
programmingLanguage as Language;∗†

James Noble
‡

Creative Research & Programming

Wellington, New Zealand

kjx@programming.ac.nz

Robert Biddle

Carleton University

Ottawa, Canada

robert.biddle@carleton.ca

Abstract
Programming languages are languages — “unnatural” lan-

guages because they are constructed explicitly; “formal” lan-

guages because they rely on mathematical notations and

are described mathematically; “machine” languages because

they are used to communicate with machines. Above all,

programming languages are “human” languages. Programs

in programming languages are spoken and read and written

and designed and debugged and debated by humans, sup-

ported by human communities and forming those commu-

nities in turn. Langauge implementations, being programs

themselves, are likewise designed and debugged and debated

by humans.

Programming languages adopt structural elements from

natural language, including syntax, grammar, vocabulary,

and even some sentence structure. Other aspects of language

have received less attention, including noun declension, verb

tense, and situation-appropriate register. Semiotics shows

how language use can connote and imply, and will lead to

interpretation. Language involves larger level structure too:

conversations, stories, and documents of all kinds. Language

supports both cognitive and affective processes, and is in-

volved in buildingmental models that we use to recall, reason,

and respond.

Programming is a complex activity, uncertain yet precise,

individual and social, involving intent and interpretation.

∗
This work is supported in part by the Royal Society of New Zealand Te

Apārangi Marsden Fund Te Pūtea Rangahau a Marsden, and Agoric Inc..

†
This essay is an edited computer-generated transcription (by otter.ai) of

a talk of the same title given remotely by the authors at HOPL-V, June 22,

2021. The talk text has been slightly edited from a dialogue to a monologue,

and talk slide images have been included where (in)appropriate.

‡
Also with Australian National University.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

Onward! ’23, October 25–27, 2023, Cascais, Portugal
© 2023 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 979-8-4007-0388-1/23/10. . . $15.00

https://doi.org/10.1145/3622758.3622885

Language is not the accident of programming — it is the

essence.

CCS Concepts: • Software and its engineering → Gen-
eral programming languages; • Social and professional
topics → History of programming languages.

Keywords: programming, languages, grammar, syntax

ACM Reference Format:
James Noble and Robert Biddle. 2023. programmingLanguage as

Language;. In Proceedings of the 2023 ACM SIGPLAN International
Symposium on New Ideas, New Paradigms, and Reflections on Pro-
gramming and Software (Onward! ’23), October 25–27, 2023, Cascais,
Portugal. ACM, New York, NY, USA, 14 pages. https://doi.org/10.
1145/3622758.3622885

1 Word Order
Natural language, as we know, was invented by Noam Chom-

sky in 1850 [12]: nouns, verbs, parse trees. Children learn

these in primary school, and, when their pushdown automata

are fully developed, they take the next step by learning the

importance of word order.

VP

 NP
N

PP

 Noun D Prep Verb NounD

the cat sat on the mat

“The cat sat on the mat”. In English, that’s how we might

say, well, for better or for worse, that the cat sat on the mat,

[46]. That English word order — subject / verb / object (SVO)

— is only the second most common word order [74] that

you find if you look across all human languages
3
.‘ The most

common word order is subject / object / verb (SOV): “cat mat

sat”. Other languages have less common word orders: “sat

mat cat” (VOS) or “sat cat mat” (VSO), for example.

3
Or at least, that’s what we found out when we looked it up in Wikipedia,

when we were told we needed to do this talk in the next 24 hours.

191

https://orcid.org/0000-0001-9036-5692
https://orcid.org/0000-0001-5971-2705
https://doi.org/10.1145/3622758.3622885
https://doi.org/10.1145/3622758.3622885
https://doi.org/10.1145/3622758.3622885
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3622758.3622885&domain=pdf&date_stamp=2023-10-19

Onward! ’23, October 25–27, 2023, Cascais, Portugal Noble & Biddle

cat mat sat

cat sat mat

sat cat mat

sat mat cat
wals.info

SOV
SVO
VSO
VOS

Word order directly applies to programming languages,

as well as being used to indicate the quality of brandy
4
).

Consider this one-liner:

(some string) (m) search

which searches for the character in the variable m in some

string. This code (in FORTH) will search for literal “m”, in

“some string” — “some string” is the subject of the sentence,

and that’s first; the character that I’m looking for, the ob-

ject of the sentence, is second, and finally the verb is at the

end. So, FORTH has subject/ object / verb (SOV) word order

(FORTH SOV-WORD-ORDER HAS) and this is the same word or-

der we see in most human languages [74]. This explains why

PostScript and FORTH are the programming languages that

humans find most “natural” and “normal”, and consequently

the easiest to read and to write [7].

This leads to the research hypothesis that if we raise chil-

dren without teaching them a programming language, they

will naturally program in FORTH [54] — rather than, as was

once suspected, Lisp [42], or these days, Python [66]. On the

other hand, you can’t actually tell the difference between

somebody who is speaking FORTH, and somebody who isn’t

speaking in any programming language at all [16].

4https://en.wikipedia.org/wiki/Brandy#Labelling_of_grades

2 Object-Oriented Programming
Moving on from the 1850s and Chomsky

5
, we reach the

1980s, when object-oriented programming was invented [17].

Object-oriented programming was, of course, invented in

the English-speaking countries, such as Scandinavia [51],

and uses same word order as English!

So for example, in that famous Scandinavian programming

language, Java
6
we would say:

"some string".indexOf(m)

to do the same search. In Smalltalk, a programming language

designed in California for use in television studios, we say

'some string' indexOf: $m

where the dollar sign “$” highlights the importance of money

in Californian culture. In APL
7
, this is:

'some string']'m'

(We are predicting a resurgence of APL, now thatUnicode has
made it possible to display APL code on the screen, although

we are still waiting forUnikey — the standard in development

by the ISO over the last 15 years — to enable you to actually

type your APL programs into your computer [32]). All of

these languages use subject / verb / object (SVO) word order,

which is what’s used in English.

There are common languages that use still other word

orders. For example, to search for character ‘m’ in the string

“some string”, C programmers write:

strchr("some string",'m');

which is verb / subject / object (VSO), the verb, the procedure,

comes first. APL would actually call “strchr” a verb, and
other languages like Roku [70] intentionally borrow linguis-

tic technology [9], or rather, terminology — we’re taking this

argument a little further here: programming “language” is

not a metaphor [67].

OCAML’s word order is the same as a procedural lan-

guage:

index "some string" 'm'

although, curiously, Haskell has verb / object / subject (VOS)

word order, which is very rarely found anywhere. So in

Haskell, we say:

elementIndex 'm' "some string"

where “elementIndex” is the verb, the function we want to

invoke, then the object “m”, the thing we’re looking for, and

finally “some string”, sits on the mat. The cat does, indeed

it does.

Aside: thinking about the object-oriented examples, what

you can see is that what, as programmers, we might say was

the object we’re interested in, is actually the grammatical

subject of the sentence. We suggested this once to Alan Kay,

5
Passing over alternative models for language, such as those of Tesnière[64],

recently proposed by Steimann [59] to support language “growth”.

6
Correctly pronounced “joUd9” (or for Americans,“Yoda”).

7
APL, APL, Dave Ungar says lots of lovely things about APL [68].

192

https://en.wikipedia.org/wiki/Brandy#Labelling_of_grades

programmingLanguage as Language; Onward! ’23, October 25–27, 2023, Cascais, Portugal

and what did he say? “Who are you? And what are you doing
in my house?”. No, no, no, no: Alan Kay said we wuz wrong

8
.

3 I Decline
So, if you’re old (as we are) you may have learned Latin in

school, as we did. When you learned Latin, you had to learn

many of the curious lists that were involved. One of those

lists had to do with nouns, the cases of nouns in Latin, the

declensions [73] [3]. Latin students learn this very important

rule about how to list them: never go down a volcano alone,

or, as we say in New Zealand, never go down an active

volcano; as we learned all too sadly, recently [37]. This let

us enumerate the nominative, genitive, dative, accusative,

ablative and vocative cases of nouns. In Latin, nominative

was the subject of a sentence, genitive represented ownership

or belonging, dative was an indirect object of the sentence,

accusative, the direct object, ablative the circumstances and

vocative was a direct address,

As a result, Latin didn’t have to care about word order,

because each of these noun cases wasmarked, typically by an
ending on the word. Now, of course, it arose that in practical

circumstances word order became conventionalised. But be-

cause the uses of a noun were marked, you had redundancy

in understanding how all the words related to one another.

