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Abstract  
During the 1990s and first decade of the 2000s, problem-

solving environments (PSEs) were a topic of research 
among a community with the vision to create software 
systems “with all of the computational facilities necessary 
to solve a target class of problems.” Use of the term has 
since declined, with fewer papers focused on core PSE 
research topics. What happened? Did we achieve the design 
vision for PSEs through other means – namely 
computational notebooks – or is there more to do? In this 
essay, we explore the history and objectives of PSE 
research, the rise of computational notebooks, whether 
they achieve these objectives, and why the time is right to 
renew our PSE research efforts.  
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1  Introduction 
The rapid growth of desktop computing in the 1980s 

offered scientists and engineers access to increasingly 
powerful hardware and a growing body of specialized 
software for their work. This, however, came with a price: 
scientists in domains outside of computer science had to 
effectively become programmers in order to develop new 
code or even weave together existing software libraries in 
support of computational experimentation1. The addition 
of network computing in the Internet era of the 1990s made 
sharing software and data easier, but further complicated 
managing it for large-scale experiments across grids of 
computers. These challenges inspired the development of 
problem-solving environments (PSEs), integrated suites of 
software designed to interact with scientists in a language 
natural to their research domain. By abstracting the process 
of integrating the underlying software components to 
realize a computational experimental design, PSEs promise 
to save time, increase software reusability, and ultimately 
allow scientists to focus on science. 

PSEs enjoyed active attention from a motivated research 
community for almost twenty years, but after a brief peak, 
research production focused on PSEs receded. This essay 
explores some reasons for why this may have happened. 
Our philosophical approach to this study is one of creating 
engineering knowledge [42]. To achieve this, we enumerate 
the key design features for PSEs that emerged from 
implementation practice, and based on this, ask whether 
we’ve achieved those requirements in the form of 
computational notebooks. If not, what have we learned, 
where do we stand, and where do we go from here? 
Whither PSEs? 

1.1 What is a PSE? 

A PSE can be defined succinctly as “a software system 
that provides all of the computational facilities necessary to 
solve a target class of problems” [43]. However, this is 
arguably a broad definition – a laptop with a software 
development tool would fit this definition if we don’t 
  

1  As a historical aside, it is generally considered that the availability of desktop 
computers enabled more people to be involved in “end-user computing” (e.g. [32]). 
However, one may ask whether this was also true in scientific computing; weren’t 
scientists among the first programmers? Anecdotally, this has been commented on 
by, for example, Stephen Wolfram, in a recent discussion of the 35th anniversary of 
Mathematica, where he notes it being one of the first tools to allow scientific end 
users to express their own problems [52]. This also highlights a parallel history of 
“human computers” – largely women – who did the actual programming of 
computers on behalf of scientists. The marked decline of women in the field of 
computer science after 1985 has been anecdotally linked to the rise of personal 
computing [18].  
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Feature Houstis, Gallopoulos, 
Bramley, & Rice (2000) [22] 

Shaffer, Watson, Kafura, & 
Ramakrishnan (2000)   [46] 

Houstis, Rice (2000) [21] Cunha (2001) [10] 

Problem-domain 
interaction 
 

Multi-level abstractions 
“Recognize the pervasive 
multilevel structure in science and 
engineering objects, and allow the 
addition of more detail and 
precision at all levels”  

 
Natural languages 
“The dream here is to develop a 
language that allows the user to 
specify an ‘outline’ of the problem 
and the associated computations” 

Higher Degrees of User 
Interaction 
“Increased flexibility in user 
and component interaction 
demands user interfaces at 
distinct abstraction levels” 

Multidiscipline and 
collaboration 
support 

 Multidisciplinary support / 
Collaboration support 
“…support the ability of researchers 
to combine together to form larger, 
multidisciplinary teams. In practice, 
this means that the models from the 
various disciplines involved should 
be combinable in some way.” 

Collaboratory problem solving 
“The design of the engine requires that 
these different domain-specific 
analyses interact in order to find the 
final solution” 

Multidisciplinary Nature 
of the Applications 
“…the need to support 
interactions between distinct 
sub-models, based on 
multiple heterogeneous and 
hybrid components” 

Intelligent support 
throughout the 
problem-solving 
process  

 
Recommender systems 
“A recommender system for a PSE 
serves as an intelligent front-end 
and guides the user from a high 
level description of the problem…” 

Intelligence in computational 
science 

“…the task of selecting the best 
software and the associated 
algorithmic/hardware parameters for 
a particular problem or computation 
is often difficult” 

Intelligence in PSEs 
“Advisoring, explaining, and 
expert tools are important to 
assist the user during the 
development and execution 
steps”  

Problem-solving 
knowledge capture 
and sharing 

Create knowledge bases for 
solvers and problems 
“Provide automation of (or help 
for) construction of the PSE, 
dynamic selection of a solver, 
selection of hardware, suitability 
of output, management of long-
term computations” 

Usage documentation, 
Preservation of expert 
knowledge 
“…implicit and explicit 
documentation for use of the code, 
specifically with respect to 
parameters and other inputs. The 
interface could provide advice on 
reasonable interactions of 
parameters, or which submodels to 
use in particular circumstances. At 
the PSE creation level, PSE-building 
tools could provide a convenient 
mechanism for adding and accessing 
such documentation.” 

