
Whither Problem-Solving Environments?

Matthew Dinmore

 Johns Hopkins University
 Applied Physics Laboratory

 Laurel, MD USA
 matthew.dinmore@jhuapl.edu

Abstract
During the 1990s and first decade of the 2000s, problem-

solving environments (PSEs) were a topic of research
among a community with the vision to create software
systems “with all of the computational facilities necessary
to solve a target class of problems.” Use of the term has
since declined, with fewer papers focused on core PSE
research topics. What happened? Did we achieve the design
vision for PSEs through other means – namely
computational notebooks – or is there more to do? In this
essay, we explore the history and objectives of PSE
research, the rise of computational notebooks, whether
they achieve these objectives, and why the time is right to
renew our PSE research efforts.

CCS Concepts
•Software and its engineering→Software notations
and tools→Development frameworks and
environments→Integrated and visual development
environments •Computing
methodologies→Modeling and simulation→
Simulation support systems→ Simulation
environments •Applied computing→Physical
sciences and engineering

Keywords
Problem-solving environment, computational notebook,
science and engineering, artificial intelligence, modeling,
simulation

ACM Reference Format:

Matthew Dinmore. 2023. Whither Problem-Solving Environments? In
Proceedings of the 2023 ACM SIGPLAN International Symposium on New
Ideas, New Paradigms, and Reflections on Programming and Software
(Onward! '23), October 25--27, 2023, Cascais, Portugal. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3622758.3622883

1 Introduction
The rapid growth of desktop computing in the 1980s

offered scientists and engineers access to increasingly
powerful hardware and a growing body of specialized
software for their work. This, however, came with a price:
scientists in domains outside of computer science had to
effectively become programmers in order to develop new
code or even weave together existing software libraries in
support of computational experimentation1. The addition
of network computing in the Internet era of the 1990s made
sharing software and data easier, but further complicated
managing it for large-scale experiments across grids of
computers. These challenges inspired the development of
problem-solving environments (PSEs), integrated suites of
software designed to interact with scientists in a language
natural to their research domain. By abstracting the process
of integrating the underlying software components to
realize a computational experimental design, PSEs promise
to save time, increase software reusability, and ultimately
allow scientists to focus on science.

PSEs enjoyed active attention from a motivated research
community for almost twenty years, but after a brief peak,
research production focused on PSEs receded. This essay
explores some reasons for why this may have happened.
Our philosophical approach to this study is one of creating
engineering knowledge [42]. To achieve this, we enumerate
the key design features for PSEs that emerged from
implementation practice, and based on this, ask whether
we’ve achieved those requirements in the form of
computational notebooks. If not, what have we learned,
where do we stand, and where do we go from here?
Whither PSEs?

1.1 What is a PSE?

A PSE can be defined succinctly as “a software system
that provides all of the computational facilities necessary to
solve a target class of problems” [43]. However, this is
arguably a broad definition – a laptop with a software
development tool would fit this definition if we don’t

1 As a historical aside, it is generally considered that the availability of desktop
computers enabled more people to be involved in “end-user computing” (e.g. [32]).
However, one may ask whether this was also true in scientific computing; weren’t
scientists among the first programmers? Anecdotally, this has been commented on
by, for example, Stephen Wolfram, in a recent discussion of the 35th anniversary of
Mathematica, where he notes it being one of the first tools to allow scientific end
users to express their own problems [52]. This also highlights a parallel history of
“human computers” – largely women – who did the actual programming of
computers on behalf of scientists. The marked decline of women in the field of
computer science after 1985 has been anecdotally linked to the rise of personal
computing [18].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this
work must be honored. For all other uses, contact the owner/author(s).
Onward! ’23, October 25-27, 2023, Cascais, Portugal.
© 2023 Association for Computing Machinery.
ACM ISBN 979-8-4007-0388-1/23/10...$15.00
https://doi.org/10.1145/3622758.3622883

168

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3622758.3622883&domain=pdf&date_stamp=2023-10-19

Onward! ’23, October 25-27, 2023, Cascais, Portugal Matthew Dinmore

Feature Houstis, Gallopoulos,
Bramley, & Rice (2000) [22]

Shaffer, Watson, Kafura, &
Ramakrishnan (2000) [46]

Houstis, Rice (2000) [21] Cunha (2001) [10]

Problem-domain
interaction

Multi-level abstractions
“Recognize the pervasive
multilevel structure in science and
engineering objects, and allow the
addition of more detail and
precision at all levels”

Natural languages
“The dream here is to develop a
language that allows the user to
specify an ‘outline’ of the problem
and the associated computations”

Higher Degrees of User
Interaction
“Increased flexibility in user
and component interaction
demands user interfaces at
distinct abstraction levels”

Multidiscipline and
collaboration
support

 Multidisciplinary support /
Collaboration support
“…support the ability of researchers
to combine together to form larger,
multidisciplinary teams. In practice,
this means that the models from the
various disciplines involved should
be combinable in some way.”

Collaboratory problem solving
“The design of the engine requires that
these different domain-specific
analyses interact in order to find the
final solution”

Multidisciplinary Nature
of the Applications
“…the need to support
interactions between distinct
sub-models, based on
multiple heterogeneous and
hybrid components”

Intelligent support
throughout the
problem-solving
process

Recommender systems
“A recommender system for a PSE
serves as an intelligent front-end
and guides the user from a high
level description of the problem…”

Intelligence in computational
science

“…the task of selecting the best
software and the associated
algorithmic/hardware parameters for
a particular problem or computation
is often difficult”

Intelligence in PSEs
“Advisoring, explaining, and
expert tools are important to
assist the user during the
development and execution
steps”

Problem-solving
knowledge capture
and sharing

Create knowledge bases for
solvers and problems
“Provide automation of (or help
for) construction of the PSE,
dynamic selection of a solver,
selection of hardware, suitability
of output, management of long-
term computations”

Usage documentation,
Preservation of expert
knowledge
“…implicit and explicit
documentation for use of the code,
specifically with respect to
parameters and other inputs. The
interface could provide advice on
reasonable interactions of
parameters, or which submodels to
use in particular circumstances. At
the PSE creation level, PSE-building
tools could provide a convenient
mechanism for adding and accessing
such documentation.”

Models of Problem Solving
“People normally have a large context
in mind when they start on problem
solving; they use ‘fuzzy’ sketches and
back-of-the-envelope analyses to get
started. How can [these] be
incorporated into tile PSE? Are there
easier and more powerful ways to
communicate about scientific problem
solving? Problem solving is often an
iterative process involving changing
specifications, strategies, and goals.
How can computer power in
information processing be used to
track the problem solving process, to
organize it for review by the human,
and for analysis by the PSE?“

Software sharing
and reuse

Reuse legacy software
“Encapsulation is possible for
reasonably designed software
provided some key parts of the
legacy environment persist”

Internet accessibility to legacy
codes
“The initial reason why a
computational scientist or engineer
approaches our research group is
that they would like to make their
legacy modeling code Web
accessible”

Software reuse
“One of the design objectives of future
PSEs will be the use of scalable
libraries as building blocks for
creating seamless scientific
applications … To realize this
objective we must develop tools that
enhance reuse and enable layered
approaches to application
development.”