So the question is, could this be true in programming

languages? As a human being, one would like to say “No”,

but as a Rust compiler, one would have to say, “Yes”.

Programmer: O compiler, please accept my program.
Compiler: No.
Programmer: O compiler, please accept my program.
Compiler: No.
Programer: Don't you do what I tell you to, compiler?
Compiler: No.
Programmer: O compiler, please forgive me my errors.
Compiler: No.
etc.

As human beings, we’ve had the misfortune (or perhaps

good fortune) of teaching Rust to students
9
. In Rust, when

you talk about the subject of the sentence (or as we’ve already

said, what object-oriented programmers would say was the

object of their expression), we ave to mark names in the

program to explain how they are used — that is, what rôle

they play in the expression or statements of which they form

part.

8
You can ask us questions about that later.

9
They’re busy-waiting on us to do their marking, but we thought we should

do this talk first.

For example, consider &self. The “self” here is a key-

word, as in Smalltalk, but the ampersand, “&” is a bit of syntax
that Rust introduces. To a first approximation, this marked

“self” is in the nominative case: the grammatical subject,

the thing that we’re talking about.

When a Rust programmer has a field of a struct or an

object they’re creating — a list, say — they are going to own

that object, and so they don’t need to mark declarations

with the “&”. Rather, programmers can just write something

like “List” for the type. In Rust, unmarked types like “List”
denote (programmatical) objects whose memory is owned

by the current context, based on Rust’s ownership types

system (known in the literature as “ownership types” [14,

50]). Grammatically this is the genitive case.

To denote an indirect object — something a programmer

is working with, but not dealing with directly, then once

again the type must be annotated: most likely Box<List>
for an object on the heap (corresponding to the dative case)

or potentially &List once again, to “borrow” a reference to

a different object owned elsewhere [9] (corresponding to the

accusative case).

Finally, if a programmer wants to give a command to

the compiler to do something in Rust, such as rewrite the

code to print something out, the command has to have an

exclamation mark at the end, signifying the vocative case:

printLn!("Hello world");

Other languages have other cases, other declensions. For

example Finnih distinguishes between referring to a whole

object (using the nominal or accusative cases) and part of an

object (using the partitive case). Go and Rust programmers

may be familiar with code like this to choose four slices of

pizza:

let slices : [u32; 4] = &pizza[.. 4]

Probably the most infamous declension in programming

languages comes in BLISS, a BCPL derivative. In BLISS,

names used for variables or constants evaluate to their ad-

dress (lvalue); to read a value out of a variable, the name

must be marked explicitly by a dereference operator “.”. This

193

Onward! ’23, October 25–27, 2023, Cascais, Portugal Noble & Biddle

operator is basically the same as “*” in C or “^” in Pascal

[5, 10], but BLISS never coerces lvalues (memory addresses)

to rvalues (memory contents). We can increment a variable

by writing:

X = .X + 1

that is: evaluate the right-hand X to an address; read the

value out of that address; add one to the value; evaluate the

left-hand X to an address; store the value at that address.

Unfortunately, omitting the dot also omits the “read a value

out” step: unlike almost every other language known to

programmers
10
, writing “X = X + 1” updates the location

at address X with the value of its own address plus one.

4 Je suis un rockstar
“There are more things in Programming Languages, Haskell,

than are dreamt of in our philosophy.” In French, par example,
the word for tourists going to Paris to see the Eiffel tower

is “le tour” — grammatically masculine, irrespective of who

any tourist actually is [53]. The word for the large, phallic

symbol in wrought iron that dominates the Parisian skyline

is “la tour” — grammatically feminine, named after the pro-

gramming language [44]. French speakers who wish to say

other things, to use adjectives, verbs, pronouns, have to be

careful to use the correct pronouns and the correct verbs to

match these noun classes.

Programmer picks up phone.
Programmer: Yes, yes, we understand that.
Programmer: No, no, no, we’re not talking about

biological gender.
Programmer: No, no, nor even cultural gender.
Programmer: No, they’re really just noun classes.
Programmer: No, no, no, no, we’re not making

any sort of claim about that whatsoever.
Programmer: No, no.
Programmer: Okay, thank you for calling.
Compiler: Texas?
Programmer: Florida!

To make the same point another way, there’s an old joke

about the Eiffel tower, which goes “the only place that you

really want to be in Paris is up the Eiffel Tower, because that’s

the only place in Paris where you can’t see the Eiffel Tower!”

Following John McWhorter, we consider this distinction is

about arbitrary classes of nouns [43]. So “le tour” and “la
tour” are two different words: like “tower” and “sower”, or

“tower” and “towel”, or “here” and “hare” and “hear” and

“heir” and “hear”. . .

10
Except Standard ML, which needs “x := !x + 1”

Consistency markers go around these nouns to link them

together with auxiliary words. Similar things happen in pro-

gramming languages. Consider ZX-81 BASIC
11
, or more ex-

pensively, BBC BASIC. In these BASICs, programmers de-

cline their nouns very similarly to the way in which we’ve

discussed one might decline in French or Kikuyu or Latin:

To declare a variable x as floating point value of the num-

ber “4”, the name is unmarked, viz. “x”. To declare a string
variable with the same value, i.e. exactly the same semantic

feature, we must decline both the variable “x$” and we must

decline the constant, placing it in quote marks. (Remember

not seeing the Eiffel tower?) To declare a 32-bit integer vari-

able, we have to decline the name by suffixing a percentage

sign. This and results in three separate variables in a BA-

SIC program, typically pronounced as “x”, “x string” and

“x percent” respectively. It’s more fun to compute [30], but

programmers must be careful to ensure consistency in their

use of variables. So we can let x = x, but we must let x$
= x$ or let x% = x% [1].

The other point of note here is that the base case, the

default case, is the case which is not syntactically marked.

In BASIC, that is floating point, because BASIC was heavily

inspired and influenced by the pinnacle of programming

languages, Fortran. BASIC, like Fortran, really only wants to

compute with floating point numbers. Floating point num-

bers are in a very real sense, real, whereas strings and inte-

gers and the rest are the invention of man
12
.

Languages like BASIC, Perl, and Raku syntactically distin-

guish the different types of things programmers are working

with throughout the program source.
13
Similar techniques

can be applied in languages that aren’t syntactically marked

like this, because programs are written by people, and be-

cause language always changes. People — even programmers

— talk to each other: when people talk, they invent abbrevia-

tions or conventions or other notations.

A small group of programmers in, say, Redmond, Wash-

ington, can have influence far beyond their size, and their

idiomatic programming quirks can evolve into their own

11
Clive Sinclair represent!

12
In Fortran, God is real (unless declared integer)

13
Other languages use syntactic marking for other purposes: Ruby and

Scheme programmer suffix names with “?” for predicates and “!” for muta-

tors; Ruby also prefixes global, instance, and class variables with “$”, “@”,
and “@@” respectively.

194

programmingLanguage as Language; Onward! ’23, October 25–27, 2023, Cascais, Portugal

dialect of the language. Programmers could, for example,

prefix every variable with a couple of letters to do exactly

the same job in C that those percentage signs and other mark-

ers were doing in BASIC. A string variable, say, would be

declared as “strX” while an integer variable would be named

“iX”. Although this is now called “Hungarian Notation”, in

honour of Charles Simonyi at Microsoft, [45, 56], this prac-

tice began much earlier. PL/I and COBOL programmers used

very similar conventions, because when programmers are

hundreds of pages deep in fanfold output, they wanted to be

certain of the different types of things they were working

with, because conversions, even between different kinds of

numbers in both PL/I or COBOL were really important to

get right for programmers who cared about the output of

their programs.

float fpX = fpX - 7;

char *strX -= 7;

int iX = iX - 7;

C

Float
String
Integer

5 Number
So far in this essay we have discussed different nouns, differ-

ent types of nouns, and different ways in which programmers

could be aware of what types of things they were working

on. As well as different kinds of things, many languages also

care about different numbers of things. Number is important

in the grammar of many languages. English, for example,

has two different grammatical numbers: singular and plural.