Models of Problem Solving 
“People normally have a large context 
in mind when they start on problem 
solving; they use ‘fuzzy’ sketches and 
back-of-the-envelope analyses to get 
started. How can [these] be 
incorporated into tile PSE? Are there 
easier and more powerful ways to 
communicate about scientific problem 
solving? Problem solving is often an 
iterative process involving changing 
specifications, strategies, and goals. 
How can computer power in 
information processing be used to 
track the problem solving process, to 
organize it for review by the human, 
and for analysis by the PSE?“ 

 

Software sharing 
and reuse 

Reuse legacy software 
“Encapsulation is possible for 
reasonably designed software 
provided some key parts of the 
legacy environment persist” 

Internet accessibility to legacy 
codes 
“The initial reason why a 
computational scientist or engineer 
approaches our research group is 
that they would like to make their 
legacy modeling code Web 
accessible” 

Software reuse 
“One of the design objectives of future 
PSEs will be the use of scalable 
libraries as building blocks for 
creating seamless scientific 
applications … To realize this 
objective we must develop tools that 
enhance reuse and enable layered 
approaches to application 
development.” 

Software Architectures 
“…the focus is put on the 
reuse of components and 
their dynamic modification, 
relying upon objectoriented 
and component-based 
technologies” 

Components, 
component types 
and integration 

Plug-and-play 
“…a systematic framework with 
formally defined interfaces, 
supporting the dynamic assembly 
of software components, and 
keeping the framework open and 
tailored to the needs of scientific 
PSEs” 

Integration 
Visualization, Optimization 
“While each feature described in this 
list is important in its own right, the 
important aspect of a PSE for 
computational science research such 
as we have described would be the 
synergy that should result from 
integrating these features into a 
single system” 

PSE Software Architecture 
“…there is a (large) collection of 
problem solving components (i.e. a 
workbench), including those that are 
needed to solve it. Then, the user must 
first combine some of these 
components to form a custom PSE and 
then apply it to solve the problem at 
hand.” 

Dynamic Configuration 
and Coordination Issues 
“…support the modification 
of components and their 
interaction patterns… design 
of abstract patterns of 
interactions, on the dynamic 
reconfiguration of software 
architectures, and on the 
coordination of distributed 
systems” 

Experiment 
management 

Create test beds for 
components and 
combinations 

Experiment Management 
“…have the results of the simulation 
runs be stored automatically in some 
systematic way that permits 
recovery of previous runs along with 
the parameters that initiated the 
run” 

Validation of Computations 
“The validation of computational 
science PSE results is critical, yet 
minimal effort is spent by users or 
PSEs to check that the answers are 
correct. … Yet the costs of experiments 
is increasing while the cost of 
computation is decreasing.” 

 

Computing 
architecture and 
infrastructure 

 High-performance computing 
“Often, simulations … require access 
to significant computing resources, 
such as a parallel supercomputer or 
an “information grid” of computing 
resources. In such cases, the PSE 
should integrate a computing 
resource management subsystem…” 

Netcentric computing 
“…put the PSE technology at the 
finger tips of any scientist or engineer, 
anytime and anywhere” 

Infrastructures for PSEs 
“A PSE should be able to 
work on top of low-level and 
middleware layers which 
provide the services of a 
meta-level distributed 
operating system for cluster 
computing and global 
computing platforms” 

Table 1. Key design features of PSEs. 
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consider the user or efficiency, for example. The PSE 
literature provides additional insight into the attributes of 
PSEs that can help in better understanding what makes 
them different. At the next level of detail, Houstis and Rice 
[21] offer the formulation of: 

PSE = Natural Language + Solvers + Intelligence + Software Bus 

These four components suggest, at a high level, insight into 
the key features that differentiate a PSE from other 
computing environments. Here, natural language refers to 
the interaction paradigm and specifically the preference for 
working in the users’ domain-oriented language, while also 
foreshadowing the possibility of natural language 
interfaces. Solvers is a general reference to the domain-
specific software (computational algorithms, models, 
visualizations) and its findability and accessibility that 
provides sufficient abstraction to support domain-level 
problem solving, as well as the ability to share and reuse 
this software within a given community. Intelligence 
suggests system support to the problem solver in all aspects 
of their work and interactions with the system, from setting 
up the problem, formulating the solution in software, 
provisioning computational resources, and sensemaking 
around and sharing of results. Finally, the software bus 
evokes the need for a plug-and-play architecture of 
communicating components that is easy to reconfigure 
and update as capabilities against a class of problems 
mature. It is worth comparing this to an earlier rendition of 
the formula [44], which read: 

PSE = User Interface + Libraries + Knowledge Base + Integration 

While structurally similar, this evolution suggests a 
trajectory in thinking about the design and utility of PSEs 
through research experience with them. The increased 
specificity from user interfaces to natural language, and 
from libraries to solvers suggests a shift from thinking 
about PSEs in the software domain toward a greater 
emphasis on their place in the problem-solving domain. 
Also notable is the change from knowledge bases, which 
imply a passive resource available to the problem solver, to 
intelligence, suggesting a more active engagement between 
the system and the user2. It might be argued, however, that 
integration is a broadly more useful goal than being overly 
specific about a “software bus” architecture, which while in 
vogue at that time, is one among several architectural 
options for software integration. Further, consider that this 
evolution took place concurrently with the growth of the 
internet, institutionalization of software engineering 
practice – especially around code reuse and systems 
architecture, which figure prominently in the discussion 
around the later definition – and the stirrings of an artificial 
intelligence (AI) “Spring.”  

