
Could No-Code Be Code?
Toward a No-Code Programming Language for

Citizen Developers

Assaf Avishahar-Zeira
assaf@too.so�ware

TOO.Software
Bnei Atarot 6099100, Israel

David H. Lorenz
lorenz@openu.ac.il

Dept. of Mathematics and Computer Science
Open University of Israel
Ra’anana 4353701, Israel

Abstract

By 2030 for each �lled position in Software Engineering, two
positions would remain un�lled. This already apparent loss
of productivity has the software industry scrambling to �ll
the missing positions with citizen developers—technical peo-
ple with little or no programming skills—whowould be using
No-Code platforms to program various software solutions
in speci�c domains. However, currently available platforms
have fairly limited abstractions, lacking the �exibility of a
general purpose programming language.
To break the No-Code abstraction barrier, a very simple

yet expressive general purpose No-Code programming lan-
guage might provide citizen developers with an alternative
to domain-speci�c No-Code platforms. Unfortunately, these
requirements seem contradictory. Making a language very
simple and speci�c might render it crippled, thus limited to a
certain domain of problems. Conversely, making a language
very expressive and general, might render it too complicated
for citizen developers.
In this work we argue that a multi-paradigm minimalist

approach can bridge the gap between simplicity and expres-
siveness by including only abstractions considered intuitive
to citizens. As a concrete proof-of-concept, we present a
general purpose programming language designed for citizen
developers that is on the one hand very powerful and on the
other hand very simple. In fact, this language is so simple
that the entire development is accomplished by �owcharts
using mouse actions only, without typing a single line of
code, thus demonstrating a general purpose No-Code pro-
gramming language candidate for citizen developers.

Onward! ’23, October 25–27, 2023, Cascais, Portugal

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0388-1/23/10.

h�ps://doi.org/10.1145/3622758.3622893

CCS Concepts: • Software and its engineering→ Visual

languages; Multiparadigm languages.

Keywords: Citizen Developers, Golang, No-Code Software
Development, Projectional Editing, Programming Language
Design.

ACM Reference Format:

Assaf Avishahar-Zeira and David H. Lorenz. 2023. Could No-Code

Be Code? Toward a No-Code Programming Language for Citi-

zen Developers. In Proceedings of the 2023 ACM SIGPLAN Inter-

national Symposium on New Ideas, New Paradigms, and Re�ec-

tions on Programming and Software (Onward! ’23), October 25–27,

2023, Cascais, Portugal. ACM, New York, NY, USA, 17 pages. h�ps:

//doi.org/10.1145/3622758.3622893

1 Introduction

Today and for the foreseeable future, the supply of profes-
sional programmers cannot meet the demand for software
engineers [5]. SlashData,1 a leading analyst company in the
developer economy, projects a total number of 45 million
software engineers globally by year 2030. The U.S. Labor
Department further estimates a shortage of 85 million en-
gineers by that time, meaning that for each �lled position
two would remain un�lled, and that because of this shortage
companies may lose $8.4 trillion in revenue.
This shortage in programmers is pushing the software

industry toward No-Code tools that enable software develop-
ment by novice programmers and even non-programmers,
generally referred to as citizen developers [29] (hereafter,
citizens). These No-Code tools keep the promise of creat-
ing a solution without typing code, but they are by far less
expressive than a full blown general purpose programming

language (GPL), lacking any pretension to be Code.
In fact, No-Code tools resemble hardware more than soft-

ware development, missing the most important property of
software being “soft.” In order to retain the “softness” prop-
erty, they must be expressive like a programming language;
that is, beCode. At the same time theymust be simple enough
for citizens; that is, to also beNo-Code. This begs the question:
could No-Code be Code?

1h�ps://www.slashdata.co

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

103

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0009-0001-3446-2452
https://orcid.org/0000-0001-7921-2265
https://doi.org/10.1145/3622758.3622893
https://doi.org/10.1145/3622758.3622893
https://doi.org/10.1145/3622758.3622893
https://www.slashdata.co
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3622758.3622893&domain=pdf&date_stamp=2023-10-19

Onward! ’23, October 25–27, 2023, Cascais, Portugal Assaf Avishahar-Zeira and David H. Lorenz

1.1 General Purpose Programming Languages

The past 70 years have witnessed an enormous investment
in programming languages. Thousands of books and scien-
ti�c papers were written, and hundreds of languages were
developed. Noticeably, on average, one out of every �ve Tur-
ing Award citations attributes contribution to programming
languages.
Furthermore, development of programming languages is

not an episode of the past as new languages are constantly
being invented. For example, TypeScript2 and Rust [22]
were invented in the last decade. Rust gained popularity for
emphasizing performance, type safety, and concurrency, and
TypeScript gained popularity for adding syntax on top of
JavaScript [9], allowing developers to add types.

However, the evolution of programming languages is not
necessarily going in the direction of simpli�cation. Type-
Script and Rust, for instance, can be considered among the
most complicated ever invented. It seems therefore that since
the invention of the �rst compiled programming language,
all popular GPLs share roughly the same complexity [18],
moving in the path set by Böhm [4] in 1951 in his Ph.D.
dissertation.