Software Architectures
“…the focus is put on the
reuse of components and
their dynamic modification,
relying upon objectoriented
and component-based
technologies”

Components,
component types
and integration

Plug-and-play
“…a systematic framework with
formally defined interfaces,
supporting the dynamic assembly
of software components, and
keeping the framework open and
tailored to the needs of scientific
PSEs”

Integration
Visualization, Optimization
“While each feature described in this
list is important in its own right, the
important aspect of a PSE for
computational science research such
as we have described would be the
synergy that should result from
integrating these features into a
single system”

PSE Software Architecture
“…there is a (large) collection of
problem solving components (i.e. a
workbench), including those that are
needed to solve it. Then, the user must
first combine some of these
components to form a custom PSE and
then apply it to solve the problem at
hand.”

Dynamic Configuration
and Coordination Issues
“…support the modification
of components and their
interaction patterns… design
of abstract patterns of
interactions, on the dynamic
reconfiguration of software
architectures, and on the
coordination of distributed
systems”

Experiment
management

Create test beds for
components and
combinations

Experiment Management
“…have the results of the simulation
runs be stored automatically in some
systematic way that permits
recovery of previous runs along with
the parameters that initiated the
run”

Validation of Computations
“The validation of computational
science PSE results is critical, yet
minimal effort is spent by users or
PSEs to check that the answers are
correct. … Yet the costs of experiments
is increasing while the cost of
computation is decreasing.”

Computing
architecture and
infrastructure

 High-performance computing
“Often, simulations … require access
to significant computing resources,
such as a parallel supercomputer or
an “information grid” of computing
resources. In such cases, the PSE
should integrate a computing
resource management subsystem…”

Netcentric computing
“…put the PSE technology at the
finger tips of any scientist or engineer,
anytime and anywhere”

Infrastructures for PSEs
“A PSE should be able to
work on top of low-level and
middleware layers which
provide the services of a
meta-level distributed
operating system for cluster
computing and global
computing platforms”

Table 1. Key design features of PSEs.

169

Whither Problem-Solving Environments? Onward! ’23, October 25-27, 2023, Cascais, Portugal

consider the user or efficiency, for example. The PSE
literature provides additional insight into the attributes of
PSEs that can help in better understanding what makes
them different. At the next level of detail, Houstis and Rice
[21] offer the formulation of:

PSE = Natural Language + Solvers + Intelligence + Software Bus

These four components suggest, at a high level, insight into
the key features that differentiate a PSE from other
computing environments. Here, natural language refers to
the interaction paradigm and specifically the preference for
working in the users’ domain-oriented language, while also
foreshadowing the possibility of natural language
interfaces. Solvers is a general reference to the domain-
specific software (computational algorithms, models,
visualizations) and its findability and accessibility that
provides sufficient abstraction to support domain-level
problem solving, as well as the ability to share and reuse
this software within a given community. Intelligence
suggests system support to the problem solver in all aspects
of their work and interactions with the system, from setting
up the problem, formulating the solution in software,
provisioning computational resources, and sensemaking
around and sharing of results. Finally, the software bus
evokes the need for a plug-and-play architecture of
communicating components that is easy to reconfigure
and update as capabilities against a class of problems
mature. It is worth comparing this to an earlier rendition of
the formula [44], which read:

PSE = User Interface + Libraries + Knowledge Base + Integration

While structurally similar, this evolution suggests a
trajectory in thinking about the design and utility of PSEs
through research experience with them. The increased
specificity from user interfaces to natural language, and
from libraries to solvers suggests a shift from thinking
about PSEs in the software domain toward a greater
emphasis on their place in the problem-solving domain.
Also notable is the change from knowledge bases, which
imply a passive resource available to the problem solver, to
intelligence, suggesting a more active engagement between
the system and the user2. It might be argued, however, that
integration is a broadly more useful goal than being overly
specific about a “software bus” architecture, which while in
vogue at that time, is one among several architectural
options for software integration. Further, consider that this
evolution took place concurrently with the growth of the
internet, institutionalization of software engineering
practice – especially around code reuse and systems
architecture, which figure prominently in the discussion
around the later definition – and the stirrings of an artificial
intelligence (AI) “Spring.”

 Other works dove more deeply into the attributes of
PSEs, both as realized at the time and as envisioned, toward
identifying gaps and establishing a research agenda.
Houstis, et. al. [23] offer an earlier summary in an
introduction to several articles on the topic, relating
conclusions from PSE-focused workshops sponsored by the
National Science Foundation (NSF) in 1991 and 1995.
Shaffer, et. al. [46] focus on software infrastructure,

2 Note that, in this same timeframe, research into mixed-initiative interfaces, e.g.
Allen, et. al. 1999 [1] was similarly seeing a peak of interest.

highlighting challenges PSE users encountered in practice
that were not being actively pursued by researchers.
Houstis and Rice’s 2000 [21] paper, in which the later high-
level formulation for PSEs above is found, further
decomposes PSE areas of research. Finally, there is Cunha’s
[10] purposeful review of the requirements for PSEs that
identifies key development challenges for next-generation
PSEs. Taken together as a sampling of the literature on
research into the main features of PSEs, we can draw a
more holistic picture of what makes a PSE. Table 1 presents
an aggregate list of features in the context of their
presentation in each of these papers; only concepts
occurring in more than one of these papers are presented,
though some interpretive license has been taken in
combining differently-worded, but otherwise similar
concepts – brief quotations from the original papers are
provided to assist the reader in understanding the authors’
thinking about these features, though one is referred to
these papers for a more thorough discussion. We now
briefly describe each area.

1.1.1 Problem Domain Interaction

Closing the gap between domain representations and
software is a central objective of a PSE. Enabling interaction
with representations that allow the problem solver to work
analogically with things they are familiar with is essential
[19]. Costabile, et. al. [9] identify two classes of needs for
domain experts: (i) parameter setting in a predefined
application, and (ii) modifying the software in something
akin to programming but “as close as possible to the
human,” suggesting an aversion to text-based “traditional”
programming in favor of end-user programming [32]
approaches such as visual programming. Due to the close
relationship of PSE research and grid-based computing
[14], visual composition environments are common in the
PSE literature [15]. General eScience workflow tools with
visual composition environments such as Kepler [33] and
Taverna [53], as well as PSE-focused tools such as SCIRun

Figure 1. SCIRun PSE showing workflow and results [24].

170

Onward! ’23, October 25-27, 2023, Cascais, Portugal Matthew Dinmore

[24], often serve as platforms for PSE research and
development. A typical view of a composed workflow and
results display from SCIRun is shown in Figure 1,
highlighting the two “sides” of a PSE: solution development
(workflow composition) and execution [30].

We should note, though, that the domain such
representations address is more about that data processing
problem – how data collected in an experiment or
generated by a simulation – can be processed and analyzed,
than the actual scientific problem domain. Other
programming approaches to bridging this gap, notably
domain-specific languages (DSLs), appear infrequently in
the later PSE literature. Earlier efforts to create physical
object representations closer to the user’s domain of work
in general-purpose languages such as LISP [3] and object-
oriented environments such as SmallTalk [29] did not
ultimately gain traction among PSE developers, with grid
computing-focused visual workflow representations
dominating in the later years, as evidenced in the prior
references. This vision of native problem domain
representation in the PSE remains worthy of further work.