 Other works dove more deeply into the attributes of 
PSEs, both as realized at the time and as envisioned, toward 
identifying gaps and establishing a research agenda. 
Houstis, et. al. [23] offer an earlier summary in an 
introduction to several articles on the topic, relating 
conclusions from PSE-focused workshops sponsored by the 
National Science Foundation (NSF) in 1991 and 1995. 
Shaffer, et. al. [46] focus on software infrastructure, 

 
2 Note that, in this same timeframe, research into mixed-initiative interfaces, e.g. 
Allen, et. al. 1999 [1] was similarly seeing a peak of interest. 

highlighting challenges PSE users encountered in practice 
that were not being actively pursued by researchers. 
Houstis and Rice’s 2000 [21] paper, in which the later high-
level formulation for PSEs above is found, further 
decomposes PSE areas of research. Finally, there is Cunha’s 
[10] purposeful review of the requirements for PSEs that 
identifies key development challenges for next-generation 
PSEs. Taken together as a sampling of the literature on 
research into the main features of PSEs, we can draw a 
more holistic picture of what makes a PSE. Table 1 presents 
an aggregate list of features in the context of their 
presentation in each of these papers; only concepts 
occurring in more than one of these papers are presented, 
though some interpretive license has been taken in 
combining differently-worded, but otherwise similar 
concepts – brief quotations from the original papers are 
provided to assist the reader in understanding the authors’ 
thinking about these features, though one is referred to 
these papers for a more thorough discussion. We now 
briefly describe each area. 

1.1.1 Problem Domain Interaction  

Closing the gap between domain representations and 
software is a central objective of a PSE. Enabling interaction 
with representations that allow the problem solver to work 
analogically with things they are familiar with is essential 
[19]. Costabile, et. al. [9] identify two classes of needs for 
domain experts: (i) parameter setting in a predefined 
application, and (ii) modifying the software in something 
akin to programming but “as close as possible to the 
human,” suggesting an aversion to text-based “traditional” 
programming in favor of end-user programming [32] 
approaches such as visual programming. Due to the close 
relationship of PSE research and grid-based computing 
[14], visual composition environments are common in the 
PSE literature [15]. General eScience workflow tools with 
visual composition environments such as Kepler [33] and 
Taverna [53], as well as PSE-focused tools such as SCIRun 

Figure 1. SCIRun PSE showing workflow and results [24]. 
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[24], often serve as platforms for PSE research and 
development. A typical view of a composed workflow and 
results display from SCIRun is shown in Figure 1, 
highlighting the two “sides” of a PSE: solution development 
(workflow composition) and execution [30]. 

We should note, though, that the domain such 
representations address is more about that data processing 
problem – how data collected in an experiment or 
generated by a simulation – can be processed and analyzed, 
than the actual scientific problem domain. Other 
programming approaches to bridging this gap, notably 
domain-specific languages (DSLs), appear infrequently in 
the later PSE literature. Earlier efforts to create physical 
object representations closer to the user’s domain of work 
in general-purpose languages such as LISP [3] and object-
oriented environments such as SmallTalk [29] did not 
ultimately gain traction among PSE developers, with grid 
computing-focused visual workflow representations 
dominating in the later years, as evidenced in the prior 
references. This vision of native problem domain 
representation in the PSE remains worthy of further work. 

1.1.2 Multidiscipline and Collaboration Support 

Recognizing that complex problems are often 
multidisciplinary, requiring experts from several domains, 
PSEs must enable both natural interaction in the domains 
of the users and the integration of their contributions to the 
common solution to the problem. Foster, Papka and Stevens 
[13] discuss the challenges and trends toward a research 
agenda in this area, many of which are familiar to our 
discussion of PSEs, e.g. allowing for flexible interfaces, 
discovery, sharing and persistence of artifacts, and 
allocation of computational resources, affirming the 
importance of collaboration in PSEs. Over a decade later, 
van der Vet, et. al. [48] reflect that scientists were typically 
using desktop computers for their work, and while 
scientific workflow environments such as Taverna assist in 
“packaging recurrent task sequences in a single 
environment” to enable in-silico experimentation, the 
broader vision of a truly collaborative environment 
remained unrealized. Whether the immersive and ambient 
environments they report on will, as they ask in their 
discussion, ultimately help, research toward focusing 
collaboration closer to the problem remains a valid need. 

1.1.3 Intelligent Support Throughout the Problem-
Solving Process 

The variety of intelligent support for the user is 
imaginably broad, intersecting every phase of the problem-
solving process. Early in the process, this would include 
assistance in stating, scoping and decomposing the 
problem. Intelligence could then assist in gathering 
software components, integrating them, or developing 
novel ones when necessary; this is a significant part of the 
“recommender system” role envisioned for PSEs. Later, it 
could assist in deployment to distributed infrastructures, 
collection and analysis of results, and capture and 
publication of insights and new knowledge. 

