domains as shown in 
Figure 9. A location may be determined by summing the 
sizes of adjacent domains in both x- and y-coordinates. 
As in the string representation, finding a particular sized 
space in an adjacency-structured representation usually 
requires the building up of domains in both the x- and 
y-coordinates. 

An interesting feature of Moran's program is that, in- 
stead of building up groups of domains dynamically during 
the search for a particular sized space, it has been con- 
ceived so as to organize automatically all combinations 
of domains into an always available group lattice. The 
organization of this lattice is as follows. All domains of 
each type, e.g. empty or Type Twelve, form a set. Partially 
ordered subsets, related by set inclusion, can be topologi- 
cally ordered for adjacent domains of each type. For 
example, the space shown in Figure 10 can be defined by 
the group lattice as shown below. The total form T has as 
atomic domains A, B, C, D, E, F, G. Using the concepts 
of least upper bound and greatest lower bound, the do- 
main sets represented by FC, FG, DG, DE, BE, AD, 
CD, and AB are grouped as unions of adjacent atomic 

~-FI 1 i I 
i 1 

1 

FIG. 9. An adjacency structured representation using rectangular 
domains and a single rule of adjacency. The maximum error is 8.5 
inches when 225 domains are used to represent the plan in Figure 2. 
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blocks.' Further such ordering produces ADG, CDE, 
CDFG, and ABDE. Each group designates a block set 
and is itself made up of smaller domains. This lattice is 
incorporated into the basic definition of the form being 
processed using the data structure shown in Figure 11. 
The search for a domain of any size only requires scanning 
the already organized lattice. I t  is so organized that only 
portions of it require searching at any time. The cost of 
having such information available is paid in the constant 
bookkeeping required to update it. 

The locating of an element consists of redefining the 
boundaries of a set of blocks in the lattice into a new subset 
which perfectly matches the space requirements of the 
element. Replacement is then carried out by redefining all 
the designated domains in the lattice. 

The basic domain and adjacency structure of Moran's 
program may be implemented without resorting to list- 
type data structures. The structure involved includes 
variable sized rectangular domains connected by adjacency 
relations in the two coordinates. An array can be used to 
express this structure. Each subscripted variable represents 
a domain of a different size. Because only one domain may 
be adjacent to another in the x- and y-coordinates, domain 
sizes are consistent for each row and column. A zero vector 
in the x- and y-coordinates can be used to express all 
domain dimensions. Adjaceneies can still be determined 
from the subscripted variables. The representation shown 
in Figure 12 is functionally equivalent to Moran's but can 
be processed with routines readily constructed in common 
algorithmic languages. We call this representation the 
variable array. The replacement algorithm shown in 
Figure 7 is applicable to the variable array. While not as 
efficient as a string representation in the number of do- 
mains required to represent a given form, its adjacency 
structure is the same in both coordinates. The variable 
array is relatively efficient in both memory and processing 
requirements. 

7. C o m p a r i s o n  

Plain arrays, hierarchical arrays, string representations, 
and variable arrays all explicitly express both empty and 
filled spatial domains. All also store information about 
domains in a topological structure based on spatial loca- 
tion. Thus distances or shape information never requires 
processing of the total representation; only relevant areas 
need be operated on. Each of the above representations 
uses a different method to define domains and possesses 
different memory requirements. Each also explicitly stores 
different location and shape information, facilitating dif- 
ferent kinds of processing. The details of these differences 
follow. 

The plain array represents all space in terms of a single 
domain size, each domain being addressible according to its 
absolute location. Because contents are not directly 

The greatest lower bound of the two blocks x and y is defined as 
the largest block z, which is included in blocks x and y. The least 
upper bound of two blocks x and y is the smallest block z, which 
includes blocks x and y. 
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Fze. 10. The domains A, B, C, D, E, F, G are those used to define 
this form at the top of the figure. The lattice hierarchy and groups 
make up the form shown. 
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FIe. II. List structure of one node in the group hierarchy used in 
Moran's adjacency structured representation. 
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Fro. 12. An array of variable sized domains. This array is opera- 
tionally isomorphic to the adjacency structured representation. 
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TABLE I. A COMPARISON OF FOUR SPACE 
PLANNING REPRESENTATIONS 

   s NTArioN 
Adjacency 

array array ,~":~n st  f//~Sur~ 

Number  of domains re- 1089 411 65 225 
quired to represent  ex- 
ample arrangement  

Greates t  error in repre- 8.5 8.5 4.2 8.5 
senta t ion of elements 
not  parallel to coordi- 
nate 

Greates t  error in repre- 6.0 6.0 0.0 0.0 
senta t ion  for elements 
parallel to coordinate 

Domains require defini- no yes yes yes 
tion? 