Te Reo Māori, the indigenous language of Aotearoa New

Zealand, distinguishes three numbers: singular (to one per-

son); dual (to exactly two); and plural:

Singular

Dual

Plural

Tēnā koe

Tēnā kōrua

Tēnā koutou

These three numbers are distinguished in Te Reo’s gram-

mar, as primary school children in New Zealand who are not

native speakers of Te Reo, learn in the following song:

Tēnā koe —- hello to one.
Tēnā kōrua —- hello to two.
Tēnā koutou —- hello to all.

Haere mai everyone.
How is number distinguished in programming languages?

In Java, for example, to say “the cat sat on the mat”, we might

call our cat “x”. Here, we have a cat sitting on a mat. Except

of course, in early versions of Java, wemay have a cat sitting

on the mat or (because we can always, as Tony Hoare said,

of his billion dollar mistake, and that was under estimating)

may rather have a null pointer error sitting on our mat [27].

Java has evolved over time, as all languages do. In more

contemporary Java, we could say “@NonNull Cat” which
means that we will definitely have one cat and not a null

pointer error sitting on our aforementioned mat. Once again,

we have to declare that variable differently to ensure that

the variable is non null when creating and inserting a cat

into it — in this way we actually see two different cases of

number in Java
14
.

The first case allows zero or one cats, the second case

demands exactly one cat. Java also supports a plural case

via collections. To have more than one cat sitting on a mat,

we have to do it with a statement that creates several cats.

You can think of these curly brackets here as the mat on

which the cats are sitting, and the square brackets form the

cat box
15
.

Nullable

Non-null

Collection

Cat x;

@Nonnull Cat x  
 = new Cat();

Cat[] x = { new Cat(), 
new Cat(), new Cat() };

Many other programming langauges have their versions

of number. Recent work by Steimann and Freitag [61], and

Steimann [60] considers the nature plurality itself, and how

it might be supported in the general case.

6 Verbs
We’ve talked about how the cat sat on the mat. Last night,

my daughter’s cat was sitting under the mat, but that’s a

strange cat. It is winter here, but that was in the past. In the

present, I believe that the cat is sitting on the mat (in the

present continuous tense) or the cat sits on the mat (in the

present tense). But in the future, when I get home, I’m also

reasonably certain that the cat will sit on the mat. So we’ve

got tenses.

14
The only reasonable numbers are 0, 1, and ∞ [39].

15
Note to people with cats, it’s important that they learn the difference

between the cat box and the cat mat. The cat box is for one kind of activity.

The cat mat is for a different kind of activity.

195

Onward! ’23, October 25–27, 2023, Cascais, Portugal Noble & Biddle

Not all languages have tenses, and not all languages mark

tenses by inflecting verbs the way English does. Program-

ming languages also have tenses, although programmers

typically don’t think about them in this way
16
.

x = old(x) + 3

x
 

new Promise( 
(s,f) => x + 3)

Past
Present
Future

In C, for example, “C” is in the present tense. The value

of a “postincrement” expression, such as “C++”, refers to the

past, once again C, because the value is returned before the

increment is executed
17
. On the other hand, the future of this

language can be expressed by the “preincrement” expression

“++C” — which is to say, D [11].

c++
 c

++c

Past
Present
Future

Some other languages go further. In languages like Eiffel

[44] and Dafny [35, 36] programmers can write old x to

get the past value of x within some temporal scope — while

the names of variables that are mentioned directly, that are

unmarked, gets us the present value of those variables. In

Javascript, programmers can talk about potential future val-

ues. Inside a Javascript Promise, code goes into the future

tense — so we can write x + 3 but we’re going to say this

doesn’t mean x + 3 — rather, this is x + 3 that will be

calculated with the value of x from sometime in the future.

16
One of the arguments this essay is making is that maybe it’s time that we

should think about programming languages this way.

17
Yes, the value of “C++” is the same as the value of “C”: we can’t possibly

comment further.

x = old(x) + 3

x
 

new Promise( 
(s,f) => x + 3)

Past
Present
Future

7 Fold Your Hands Child,
You Walk Like a Peasant

Languages are tied to cultures. In human cultures, there are

aspects of life that are important, and one of them has to do

with closeness of speakers, respect, and levels of intimacy.

English speakers who learn French learn about the “tu-vous”

(T-V) distinction. If speakers are very intimate, if we’re very

close, we may use the “tu” (T) informal expression: “Salut
mec, tu vas bien?” (which roughly translates as “Gidday

mate, y’OK?”) — the “tu” word indicates intimacy, such as

when speaking to a child, or between close friends. The

“vous” (V) expression is more formal: “Bonjour Monsieur,

comment allez-vous?” (“Good day sir, how are you?”) — the

“vous” indicates, respect, some level of distance. One speaks

to one’s boss, one’s Vice-Chancellor, or the President this

way, as it is more distant, more reserved, more respectful.

So you might think that this was an aspect of human

culture that really wouldn’t have any place in programming

languages: we claim you are wrong. Or, to put it another way,

you haven’t worked with Enterprise Java Beans [62] (more

recently renamed Jakarta Enterprise Beans [22]
18
[28]).

Java has (at least) three cases of this distinction: two fa-

miliar and one more distant. The most familiar, the closest

most intimate sense is when we are writing code within a

method of an object, and need to manipulate the instance

variables of that object. Since the instance variables are in

scope, we can manipulate them directly:

x = x + p;

If the code is a little further away, perhaps because we are

now dealing with an indirect object rather than a direct

object, perhaps another instance of the same class, we might

be able to get away with accessing the variables indirectly.

We now have to name these objects involved, so the code is

a little more verbose, a little more marked, a little longer:

o.x = o.x + p.x;

18
Although still pronounced “E J B”s — an Eternal Java Brand

196

programmingLanguage as Language; Onward! ’23, October 25–27, 2023, Cascais, Portugal

Once we’ve climbed the beanstalk to the land of Enterprise

Java Beans, we have even more distance from what’s going

on. We might have to write:

setX(getX() + p);

which is longer and also more polite: instead of just going

and doing something, we now have to ask if that thing could

happen. Ultimately, when you are dealing with somebody

else’s Java beans, you probably have to write something like

this:

o.setX(o.getX() + p.getX());

which is much more deferential, as we are now asking nicely

whether the object would mind terribly, that the thing we

would like to happen could please happen?
19
. Now in many

ways these constructors are to do with dynamic binding, and

modularity, and the kind of things that as computer scien-

tists or software engineers we might ruminate about — the

design of privacy, access modifiers, precise scope of encapsu-

lation boundaries. As computer scientists and programming

linguists, however, we’ve said for the last 50 years or so, that

“syntax doesn’t matter”. In very many languages, however,

the semantics of each of these variants of the code will be

exactly the same!

What’s going on? Can we understand why programmers

would do this? Why would corporations try and make large

amounts of money by bringing these distinctions directly

to the face of the programmer? And the answer, we think,

is that the distinction being made in the wider culture is a

distinction that we care about in programming as well. So

even more esoteric linguistic distinctions, between “tu” and

the “vos” from Latin, are reflected in relatively mundane,

everyday programming languages.

8 Obscenity
There are other aspects of language that also reflect human

culture. Most languages have concepts of obscenity
20
, that

is to say words or expressions that are clearly part of the

language, but are also not supposed to be used, at least in

polite society.

There is a place for obscenity in programming languages —

even those intended for use outside Australia. Buried deep in

Haskell is a function called unsafePerformIO [25]. We used

to believe in Haskell, we’ve taught Haskell, we promulgated

Haskell’s purity culture, we’ve even got the rings, referential

transparency, effect control, and monads. But all the work

is done by unsafePerformIO — where unsafePerformIO is
the Haskell version of the kind of words one chooses not

to say in polite society (except in Australia). The Haskell

manual tells us that “unsafePerformIO is not typesafe”, that
programmers can write programs using unsafePerformIO
which “will core dump”, that “when using unsafePerformIO. . . ,

19
“it’s really up to you, Vice-Chancellor”

20
Except in Australia, where words like “****” and “*****” are legally not

considered obscene [34, 72]

you should take the following precautions” — disabling a

range of optimisations in the hope that the program may

have a chance of working as intended. In answer to a ques-

tion “Is there ever a good reason to use unsafePerformIO?”
Stack Overflow includes helpful hints that “There are often

really subtle bugs in code that uses unsafePerformIO” (their
italics), and that code using it is “evil and rude”. Overall,

“unsafePerformIO” is not the way to go [58] — so why is it

in the language in the first place?