1.2 Simplicity is Complicated

For No-Code development, language simplicity is an essen-
tial albeit elusive property. There were some attempts to
create very simple languages by keeping the language small.
However, a small size of a programming language does not
necessarily make it easy to use or learn. Brainfuck [7], for
example, is regarded one of the smallest programming lan-
guages with only eight commands. However, it is no more
than an esoteric attempt. Coding in Brainfuck is a night-
mare, the generated code is completely unreadable, and the
performance is poor.
A language can be very small and highly expressive and

still lack simplicity. For example, a Turing machine has only
few language constructs while exhibiting Turing-complete
expressiveness, although Turing machines are far from being
easy to use for everyday programming.

A successful attempt to create a simple and practical GPL
was put forward by the three software engineers that in-
vented the Go language [6]. In order to keep the language
simple, Griesemer, Pike, and Thompson, each had the power
to veto new features [24]. This kept Go at about two times
smaller than other popular languages at that time, such as
C++ [31] and Java [3]. Notably, they reported that simplicity
is complicated [26].
Go excels in the domain of scalable, cloud-based servers

that are optimized for performance; its light-weight go rou-
tines enable massive multithreading and performance under
pressure. Go creates an e�cient code, although C [16] and

2h�ps://github.com/microso�/TypeScript

Table 1. Language comparison [8]

Language Keywords Operators Syntax rules Year

Fortran [23] 39 16 ∼170 1957

C [16] 32 27 ∼100 1970

C++ [31] 90 35 ∼200 1979

Python [35] 33 39 ∼90 1991

Java [3] 51 34 ∼250 1995

Ruby [34] 13 28 ∼60 1995

C# [12] 78 41 ∼220 2000

Go [6] 25 34 ∼100 2009

TypeScript2 50 35 ∼150 2012

Rust [22] 35 45 ∼250 2015

Too 0 5 10 2022

Rust are better in that respect. Go is fairly simple; an expe-
rienced programmer can pick it up over a weekend.

In contrasts to Go, our aim is to de�ne a GPL that would
make a big di�erence in how citizens use No-Code to build
software solutions. But could a pragmatic GPL be made any
simpler than Go?

1.3 Contribution

We present a novel, very simple, general purpose, No-Code
programming language, named Too (Things Object-Oriented).3

The Too language enables both citizen developers and profes-
sional programmers to create software solutions in a simple
manner, using drag-and-drop components, without having
to write code explicitly.

Too was in�uenced by the powerful and compact Go lan-
guage, but it is not a subset ofGo. It incorporates key features
of Go, such as concurrency, interfaces, inheritance, as well as
features that Go does not support, such as function overload-
ing, default values for formal arguments, and error handling
by catch/throw-like events (whose absence in Go has been
reported as drawbacks).4 With all these additional features
and more, Too is about 10 times smaller than Go (Tab. 1).
Creating a new language is by no means a lightweight

decision. An alternative could have been to start with Go,
or some other GPL, and strip o� features that are deemed
inessential for citizens or unmanageable for No-Code de-
velopment. Shrinking an existing language may be a more
e�ective approach than devising a completely new language.
However, the resulted language would be limited to only fea-
tures found in Go. Instead, the features selected for the Too
language and for the software development methodology
at the core of the No-Code solution are geared toward pro-
ducing programs that citizens can read, develop, debug, and
evolve. For example, the Too language adopts software ar-
chitectures such as event-driven, component-based, and cloud

programming that Go lacks.

3h�ps://too.so�ware
4h�ps://www.toptal.com/go/4-go-language-criticisms

104

https://github.com/microsoft/TypeScript
https://too.software
https://www.toptal.com/go/4-go-language-criticisms

Could No-Code Be Code? Onward! ’23, October 25–27, 2023, Cascais, Portugal

Outline. Sect. 2 states the goal of Too, setting criteria for
an ideal GPL for citizens. Sect. 3 reviews the underlying prin-
ciples for the language design. Sect. 4 describes the structure
of programs in the language. Sect. 5 describes the cloud devel-
opment environment. Sect. 6 reviews the language internals.
Sect. 7 describes deployment and current use.

2 Objective

The goal of Too is to provide citizen developers with a No-
Code GPL. No-Code and a GPL may sound like two things
that cannot both be achieved, an oxymoron. It entails two
seemingly opposite requirements: domain-speci�c-like sim-
plicity and general-purpose-like expressibility. On the one
hand, in order for the language to be accepted by citizens, it
better be simple; it should enable easy entry, creating sim-
ple programs in minutes. On the other hand, assuming that
citizens’ software needs are like any other software needs,
the language must also be expressive enough, enabling citi-
zen developers to evolve and create high-end solutions that
involve concurrency, synchronization, complex algorithms,
and complex data-structures.

Preferably, we would like to see citizens and professionals
alike appreciating the many bene�ts a No-Code GPL brings.
Citizens would �nd the visual projectional editing easy and
productive to use, metaphorically as easy and as productive
as using a spreadsheet, with only mouse actions, such as
drag-and-drop and selection from drop-down menus. Profes-
sionals would also use the line-oriented text-based structural
editing and advanced features, just as a spreadsheet can also
o�er advanced operations.