1.1.2 Multidiscipline and Collaboration Support

Recognizing that complex problems are often
multidisciplinary, requiring experts from several domains,
PSEs must enable both natural interaction in the domains
of the users and the integration of their contributions to the
common solution to the problem. Foster, Papka and Stevens
[13] discuss the challenges and trends toward a research
agenda in this area, many of which are familiar to our
discussion of PSEs, e.g. allowing for flexible interfaces,
discovery, sharing and persistence of artifacts, and
allocation of computational resources, affirming the
importance of collaboration in PSEs. Over a decade later,
van der Vet, et. al. [48] reflect that scientists were typically
using desktop computers for their work, and while
scientific workflow environments such as Taverna assist in
“packaging recurrent task sequences in a single
environment” to enable in-silico experimentation, the
broader vision of a truly collaborative environment
remained unrealized. Whether the immersive and ambient
environments they report on will, as they ask in their
discussion, ultimately help, research toward focusing
collaboration closer to the problem remains a valid need.

1.1.3 Intelligent Support Throughout the Problem-
Solving Process

The variety of intelligent support for the user is
imaginably broad, intersecting every phase of the problem-
solving process. Early in the process, this would include
assistance in stating, scoping and decomposing the
problem. Intelligence could then assist in gathering
software components, integrating them, or developing
novel ones when necessary; this is a significant part of the
“recommender system” role envisioned for PSEs. Later, it
could assist in deployment to distributed infrastructures,
collection and analysis of results, and capture and
publication of insights and new knowledge.

1.1.4 Problem-Solving Knowledge Capture and
Sharing

There are multiple domains of knowledge relevant to
solving a problem in a PSE, including the scientific (or
problem domain, in general), software engineering, and
computer science [39]. A PSE will ideally support
capturing, finding and reusing knowledge across these in
an integrated manner.

1.1.5 Software Sharing and Reuse

Similarly, as problem solutions are ultimately realized in
software, making that software available and reusable is a
key objective. Reuse has been a topic of extensive study in
software engineering, though this research has extended in
many directions, include several of interest to the features
listed here such as problem domain understanding and
software components [5]. While the general challenges of
reuse apply to PSEs, of particular interest are design for
reusability (which can be facilitated by, for example,
component frameworks [2]), and maintaining alignment
between the problem and the underlying software
implementation to make reuse practical [35].

1.1.6 Components, Component Types and
Integration

Following from the ideas of representing problem-
domain concepts and objects in software and making those
representations more shareable and reusable is the notion
of encapsulating them as software components. A common
component model is required within a system for local
integration, but standards become even more important
when considering deployment to general grid computing
infrastructures [24].

1.1.7 Experiment Management

Problem solving is rarely a linear task; problem solvers
iterate on the problem and solution at different points in
the process, which makes it desirable to have both a history
of what has been tried (and each attempt’s results), as well
as mechanisms for automating experiments across a range
of parameters and collecting the results for analysis [54].
Computational steering emerged as an important feature in
this, enabling users to monitor and adjust execution of a
long-running computations rather than wait until the end
to adjust and repeat [30].

1.1.8 Computing Architecture and Infrastructure

As noted previously, the emergence of grid computing
and the necessity of enabling scientists to map scientific
workflows onto grids became a central aspect of PSEs, with
many researchers from the parallel, high-performance and
grid computing communities also publishing in PSE-related
venues. Arguably, this challenge of data processing became
the problem solved by later PSE efforts. The emergence of
alternative big data and cloud-based processing paradigms
offered other approaches, but in all cases, the need to map
a computational problem onto a large-scale computing
architecture – which remains largely invisible to the user –
and provision the necessary resources continues to be a key
requirement of such environments.

171

Whither Problem-Solving Environments? Onward! ’23, October 25-27, 2023, Cascais, Portugal

1.2 The Summary as a Design Pattern for PSEs

This summarization of features is useful in a number of
ways. First, it helps us more thoroughly understand what
the PSE research community was pursuing through the
emergent properties of PSEs as realized in their body of
literature. Second, using this retrospective view of what
defines a PSE allows us to evaluate specific instances
presented in the literature to determine how representative
each is. Third, we can potentially trace the introduction,
evolution and degree of objective attainment for each
attribute by examining the instances presented, and
thereby summarizing a picture of the state of progress
against each feature by the PSE research and development
community over time. Fourth, we can compare alternatives
in the same solution space, which is one of the objectives
of this essay. Finally, understanding what makes a PSE
allows us to create tools to effectively build PSEs; it is
necessary that such tools would include the correct
building blocks as well as the appropriate types of “glue” to
assemble them in a manner that synergistically results in a
capability that achieves the holistic goals of a PSE; in this
manner, the summary serves as a design pattern for PSEs.

While several recurring themes emerge in these features
– for example the desire to support multidisciplinary, end-
user interaction to specify problems, and component-based
construction, execution, sharing and reuse of
computational solutions – some other areas surprisingly do
not. For example, data access and the challenges of “big
data” are rarely addressed. This may be because much of
this work occurred before the big data era was fully
underway. Emphasis on integration of models and
simulations that generate data internally at compute time
rather than relying on existing data may be another. Or, the
close relationship between PSE research and grid
computing, where principal concepts are distributed
computing and bringing compute to the data may be
factors. In any case, with the advent of the data-driven
scientific paradigm [20], this seems to be a significant gap
and worthy of future attention.

Architectural discussions in this literature tend to focus
either on the architecture of the PSE itself or the underlying
infrastructure. In the former case, much attention is paid to
component-based and compositional architectures, as
illuminated by the focus on software components. In the
case of the latter, as noted, there is a relationship between
PSE research and grid computing that is evident, but in
general, the emphasis on user interaction in the problem
domain tends to intentionally abstract the underlying
infrastructure away with references to grid computing,
high-performance computing, or netcentric computing.

The objective of automating the creation or generation
of problem-specific PSEs appeared later in the research.
Among these papers, Cunha [10] discusses “building PSEs”
in a general sense, but it wasn’t until later that there were
deeper investigations of this concept. For example, one
approach, referred to a “meta-PSEs” [28], sought to create a
PSE for solving the problem of creating a PSE. This is a

3 These developments also spawned the field of end-user programming (EUP, also
end-user development, EUD), which has a rich but curiously non-overlapping
research literature with that of PSEs (only 0.5% of the papers in our Google Scholar
search for this paper contained both terms). However, these are certainly related in
their focus on the end user, their goals, and separation of domain and programming

powerful concept, because the goal is ultimately to deliver
an end-to-end, problem-solving product to end users in
their domains that minimizes the need for them to spend
time doing anything other than working on their problem.
A tool that can accept a specification for an environment
that solves a class of problems and then deliver that
environment would become a factory for maximizing
problem-solving innovation.

1.3 History and Evolution of PSE Research

The spread of scientific computing in the 1980s, coupled
with the increasing availability of desktop workstations
with graphical user interfaces, gave rise to the idea of
software environments that enable a user 3 to easily
assemble powerful computational software around a
problem specification, execute complex experiments
consisting of potentially multiple simulation runs of a
multidisciplinary collection of models, and then analyze,
visualize and incorporate the results into the scientific body
of knowledge. As mentioned above, the concept had
sufficient traction by the first half of the 1990s to inspire
several NSF workshops and a growing community of
researchers, and Rice and Boisvert [44] comment that, by
the middle of the 1990s, PSEs had “become ‘expected’ for
large, sophisticated scientific software projects.”