1.1.4 Problem-Solving Knowledge Capture and 
Sharing 

There are multiple domains of knowledge relevant to 
solving a problem in a PSE, including the scientific (or 
problem domain, in general), software engineering, and 
computer science [39]. A PSE will ideally support 
capturing, finding and reusing knowledge across these in 
an integrated manner. 

1.1.5 Software Sharing and Reuse 

Similarly, as problem solutions are ultimately realized in 
software, making that software available and reusable is a 
key objective. Reuse has been a topic of extensive study in 
software engineering, though this research has extended in 
many directions, include several of interest to the features 
listed here such as problem domain understanding and 
software components [5]. While the general challenges of 
reuse apply to PSEs, of particular interest are design for 
reusability (which can be facilitated by, for example, 
component frameworks [2]), and maintaining alignment 
between the problem and the underlying software 
implementation to make reuse practical [35]. 

1.1.6 Components, Component Types and 
Integration 

Following from the ideas of representing problem-
domain concepts and objects in software and making those 
representations more shareable and reusable is the notion 
of encapsulating them as software components. A common 
component model is required within a system for local 
integration, but standards become even more important 
when considering deployment to general grid computing 
infrastructures [24].  

1.1.7 Experiment Management 

Problem solving is rarely a linear task; problem solvers 
iterate on the problem and solution at different points in 
the process, which makes it desirable to have both a history 
of what has been tried (and each attempt’s results), as well 
as mechanisms for automating experiments across a range 
of parameters and collecting the results for analysis [54]. 
Computational steering emerged as an important feature in 
this, enabling users to monitor and adjust execution of a 
long-running computations rather than wait until the end 
to adjust and repeat [30]. 

1.1.8 Computing Architecture and Infrastructure 

As noted previously, the emergence of grid computing 
and the necessity of enabling scientists to map scientific 
workflows onto grids became a central aspect of PSEs, with 
many researchers from the parallel, high-performance and 
grid computing communities also publishing in PSE-related 
venues. Arguably, this challenge of data processing became 
the problem solved by later PSE efforts. The emergence of 
alternative big data and cloud-based processing paradigms 
offered other approaches, but in all cases, the need to map 
a computational problem onto a large-scale computing 
architecture – which remains largely invisible to the user – 
and provision the necessary resources continues to be a key 
requirement of such environments. 
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1.2 The Summary as a Design Pattern for PSEs 

This summarization of features is useful in a number of 
ways. First, it helps us more thoroughly understand what 
the PSE research community was pursuing through the 
emergent properties of PSEs as realized in their body of 
literature. Second, using this retrospective view of what 
defines a PSE allows us to evaluate specific instances 
presented in the literature to determine how representative 
each is. Third, we can potentially trace the introduction, 
evolution and degree of objective attainment for each 
attribute by examining the instances presented, and 
thereby summarizing a picture of the state of progress 
against each feature by the PSE research and development 
community over time. Fourth, we can compare alternatives 
in the same solution space, which is one of the objectives 
of this essay. Finally, understanding what makes a PSE 
allows us to create tools to effectively build PSEs; it is 
necessary that such tools would include the correct 
building blocks as well as the appropriate types of “glue” to 
assemble them in a manner that synergistically results in a 
capability that achieves the holistic goals of a PSE; in this 
manner, the summary serves as a design pattern for PSEs.  

While several recurring themes emerge in these features 
– for example the desire to support multidisciplinary, end-
user interaction to specify problems, and component-based 
construction, execution, sharing and reuse of 
computational solutions – some other areas surprisingly do 
not. For example, data access and the challenges of “big 
data” are rarely addressed. This may be because much of 
this work occurred before the big data era was fully 
underway. Emphasis on integration of models and 
simulations that generate data internally at compute time 
rather than relying on existing data may be another. Or, the 
close relationship between PSE research and grid 
computing, where principal concepts are distributed 
computing and bringing compute to the data may be 
factors. In any case, with the advent of the data-driven 
scientific paradigm [20], this seems to be a significant gap 
and worthy of future attention. 

Architectural discussions in this literature tend to focus 
either on the architecture of the PSE itself or the underlying 
infrastructure. In the former case, much attention is paid to 
component-based and compositional architectures, as 
illuminated by the focus on software components. In the 
case of the latter, as noted, there is a relationship between 
PSE research and grid computing that is evident, but in 
general, the emphasis on user interaction in the problem 
domain tends to intentionally abstract the underlying 
infrastructure away with references to grid computing, 
high-performance computing, or netcentric computing.  

The objective of automating the creation or generation 
of problem-specific PSEs appeared later in the research. 
Among these papers, Cunha [10] discusses “building PSEs” 
in a general sense, but it wasn’t until later that there were 
deeper investigations of this concept. For example, one 
approach, referred to a “meta-PSEs” [28], sought to create a 
PSE for solving the problem of creating a PSE. This is a 

 
3 These developments also spawned the field of end-user programming (EUP, also 
end-user development, EUD), which has a rich but curiously non-overlapping 
research literature with that of PSEs (only 0.5% of the papers in our Google Scholar 
search for this paper contained both terms). However, these are certainly related in 
their focus on the end user, their goals, and separation of domain and programming 

powerful concept, because the goal is ultimately to deliver 
an end-to-end, problem-solving product to end users in 
their domains that minimizes the need for them to spend 
time doing anything other than working on their problem. 
A tool that can accept a specification for an environment 
that solves a class of problems and then deliver that 
environment would become a factory for maximizing 
problem-solving innovation.  