2.1 Limitation of Current No-Code Platforms

No-Code tools have many bene�ts [32], such as increased
productivity and accessibility, and some tools may be better
suited for certain types of applications or users. However,
none of them provides a GPL for citizens:

Limited functionality No-Code tools typically provide a
limited set of features and functionality compared to
traditional programming languages. This means that
citizens may not be able to build more complex appli-
cations or perform advanced customization [30].

Lack of flexibility No-Code tools are sometimes not �exi-
ble enough to accommodate unique business require-
ments or work�ows. Users may thus need to adapt
their processes to �t within the limitations of the No-
Code tool, rather than being able to customize the tool
to meet their speci�c needs [27].

Limited control over code No-Code tools often abstract the
underlying code from the user, which means that users
have limited control over the code, and may not be
able to optimize or troubleshoot it.

Limited scalability No-Code tools may not be able to scale
to support large or complex applications. Users may

need to switch to traditional programming languages
or tools as their application grows in complexity [14].

Vendor lock-in Many No-Code tools are proprietary and
may not be easily transferable to other platforms. This
can create a dependency on the tool and vendor, which
may limit options for scaling or expanding the appli-
cation in the future [20].

2.2 Desiderata for a Citizens’ GPL

In designing a new No-Code language with the citizens’
perspective in mind, we assume that citizens would have the
following expectations from our GPL:

Expressiveness An expressive GPL provides the necessary
features and constructs to let citizen developers ex-
press complex ideas and algorithms in a clear and con-
cise way. It typically includes a wide range of abstrac-
tion mechanisms for programming.

Readability The generated code should be human readable
and suitable for citizen comprehension, somewhat like
a natural language. It means that preferably algorithms
should be presented in a graphical manner (such as a
�owchart, for example) instead of line-oriented text.
This also means getting rid of unnecessary symbols
and words, such as “.”, “;”, and “this,” and many com-
plex operators, such as “+=” and “!==,” that are com-
mon in many GPLs. It means using icons to illustrate
things. It means getting rid of parentheses in function
calls with no arguments (e.g., use now instead of now()).
It means avoiding weird programmer’s abbreviations
and refraining from using naming conventions, such
as nightTime or night_time, in favor of simply using
night time (e.g., night·time). It also means code color-
ing and hierarchical tool-tips.

Intuitive and familiar The language should be based on
known concepts, such as spreadsheets, rule-based sys-
tems, and directory listings; all are considered abstrac-
tions that people grasp easily. Spreadsheets have no
learning curve for entry level, but also pack built-in
power for professional use. Rules-based systems are
used in expert systems by common users and do not
require any prior knowledge in programming. They
could be found in email �lters, parental control appli-
cations, routers, and more. They present a very simple
logic: if something happens, do this and that. Directory
listing is a known concept admitted by common users.

Easy to learn Preferably, the language should be based on
a small set of keywords, operators and syntax rules. It
takes a lot of time for a professional programmer to
assimilate all these constructs and master a new lan-
guage. Citizens do not have this privilege as they may
not be practicing development daily. If the grammar is
simple enough, citizens would more likely remember
it and use it.

105

Onward! ’23, October 25–27, 2023, Cascais, Portugal Assaf Avishahar-Zeira and David H. Lorenz

Well documented Citizens should �nd the necessary in-
formation handy. This means lots of tool-tips, well
documented libraries, and documented tutorials [1, 2].

Easy to debug Citizensmay not even be aware of the notion
of bug let alone use a debugger with all the controls.
This means that the debugger should be simple and
intelligent.

Easy versioning Citizens must gain con�dence that should
something go wrong, they can always go back with
ease to a recent working version. It also means that
labeling should be simple and handy.

Simple to share and reuse Citizens are not full-time devel-
opers and therefore rely on reuse as much as possible.
Their involvement in development is minimal, con-
�ning to the last mile, in order to get the job done.
The development environment should enable e�cient
search and evaluation of existing libraries.

Simple to collaborate Citizens should be able to cooperate
on any program with other developers and especially
with professionals through a mentoring relationship.
This calls for cloud programming and instant web col-
laboration tools [15].

Responsiveness Citizens are not aware of compilation, and
therefore, their program should appear to be ready
to run at all times, except when �xing inconsisten-
cies (e.g., when removing an instance variable or a
method, leaving the logic inconsistent with behavior
that depend on them).

Hot plugging In order to reduce downtime, when running
a newly created software component, citizens would
appreciate an execution model that enables the ad-
dition, modi�cation, or replacement of components,
while keeping other internal components intact; that
is, leaving them running, waving the need to reboot.

Live programming Citizens are more productive in a dy-
namic and interactive programming environment. Re-
ducing the programming feedback loop allows citizens
to instantly observe the immediate runtime e�ects of
their code changes as they program.

Language locality Preferably citizens would like to pro-
gram in their native tongue. Also, there exist an abun-
dant number of potential citizens who are technical
but simply do not know English.

3 Language Design Principles

The Too language is multi-paradigm, assimilating di�erent
programming approaches to provide a simple programming
style for citizens.