Houstis and Rice [21] track the early growth in their
2000 paper through a review of the publication dates of
relevant papers in the bibliography of Gallopoulos, et. al.
[22] (Figure 2). They note that the literature on PSEs
generally falls into two categories: (1) application-oriented
research detailing the development of a particular PSE in a
problem-solving domain, and (2) more general discussions
of PSE technology and infrastructure; the first category
accounts for the larger portion of the literature and offers
design and experiential studies of PSEs in various domains.
A superficial review of the publications in this category
reveals applications not only in the sciences, but also in
engineering (e.g. chemical and aeronautical), decision
support (e.g. construction, medicine, traffic management),
mathematics (e.g. statistics and differential equation
solvers, which are also common to many scientific
applications), and analysis (e.g. geospatial, flood prediction,
land use, and earthquakes). The second category is
represented by the types of papers discussed previously and
summarized in Table 1. While researchers publishing in the
first category appear to come from a range of domains –
often related to the classes of problems for which they have
developed a PSE – researchers in the second category (as
represented by the authors of the papers in Table 1) were
generally involved in scientific, numerical, or mathematical
computing; parallel, grid or high-performance computing;
or data analysis, e-learning and other non-computer
science applications of computing. Collaborations among
these groups were common.

expertise. In the end-user development paradigm, PSEs generally follow the model-
based development approach, though reuse and experiment design also align to
parameterization and customization activities [32]. Interestingly, research into
computation notebooks has been actively undertaken by the EUD community [31].

172

Onward! ’23, October 25-27, 2023, Cascais, Portugal Matthew Dinmore

Figure 2. Early growth of PSE research based on bibliography in
Gallopoulos [22], as presented in Houstis & Rice [21].

To build on this earlier study of the literature and
understand what happened in the two decades since,
publications data from Google Scholar were collected,
resulting in the graph presented in Figure 3. Google Scholar
(https://scholar.google.com) was queried for ‘("problem
solving environments" | "problem solving environment")’.
Additionally, because a large number of articles with these
terms related to educational problem-solving environment
research – a largely unrelated topic dealing with teaching
problem-solving skills – the following exclusion terms
were added: ‘-tutor -student -teach -education’, which
removed many of these. Year constraints were used to get
specific values for each year between 1985 and 2022. The
results still contain some potentially superfluous items,
including foreign language documents that cannot be fully
assessed; sampling suggests as much as 10% of the absolute
results may not be relevant and therefore these numbers
should not be used directly. Rather, the intent is to assess

4 Wolfram Mathematica weaves an interesting thread through this topic. It – and
tools like it such as Maple and Matlab – are found in the PSE literature as examples
of general-purpose environments that can serve as PSEs. To the extent that
mathematics serves as a lingua franca of scientific and engineering problem solving,
they provide a tools supporting formulation and execution of problem solutions in
this medium. Indeed, the description of Mathematica’s Wolfram Language as a
“computational language” goes beyond mathematics and brings us closer to direct

the overall trajectory of research publications relating to
PSEs.

This expanded timeline reflects the continued growth in
PSE research publications until the mid-2000s, but then a
decline that continues until the present. Additionally, while
multiple papers about PSE research (e.g. summaries,
research agendas) were published in the years before the
peak, none seem to appear in the recent literature. This
begs the question: what happened? Did we achieve the
long-term vision for PSEs by the 2010s?

2 Jupyter Rising
In 2007, Perez and Granger [37] formally introduced

iPython, a “system for interactive scientific computing.”
Key features included an open programming environment
that cleanly exposes all aspects of creating and executing
scientific code, integration with GUIs and visualization
libraries, and access to parallel and distributed backend
computing infrastructure. At that time, the toolkit offered
a typical, though fully interactive, code editing experience
consisting (optionally) of an interactive terminal and
graphical outputs that could be generated in separate
window panes. Inspired by the highly integrated
“notebook” experience found in products like Wolfram
Mathematica4, a web-based interactive notebook, initially
iPython Notebook and later Jupyter Notebook [16], was
added as the primary interface to the Jupyter “ecosystem”
of scientific computing software. The transition to Jupyter
also made the system programming language agnostic,
inviting the statistical community with the open-source R
language and newcomers such as Julia, among many
others5. Since the mid-2010s, the ecosystem has grown not
only in the scientific community, but beyond with the
adoption of data scientific methods in all sectors; arguably,
Jupyter is the interactive computing environment of choice
today.

But, is Jupyter a PSE? Or a meta-PSE that allows
construction of PSEs? Indeed, it has been argued that
Jupyter is the path to realizing the vision for PSEs pursued
by the PSE research community [4]. In this section, we will
examine this critically, enumerating the features of
computational notebooks, as well as some challenges with
them that have emerged as they’ve been more broadly
adopted. We then compare these to the key attributes of
PSEs to assess the progress made along this path, toward
informing and inspiring our concluding discussion of what
additional research and development is required to truly
realize the vision for PSEs.

2.1 Overview of Computational Notebooks

Computational notebooks provide the user with an
interface that smoothly interleaves text, code and
visualization in a linear flow of cells. This allows the user
to develop the solution to a problem in pieces; each cell can
contain a small piece of the code, and any output that it
generates is presented immediately below it. Cells can also

representations of objects in the problem domain [51]. We also see these used in
conjunction with other PSEs, e.g. SciRun [24]. Mathematica additionally provides one
of the first notebook-style interfaces, foreshadowing the broad adoption of this
design in computational notebooks.
5 A current list of language kernels for Jupyter can be found here:
https://github.com/jupyter/jupyter/wiki/Jupyter-kernels

Figure 3. PSE publications based on Google Scholar analysis.

173

https://github.com/jupyter/jupyter/wiki/Jupyter-kernels

Whither Problem-Solving Environments? Onward! ’23, October 25-27, 2023, Cascais, Portugal

contain text entered by the user, allowing for literate
programming, a concept developed by Donald Knuth to, in
part, provide more naturally described and organized
programs [27]. Importantly, though, computational
notebooks don’t enforce a literate programming – or
generally any – paradigm, but rather are relatively freeform
scratchpads for computational work; this general-purpose
flexibility arguably makes them desirable to problem
solvers, in much the same way that spreadsheets are.

While Jupyter is the most commonly encountered
computational notebook, others have emerged with
variations on the key features of the genre. Lau, et. al. [31]
enumerate the design space created by considering 60
notebooks, identifying the following common feature
categories:

- Access to data sources

- Code editing in one or more programming languages
(includes coding-focused collaboration)

- Code execution and results visualization

- Publishing from the notebook, enabled by the explication
of code and inclusion of explanatory prose

Three key objectives for computational notebooks are
accessibility, sharing and reproducibility [26]. The
notebook interface was introduced to iPython in part to
make it easier to interact with computation. As a web-based
application, it is easily hosted and accessed through a web
browser, and this same technology allows local desktop
installation.