1.3 History and Evolution of PSE Research 

The spread of scientific computing in the 1980s, coupled 
with the increasing availability of desktop workstations 
with graphical user interfaces, gave rise to the idea of 
software environments that enable a user 3  to easily 
assemble powerful computational software around a 
problem specification, execute complex experiments 
consisting of potentially multiple simulation runs of a 
multidisciplinary collection of models, and then analyze, 
visualize and incorporate the results into the scientific body 
of knowledge. As mentioned above, the concept had 
sufficient traction by the first half of the 1990s to inspire 
several NSF workshops and a growing community of 
researchers, and Rice and Boisvert [44] comment that, by 
the middle of the 1990s, PSEs had “become ‘expected’ for 
large, sophisticated scientific software projects.”  

Houstis and Rice [21] track the early growth in their 
2000 paper through a review of the publication dates of 
relevant papers in the bibliography of Gallopoulos, et. al. 
[22] (Figure 2). They note that the literature on PSEs 
generally falls into two categories: (1) application-oriented 
research detailing the development of a particular PSE in a 
problem-solving domain, and (2) more general discussions 
of PSE technology and infrastructure; the first category 
accounts for the larger portion of the literature and offers 
design and experiential studies of PSEs in various domains. 
A superficial review of the publications in this category 
reveals applications not only in the sciences, but also in 
engineering (e.g. chemical and aeronautical), decision 
support (e.g. construction, medicine, traffic management), 
mathematics (e.g. statistics and differential equation 
solvers, which are also common to many scientific 
applications), and analysis (e.g. geospatial, flood prediction, 
land use, and earthquakes). The second category is 
represented by the types of papers discussed previously and 
summarized in Table 1. While researchers publishing in the 
first category appear to come from a range of domains – 
often related to the classes of problems for which they have 
developed a PSE – researchers in the second category (as 
represented by the authors of the papers in Table 1) were 
generally involved in scientific, numerical, or mathematical 
computing; parallel, grid or high-performance computing; 
or data analysis, e-learning and other non-computer 
science applications of computing. Collaborations among 
these groups were common. 

expertise. In the end-user development paradigm, PSEs generally follow the model-
based development approach, though reuse and experiment design also align to 
parameterization and customization activities [32]. Interestingly, research into 
computation notebooks has been actively undertaken by the EUD community [31]. 
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Figure 2. Early growth of PSE research based on bibliography in 
Gallopoulos [22], as presented in Houstis & Rice [21]. 
 

To build on this earlier study of the literature and 
understand what happened in the two decades since, 
publications data from Google Scholar were collected, 
resulting in the graph presented in Figure 3. Google Scholar 
(https://scholar.google.com) was queried for ‘("problem 
solving environments" | "problem solving environment")’. 
Additionally, because a large number of articles with these 
terms related to educational problem-solving environment 
research – a largely unrelated topic dealing with teaching 
problem-solving skills – the following exclusion terms 
were added: ‘-tutor -student -teach -education’, which 
removed many of these. Year constraints were used to get 
specific values for each year between 1985 and 2022. The 
results still contain some potentially superfluous items, 
including foreign language documents that cannot be fully 
assessed; sampling suggests as much as 10% of the absolute 
results may not be relevant and therefore these numbers 
should not be used directly. Rather, the intent is to assess 

 
4 Wolfram Mathematica weaves an interesting thread through this topic. It – and 
tools like it such as Maple and Matlab – are found in the PSE literature as examples 
of general-purpose environments that can serve as PSEs. To the extent that 
mathematics serves as a lingua franca of scientific and engineering problem solving, 
they provide a tools supporting formulation and execution of problem solutions in 
this medium. Indeed, the description of Mathematica’s Wolfram Language as a 
“computational language” goes beyond mathematics and brings us closer to direct 

the overall trajectory of research publications relating to 
PSEs. 

This expanded timeline reflects the continued growth in 
PSE research publications until the mid-2000s, but then a 
decline that continues until the present. Additionally, while 
multiple papers about PSE research (e.g. summaries, 
research agendas) were published in the years before the 
peak, none seem to appear in the recent literature. This 
begs the question: what happened? Did we achieve the 
long-term vision for PSEs by the 2010s?  

2 Jupyter Rising 
In 2007, Perez and Granger [37] formally introduced 

iPython, a “system for interactive scientific computing.” 
Key features included an open programming environment 
that cleanly exposes all aspects of creating and executing 
scientific code, integration with GUIs and visualization 
libraries, and access to parallel and distributed backend 
computing infrastructure. At that time, the toolkit offered 
a typical, though fully interactive, code editing experience 
consisting (optionally) of an interactive terminal and 
graphical outputs that could be generated in separate 
window panes. Inspired by the highly integrated 
“notebook” experience found in products like Wolfram 
Mathematica4, a web-based interactive notebook, initially 
iPython Notebook and later Jupyter Notebook [16], was 
added as the primary interface to the Jupyter “ecosystem” 
of scientific computing software. The transition to Jupyter 
also made the system programming language agnostic, 
inviting the statistical community with the open-source R 
language and newcomers such as Julia, among many 
others5. Since the mid-2010s, the ecosystem has grown not 
only in the scientific community, but beyond with the 
adoption of data scientific methods in all sectors; arguably, 
Jupyter is the interactive computing environment of choice 
today. 