3.1 Thing-based

Too refers to objects as things. In Too everything is made of
“things” without exception; from a simple register that holds
a boolean variable, to a learningmachine such as chatGPT that

crunches numbers, all are regarded as things. This simpli�-
cation makes basic types (such as int, �oat, etc.) redundant,
and altogether makes it easier for developers to assimilate
object-oriented principles.

Too supports the duality between composition (has-a rela-
tionship) and implementation inheritance (is-a relationship).
As in the Go language, the two have the same syntax, so
they both exist at the same time. This way two users may
refer to the same Too program, and one will see inheritance,
while the other will see composition. For example, in the
program switch { relay }, one user will say “a switch has
a relay,” while another will say “a switch is a relay.” Both
interpretations are legitimate.

A Too program de�nes a single thing, unlike many other
object-oriented languages that allow a program to have mul-
tiple objects at the root level. This simpli�cation creates very
short programs that are concentrated on a single idea.

3.2 Event-driven

An event driven architecture is often perceived more natural
and hence would more likely be embraced by citizens. Most
GPLs adopt an explicit invocation architecture: one method
calls another method and instructs it to perform some action
or to retrieve some required information. But often the real
world works di�erently. A company receives a new order;
the road segment is congested; the ship is docking; a web
server receives a request for a Web page, etc. In neither case
did the system schedule or request the action. Instead the
event occurred based on an external action or activity. To
accommodate this, Too implements an implicit invocation
architecture with event processing.

3.3 Third-party Composition

In Too things are reusable software components that are
subject to composition by third parties [33]. In contrast to
a monolithic system in which all the things are running
as a uni�ed entity over a single build, things in Too are
deployed independently of one another, and they interact by
communication rather than by standard function calls [19].
Hence some parts of the program could be activated while
other parts remain intact.

For example, this would allow the number·parameter thing
to be updated while the system is running, or to update
the conveyor thing while the production·line thing is running.
Such decoupling makes the system robust, extensible, re-
placeable, and live [11]. It also reduces overall system down-
time.

3.4 Marketplace for Things

To ensure portability, Too enforces a strict decoupling of
universal code from sensitive domain-speci�c information
(that might be con�dential). In this way, with a click of a
button, the developer may upload a thing to the marketplace,
with the desired price tag, desired visibility (grant access

106

Could No-Code Be Code? Onward! ’23, October 25–27, 2023, Cascais, Portugal

to speci�c developers, to the organization, or to the public),
sanitized from domain-speci�c information, ready to be used
by other developers, like a shared library item.

In addition, Too programs are typically very short, encour-
aging a much larger audience to get involved, to review the
code, to leave a 1–5 star rating, to suggest di�erent interfaces,
names, and even icons, creating in this way a democratic
marketplace for citizens.

3.5 Simple Programming

Too strives for simplicity in its syntax, editing, data struc-
tures, control �ow, operators, and multilingual support.

3.5.1 Simpli�ed Syntax. Too is simpli�ed to the bare
minimum. It aims to be the world’s smallest practical GPL,
with no keywords, �ve operators (Figures 1 and 2), and ten
syntax rules (Fig. 3). In comparison, Go, which is a fairly
small language, has 25 keywords, 34 operators, and about 100
syntax rules. This facilitates rapid acquisition of the language
and rapid development.

3.5.2 Simpli�ed Editing. Writing in Toowell-structured
programs is made easy thanks to the use of projectional
editing. Projectional editors are editors that modify the AST
model of the program through a projection to a view [10].
The projected view can be textual or visual. Projectional
editors allow modi�cations to the AST which are visualized
back as changes to the view.

3.5.3 Simpli�ed Data Structures. A thing in Too can
only own a single collection of minor things (instance vari-
ables). The language does not allow multiple data structures,
let alone nested data structures and global data structures.
Banning nested structures might be perceived at �rst as

a hit, since it requires to move the nested structure to an
external thing. However, this may enforce careful design:
“should I have two arrays, one for departure:tick and another
for arrival:tick, or should I have a single array of a new thing
called flight that contains these two �elds?”

3.5.4 Simpli�edControl Flow. Expert systems, especially,
and rule-based systems in general, o�er a simpli�ed ap-
proach to �ow control which is human-friendly and easy to
master. In such systems the logic is structured in rules with
a trigger and a list of sequential actions.
While most GPLs promote loops, signi�cantly reducing

code comprehension for citizens, Too o�ers various ways to
create iterative logic but it is loop-free. The algorithms in Too
may only contain downstream branching. This means that
rule actions (or function actions) are executed in a sequential
order and there is no way to go back and re-execute an action
that was already executed.

Nevertheless, in order to buy-in experienced programmers
that are used to loop statements, Too provides a gateway for
advanced developers with the iterative (“*”) operator. Simply

= Initial value for thing in declaration
* Wildcard and iteration
? Decision point
[] Subscript
→ Redirect

Figure 1. Operators

Id Identi�er

Str Singe or double quoted string

Num Number

Const Num or Str

Figure 2. Tokens

add the operator at the beginning of an action, and it be-
comes iterative. This would convert, for example, an if-then

conditional action to a classical while-do loop. It is unlikely,
however, that citizens will need it or use it.