The notebooks enable sharing in several ways: the
underlying notebook itself can be shared and opened in
Jupyter or a compatible environment, or the notebook can
be exported as HTML and opened in any browser (even as
a local file). Moreover, this kind of sharing can retain
interactivity for some elements of the notebook, allowing
recipients to explore the results (computations generally
cannot be re-executed as the computational kernel doesn’t
accompany the notebook). The notebook file also contains
the code, enabling code reuse, though it should be noted
that this differs from typical software reuse in that it would
be reuse of the notebook (i.e. as a starting point for
changing or adding computations) or code snippets within
it rather than as a software library. The idea of using
notebooks for sharing methods and results can be extended
to domains beyond science (e.g. systems engineering [56]).

The ability to share notebooks in these ways facilitates
scientific reproducibility. The code and the results can be
easily examined, and more importantly, the interweaved
prose enables both to be explained, forming a
computational narrative [25]. At a minimum, this supports
traditional publishing in the sciences, but because code is
available, and provided the right data and environment are
also available, the computations can be re-executed.

Together, these attributes make a compelling
environment for scientists and others to use for doing and
sharing their computational work, but how does that work
in practice?

2.2 Emerging Challenges with Notebooks

As notebooks have become more widely used, both
within scientific computing and beyond, limitations in their
design and use have emerged [17]. In some cases, these are

a result of design tradeoffs made for simplicity and
flexibility, which have fueled broader adoption and
unexpected applications. In others, how they are used in
practice does not match the vision in their design [41].
Chattopadhyay, et. al. [8] identify several issues in their
study of notebook users’ pain points that are relevant to our
discussion of PSEs, including:

- Loading data, especially across sources and platforms, is
very difficult and time consuming

- Constantly “tweaking” code and latency in the feedback
from the changes is frustrating

- Non-linear execution order hampers debugging, version
control, and user understanding of program state

- Code management and the complexity arising from library
dependencies requires software engineering skills

- Sharing relevant parts of notebooks is difficult and limited

- Reproducibility is hampered by individual customizations
and complicated dependencies

- Deploying a notebook as a product of scientific work, or a
tool to be used by others, is beyond most users’ skills

If a significant objective of literate programming and
computational notebooks is explanation via computational
narratives, in practice, few scientists seem to do this. Rule,
Tabard and Hollan [46] looked at over a million notebooks
available online, finding that 25% contained no narrative at
all. In interviewing notebook users, they found most use
them for “personal, exploratory, and messy” computations
– in other words, without the intent to communicate and
share with others.

3 Have We Achieved the Goals of a PSE?
Given the features and flexibility of computational

notebooks, but with consideration of their limitations in
practice, how well do they satisfy the goals of PSEs? In this
section, we discuss each of the PSE key features derived in
section 1.1 in relation to how they are approached – and
whether they are achieved – by the current generation of
computational notebooks.

3.1 Problem-domain interaction

The objective in problem-domain interaction is to enable
a user to work in the language of their domain and in a
manner analogically consistent with the domain. For
example, a chemist would most likely want to work with
chemical formulae, and models of chemical processes,
which could be integrated in a natural way. Computational
notebooks, though, tend to focus primarily on traditional,
text-based programming languages with occasional
support for domain-relevant notation. Support could be
provided in part by domain-specific languages or language
kernels, but domain-oriented interaction patterns would be
more difficult to layer over the notebook-style design.
Notably, alternatives to the notebook structure have
emerged to explore other potential representations [50].

3.2 Multidiscipline and collaboration support

In this category, we capture both the need for multiple
disciplines to work together on complex problems
(horizontal collaboration), as well as collaboration in the

174

Onward! ’23, October 25-27, 2023, Cascais, Portugal Matthew Dinmore

broader sense, to include among domain experts, data
scientists, and software engineers (vertical collaboration).
Again, to the degree that domain-centric interactivity is not
well supported, multidisciplinary integration must occur
through a lingua franca in the notebook environment. This
often takes the form of the dominant programming
language. Higher-level integrations among libraries and
services are possible, but also only through active
translation to the underlying programming environment.

Collaboration vertically with other technical disciplines
is generally accomplished through code reuse; a computer
scientist may develop a library implementing an optimized
version of some computational function that the scientist
can then make use of. Some environments have
experimented with built-in, explicit collaboration support
[7], though this is atypical.

3.3 Intelligent support throughout the problem-
solving process

Current notebooks focus on intelligent support to the
programming process, borrowing features from
mainstream integrated development environments like
code completion. However, there is almost no support for
problem domain-centric intelligence, again due to their
relatively domain-agnostic design. This is an area of active
research with work looking at various parts of the problem-
solving process to include data wrangling [38], coding [34],
and presentation [57].

3.4 Problem-solving knowledge capture and sharing

The literate programming-inspired design of the
notebook interface provides a mechanism for problem-
solving knowledge capture, though as noted earlier, many
users do not effectively make use of this to annotate their
notebooks. Moreover, because the notebook’s structure
enforces a linear presentation of the realized problem-
solving process, without explicit intent on the part of the
user, capturing this process (vice just the resulting product)
is additional work, for which the notebook offers little
support. Some research toward automatically capturing
provenance from scripts and script execution has been done
[40].

3.5 Software sharing and reuse

Notebooks provide a relatively accessible interface to
multiple ecosystems of reusable software libraries. As
computational solutions to problems are rendered as
software in the notebook, the ability to share and reuse is
well supported; as noted above, multiple modes of sharing
are offered, though underlying language ecosystem
challenges with dependency management, as well as an
inability to easily share a portion of a notebook – aside from
copy-and-paste of raw code – are shortcomings.

3.6 Components, component types and integration

The Jupyter ecosystem, which was designed for
extensibility, offers a large range of existing components,
primarily in the form of computational components,
visualizations, and interactive (user interface) components.
Computational components generally derive from software
libraries imported to the programming environment,

though the ability to copy and paste cell-based code also
represents a weak type of component-based sharing.
However, incorporating components can vary from a
straight-forward import to a tremendous challenge;
component use is not universally the plug-and-play
experience that is desired.

Integrating components – enabling them to work
together – can also be less than seamless. Part of this stems
from lack of clarity in the underlying computation
mechanism and how data is shared among the elements of
a notebook between the kernel backend and the notebook
frontend. While usually possible, more complex
integrations require additional technical knowledge.
Customizations made to support various components and
their integration may also be less portable, affecting
sharing and reproducibility.

3.7 Experiment management

To the extent that notebooks support component
integration, they also support do-it-yourself computational
experiment design and execution. Users generally have to
write their own code to implement an experimental setup,
especially if there is need to iterate over a latin square of
experimental parameters; notebooks contain no intrinsic
mechanisms for organizing or capturing experiment results
beyond what is returned in a cell.

3.8 Computing architecture and infrastructure

An ecosystem like Jupyter offers both a system-level
architecture – web-based notebooks hosted on a
collaborative server with support for one or more language
kernels – and access to computing infrastructure. In some
cases, this is accomplished through the libraries made
available in the programming environment (at which point
the user is on their own to leverage the infrastructure
through the library interface), and some infrastructure
developers and cloud compute providers have integrated
notebooks into their offerings.