Rust does something similar with its “unsafe” blocks. Rust
unsafe blocks are the direct successors of the unsafe modules

from Luca Cardelli’s Modula-3 [48], where programmers

can mark out “PG” modules that are considered safe, from

“R18” modules which can ignore many of the rules of the

programming language, which aremarked unsafe and should

only be programmed by Luca Cardelli.

Rust’s unsafe blocks permit programmers to break a lot of

the rules and do a lot of the things that you’re not supposed

to do in standard Rust, things that would be obscenities.

Whereas in Modula-3, you had to be Luca Cardelli to really

be allowed to write one of these unsafe modules, there’s a

lot of recent research, using perceptrons and other advanced

techniques to put Luca Cardelli in a box — Prusti by Alex

Summers [2], Rust Belt by Derek Dryer [31], to name just

two — that use the ownership types of Rust to help with

verification. The idea is you will submit your unsafe code

to this Luca Cardelli in a box, and he will tell you that it is

R18, not actually X-rated, and so you can deploy your new

version of left-pad to all the most fashionable repositories
21
.

9 Program Modules
We’ve talked about the lexicon and grammar in program-

ming, but we also want to talk about larger units as well and,

in particular, the larger units that make up a program. As

programmers, these are very important to us, but for those

who are not programmers — to writers of newspapers, to

television reporters, and to lexicographers who write dictio-

naries like the OED, the typical explanation of a program is

more like this:

programme | program, n.

Oxford English Dictionary. “program, n., 9a, 9b.” OED Online.
Oxford University Press, May 2021.

9a: A sequence of operations
that a machine can be set to
perform automatically.

9b: A series of coded
instructions and definitions
which when fed into a computer
automatically directs its
operation in performing a
particular task.

21
LADY BRACKNELL. Never speak disrespectfully of Society, Algernon.

Only people who can’t get into it do that. [75]

197

Onward! ’23, October 25–27, 2023, Cascais, Portugal Noble & Biddle

A program is either a sequence of operations that a ma-

chine can perform, or it’s a sequence of coded instructions

— indeed, that sequence of operations is how a program is

normally described.

We’ve been programming for a long time — we could

claim that we’ve been programming for at least 4000 years.

In Knuth’s excellent paper on ancient algorithms, he showed

the translations of cuneiform tablets in Sumerian-Akkadian

that described what Knuth called “algorithms” [33].

Programmer: Am I allowed to argue with Knuth?
Programmer: Am I allowed to criticise Knuth?
Programmer: I don't really like to do that.
Knuth: I am Don Knuth. I typeset all your papers.

When Knuth called these “algorithms” he chose to pass

over the fact that they’re very concrete, literally concrete

(well, clay) tablets:

Knuth gives this translation of the first example (Note that

the numbers are in sexagesimal):

A cistern’s height is 3,20,
and a volume of 27,46,40. . . .

What are the length and the width?

You should take the reciprocal
of the height, 3,20, obtaining 18.

Multiply this by the volume, 27,46,40,
obtaining 8,20.

This is a program. It is a very specific program — there

aren’t even any parameters! The program is a set of instruc-

tions, a program for people to carry out. For thousands of

years, people were the only things capable of carrying out

such programs. The program is that one should take the

reciprocal, multiply this by the volume, and so forth.

The tablet pictured above is more recent than Knuth’s

example, and contains instructions for dyeing wool. (It is

worth remembering that the cuneiform writing system was

actively used for well over 2000 years), So, it does seem that

we started off with programs as instructions.
In some of our languages, programs are still instructions.

In Logo, for example, and particularly in the “turtle graphics”

described by Seymour Papert in the Mindstorms book [52],

programmers give instructions to the turtle. To make a petal,

it draws a quarter of a circle, then it turns right, then it draws

another quarter of a circle, then it turns right:

Papert, Seymour A. Mindstorms:
Children, computers, and powerful
ideas. Basic books, 1993.

TO PETAL
QCIRCLE 50
RIGHT 90
QCIRCLE 50
RIGHT 90
END

TO FLOWER
PETAL
RIGHT 90
PETAL
RIGHT 90
PETAL
RIGHT 90
PETAL
RIGHT 90

InstructionTo make a flower, it draws several petals, turning between

them each time:

Papert, Seymour A. Mindstorms:
Children, computers, and powerful
ideas. Basic books, 1993.

TO PETAL
QCIRCLE 50
RIGHT 90
QCIRCLE 50
RIGHT 90
END

TO FLOWER
PETAL
RIGHT 90
PETAL
RIGHT 90
PETAL
RIGHT 90
PETAL
RIGHT 90

Instruction

This pedagogical approach has been called construction-

ism (by comparison with constructivism) but in a way, it’s

kind of “instruction ism”. Children do learn this way, and giv-

ing instructions to that turtle, or a little triangle representing

a turtle, to make drawings, showed how instructions helped

learning.

This goes beyond Logo: this is what was going on in

COBOL as well, where programmers built systems that were

going to replace clerks in the Johnson Wax building and

other similar modern architectural wonders. Only this time,

COBOL instructions were augmented with descriptions of
the records that were being processed. (Arguably there were

descriptions even in the cuneiform tablets, because they de-

scribed the situation before the program started running).

Sammet, Jean E. "The early
history of COBOL." History
of Programming Languages.
1978. 199-243.

 Description
 Instruction

Library of Congress

198

programmingLanguage as Language; Onward! ’23, October 25–27, 2023, Cascais, Portugal

COBOL was very clear about this: in the data division

programmers described all the records and then, in the pro-

cedure division, described the steps — instructions — that the

program would carry out on those data. COBOL programs

were split into units called paragraphs, and computers could

be instructed to “perform” particular paragraphs, in the same

way that a manager might have instructed a room full of

clerks to perform similar routines.

Sammet, Jean E. "The early
history of COBOL." History
of Programming Languages.
1978. 199-243.

 Description
 Instruction

Library of Congress

A Haskell program is structured in exactly the same way

as the COBOL program. We don’t call Haskell data items

“records”, we might call them algebraic data types, but both

have exactly the same nesting and almost exactly the same

structure. Using the advanced features of Haskell monads,

we could even write pretty much the same code that we

might write in COBOL
22
. In Haskell, of course, we would

do this using lower case — an important distinction that has

often been overlooked.

So some programs do appear to be instructions, augmented

by descriptions of data. An important development for us

was the language SIMULA, or rather SIMULA-67. The classic

SIMULA textbook written by Graham Birtwhistle and his

colleagues, is based around examples, such as this one of car

washer:

PROCESS CLASS CARWASHER;
BEGIN REF (CAR) SERVED;

WHILE TRUE DO
BEGIN OUT;
WHILE ~ WAITINGLINE.EMPTY DO
BEGIN SERVED:-WAITINGLINE.FIRST;
SERVED.OUT;
HOLD(1O);
ACTIVATE SERVED;

END;
WAIT(TEAROOM)
END;

END ***CARWASHER***;

SIMULA is about simulation, and this code describes the

life of a car washer. Basically, repetitively, the car washer

loops around. While there is a queue of cars needing to be

washed, it takes the first car from the queue it serves, and

then washes the car — here, modelled by holding for a set

certain amount of time. The car washer then goes back and

22
We leave this as an exercise for the reader

serves the next waiting car, unless there isn’t one, whereupon

the carwasher retreats to the tearoom to wait.

So what’s going on? Is this instruction? Rather, we claim

it’s more like narration, it’s more about telling the story of a

car washer. It’s not a particularly exciting story, because this

isn’t a particularly exciting car washer (we do understand

that real car washers have much more interesting lives [55]).

In a more precise simulation, their lives might be described

in mode detail: washing, waxing, breaking the Karate Kid’s

leg.