But, is Jupyter a PSE? Or a meta-PSE that allows 
construction of PSEs? Indeed, it has been argued that 
Jupyter is the path to realizing the vision for PSEs pursued 
by the PSE research community [4]. In this section, we will 
examine this critically, enumerating the features of 
computational notebooks, as well as some challenges with 
them that have emerged as they’ve been more broadly 
adopted. We then compare these to the key attributes of 
PSEs to assess the progress made along this path, toward 
informing and inspiring our concluding discussion of what 
additional research and development is required to truly 
realize the vision for PSEs. 

2.1 Overview of Computational Notebooks 

Computational notebooks provide the user with an 
interface that smoothly interleaves text, code and 
visualization in a linear flow of cells. This allows the user 
to develop the solution to a problem in pieces; each cell can 
contain a small piece of the code, and any output that it 
generates is presented immediately below it. Cells can also 

representations of objects in the problem domain [51]. We also see these used in 
conjunction with other PSEs, e.g. SciRun [24]. Mathematica additionally provides one 
of the first notebook-style interfaces, foreshadowing the broad adoption of this 
design in computational notebooks.  
5  A current list of language kernels for Jupyter can be found here: 
https://github.com/jupyter/jupyter/wiki/Jupyter-kernels  

Figure 3. PSE publications based on Google Scholar analysis. 
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contain text entered by the user, allowing for literate 
programming, a concept developed by Donald Knuth to, in 
part, provide more naturally described and organized 
programs [27]. Importantly, though, computational 
notebooks don’t enforce a literate programming – or 
generally any – paradigm, but rather are relatively freeform 
scratchpads for computational work; this general-purpose 
flexibility arguably makes them desirable to problem 
solvers, in much the same way that spreadsheets are. 

While Jupyter is the most commonly encountered 
computational notebook, others have emerged with 
variations on the key features of the genre. Lau, et. al. [31] 
enumerate the design space created by considering 60 
notebooks, identifying the following common feature 
categories: 

- Access to data sources 

- Code editing in one or more programming languages 
(includes coding-focused collaboration) 

- Code execution and results visualization 

- Publishing from the notebook, enabled by the explication 
of code and inclusion of explanatory prose 

Three key objectives for computational notebooks are 
accessibility, sharing and reproducibility [26]. The 
notebook interface was introduced to iPython in part to 
make it easier to interact with computation. As a web-based 
application, it is easily hosted and accessed through a web 
browser, and this same technology allows local desktop 
installation.  

The notebooks enable sharing in several ways: the 
underlying notebook itself can be shared and opened in 
Jupyter or a compatible environment, or the notebook can 
be exported as HTML and opened in any browser (even as 
a local file). Moreover, this kind of sharing can retain 
interactivity for some elements of the notebook, allowing 
recipients to explore the results (computations generally 
cannot be re-executed as the computational kernel doesn’t 
accompany the notebook). The notebook file also contains 
the code, enabling code reuse, though it should be noted 
that this differs from typical software reuse in that it would 
be reuse of the notebook (i.e. as a starting point for 
changing or adding computations) or code snippets within 
it rather than as a software library. The idea of using 
notebooks for sharing methods and results can be extended 
to domains beyond science (e.g. systems engineering [56]). 

The ability to share notebooks in these ways facilitates 
scientific reproducibility. The code and the results can be 
easily examined, and more importantly, the interweaved 
prose enables both to be explained, forming a 
computational narrative [25]. At a minimum, this supports 
traditional publishing in the sciences, but because code is 
available, and provided the right data and environment are 
also available, the computations can be re-executed. 

Together, these attributes make a compelling 
environment for scientists and others to use for doing and 
sharing their computational work, but how does that work 
in practice? 

2.2 Emerging Challenges with Notebooks 

As notebooks have become more widely used, both 
within scientific computing and beyond, limitations in their 
design and use have emerged [17]. In some cases, these are 

a result of design tradeoffs made for simplicity and 
flexibility, which have fueled broader adoption and 
unexpected applications. In others, how they are used in 
practice does not match the vision in their design [41]. 
Chattopadhyay, et. al. [8] identify several issues in their 
study of notebook users’ pain points that are relevant to our 
discussion of PSEs, including: 

- Loading data, especially across sources and platforms, is 
very difficult and time consuming 

- Constantly “tweaking” code and latency in the feedback 
from the changes is frustrating 

- Non-linear execution order hampers debugging, version 
control, and user understanding of program state 

- Code management and the complexity arising from library 
dependencies requires software engineering skills 

- Sharing relevant parts of notebooks is difficult and limited 

- Reproducibility is hampered by individual customizations 
and complicated dependencies 

- Deploying a notebook as a product of scientific work, or a 
tool to be used by others, is beyond most users’ skills 

If a significant objective of literate programming and 
computational notebooks is explanation via computational 
narratives, in practice, few scientists seem to do this. Rule, 
Tabard and Hollan [46] looked at over a million notebooks 
available online, finding that 25% contained no narrative at 
all. In interviewing notebook users, they found most use 
them for “personal, exploratory, and messy” computations 
– in other words, without the intent to communicate and 
share with others. 