3.9 Summary

Overall, we observe that computational notebooks excel
at providing easy access to programming languages,
software libraries, visualization components, and the
ability to annotate, share, reuse and present computational
research. However, this is largely accomplished in the
domains of computer and data science; notebook users
must be literate in a programming language and the
peculiarities of modern software development to fully
leverage these features. As far as problem definition,
notebooks do provide their users a blank, linear slate on
which they can develop and document their problem’s
structure and problem-solving process, but will offer them
little support or incentive for doing this.

So, it is arguable that, under the generalization of
“providing all computational facilities necessary to solve a
class of problems,” notebooks do achieve this in the
computational sense (that is, like our hypothetical “laptop
with a development tool”), and their substantial adoption
may testify to this as a practical matter. However, as we
look deeper at the intent motivating PSEs, we find a
significant gap between domain-centric problem solving
and the facilities current computational notebooks offer.

175

Whither Problem-Solving Environments? Onward! ’23, October 25-27, 2023, Cascais, Portugal

4 A Refocused Future for PSE Research
Given the remaining gaps between the vision for PSEs

and the achievements of notebooks as the most widely
adopted user-facing tools for computational science, where
should we focus our future research and development
efforts, and what is to be gained in doing so? We propose
to focus on two features discussed earlier that offer the
greatest opportunity: interacting in the problem-domain
language and intelligent support throughout the problem-
solving process, and seek to find a solution in their
integration with current notebook technologies.

4.1 Interaction in the Problem-Domain Language

The first major area that remains largely unaddressed is
in enabling problem solvers to work in the native languages
of their domains. This is certainly challenging in that each
domain has its own language, concepts and structures. An
approach to this is leveraging conceptual models, which
have been touched on in the context of PSEs [49], but have
gained significant traction in the closely allied field of
modeling and simulation [36]. Robinson, et. al. [45] discuss
this application, noting that “conceptual modeling is about
moving from a problem situation, through model
requirements to a definition of what is going to be modeled
and how” (p. 10, emphasis mine) and “Conceptual modeling
is about determining the right model, not how the software
will be implemented” (p. 13). This framing – focusing on
modeling the problem in the language of the domain and in
a manner agnostic to the eventual software implementation
– is the same as we seek in a PSE (unsurprisingly, as many
PSEs reported in the literature are modeling and simulation
environments).

Conceptual modeling languages, which are often
graphical, provide a common means for expressing objects
and actions in any domain and making them accessible and
potentially reusable across domains, which would facilitate
both horizontal (multidisciplinary) and vertical
collaboration. Indeed, conceptual modeling approaches
such as Object-Process Modeling [11], designed for systems
engineering, have demonstrated successful application in
other domains, for example, molecular biology [12].
Integrating conceptual modeling methods and tools with
notebook technologies would provide an environment in
which conceptual models expressing a problem and desired
outcome in the problem domain could be directly
connected to software implementations via notebook code.
This would inherently associate richer descriptions of
hypotheses, models, data, and the relationships among
them from the conceptual models with the underlying code,
which will in turn support better understanding and
communication of the scientific and problem-solving
knowledge artifacts resulting from the computational
study.

4.2 Intelligent Support for Problem Solving

The other significant aspect of the vision that remains
unrealized is intelligent support throughout the problem-
solving process. Earlier PSE work in this area largely
focused on recommendation engines that would help the
user locate reusable software assets to compose into a
solution. The growth in web-based software repositories

makes software sharing and access easier, but a problem
that remains is the ability to find potentially useful software
across domains. Notably, current notebooks do not contain
integrated recommender technologies; their addition
would begin to simplify the process of finding and
integrating software. Progress on cross-domain software
search has been made through the application of machine
learning, e.g. [58], and if we were to also provide richer
domain context through associated conceptual models
(which, themselves can help facilitate cross-domain
sharing), this would be further improved.

Substantial advances in artificial intelligence (AI) in
recent years offer a variety of opportunities far exceeding
the original vision for intelligent support in PSEs. For
example, the abilities of large language models to write
narrative, write code, document code, perform data
analysis, and use and coordinate external tools [6] presents
compelling possibilities for adding value to notebooks. This
class of AI alone has the potential to touch most of the key
phases in the problem-solving life cycle, and early
experiments with such integrations have proved promising
[55]. Combined with the richer descriptions of scientists’
and engineers’ intentions made available to AI technologies
through the explicit representation of the problem/solution
interface with conceptual models will make such
integrations more effective.

5 Conclusion
The broad adoption of computational notebooks has

made progress toward the goals for PSEs, but there is more
to do to achieve the vision. It remains a worthy vision:
better structuring the problem-solving process by
integrating conceptual models with computational
notebooks, improving collaboration and communication
within and across disciplines, and leveraging rapidly
emerging artificial intelligence technologies all offer
mechanisms for reducing problem-solving friction so that
practitioners can focus on the core of their work. These
technologies are, by themselves, either relatively mature or
receiving a great deal of research attention. The time is
right to build on these successes by driving research and
development toward the integration of these solutions to
address the missing pieces of the PSE vision and seamlessly
coupling them with proven computational notebook
technologies to create truly general-purpose problem-
solving environments.

Acknowledgments

The author would like to thank his colleagues and the
reviewers for their suggestions, all of which greatly
improved this paper.

References
[1] J.E. Allen, C.I. Guinn, and E. Horvitz. 1999. Mixed-initiative interaction. IEEE

Intelligent Systems 14, 5: 14–23. https://doi.org/10.1109/5254.796083

[2] B. Appelbe, L. Moresi, S. Quenette, and P. Simter, “Scientific Software
Frameworks and Grid Computing,” in Grid-Based Problem Solving
Environments, P. W. Gaffney and J. C. T. Pool, Eds., in IFIP The International
Federation for Information Processing, vol. 239. Boston, MA: Springer US,
2007, pp. 401–413. doi: 10.1007/978-0-387-73659-4_24.

[3] Bajaj, Chanderjit; Hoffmann, Christoph M.; Houstis, Elias N.; Korb, John T.;
and Rice, John R., "Computing About Physical Objects" (1987). Department of
Computer Science Technical Reports. Paper 603.

176

Onward! ’23, October 25-27, 2023, Cascais, Portugal Matthew Dinmore

https://docs.lib.purdue.edu/cstech/603

[4] Lorena A. Barba. 2021. The Python/Jupyter Ecosystem: Today’s Problem-
Solving Environment for Computational Science. Computing in Science &
Engineering 23, 3: 5–9. https://doi.org/10.1109/MCSE.2021.3074693

[5] J. L. Barros-Justo, F. B. V. Benitti, and S. Matalonga, “Trends in software reuse
research: A tertiary study,” Computer Standards & Interfaces, vol. 66, p. 103352,
Oct. 2019, doi: 10.1016/j.csi.2019.04.011.

[6] Daniil A. Boiko, Robert MacKnight, and Gabe Gomes. 2023. Emergent
autonomous scientific research capabilities of large language models.
Retrieved April 15, 2023 from http://arxiv.org/abs/2304.05332.

[7] Niels Olof Bouvin. 2019. From NoteCards to Notebooks: There and Back Again.
In Proceedings Conference on Hypertext and Social Media, 19–28.
https://doi.org/10.1145/3342220.3343666

[8] Souti Chattopadhyay, Ishita Prasad, Austin Z. Henley, Anita Sarma, and Titus
Barik. 2020. What’s Wrong with Computational Notebooks? Pain Points,
Needs, and Design Opportunities. In Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems (CHI ’20), 1–12.
https://doi.org/10.1145/3313831.3376729

[9] M. F. Costabile, D. Fogli, C. Letondal, P. Mussio, and A. Piccinno, “Domain-
Expert Users and their Needs of Software Development,” p. 5.