3.5.5 Simpli�ed Operators. It is assumed that citizens
are familiar with spreadsheets and this reassures the use
of functions (e.g., AND(x,y), IF(x,y,z)) together with �uent
style chaining that is natural for citizens, refraining com-
pletely from in�x binary operators that might be di�cult to
remember (e.g., “<<=”), solving precedence of operations and
simplifying readability. For example, the expression:

(a + b) * c

would be coded by developers as:

a plus(b) times(c)

3.5.6 Simpli�ed Localization and Multilingual Sup-

port. Localization is the process of adapting the program-
ming language to the citizen’s native tongue. This can make
it reachable for a larger audience of citizen developers, giving
them a smooth entry to the world of software development.

The syntax of Too by itself does not limit the code to the
English language since it does not contain any keywords
and it supports UTF-8 identi�ers. For example, instead of
writing:

pi times(radius squared)

Greek developers could write:5

π φορές(ακτίνα τετράγωνο)

Shifting to a di�erent language only requires translating
the development environment once per language and, of
course, translating the catalog of things. The translation
of the catalog is scalable since it is done by developers. A
developer that places a new thing in the marketplace and
wishes to make it available in a di�erent language should
take care of the translation, or mark it for auto-translate.

5Pronounced “pi fores aktina tetragono.”

107

Onward! ’23, October 25–27, 2023, Cascais, Portugal Assaf Avishahar-Zeira and David H. Lorenz

Thing ::=Id “{” {Decl | Event | When | Func}∗ “}”; Id × Decl∗ × Event∗ ×When∗ × Func∗ = Thing

Event ::=Id Params; Id × Params = Event

When ::={Idsrc [“[” Decl “]”] “.”}+ Idsig Params “{” {Act}∗ “}”; Id∗src × Decl∗ × Idsig × Params × Act∗ =When

Func ::=Id Paramsin “→” Paramsout [“{” {Act}∗ “}”]hasBody; Id × Paramsin × Paramsout × BoolhasBody × Act∗ = Func

Act ::=[“*”]isIter Expr [“?” “{” {Actthen}∗ “}” [“{” {Actelse}∗ “}”]] ; BoolisIter × Expr × BoolisCond × Act∗
then

× Act∗
else

= Act

Expr ::=(Const | Ref) { “.” (Ref | Call)}∗ [“→” (Decl | Params)] ; (Const + Ref) × (Ref + Call)∗ × (Decl + Params) = Expr

Ref ::=Id [“[” (Expr | “*”) “]”]hasIdx; Id × BoolhasIdx × (Expr + Unit) = Ref

Call ::=Id “(” [{Expr | “*”}∗“,”]args “)”; Id × (Expr + Unit)∗args = Call

Decl ::=[“[]”]isArray [Idalias “:”] {Id}+“.” [“=” Const] [Str imp]; BoolisArray × Idalias × Id∗ × (Const + Unit) × Strimp = Decl

Params ::=“(” [{Decl}+“,” [...]isVariadic] “)”; Decl∗ × BoolisVariadic = Params

Figure 3. Concrete grammar (left) and abstract representation (right)

Listing 1. logger.too

logger {//members

[]data:string

[]temperature:sensor

sheet "Alice/sheet"

statistics normal

timer = "1s"

time

notifies(now:tick, `:number, f:number)//events

timer notifies·expiry() {//rules

timer reset("60s")

normal clear

normal append(temperature[*])

normal n is·not·equal·to(0)? {

normal mean → `

normal variance square·root → f

logger work(time now, `, f)

}

}

work(tick, `:number, f:number) → () {//functions

data["A"] assign(tick)

data["B"] assign(`)

data["C"] assign(f)

sheet append("Normal!A:A", data, "")

logger notifies(tick, `, f)

}

}

4 Language De�nition

The grammar of Too has ten syntax rules, displayed in Fig. 3
in the notation of EBNF. An example of a logger program
in Too projected to a textual view is shown in List. 1. The
program can also be projected to a compact (Fig. 4a), ex-
panded (Fig. 4b), or conventional (Fig. 4c) visual view. The
logger thing reads sensor values once per minute, calculates
their normal distribution, stores it in a Google spreadsheet,
and generates an event to signal other things.

4.1 Thing

Too de�nes four types of things: major thing, minor thing,
temporary thing, and abstract thing.

4.1.1 Major Thing. Thing in Fig. 3 de�nes a major thing,
i.e., the program. For example, the program in List. 1 is a
Thing, where logger is the Id of the program.

A thing can be instantiated either explicitly via the “create
instance” option (e.g., bind a Google sheet thing to a Google
sheet �le ID), or implicitly at runtime when a thing is �rst ac-
cessed, e.g., whenever the program refers to an array element
that does not exist, the element is automatically created.

4.1.2 Minor Thing. A Decl in Fig. 3 inside a Thing de�nes
a minor thing. A thing may have zero or more minors. Collec-
tively, all the minors de�ne a dictionary, which is e�ectively
the structure of the thing.
Each minor could be a scalar or an array. A scalar is an

instance of a thing, and an array may contain zero or more
scalars of the same thing. This is somewhat similar to the
JSON concept in which an object is a set of other objects and
arrays. The relation between Too and JSON goes further,
and a JSON string is used to initialize the thing by default
(by unmarshaling the string into the appropriate members).