There’s an element of narrative that creeps in: instruction,

description, narrative. Instruction, description, narrative are

sometimes called modes, notably in Greek philosophy [29],

in the writings of Plato and Aristotle. In the Republic, Plato’s

treatise on how to organise society, Plato liked the idea of

simple narration, diagesis, saying things plainly as a story-

teller, and was very suspicious of what he called mimesis
or imitation. For instance, Plato didn’t like poets or actors

pretending to be people that they weren’t — he thought

that that was deceptive, and therefore had no place in the

Republic
23
[8].

Aristotle, in his Poetics, where modes of writing and

modes of speaking were one of the key topics, pointed out

big advantages of mimesis. The idea that when a speaker

or writer was representing someone else, someone from the

past or someone from another place, the fact that they spoke

as if they were that person, allowed listeners and readers to

understand that perspective better. In other words, mimesis

had qualities that had certain implications that gave us better

understanding of what was going on
24
[24].

Ward Cunningham: I am Ward Cunningham
and I am a bank account.

Programmer: What do you think
of the global financial situation?

Ward Cunningham: I am Ward Cunningham
and I am a bank account.

Programmer: What do you like most in the world?
Ward Cunningham (as Bank Account): Money.

In the book describing the BETA programming language

[40], Ole Madsen, Birger Møller Peterson, and Kristen Ny-

gaard describe how a program relates to its purpose:

 \begin{quote}

A program execution is
regarded as a physical
model, simulating the
behaviour of either a
real or imaginary part
of the world.
Ole Lehrmann Madsen,  
Birger M\o ller-Pedersen and
Kristen Nygaard \cite{beta}

 \end{quote}

23
E.g., Book III/393c-395c.

24
E.g., Chapter 14, but much of the Poetics is also relevant.

199

Onward! ’23, October 25–27, 2023, Cascais, Portugal Noble & Biddle

From this perspective, mimesis is the central organising

principle of programming:

Ward Cunningham (as Bank Account):
I am Ward Cunningham
and I am a bank account.

Ward Cunningham and Kent Beck, in their paper about

Class-Responsibility-Collaborator cards entitled “A Labora-

tory for Teaching Object-Oriented Thinking” [6]
25
discuss

how to do object-oriented design. The idea is when trying

to get a design going, each team member pretends to be one

of the starting objects, and the group walks through scenar-

ios in much the same way that Hollywood actors and stage

designers prepare with a "walk-through", going through a

script together, with each actor reading their part. And the

purpose of this in object-oriented design, as in Hollywood,

is to make certain that the roles have a certain coherence, or,

as we would say in programming, that they would have a

certain cohesion, that they will do things, they would accept

responsibility that made sense for them. Where something

didn’t make sense for them to do, they would collaborate

with someone else, i.e. with another object to accomplish

this behaviour. The object-oriented nature of the vocabulary

and articulation thus emerge organically.

Note that this approach differs from our more general

use of vocabulary in programming, where the terms we

introduce may refer to the implementation, not the domain,

or indeed may be arbitrary
26
.

Dijkstra (shouting):
One should never
refer to the parts of programs
in anthropomorphic terms!!!

Ward Cunningham (as Bank Account):
It's not anthropomorphic
to be a bank account,
if you are a bank account.

(At least, if you were a bank account, Aristotle might suggest

that this had certain advantages.)

25
As published in ACM SIGPLAN Notices, a journal that maintained the

best citation figures for any journal in computer science for a very long

time. Core
tm

Rating: A**.

26
Baniassad and Myers [4] explore how program vocabulary shows that

a program itself can be seen as a “language”, much as the vocabulary of

disciplines and organizations constitute and utilize specialised “languages”.

10 Programs are Stories

Verbs +
Noun
Phrases =
Stories

NICKLES WORTH

lucid, systematic
and penetrating

treatment of basic
and dynamic story

structures, sorting,
recursive narratives,
language structures,

and plotting

PRENTICE-HALL
SERIES IN

AUTONOMIC
RECITATION

Our first claim was that programming language is lan-

guage: and we’ve presented a number of examples showing

how analyses of “human” languages can also be applied to

programming languages. Our next claim is that programs are

stories: diegetic, mimetic — even in some cases, descriptive —

but overall, programs are stories and if programs are stories,

then we have something to learn from stories.

One place where we’ve picked this up, with help with our

colleague, semiotician Sky Marsen[41], was by looking at

the work of the semiotician, Greimas
27
who has a theory of

how stories work [23]:

The subject pursues the object, a sender commissions the

subject, a helper assists, and a receiver obtains the results

(effectively the stakeholders, the users). While the top arc

of Greimas’s model describes what Rebecca Wirfs-Brock

would call the “happy path”[20]. It also relies on helpers:

in the case of programs, on libraries, frameworks, and so

forth. Finally, Greimas incorporates the opponent. In some

cases the opponent may be the external environment, where

things can go wrong: in other cases, the opponent may be

external attackers who have an adversarial role.

We hope that understanding this nature of a story, and the

nature of our programs, should let us articulate programs

more effectively. In particular, we should be able to treat

different parts of programs — some of which deal with the

opponent, say, some with the helper — differently, depending

on the rôle each plays in the program as a whole, so that we

don’t overlook their critical differences.

This could really help create more secure programs. For

example, Charles Weir is developing a similar approach, cen-

tring this notion of opponent and saying, so that if we really

want programs to be secure, it’s not just enough to think

about the happy path, what we might like programs to do

27
Or to the AI transcriber: Grimace, the semiotician of one thousand faces.

200

programmingLanguage as Language; Onward! ’23, October 25–27, 2023, Cascais, Portugal

[71]. Rather, we need to have a dialogue with the program,

we need to consider the threats, and to bring those into our

model of programming. You can’t have Red Riding Hood

without also having the wolf.

Moreover, one can’t forget about the opponent, which

might lead to errors of omission, where the spec is not only

about what the program should do, but should cover what

do the program shouldn’t do. This kind of error of omission

is behind very many vulnerabilities in code that lead to all

kinds of problems. We think that this model from stories

could improve our programs, and could be supported by

programming or specification languages.

Here we can distinguish between traditional specifications

that deal with sufficient conditions, versus holistic specifica-
tions that deal with necessary conditions [21, 38]. For exam-

ple: a traditional specification for a “login:” method would

say that a user will be logged in if they supply a valid user-

name and password — that is: a valid username and password

are sufficient to log in. The if here is important — or rather,

what’s important is that it’s not iff (that it’s not iff and only

iff). To see why, consider that the “ssh” command, combined

with public keys, in some circumstance means that “the user
can log in without giving the password” (to quote the man

page [77]). A holistic specification could help programmers

make clear that a valid username and password are necessary
to log in: thus excluding the use of ssh— or more accurately,

excluding the use of ssh that does not require a valid user-

name and password pair from a correct system. Of course, in

real systems, vulnerabilities can be rather more subtle than

ssh configuration files: Ken Thompson famously showed

how a subverted compiler (producing the code captioned

FIGURE 3.2 below) could lead to a subverted system with-

out any evidence appearing in the program’s source code

(FIGURE 3.1) [65]:

As in natural language, concealment and misdirection

may be intentional or accidental, yet still have effect, and

not always benevolent to the reader [26]. Even when the

intention is benevolent, unexpected problems may occur. In

User Interface design, concealment and re-representation

of detail is critical to usable design, and this can obscure

dangers that arise within the hidden detail[57]. The same

issues need to be considered with encapsulation.

If we look at more recent work in discourse analysis, a lot

of work in recent decades have focused on what Van Dijk

and Kintsch called “situation models” [69]. These are the

mental models that someone develops when they hear or

read a story. Long after the text is gone, we can reflect on a

story, we can learn from it, we can reason on that basis, or

even translate and write the story in a different language —

which is what translators do.

Time Space

Causation Motivation

Protagonists

Discourse Situation Models

Psychologists suggest that these models might represent

the cognitive processes involved in, engaging with, or under-

standing, stories [78] — and so they talk about the dimensions

of a text that can lead to effective situation models: time, the

sequence of events; the space in which the story takes place;

causation, why things happen; motivation, why people are

trying to make things happen; and the protagonists them-

selves, who embody agency in stories. Although this is still

an ongoing research effort in psycholinguistics, we think

this work holds insights and lessons for programming and

programming language design. If programs are stories, then

the cognitive apparatus that allows us to work with stories

will help us work with with programs.