[10] José C. Cunha. 2001. Future Generations of Problem—Solving Environments.
In The Architecture of Scientific Software, Ronald F. Boisvert and Ping Tak Peter
Tang (eds.). Springer US, Boston, MA, 29–37. https://doi.org/10.1007/978-0-
387-35407-1_2

[11] Dov Dori. 2016. Model-Based Systems Engineering with OPM and SysML.
Springer New York, New York, NY. https://doi.org/10.1007/978-1-4939-3295-5

[12] Dov Dori and Mordechai Choder. 2007. Conceptual Modeling in Systems
Biology Fosters Empirical Findings: The mRNA Lifecycle. PLoS ONE 2, 9: e872.
https://doi.org/10.1371/journal.pone.0000872

[13] I. Foster, M. E. Papka, and R. Stevens, “Tools for distributed collaborative
environments: a research agenda,” in Proceedings of 5th IEEE International
Symposium on High Performance Distributed Computing HPDC-96, Syracuse,
NY, USA: IEEE, 1996, pp. 23–28. doi: 10.1109/HPDC.1996.546170.

[14] P. W. Gaffney, J. C. T. Pool, and IFIP Working Group 2.5--Mathematical
Software, Eds., Grid-based problem solving environments: IFIP TC2/WG 2.5
Working Conference on Grid-based Problem Solving Environments:
implications for development and deployment of numerical software, July 17-
21, 2006, Prescott, Arizona, USA. in IFIP, no. 239. New York: Springer, 2007.

[15] D. Gannon, M. Christie, S. Marru, S. Shirasuna, and A. Slominski,
“Programming Paradigms for Scientific Problem Solving Environments,” in
Grid-Based Problem Solving Environments, P. W. Gaffney and J. C. T. Pool, Eds.,
in IFIP The International Federation for Information Processing, vol. 239.
Boston, MA: Springer US, 2007, pp. 3–15. doi: 10.1007/978-0-387-73659-4_1.

[16] Brian E. Granger and Fernando Perez. 2021. Jupyter: Thinking and Storytelling
With Code and Data. Computing in Science & Engineering 23, 2: 7–14.
https://doi.org/10.1109/MCSE.2021.3059263

[17] Andrew Head, Fred Hohman, Titus Barik, Steven M. Drucker, and Robert
DeLine. 2019. Managing Messes in Computational Notebooks. In Proceedings
of the 2019 CHI Conference on Human Factors in Computing Systems - CHI ’19,
1–12. https://doi.org/10.1145/3290605.3300500

[18] S. Henn, When Women Stopped Coding. in NPR:Planet Money. NPR, 2014.
Accessed: Jun. 25, 2023. [Online]. Available:
https://www.npr.org/sections/money/2014/10/21/357629765/when-women-
stopped-coding

[19] Thomas T. Hewett and Jennifer L. DePaul. 2000. Toward a Human Centered
Scientific Problem Solving Environment. In Enabling Technologies for
Computational Science, Elias N. Houstis, John R. Rice, Efstratios Gallopoulos
and Randall Bramley (eds.). Springer US, Boston, MA, 79–90.
https://doi.org/10.1007/978-1-4615-4541-5_7

[20] Tony Hey, Stewart Tansley, and Kristen Tolle (eds.). 2009. The fourth paradigm:
data-intensive scientific discovery. Microsoft Research, Redmond , Washington.

[21] Elias N. Houstis and John R. Rice. 2000. Future problem solving environments
for computational science. Mathematics and Computers in Simulation 54, 4–5:
243–257. https://doi.org/10.1016/S0378-4754(00)00187-7

[22] E. Houstis, E. Gallopoulos, R. Bramley, and J. Rice. 1997. Problem-solving
Environments For Computational Science. IEEE Computational Science and
Engineering 4, 3: 18–21. https://doi.org/10.1109/MCSE.1997.615427

[23] Elias N. Houstis, John R. Rice, Efstratios Gallopoulos, and Randall Bramley
(eds.). 2000. Enabling Technologies for Computational Science. Springer US,
Boston, MA. https://doi.org/10.1007/978-1-4615-4541-5

[24] C. Johnson, S. Parker, D. Weinstein, and S. Heffernan, “Component-based,
problem-solving environments for large-scale scientific computing,”
Concurrency Computat.: Pract. Exper., vol. 14, no. 13–15, pp. 1337–1349, Nov.
2002, doi: 10.1002/cpe.693.

[25] Mary Beth Kery, Marissa Radensky, Mahima Arya, Bonnie E. John, and Brad
A. Myers. 2018. The Story in the Notebook: Exploratory Data Science using a
Literate Programming Tool. In Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems - CHI ’18, 1–11.
https://doi.org/10.1145/3173574.3173748

[26] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Matthias
Bussonnier, Jonathan Frederic, Jessica Hamrick, Jason Grout, Sylvain Corlay,
Paul Ivanov, Safia Abdalla, and Carol Willing. Jupyter Notebooks—a
publishing format for reproducible computational workflows.

[27] Donald Ervin Knuth. 1992. Literate programming. Center for the Study of
Language and Information, Stanford, Calif.

[28] H Kobashi, S Kawata, Y Manage, M Matsumoto, H Usami, and D Barada. 2010.
A meta Problem Solving Environment (PSE). In 5th International Conference on
Computer Sciences and Convergence Information Technology, 253–259.
https://doi.org/10.1109/ICCIT.2010.5711067

[29] Z. Kulpa, M. Sobolewski, and S. N. Dwivedi, “Graphical User Interface with
Object-Oriented Knowledge-Based Engineering Environment,” in CAD/CAM
Robotics and Factories of the Future ’90, S. N. Dwivedi, A. K. Verma, and J. E.
Sneckenberger, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 1991, pp.
154–159.

[30] D. Lancaster and J. S. Reeve, “Computational Steering in Problem Solving
Environments,” in Euro-Par 2000 Parallel Processing, A. Bode, T. Ludwig, W.
Karl, and R. Wismüller, Eds., in Lecture Notes in Computer Science, vol. 1900.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2000, pp. 1340–1344. doi:
10.1007/3-540-44520-X_187.

[31] Sam Lau, Ian Drosos, Julia M. Markel, and Philip J. Guo. 2020. The Design Space
of Computational Notebooks: An Analysis of 60 Systems in Academia and
Industry. In 2020 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC), 1–11.
https://doi.org/10.1109/VL/HCC50065.2020.9127201

[32] H. Lieberman, F. Paternò, M. Klann, and V. Wulf, “End-User Development: An
Emerging Paradigm,” in End User Development, H. Lieberman, F. Paternò, and
V. Wulf, Eds., Dordrecht: Springer Netherlands, 2006, pp. 1–8. doi: 10.1007/1-
4020-5386-X_1.

[33] B. Ludäscher et al., “Scientific workflow management and the Kepler system,”
Concurrency Computat.: Pract. Exper., vol. 18, no. 10, pp. 1039–1065, Aug. 2006,
doi: 10.1002/cpe.994.