3 Have We Achieved the Goals of a PSE? 
Given the features and flexibility of computational 

notebooks, but with consideration of their limitations in 
practice, how well do they satisfy the goals of PSEs? In this 
section, we discuss each of the PSE key features derived in 
section 1.1 in relation to how they are approached – and 
whether they are achieved – by the current generation of 
computational notebooks. 

3.1 Problem-domain interaction 

The objective in problem-domain interaction is to enable 
a user to work in the language of their domain and in a 
manner analogically consistent with the domain. For 
example, a chemist would most likely want to work with 
chemical formulae, and models of chemical processes, 
which could be integrated in a natural way. Computational 
notebooks, though, tend to focus primarily on traditional, 
text-based programming languages with occasional 
support for domain-relevant notation. Support could be 
provided in part by domain-specific languages or language 
kernels, but domain-oriented interaction patterns would be 
more difficult to layer over the notebook-style design. 
Notably, alternatives to the notebook structure have 
emerged to explore other potential representations [50]. 

3.2 Multidiscipline and collaboration support 

In this category, we capture both the need for multiple 
disciplines to work together on complex problems 
(horizontal collaboration), as well as collaboration in the 
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broader sense, to include among domain experts, data 
scientists, and software engineers (vertical collaboration). 
Again, to the degree that domain-centric interactivity is not 
well supported, multidisciplinary integration must occur 
through a lingua franca in the notebook environment. This 
often takes the form of the dominant programming 
language. Higher-level integrations among libraries and 
services are possible, but also only through active 
translation to the underlying programming environment. 

Collaboration vertically with other technical disciplines 
is generally accomplished through code reuse; a computer 
scientist may develop a library implementing an optimized 
version of some computational function that the scientist 
can then make use of. Some environments have 
experimented with built-in, explicit collaboration support 
[7], though this is atypical. 

3.3 Intelligent support throughout the problem-
solving process 

Current notebooks focus on intelligent support to the 
programming process, borrowing features from 
mainstream integrated development environments like 
code completion. However, there is almost no support for 
problem domain-centric intelligence, again due to their 
relatively domain-agnostic design. This is an area of active 
research with work looking at various parts of the problem-
solving process to include data wrangling [38], coding [34], 
and presentation [57]. 

3.4 Problem-solving knowledge capture and sharing 

The literate programming-inspired design of the 
notebook interface provides a mechanism for problem-
solving knowledge capture, though as noted earlier, many 
users do not effectively make use of this to annotate their 
notebooks. Moreover, because the notebook’s structure 
enforces a linear presentation of the realized problem-
solving process, without explicit intent on the part of the 
user, capturing this process (vice just the resulting product) 
is additional work, for which the notebook offers little 
support. Some research toward automatically capturing 
provenance from scripts and script execution has been done 
[40]. 

3.5 Software sharing and reuse 

Notebooks provide a relatively accessible interface to 
multiple ecosystems of reusable software libraries. As 
computational solutions to problems are rendered as 
software in the notebook, the ability to share and reuse is 
well supported; as noted above, multiple modes of sharing 
are offered, though underlying language ecosystem 
challenges with dependency management, as well as an 
inability to easily share a portion of a notebook – aside from 
copy-and-paste of raw code – are shortcomings. 

3.6 Components, component types and integration 

The Jupyter ecosystem, which was designed for 
extensibility, offers a large range of existing components, 
primarily in the form of computational components, 
visualizations, and interactive (user interface) components. 
Computational components generally derive from software 
libraries imported to the programming environment, 

though the ability to copy and paste cell-based code also 
represents a weak type of component-based sharing. 
However, incorporating components can vary from a 
straight-forward import to a tremendous challenge; 
component use is not universally the plug-and-play 
experience that is desired. 

Integrating components – enabling them to work 
together – can also be less than seamless. Part of this stems 
from lack of clarity in the underlying computation 
mechanism and how data is shared among the elements of 
a notebook between the kernel backend and the notebook 
frontend. While usually possible, more complex 
integrations require additional technical knowledge. 
Customizations made to support various components and 
their integration may also be less portable, affecting 
sharing and reproducibility. 

3.7 Experiment management 

To the extent that notebooks support component 
integration, they also support do-it-yourself computational 
experiment design and execution. Users generally have to 
write their own code to implement an experimental setup, 
especially if there is need to iterate over a latin square of 
experimental parameters; notebooks contain no intrinsic 
mechanisms for organizing or capturing experiment results 
beyond what is returned in a cell.  

3.8 Computing architecture and infrastructure 

An ecosystem like Jupyter offers both a system-level 
architecture – web-based notebooks hosted on a 
collaborative server with support for one or more language 
kernels – and access to computing infrastructure. In some 
cases, this is accomplished through the libraries made 
available in the programming environment (at which point 
the user is on their own to leverage the infrastructure 
through the library interface), and some infrastructure 
developers and cloud compute providers have integrated 
notebooks into their offerings. 