Structure  similar in both  yes yes no yes 
coordinates? 

addressible, most applications of the array representation 
also incorporate a secondary memory which stores the 
location of each element. 3 Though this data structure is 
simple, the large number of domains it utilizes requires 
both extensive memory and processing times. In it, the 
accuracy expressed is proportional to the square of the 
number of domains used. I t  has been usefully applied to 
problems where all elements are highly modular. I t  is 
easily implemented in the most common algorithmic 
languages. The hierarchically subdivided array used at 
SRI removes some of the above limitations. 

The string representation for space planning is a hybrid. 
While domains are content addressible in both coordinates, 
direct determination of adjaceneies is possible in the x- 
coordinates only. Sequential processing of domains in the 
two coordinates differs, and thus requires either dual 
operators or an operation that rotates the data structure 
so that a single operator can be applied. While the string 
representation is the most efficient representation yet dis- 
covered, in terms of the number of domains required to 
express a configuration, it requires more complex opera- 
tions. When a new element is located, the boundaries of 
the affected rows must be regenerated. Searching for a 
particular configuration of space is also time-consuming 
because of the varying structure in the x- and y-co- 
ordinates. The string representation may turn out to be 
particularly useful in graphic systems using horizontal 
raster line generation and halftone displays [20]. 

Moran's adjacency structured representation is com- 
pletely content addressible. While its structure is con- 
sistent in both coordinates, its operations are complex and 
slow, partly due to the constant updating required of its 
adjacency and lattice structure. On the other hand, the 
variable array, which is its isomorph, expresses adj aeencies 
automatically and stores the sizes of domains efficiently. 
I t  allows significantly faster processing and less memory. 

s Location addressible means tha t  memory locations are defined 
according to an absolute Cartesian location. Content  addressible 
means tha t  memory locations are assoeiatively s t ruc tured  and 
can only be identified by an appropriately s t ruc tured  sequential  
s c a n .  

The variable array has been found to be a reasonable com- 
promise allowing detail as well as efficient processing. I t  is 
easily implemented in almost any algorithmically oriented 
language. 

The major differences between the representations that 
have been described are shown in Table I. The relative 
efficieneies of each are shown. Of the presented space 
planning representations, only the plain array has been 
extensively used for space planning. Yet each of the others 
offers significant efficiencies that should make them super- 
ior to the array for particular applications. With appro- 
priate selection, these representations should allow 
significant space planning applications to be implemented 
on a computer. 

8. E x t e n s i o n s  

All the presented representations rely on rectangular 
convex polyhedrons for the expression of domains. They 
incorporate domains whose edges are perpendicular to the 
coordinates so that very simple computations may sum 
distances and areas of adjacent domains. This rule fails 
to deal with elements located nonparallel with the co- 
ordinates. I t  also cannot accurately deal with curvilinear 
forms. 

To express irregular shapes more accurately, non- 
rectangular domains must be utilized. One possibility is to 
use triangular domains which are still convex but allow 
expression of complex shapes. But to make use of triangular 
domains, we must develop a strategy to sum adjacent 
domains. Another approach might be to use line segments, 
such as are used in CGLs, but subdivide all domains into 
convex shapes by an appropriate decomposition rule. 
Again, the summation of adjacent domains is a major 
issue. These or other extensions of space planning repre- 
sentations will require significant information to be stored 
about each domain's shape so that summations will still be 
possible without extensive processing. 

In review, it seems that a suitable representation for 
space planning must include the following characteristics: 

(1) Both filled and empty domains must be directly 
available for processing. 

(2) Domains should be structured by adjacency or some 
other derivative of location. A consistent rule for summing 
the spatial characteristics of adjacent domains should be 
available. 

(3) Domains should be defined so that overlaps between 
domains are easily identified. One such rule is that all 
domains be convex. 

Only further efforts at data structure construction will 
produce a completely general and efficient representation 
for space planning; nevertheless, a trade-off between 
complexity and detail is likely to remain. 

The representation requirements presented here also 
suggest that efforts in the linguistic processing of pictures 
may benefit from a review of the operational characteristics 
of the picture being processed. By analyzing what opera- 
tions are carried out on a language, its structure is implied. 
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The analysis presented here suggests that spatial domains 
are the primitive element of this particular graphic 
language. In this light, the common assumption that line 
segments are the primitives of many graphic languages 
may require revision. 
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Hansen--cont'd from page 241 

The excessive times for the start and removal of an internal 
process are due to the peculiar storage protection system of 
the RC 4000, which requires the setting of a protection key 
in every storage word of a process. 

9. Conc lus ion  

Ideas similar to those described here have been sug- 
gested by others [4-6]. We have presented our system 
because we feel that, taken as a whole, it represents a sys- 
tematic and practical approach to the design of replaceable 
operating systems. As an inspiration to other designers, it 
is perhaps most important that it illustrates a sequence of 
design steps leading to a general system nucleus, namely, 
the definition of the process concept, the communication 
scheme, and the dynamic creation and structuring of 
processes. 

We realize, of course, that a final evaluation of the sys- 
tem can only be made after it has been used to design a 
number of operating systems. 
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