[34] A. M. Mcnutt, C. Wang, R. A. Deline, and S. M. Drucker, “On the Design of AI-
powered Code Assistants for Notebooks,” in Proceedings of the 2023 CHI
Conference on Human Factors in Computing Systems, Hamburg Germany: ACM,
Apr. 2023, pp. 1–16. doi: 10.1145/3544548.3580940.

[35] M. J. O’Connor, C. Nyulas, S. Tu, D. L. Buckeridge, A. Okhmatovskaia, and M.
A. Musen, “Software-engineering challenges of building and deploying
reusable problem solvers,” AIEDAM, vol. 23, no. 4, pp. 339–356, Nov. 2009, doi:
10.1017/S0890060409990047.

[36] Dale K Pace. 2000. Ideas About Simulation Conceptual Model Development.
JOHNS HOPKINS APL TECHNICAL DIGEST 21, 3.

[37] Fernando Perez and Brian E. Granger. 2007. IPython: A System for Interactive
Scientific Computing. Computing in Science & Engineering 9, 3: 21–29.
https://doi.org/10.1109/MCSE.2007.53

[38] T. Petricek, G. J. J. Van Den Burg, A. Nazabal, T. Ceritli, E. Jimenez-Ruiz, and
C. K. I. Williams, “AI Assistants: A Framework for Semi-Automated Data
Wrangling,” IEEE Trans. Knowl. Data Eng., pp. 1–12, 2022, doi:
10.1109/TKDE.2022.3222538.

[39] S. Picard, J.-L. Ermine, and B. Scheurer, “Knowledge Management for Large
Scientific Software”.

[40] J. F. Pimentel, L. Murta, V. Braganholo, and J. Freire, “noWorkflow: a tool for
collecting, analyzing, and managing provenance from python scripts,” Proc.
VLDB Endow., vol. 10, no. 12, pp. 1841–1844, Aug. 2017, doi:
10.14778/3137765.3137789.

177

Whither Problem-Solving Environments? Onward! ’23, October 25-27, 2023, Cascais, Portugal

[41] Joao Felipe Pimentel, Leonardo Murta, Vanessa Braganholo, and Juliana Freire.
2019. A Large-Scale Study About Quality and Reproducibility of Jupyter
Notebooks. In 2019 IEEE/ACM 16th International Conference on Mining Software
Repositories (MSR), 507–517. https://doi.org/10.1109/MSR.2019.00077

[42] J. C. Pitt. 2001. “What Engineers Know,” Techné: Research in Philosophy and
Technology, 5, 3: 116–123. doi: 10.5840/techne2001532.

[43] J.R. Rice. 1999. A perspective on computational science in the 21st Century.
Computing in Science & Engineering 1, 2: 14–16.
https://doi.org/10.1109/5992.753042

[44] J.R. Rice and R.F. Boisvert. 1996. From scientific software libraries to problem-
solving environments. IEEE Computational Science and Engineering 3, 3: 44–53.
https://doi.org/10.1109/99.537091

[45] Stewart Robinson, Roger Brooks, Kathy Kotiadis, and Durk-Jouke Van Der
Zee. 2010. Conceptual modeling for discrete-event simulation. CRC Press.

[46] Adam Rule, Aurélien Tabard, and James D. Hollan. 2018. Exploration and
Explanation in Computational Notebooks. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems - CHI ’18, 1–12.
https://doi.org/10.1145/3173574.3173606

[47] C. A. Shaffer, L. T. Watson, D. G. Kafura, and N. Ramakrishnan. 2000. “Features
of Problem Solving Environments for Computational Science,” in Proceedings
of the 2000 High Performance Computing Symposium (HPC’00), San Diego, CA:
Society for Computer Simulation International: 242–247.

[48] P. E. van der Vet et al., “Smart Environments for Collaborative Design,
Implementation, and Interpretation of Scientific Experiments,” Workshop on AI
for Human Computing (AI4HC), pp. 79–86, Jan. 2007.

[49] Marc Vass, John M. Carroll, and Clifford A. Shaffer. 2002. Supporting creativity
in problem solving environments. In Proceedings of the fourth conference on
Creativity & Cognition - C&C ’02, 31–37. https://doi.org/10.1145/581710.581717

[50] Zijie J. Wang, Katie Dai, and W. Keith Edwards. 2022. StickyLand: Breaking
the Linear Presentation of Computational Notebooks. In CHI Conference on
Human Factors in Computing Systems Extended Abstracts, 1–7.
https://doi.org/10.1145/3491101.3519653

[51] S. Wolfram, “What We’ve Built is a Computational Language (and That’s Very
Important!),” Stephen Wolfram Writings, May 09, 2019.
https://writings.stephenwolfram.com/2019/05/what-weve-built-is-a-
computational-language-and-thats-very-important/ (accessed Jul. 09, 2023).

[52] S. Wolfram, Celebrating 35 Years of Mathematica, (Jun. 23, 2023). Accessed: Jul.
02, 2023. https://www.youtube.com/watch?v=HxWg8exJxNY&t=1240s

[53] K. Wolstencroft et al., “The Taverna workflow suite: designing and executing
workflows of Web Services on the desktop, web or in the cloud,” Nucleic Acids
Research, vol. 41, no. W1, pp. W557–W561, Jul. 2013, doi: 10.1093/nar/gkt328.

[54] M. Yarrow, K. M. McCann, R. Biswas, and R. F. Van Der Wijngaart, “An
Advanced User Interface Approach for Complex Parameter Study Process
Specification on the Information Power Grid,” in Grid Computing — GRID 2000,
R. Buyya and M. Baker, Eds., in Lecture Notes in Computer Science, vol. 1971.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2000, pp. 146–157. doi:
10.1007/3-540-44444-0_14.

[55] Pengcheng Yin, Wen-Ding Li, Kefan Xiao, Abhishek Rao, Yeming Wen, Kensen
Shi, Joshua Howland, Paige Bailey, Michele Catasta, Henryk Michalewski,
Alex Polozov, and Charles Sutton. 2022. Natural Language to Code Generation
in Interactive Data Science Notebooks. Retrieved April 12, 2023 from
http://arxiv.org/abs/2212.09248

[56] Jack Zentner and Tom McDermott. 2017. Web notebooks as a knowledge
management tool for system engineering trade studies. In 2017 Annual IEEE
International Systems Conference (SysCon), 1–5.
https://doi.org/10.1109/SYSCON.2017.7934710

[57] C. Zheng, D. Wang, A. Y. Wang, and X. Ma, “Telling Stories from
Computational Notebooks: AI-Assisted Presentation Slides Creation for
Presenting Data Science Work,” in CHI Conference on Human Factors in
Computing Systems, New Orleans LA USA: ACM, Apr. 2022, pp. 1–20. doi:
10.1145/3491102.3517615.

[58] Feng Zhu, Yan Wang, Chaochao Chen, Guanfeng Liu, Mehmet Orgun, and Jia
Wu. 2018. A Deep Framework for Cross-Domain and Cross-System
Recommendations. In Proceedings of the Twenty-Seventh International Joint
Conference on Artificial Intelligence, 3711–3717.
https://doi.org/10.24963/ijcai.2018/516

178

https://doi.org/10.5840/techne2001532