3.9 Summary 

Overall, we observe that computational notebooks excel 
at providing easy access to programming languages, 
software libraries, visualization components, and the 
ability to annotate, share, reuse and present computational 
research. However, this is largely accomplished in the 
domains of computer and data science; notebook users 
must be literate in a programming language and the 
peculiarities of modern software development to fully 
leverage these features. As far as problem definition, 
notebooks do provide their users a blank, linear slate on 
which they can develop and document their problem’s 
structure and problem-solving process, but will offer them 
little support or incentive for doing this.  

So, it is arguable that, under the generalization of 
“providing all computational facilities necessary to solve a 
class of problems,” notebooks do achieve this in the 
computational sense (that is, like our hypothetical “laptop 
with a development tool”), and their substantial adoption 
may testify to this as a practical matter. However, as we 
look deeper at the intent motivating PSEs, we find a 
significant gap between domain-centric problem solving 
and the facilities current computational notebooks offer. 
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4 A Refocused Future for PSE Research 
Given the remaining gaps between the vision for PSEs 

and the achievements of notebooks as the most widely 
adopted user-facing tools for computational science, where 
should we focus our future research and development 
efforts, and what is to be gained in doing so? We propose 
to focus on two features discussed earlier that offer the 
greatest opportunity: interacting in the problem-domain 
language and intelligent support throughout the problem-
solving process, and seek to find a solution in their 
integration with current notebook technologies. 

4.1 Interaction in the Problem-Domain Language 

The first major area that remains largely unaddressed is 
in enabling problem solvers to work in the native languages 
of their domains. This is certainly challenging in that each 
domain has its own language, concepts and structures. An 
approach to this is leveraging conceptual models, which 
have been touched on in the context of PSEs [49], but have 
gained significant traction in the closely allied field of 
modeling and simulation [36]. Robinson, et. al. [45] discuss 
this application, noting that “conceptual modeling is about 
moving from a problem situation, through model 
requirements to a definition of what is going to be modeled 
and how” (p. 10, emphasis mine) and “Conceptual modeling 
is about determining the right model, not how the software 
will be implemented” (p. 13). This framing – focusing on 
modeling the problem in the language of the domain and in 
a manner agnostic to the eventual software implementation 
– is the same as we seek in a PSE (unsurprisingly, as many 
PSEs reported in the literature are modeling and simulation 
environments).  

Conceptual modeling languages, which are often 
graphical, provide a common means for expressing objects 
and actions in any domain and making them accessible and 
potentially reusable across domains, which would facilitate 
both horizontal (multidisciplinary) and vertical 
collaboration. Indeed, conceptual modeling approaches 
such as Object-Process Modeling [11], designed for systems 
engineering, have demonstrated successful application in 
other domains, for example, molecular biology [12]. 
Integrating conceptual modeling methods and tools with 
notebook technologies would provide an environment in 
which conceptual models expressing a problem and desired 
outcome in the problem domain could be directly 
connected to software implementations via notebook code. 
This would inherently associate richer descriptions of 
hypotheses, models, data, and the relationships among 
them from the conceptual models with the underlying code, 
which will in turn support better understanding and 
communication of the scientific and problem-solving 
knowledge artifacts resulting from the computational 
study. 

4.2 Intelligent Support for Problem Solving 

The other significant aspect of the vision that remains 
unrealized is intelligent support throughout the problem-
solving process. Earlier PSE work in this area largely 
focused on recommendation engines that would help the 
user locate reusable software assets to compose into a 
solution. The growth in web-based software repositories 

makes software sharing and access easier, but a problem 
that remains is the ability to find potentially useful software 
across domains. Notably, current notebooks do not contain 
integrated recommender technologies; their addition 
would begin to simplify the process of finding and 
integrating software. Progress on cross-domain software 
search has been made through the application of machine 
learning, e.g. [58], and if we were to also provide richer 
domain context through associated conceptual models 
(which, themselves can help facilitate cross-domain 
sharing), this would be further improved.  

Substantial advances in artificial intelligence (AI) in 
recent years offer a variety of opportunities far exceeding 
the original vision for intelligent support in PSEs. For 
example, the abilities of large language models to write 
narrative, write code, document code, perform data 
analysis, and use and coordinate external tools [6] presents 
compelling possibilities for adding value to notebooks. This 
class of AI alone has the potential to touch most of the key 
phases in the problem-solving life cycle, and early 
experiments with such integrations have proved promising 
[55]. Combined with the richer descriptions of scientists’ 
and engineers’ intentions made available to AI technologies 
through the explicit representation of the problem/solution 
interface with conceptual models will make such 
integrations more effective. 

5 Conclusion 
The broad adoption of computational notebooks has 

made progress toward the goals for PSEs, but there is more 
to do to achieve the vision.  It remains a worthy vision: 
better structuring the problem-solving process by 
integrating conceptual models with computational 
notebooks, improving collaboration and communication 
within and across disciplines, and leveraging rapidly 
emerging artificial intelligence technologies all offer 
mechanisms for reducing problem-solving friction so that 
practitioners can focus on the core of their work. These 
technologies are, by themselves, either relatively mature or 
receiving a great deal of research attention. The time is 
right to build on these successes by driving research and 
development toward the integration of these solutions to 
address the missing pieces of the PSE vision and seamlessly 
coupling them with proven computational notebook 
technologies to create truly general-purpose problem-
solving environments. 
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