An array is implemented by a map with named indices,
rather than a continuous chunk of memory (with running
indices). The keys (named indices) provide extra informa-
tion, orthogonal to the values. This makes the map a better
choice for citizens, as the key-value pairs could be used, for
example, to print the names (keys) alongside with the phone
numbers (values). A developer who wishes to use a stan-
dard array can do so by referring to a library thing such as
array·string or array·number.
A Decl may contain an array indicator (square brackets

pre�x), an alias name (Sect. 4.2), an identi�er path with one
or more things, an initialization value (the ‘=’ symbol), and
an explicit import path (Sect. 4.3).
In List. 1, minor []temperature is an array of temperature

sensors, data is an alias for string and also an array, minor
timer = "1s" is a timer initialized to expire after one second,

108

Could No-Code Be Code? Onward! ’23, October 25–27, 2023, Cascais, Portugal

(a) Compact (b) Expanded (c) Conventional

Figure 4. Projection to a visual view

and minor sheet "Alice/sheet" is a Google-sheet thing with a
speci�c import path referring to directory Alice/sheet.

The last thing on the identi�er path is the e�ective thing
that determines the type of the declaration. For example, a
statistics thing may include two minors: normal and poisson.
Another thing may then declare the minor statistics normal,
where normal is the e�ective thing. When referring to normal

in the code, there is no need to include the statistics pre�x,
unless there is another e�ective thing also named normal.

4.1.3 Temporary Thing. A temporary thing holds the pa-
rameter of a function or a rule, or the content of an expression
byproduct when redirected (Sect. 4.8). This corresponds to
an automatic variable in other GPLs. Unlike minors that are
persistent, temporary things disappear when the function,
rule, or block ends.

4.1.4 Abstract Thing. An abstract thing is an interface,
it may only contain function declarations (without a body),
and it cannot contain minor things, events, or rules (Sect. 4.4).
When another thing provides an implementation for all the
functions in the interface, it is said to implement the interface.
A function that accepts an interface as a parameter, may
accept any thing that implements the interface.

Scoping is lexical; temporary things have precedence over
minor things, and temporary things declared in a block have
precedence over temporary things declared in outer blocks.

4.2 Aliases

An alias creates an alternative name for a thing. For example,
archimedes:pi declares archimedes to be an alias name for pi.
Alias names must be distinctive (unique) within a block and
they are transitive; if a aliases b that aliases c, then a aliases c.
Thing c in this case is regarded as the basis of a and b.

Unlike many other GPLs that enforce aliases for every
declaration (e.g., �oat x, or let x:number), Too only requires
aliases to resolve ambiguities. This means that if a function
receives a gmail as a parameter, there is no strict requirement
to alias it (e.g., g:gmail).

4.3 Imports

By default, things are looked up in the directory tree using a
proximity metric, unless an import path is provided with a
speci�c directory. The directory tree may contain multiple
variants of the same thing in di�erent directories. In such
cases, the program in focus locates the correct variant based
on directory distances.

109

Onward! ’23, October 25–27, 2023, Cascais, Portugal Assaf Avishahar-Zeira and David H. Lorenz

Note that this lookup scheme based on proximity enables
us to determine dependencies automatically, unlike in many
other GPLswhere dependencies are explicit (using the import
or the include pragma).

4.4 Signals and Rules

Signals are outbound event messages; rules are inbound
event processors.

4.4.1 Signals (Outbound Events). Event in Fig. 3 de�nes
an outbound event. A thing may declare zero or more events
that specify how the major thing may signal other things. It
de�nes the name of the signal and the parameters conveyed
in the signal message. In List. 1, notifies is an Event.

Params in Fig. 3 de�nes a list of declarations, optionally
indicating the last Decl as variadic (the ellipsis symbol). For
example, in List. 1, the notifies event has the following pa-
rameters: (now:tick, `:number, f:number).

4.4.2 Rules (Inbound Events). When in Fig. 3 de�nes a
rule. A thing may have zero or more rules. A rule comprises
a trigger and a block of actions. The rule could be triggered
by a self generated signal or by a signal generated by an-
other thing. When triggered, the rule executes the actions
sequentially.

The trigger is composed of a source and a signal. The source
could be a list of one or more things that are contained in
one another. For example, the source of the following rule:
thermostat temperature notifies·low is a temperature thing con-
tained in a thermostat thing.

4.5 Actions

An Act in Fig. 3 could be simple or conditional, and executed
either once or iteratively, depending on whether or not it is
preceded by a ‘*’ pre�x.

4.5.1 Simple Action. Expr in Fig. 3 de�nes a simple ac-
tion. It may start with a Str or Num constant (Const), fol-
lowed by zero or more Call and Ref , and optionally end
with a redirect operator that assigns the by-product(s) of
the last stage into one or more temporary things. In List. 1,
normal variance square·root → f assigns the resulting stan-
dard deviation to the temporary sigma.

Ref in Fig. 3 de�nes a caller thing. In List. 1, the line
normal n is·not·equal·to(0) contains a chain of two references:
normal followed by n. In case the reference is an array, a
subscript may be included. For example, temperature[*] and
data["A"].