11 Conversation
“Conversation is the
fundamental site of
language use. For many
people, even for whole
societies, it is the only site,
and it is the primary one
for children acquiring
language.
— Clark and Wilkes-Gibbs

Where do stories come from?

What comes first, writing or speaking?

Clark and Deanna Wilkes-Gibbs argue that stories come

from conversation [13]. In much the same way, if programs

201

Onward! ’23, October 25–27, 2023, Cascais, Portugal Noble & Biddle

are stories, then programs will also come from conversa-

tion — or in our case, the act of programming. Although

not obvious in the text-obsessed West [67] — closely read-

ing everything from the Bible to the Magna Carta to the

Constitution to the Treaty of Waitangi to the ssh manual

page — conversation is the primary site of language use
28
.

When children acquire language, they begin in conversation.

People don’t learn to read and then learn to speak. People

don’t make up presentations or write essays all in one go.

They talk it over, and over and over again, including during

the essay presentation itself
29
.

Programming is a conversation with a machine, as well as

with other programmers, as well as with oneself. The next

example is a excerpt of a conversation with Rust. This uses

just a command line — a conversation doesn’t require a so-

phisticated IDE. Even the one bit of information you get back

from a compiler or interpreter (either “yes, I have run this”,

or “No, I haven’t.”) is just enough to sustain a conversation

— albeit a conversation that’s not terribly interesting, and

indeed rather frustrating if you’re the person who’s only

getting one bit back from your interlocutor.

warning: unnecessary parentheses around `while` condition
 --> regex1.rs:167:11
 |
167 | while (expressions.peek().is_some() &&
 | ___________^
168 | | targets.peek().is_some())
 | |_______________________________________^
 |
 = note: `#[warn(unused_parens)]` on by default
help: remove these parentheses
 |
167 | while expressions.peek().is_some() &&
168 | targets.peek().is_some()
 |

The point of this example, though, is Rust complaining at

the programmer. Rust is upset, whinging to the programmer

that “you’ve put parentheses around your while loops”. 3031

All those languages put parenthesis around while loops:

when scanning code, we don’t just look for “while”, we
search for the combination of the keyword, whitespace, and

a condition delimited by parentheses— “while (. . .)”. Lan-
guage is always changing: programming languages as much

as other languages (and it’s because programming language

is language that it makes sense to enthoerise
32
programming

28
This essay is a semi-automatic transcription of a virtual conversation.

29
We’re easy to find: Let’s talk about programming as conversation.

30
We’ve been programming in C-syntax derived languages such as Java,

Javascript, and C for several decades. Whose while loops are they, anyway?

Mine. My precious!

31
Where “programming” really means “teaching undergraduates to

program.”

32
entheta-ize?

language as language). Rust is evolving away from that tradi-

tion, and so Rust while loops no longer require parentheses.

The sweet Rust compiler is trying to be helpful. Rust is telling

the programmer that they’ve got unnecessary parenthesis

around their while condition (this is on by default). . . and

while they may have written a very good program, they

would write an even better program if they remove those

parentheses
33
. Rust is like the teacher who says “you’re in

the classroom now! You’re not in the playground, talking to
your friends, Java and C++. Here in the classroom, you will
speak proper!”
The ultimate goal of all computer science is the program

[49]. The ultimate goal of all Scheme programmers is the

REPL [63] — the Read / Eval / Print / Loop:

(define (REPL env)
 (print (eval env (read)))
 (REPL env))

If we look at this Scheme REPL — written by Guy Steele

personally, because the ultimate goal of all Scheme code is

to become written by Guy Steele personally — and we know

this is Scheme (thus Guy Steele) rather than Lisp (thus Dick

Gabriel) because the code says “define” instead of defun

“defun”34 — GOTO the REPL, thou sluggard; consider her

ways, and be wise. The REPL, the Silurian hypothesis, the

Dark Brandon, the reptilian brain of programming. With a

REPL, programmers can type things and see how they turn

out. With a REPL, programmers can:

“see with eye serene/
the very pulse of the machine;/
A Being breathing thoughtful breath/
A Traveller between life and death” [76].

All programming is conversation; programs are stories

that come from conversation; stories we liked so much that

we bought the company. This essay is a conversation of a

conversation of conversation.When you have a conversation,

there are many things to say. When you have a conversation,

you can never be sure what will be said, and what will not.

When you have a conversation, you can never be sure how

it will turn out.

12 Time to Face the Strange Changes
The last rule we consider about natural languages (if there

are rules about natural languages) is that they are continu-

ally changing. This insight goes back to Sassure, the founder

of structural linguistics [18, 19], who talked about the dif-

ference between a diachronic and a synchronic analysis: a

33
Thus not be quite so Australian in the programs they are writing.

34
Scheme is thus less fun that Lisp; luckily there’s a Racket that adds any

amount of fun back into Scheme [15]

202

programmingLanguage as Language; Onward! ’23, October 25–27, 2023, Cascais, Portugal

synchronic analysis is about the relationships between lan-

guage elements at one particular time, while a diachronic

analysis studies the way a language changes over time.

So, mashups, creoles, new languages coming into being —

this is perfectly normal: this is part of what makes language.

Sometimes we want to make new distinctions. Sometimes we

want to get rid of distinctions which turned out not to matter,

or which no longer matter. Sometimes we’re changing lan-

guage intentionally, explicitly, for technical reasons, reasons

of correctness, reasons of comprehension. Sometimes we’re

doing it for business reasons, for reasons of prestige, some-

times we’re doing it as a way of fighting back or resisting, and

sometimes even as a way of reconciling. Sometimes language

seems to change of its own accord, or rather we’re doing it

implicitly, accidentally, for reasons of which we are unaware,

or for no reason at all. Over time, language elements get

deprecated, languages become endangered, become extinct.

13 Conclusion
When we presented a version of this work to some Ameri-

cans, they asked “what are the takeaways?” Of course the

“takeaways” must depend on each reader’s perspective: pro-

grammer? end-user? researcher? or language designer? We

leave these for later conversations. We acknowledge our fo-

cus on similarities with natural languages, and also leave for

later the issue of differences.

In spite of the extraneous detail
35
, we hope this essay, like

the talk it was based upon, has managed to communicate a

few key ideas: that programming is a conversation between

programmers, and increasingly between the programmer

and the machine; that programs, the outcomes of those con-

versations, are stories about how a domain is described and

simulated; and that the language we used to write those sto-

ries — programming language — is language, as much as any

other [7].

Language is not the accident of programming — it is the

essence.

References
[1] Laurie Anderson. 1982. Let X = X. In Big Science. Warner.

[2] Vytautas Astrauskas, Peter Müller, Federico Poli, and Alexander J.

Summers. 2019. Leveraging Rust types for modular specification and

verification. Proc. ACM Program. Lang. 3, OOPSLA (2019), 147:1–

147:30.

[3] Maurice George Balme and James Morwood. 1997. Oxford Latin Course.
Oxford University Press.

[4] Elisa Baniassad and Clayton Myers. 2009. An Exploration of Program

as Language. SIGPLAN Not. 44, 10 (oct 2009), 547–556. https://doi.
org/10.1145/1639949.1640132

[5] D. W. Barron, J. N. Buxton, D. F. Hartley, E. Nixon, and C. Strachey.

1963. The Main Features of CPL. Comput. J. 6, 2 (Aug. 1963), 134–143.
[6] Kent Beck and Ward Cunningham. 1989. A laboratory for teaching

object oriented thinking. ACM Sigplan Notices 24, 10 (1989), 1–6.

35
and the bad jokes in the footnotes [47].

[7] Robert Biddle and James Noble. 2002. Studying the Language of
Programming. Technical Report CS-TR-02-5. Victoria University of

Wellington. This paper was presented at the Feyerabend Work-

shop at the European Conference on Object-Oriented Programming.

Malaga, Spain, 2002. Available from http://www.mcs.vuw.ac.nz/comp/
Publications/archive/CS-TR-02/CS-TR-02-5.pdf.