4.5.2 Conditional Action. A conditional action is a sim-
ple action with a byproduct constrained to a boolean, plus a
true block and optionally also a false block that follows.

In List. 1, the rule timer notifies·expiry has four actions; the
�rst three are simple actions, and the fourth is a conditional
action that has a true block of three more actions.

4.6 Functions

A thingmay de�ne zero or more functions. For example,work
in List. 1 is a function, where argument now:tick is the �rst
Decl in Paramsin. A function may take multiple arguments
(variadic parameter) and may return multiple values.

Call in Fig. 3 de�nes a standard function call, comprising
a function name and a comma-separated argument list. In
List. 1, the line normal variance square·root contains a chain
of two calls: variance followed by square·root.

4.6.1 Built-in Functions. Too provides a set of prede-
�ned functions. The functions are not reserved and the devel-
opermay override themwith a di�erent implementation. The
built-in functions are: id, set·id, as·string, marshal, unmarshal,
location, halt, and resume. An array thing contains in addition
the following functions: length, exist, not·exist, empty, delete,
instances, sort, is·ordered, and inverse·order.

4.7 Iterations

In addition to iterations through recursive function calls,
there are four possible types for iterations in Too.

4.7.1 Wildcard Iteration Over an Array. The following
example iterates through the elements of an array. The ‘*’
operator serves as a wildcard; i.e., applies the action to each
element of the array. The program traverses the set elements
and adds them to the sum:

bar {

[]set:number

sum:number

bar notifies·up {

sum add·to·it(set[*])

}

}

4.7.2 Wildcard Iteration Over Key-Value Pairs. The
following example iterates through the elements of the set

array using key-value pairs, where the ‘*’ operator alone is
the key and ‘set[*]’ is the value, calling the function add·odd

to sum up the odd numbers:

baz {

[]set:number

sum:number

baz notifies·up {

baz add·odd(*, set[*])

}

add·odd(key:string, value:number) → () {

set[key] is·odd? {

sum add·to·it(value)

}

}

}

Note that the expression may contain the wildcard key ‘*’
and the wildcard value ‘set[*]’ multiple times. It may even

110

Could No-Code Be Code? Onward! ’23, October 25–27, 2023, Cascais, Portugal

contain various arrays, in which case the �rst wildcard array
that appears in the expression will be the subject for iteration.
For example, the print function

terminal print(*,": year=",year[*],", age=",age[*])

iterates through year elements (since it comes before age),
and prints also empty strings for age elements that do not
exist (when checking for their existence, they are created
automatically).

4.7.3 Iterate a Simple Action. Pre�xing an action with
an ‘*’ operator results in a repetitive action. In the follow-
ing example, the iteration a�ects only the �rst terminal print

action, which is then executed in an in�nite loop. It prints
"life is good!" in�nitely, never reaching "hell":

goodlife {

terminal

goodlife notifies·up {

* terminal print("life is good!")

terminal print("hell")

}

}

4.7.4 Iterate a Conditional Action. Like in the case of
iterating a simple action, creating a repetitive conditional
action means that the entire then block is executed while
the boolean expression is true, and the entire else block is
executed while the boolean expression is false.
The program in the example below repeatedly checks

whether or not the sun is in the sky (by checking the time
of the next sunrise and next sunset). When true, it executes
the then block, printing "The sun is shining!". When false, it
executes the else block, printing "The stars are blinking!". It
will go on like this between day and night forever, never
reaching "hell":

greatlight {

sun

terminal

greatlight notifies·up {

* sun is·on? {

terminal print("The sun is shining!")

}{

terminal print("The stars are blinking!")

}

terminal print("hell")

}

}

If the else block is omitted, the loop becomes similar to a
while-do, and "hell" would be reached at sunset.

4.8 Byproducts and Redirection

An expression may have zero or more byproducts, deter-
mined as follows. If the expression ends with a thing then
this thing is the byproduct. For example, the byproduct

Runtime

Environment

ThingProjectional
Editing Broker

Executable

(Binaries)

Thing

Market-

(Global)

Place

Thing

(Local)

Inventory

Figure 5. Cloud development environment (CDE)

of sensor location latitude is a number, since latitude aliases
a number. If the expression ends with a number constant
(or string constant), then the byproduct is a number (or a
string). If the expression ends with a function call, then the
byproducts are the function’s return values.
An expression may have no byproducts, for example, an

event signal (which never returns a value) or a function that
does not return a value (e.g., terminal print). Only expressions
with a single byproduct could be extended �uently.

If an expression has one or more byproducts, these byprod-
ucts could be redirected to temporary thing(s) using the
redirect (→) operator. For example, the byproduct of the
following action time now →now is a tick, therefore now

aliases tick. Similarly, the byproducts of the following action
sensor current·reading → (value, error) are the returned val-
ues (number, error), therefore value aliases number.

5 Cloud Development Environment (CDE)

Being simple is a good property for a language but it does not
necessarily imply being No-Code. In order to be No-Code
the CDE must be designed speci�cally to enable citizens
development by mouse actions alone.