[8] Alan Bloom. 1991. The Republic of Plato, Second Edition. Basic Books.
[9] John Boyland, James Noble, and William Retert. 2001. Capabilities for

Sharing: A Generalisation of Uniqueness and Read-Only. In ECOOP.
2–27.

[10] Ronald F. Brender. 2002. The BLISS programming language: a history.

S–P&E 32 (2002), 955–981.

[11] Walter Bright, Andrei Alexandrescu, andMichael Parker. 2020. Origins

of the D programming language. Proc. ACM Program. Lang. 4, HOPL
(2020), 73:1–73:38.

[12] Noam Chomsky. 1965. Aspects of the Theory of Syntax. MIT Press.

[13] Herbert H. Clark and Deanna Wilkes-Gibbs. 1986. Referring as a

collaborative process. Cognition 22, 1 (1986), 1–39.

[14] David G. Clarke, John M. Potter, and James Noble. 1998. Ownership

Types for Flexible Alias Protection. In OOPSLA. 48–64. https://doi.
org/10.1145/286936.286947

[15] Ryan Culpepper, Sam Tobin-Hochstadt, and Matthew Flatt. 2007. Ad-

vanced Macrology and the Implementation of Typed Scheme. In ICFP
workshop on Scheme and Functional Programming.

[16] Ward Cunningham. 2014. FORTH Reusability. https://wiki.c2.com/
?ForthReadability.

[17] Ole-Johan Dahl and C. A. R. Hoare. 1972. Hierarchical Program Struc-

tures. In Structured Programming, Ole-Johan Dahl, Edsger W. Dijkstra,

and C. A. R. Hoare (Eds.). Academic Press.

[18] Ferdinand de Saussure. 1916. Cours de linguistique générale. V.C. Bally
and A. Sechehaye (eds.), Paris/Lausanne.

[19] Ferdinand de Saussure. 1966. Course in General Linguistics. McGraw-

Hill.

[20] What Is Responsibility-Driven Design. 2006. A Brief Tour of

Responsibility-Driven Design. (2006). https://www.wirfs-brock.com/
PDFs/A_Brief-Tour-of-RDD.pdf.

[21] Sophia Drossopoulou, James Noble, Julian Mackay, and Susan Eisen-

bach. 2020. Holistic Specifications for Robust Programs. In Fundamen-
tal Approaches to Software Engineering (FASE). 420–440.

[22] Eclipse Foundation 2020. Jakarta Enterprise Beans Specification version
4.0. Eclipse Foundation.

[23] A. J. Greimas. 1983. Structural Semantics. University of Nebraska

Press.

[24] Stephen Halliwell. 1998. Aristotle’s poetics. University of Chicago

Press.

[25] Haskell Contributors. 2021. System.IO.Unsafe. https://hackage.
haskell.org/package/base-4.18.0.0/docs/System-IO-Unsafe.html. [On-
line; accessed 28-April-2023].

[26] Zahra Hassanzadeh, Robert Biddle, and Sky Marsen. 2021. User percep-

tion of data breaches. IEEE Transactions on Professional Communication
64, 4 (2021), 374–389.

[27] C.A.R. Hoare. 2009. Null References: The BillionDollarMistake. (2009).

[28] Douglas H. Hofstader. 1979. Gödel, Escher, Bach: An Eternal Golden
Braid. Penguin Books.

[29] Ted Honderich (Ed.). 1995. The Oxford Companion to Philosophy. Ox-
ford University Press.

[30] Ralf Hütter, Florian Schneider, and Karl Bartos. 1981. It’s More Fun to

Compute. In Kraftwerk: Computer World. Kling Klang.
[31] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer.

2017. RustBelt: Securing the Foundations of the Rust Programming

Language. PACMPL 2, POPL, Article 66 (Jan. 2017), 66:1–66:34 pages.

[32] Poul-Henning Kamp. 2010. Sir, Please Step Away from the ASR-33! To

Move Forward with Programming Languages we Need to Break Free

from the Tyranny of ASCII. Queue 8, 10 (oct 2010), 40–42.
[33] Donald E. Knuth. 1972. Ancient Babylonian Algorithms. CACM 15, 7

(1972), 671–677.

203

https://doi.org/10.1145/1639949.1640132
https://doi.org/10.1145/1639949.1640132
http://www.mcs.vuw.ac.nz/comp/Publications/archive/CS-TR-02/CS-TR-02-5.pdf
http://www.mcs.vuw.ac.nz/comp/Publications/archive/CS-TR-02/CS-TR-02-5.pdf
https://doi.org/10.1145/286936.286947
https://doi.org/10.1145/286936.286947
https://wiki.c2.com/?ForthReadability
https://wiki.c2.com/?ForthReadability
https://www.wirfs-brock.com/PDFs/A_Brief-Tour-of-RDD.pdf
https://www.wirfs-brock.com/PDFs/A_Brief-Tour-of-RDD.pdf
https://hackage.haskell.org/package/base-4.18.0.0/docs/System-IO-Unsafe.html
https://hackage.haskell.org/package/base-4.18.0.0/docs/System-IO-Unsafe.html

Onward! ’23, October 25–27, 2023, Cascais, Portugal Noble & Biddle

[34] Stephen Lawrence, Fellcity Graham, and Christian Hearn. 2016. "You

FUCKING BEAUTY" "Fuck Fred Nile"’ and other inoffensive com-

ments. https://criminalcpd.net.au/wp-content/uploads/2016/11/You-
Fucking-Beauty-Fuck-Fred-Nile-Stephen-Lawrence-Feliciy-
Graham-Christian-Hearn.pdf.

[35] K Rustan M Leino. 2013. Developing verified programs with Dafny.

In 2013 35th International Conference on Software Engineering (ICSE).
IEEE, 1488–1490.

[36] K. Rustan M. Leino. 2020. Program Proofs. Available from Lulu.com.

[37] Dyani Lewis. 2021. Science agency on trial following deadly White

Island volcano eruption. Nature 598 (2021), 243–244.
[38] Julian Mackay, Susan Eisenbach, James Noble, and Sophia

Drossopoulou. 2022. Necessity specifications for robustness.

Proc. ACM Program. Lang. 6, OOPSLA2 (2022), 811–840.
[39] Bruce MacLennan. 1983. Principles of Programming Languages: Design,

Evaluation, and Implementation. Holt, Rinehart, and Winston.

[40] Ole Lehrmann Madsen, Birger Møller-Pedersen, and Kirsten Nygaard.

1993. Object-Oriented Programming in the BETA Programming Lan-
guage. Addison-Wesley.

[41] Sky Marsen, Robert Biddle, and James Noble. 2003. Use case analysis

with narrative semiotics. ACIS 2003 Proceedings (2003), 86. https:
//aisel.aisnet.org/acis2003/86.

[42] John McCarthy. 1959. LISP: a programming system for symbolic

manipulations. In Preprints of papers presented at the 14th National
Meeting of the Association for Computing Machinery. 1:1–1:4.

[43] John McWhorter. 2023. Why Do Languages Have Gender? slate.com-
podcasts-lexicon-valley/2021/01/language-gender-noun-classes.

[44] Bertrand Meyer. 1992. Eiffel: The Language. Prentice Hall.
[45] Microsoft Corp. 2020. Coding Style Conventions. learn.microsoft.com.

[46] Eric Mottram. 1959. The Cat Sat on the Mat. Poetry (Feb. 1959).

[47] Preet J. Nedginn and Trebor L. Bworn. 1984. CLOG:6,SM,©,21 an Ada®

Package for Automatic Footnote Generation in UnixTM. Commun.
ACM 27, 4 (apr 1984), 351. https://doi.org/10.1145/358027.358044

[48] Greg Nelson (Ed.). 1991. Systems Programming withModula-3. Prentice-
Hall.

[49] James Noble and Robert Biddle. 2002. Notes on Postmodern Program-

ming. In Onward! Onward! Ever Onward!
[50] James Noble, Jan Vitek, and John Potter. 1998. Flexible Alias Protection.

In ECOOP. 158–185.
[51] Kristen Nygaard and Ole-Johan Dahl. 1978. The Development of the

SIMULA Languages. SIGPLAN Not. 13, 8, 245–272. https://doi.org/10.
1145/960118.808391

[52] Seymour Papert. 1980. Mindstorms: Children, Computers, and Powerful
Ideas. Basic Books, Inc.

[53] Terry Pratchett. 1983. The Colour of Magic. Colin Smythe.

[54] Elizabeth D. Rather, Donald R. Colburn, and Charles H. Moore. 1996.

The Evolution of Forth. In History of Programming Languages—II.
Association for Computing Machinery, New York, NY, USA, 625–670.

https://doi.org/10.1145/234286.1057832
[55] Rose Royce. 1976. Car Wash. MCA Records.

[56] C. Simonyi. 1976. Meta-programming: a software production model.

PARC Technical Report CSL-76-7.

[57] Eric Spero and Robert Biddle. 2021. Out of Sight, Out of Mind: UI

Design and the Inhibition of Mental Models of Security (New Security
Paradigms ’20). Association for Computing Machinery, New York, NY,

USA, 127–143.

[58] StackOverflow Contributors. 2021. Is there ever a good reason to use

unsafePerformIO? stackoverflow.com/questions/10529284/is-there-
ever-a-good-reason-to-use-unsafeperformio. [Online; accessed 28-

April-2023].

[59] Friedrich Steimann. 2017. Replacing Phrase Structure Grammar with

Dependency Grammar in the Design and Implementation of Program-

ming Languages (Onward! 2017). Association for Computing Machin-

ery, New York, NY, USA, 30–43.

[60] Friedrich Steimann. 2023. A Simply Numbered Lambda Calculus. In

Eelco Visser Commemorative Symposium (EVCS 2023) (Open Access
Series in Informatics (OASIcs), Vol. 109), Ralf Lämmel, Peter D. Mosses,

and Friedrich Steimann (Eds.). Schloss Dagstuhl – Leibniz-Zentrum

für Informatik, Dagstuhl, Germany, 24:1–24:12. https://doi.org/10.
4230/OASIcs.EVCS.2023.24

[61] Friedrich Steimann and Marius Freitag. 2022. The Semantics of Plurals.

In Proceedings of the 15th ACM SIGPLAN International Conference on
Software Language Engineering (Auckland, New Zealand) (SLE 2022).
Association for Computing Machinery, New York, NY, USA, 36–54.

[62] Sun Microsystems 2002. Enterprise JavaBeans Specification version 2.3.
Sun Microsystems.

[63] Gerald Sussman and Guy Steele. 1975. SCHEME: An Interpreter for
Extended Lambda Calculus. Technical Report AI Memo 349. MIT

Artificial Intelligence Laboratory.

[64] Lucien Tesnière. 2015. Elements of structural syntax. John Benjamins

Publishing Company. Translated by Timothy Osborne and Sylvain

Kahane.

[65] Ken Thompson. 1984. Reflections on Trusting Trust. Commun. ACM
27, 8 (aug 1984), 761–763.

[66] TIOBE 2022. TIOBE Index for June 2022. https://www.tiobe.com/tiobe-
index.

[67] Eve Tuck and K. Wayne Yang. 2012. Decolonization is not a Metaphor.

Decolonization: Indigeneity, Education & Society 1, 1 (2012), 1–40.

[68] David Ungar. 2003. Seven Paradoxes of Object-Oriented Programming

Languages. www.oopsla.org/oopsla2003/files/key-4.html. Invited

Keynote presentation to OOPSLA 2003..

[69] Teun Adrianus Van Dijk and Walter Kintsch. 1983. Strategies of Dis-
course Comprehension. Academic Press.

[70] LarryWall. 1999. Perl, the first postmodern computer language. (Spring

1999). http://www.wall.org/ larry/pm.html.
[71] Charles Weir, Awais Rashid, and James Noble. 2020. Challenging

software developers: dialectic as a foundation for security assurance

techniques. J. Cybersecur. 6, 1 (2020).
[72] Michaela Whitbourn. 2016. Court finds ’f— Fred Nile’ not offensive

language at marriage equality rally. Sydney Morning Herald (Oct.

2016). https://www.smh.com.au/national/nsw/court-finds-f-fred-
nile-not-offensive-language-at-marriage-equality-rally-20161025-
gs9ymc.html.

[73] Wikipedia contributors. 2023. Declension — Wikipedia, The Free En-

cyclopedia. https://en.wikipedia.org/w/index.php?title=Declension&
oldid=1149572805. [Online; accessed 29-April-2023].

[74] Wikipedia contributors. 2023. Word order — Wikipedia, The Free En-

cyclopedia. https://en.wikipedia.org/w/index.php?title=Word_order&
oldid=1151379926. [Online; accessed 28-April-2023].

[75] Oscar Wilde. 1988. The Importance of being Earnest: a trivial comedy
for serious people. Leonard Smithers.

[76] William Wordsworth. 1807. She Was a Phantom of Delight. In Poems,
in Two Volumes. Longman, Hurst, Rees, and Orms. Paternoster Row.

[77] Tatu Ylonen, Aaron Campbell, Bob Beck, and Markus Friedland Niels

Provos. 2023. ssh – OpenSSH remote login client manual page.

[78] Rolf A. Zwaan and Gabriel A. Radvansky. 1998. Situation models in

language comprehension and memory. Psych. Bull. 132, 2 (1998), 162.

Received 2023-04-28; accepted 2023-08-11

204

https://criminalcpd.net.au/wp-content/uploads/2016/11/You-Fucking-Beauty-Fuck-Fred-Nile-Stephen-Lawrence-Feliciy-Graham-Christian-Hearn.pdf
https://criminalcpd.net.au/wp-content/uploads/2016/11/You-Fucking-Beauty-Fuck-Fred-Nile-Stephen-Lawrence-Feliciy-Graham-Christian-Hearn.pdf
https://criminalcpd.net.au/wp-content/uploads/2016/11/You-Fucking-Beauty-Fuck-Fred-Nile-Stephen-Lawrence-Feliciy-Graham-Christian-Hearn.pdf
https://aisel.aisnet.org/acis2003/86
https://aisel.aisnet.org/acis2003/86
slate.com-podcasts-lexicon-valley/2021/01/language-gender-noun-classes
slate.com-podcasts-lexicon-valley/2021/01/language-gender-noun-classes
learn.microsoft.com
https://doi.org/10.1145/358027.358044
https://doi.org/10.1145/960118.808391
https://doi.org/10.1145/960118.808391
https://doi.org/10.1145/234286.1057832
stackoverflow.com/questions/10529284/is-there-ever-a-good-reason-to-use-unsafeperformio
stackoverflow.com/questions/10529284/is-there-ever-a-good-reason-to-use-unsafeperformio
https://doi.org/10.4230/OASIcs.EVCS.2023.24
https://doi.org/10.4230/OASIcs.EVCS.2023.24
https://www.tiobe.com/tiobe-index
https://www.tiobe.com/tiobe-index
www.oopsla.org/oopsla2003/files/key-4.html
https://www.smh.com.au/national/nsw/court-finds-f-fred-nile-not-offensive-language-at-marriage-equality-rally-20161025-gs9ymc.html
https://www.smh.com.au/national/nsw/court-finds-f-fred-nile-not-offensive-language-at-marriage-equality-rally-20161025-gs9ymc.html
https://www.smh.com.au/national/nsw/court-finds-f-fred-nile-not-offensive-language-at-marriage-equality-rally-20161025-gs9ymc.html
https://en.wikipedia.org/w/index.php?title=Declension&oldid=1149572805
https://en.wikipedia.org/w/index.php?title=Declension&oldid=1149572805
https://en.wikipedia.org/w/index.php?title=Word_order&oldid=1151379926
https://en.wikipedia.org/w/index.php?title=Word_order&oldid=1151379926

	Abstract
	1 Word Order
	2 Object-Oriented Programming
	3 I Decline
	4 Je suis un rockstar
	5 Number
	6 Verbs
	7 Fold Your Hands Child, You Walk Like a Peasant
	8 Obscenity
	9 Program Modules
	10 Programs are Stories
	11 Conversation
	12 Time to Face the Strange Changes
	13 Conclusion
	References