Fig. 5 depicts the user interaction with the CDE. The devel-
oper is presented with two distinct applications: projectional
editing (Sect. 5.1) and thing broker (Sect. 5.2). The projectional
editing app lets the developer focus on a speci�c thing; on
its data structures and algorithms. The thing broker app lets
the developer focus on reviewing things posted by other de-
velopers and control the way things sourced by the domain
are represented to other developers.

When the developer commands to run the thing in focus,
it compiles the Abstract Syntax Tree (AST) together with
domain-speci�c data taken from the binding tree (Sect. 6.2),
stores the binary in the binaries DB, and runs the program.
The program then joins the domain’s “orchestra” in receiving
and sending messages.

5.1 Projectional Editing

The projectional editing app (Fig. 5) lets the developer ma-
nipulate the AST of the thing in focus. The CDE constantly
stores the changes in the local DB.

5.1.1 Challenges. Current CDEs that are AST aware pro-
vide good assistants at the expression level. They list all the

111

Onward! ’23, October 25–27, 2023, Cascais, Portugal Assaf Avishahar-Zeira and David H. Lorenz

Listing 2. carHop.too

car·hop {

[]camera

[]last·time:tick

[]last·camera:string

time

notifies(plate:string,a:string,b:string,Δ:duration)

camera[b] notifies·vehicle·identified(plate:string) {

last·camera[plate] is·not·empty? {

last·camera[plate] → a

last·time[plate] → start

time now di�erence·from(start) → Δ

car·hop notifies(plate,a,b,Δ)

}

last·time[plate] assign(time now)

last·camera[plate] assign(b)

}

}

functions and objects that are possible at a certain point.
However, when the editing of the expression is completed,
they neither project the next development action, nor do they
have any pretension to do so. The developer may choose to
end the block, break the loop, return from the function, start
a new expression, start a new if statement, start a new for

loop, etc. Listing all these options and waiting for the pro-
grammer to make a decision does not promote productivity.
On the contrary, the developer would surely outperform such
a profusion of suggestions with “hands on the keyboard.”
Another challenge with current CDEs pertains to the

monolithic nature of source �les that intermix data structures
with algorithms. Current CDEs do not overhaul this, but in-
stead cooperate with this approach. However, this might be
too perplexing for citizens that would likely �nd develop-
ment easier when the problem is decomposed into simpler
problems.
In contrast, the Too CDE decomposes the problem into

smaller chunks, using di�erent visual editing tools. In Too

the entire development can be accomplished solely by mouse
actions alone, using drag-and-drop for developing the data
structure (Sect. 5.1.2), drag-and-drop for the �ow-control

(Sect. 5.1.3), and drop-downmenus for the actions (Sect. 5.1.4).
These tools are described next in relation to the car·hop pro-
gram in List. 2. Consider a city with lots of tra�c cameras
that can identify license plates. The car·hop program noti�es
of camera 1 that detected the car, together with camera 0
that previously detected the car, and the delta time it took to
hop from 0 to 1. This program could be used later by other
programs such as car·speed that noti�es of the car speed,
car·ticket that noti�es of cars crossing the speed limit, and
many other programs.

Figure 6. Developing the data structure

5.1.2 Developing the Data Structure. Since the struc-
ture of a thing is simply a dictionary, the CDE enables drag-
ging and dropping things from the inventory into a list of
minors, labeled members. It then enables removing things
from the members list, changing their order, changing at-
tributes, such as switching to/from array/scalar, setting an
alias name, setting an initial value, and assigning an instance.

Fig. 6 shows a portion of the CDE. The inventory drawer
is shown on the left side. This drawer is controlled by the
half-circled blue button (‘ ’) and it is normally closed. The
car·hop members are shown on the right-hand side of this
�gure. The cards of the �rst three members illustrate an
array. The small caret symbol is used to expand and contract
the stack, listing the array members. An opened array would
show the named instances.

If the developer drops a thing and the members list already
contains a thing by this name, then the CDE automatically
assigns a random alias name for the new member, to keep
the dictionary sound. Later on, the developer may assign a
di�erent alias to the new member.

5.1.3 Developing the Control Flow. Another portion of
the CDE speci�es the rules, functions, and events. Fig. 7a
shows the rule camera notifies·car·identifiedwith its �owchart,
built from a trigger in the oval box, and a collection of ac-
tion boxes connected by edges; simple actions in rectangular
boxes, and conditional actions in diamond boxes.

When hovering over a rule or a function, the editing tool-
bar pops-up, with two small icons outlined in blue: a rec-
tangle and a “diamond” (hexagon with extended sides). The
developer may drag and drop these icons on a �owchart edge
to insert an empty action box into the �owchart. Note that
the oval box is opened automatically when creating a new
rule or function (using the blue plus icon ‘ ’).

5.1.4 Developing an Action. Fluent-style chaining sim-
pli�es editing greatly since it shifts the focus to a single point,
namely, the end of the expression. The byproduct determines
the alternatives, such as the functions, events, and things
that could extend the expression at that point.
The editor may prune some alternatives if they lead to a

dead-end. For example, in case of a conditional action, the

112

Could No-Code Be Code? Onward! ’23, October 25–27, 2023, Cascais, Portugal

(a) Editing a �owchart (b) Editing an action

Figure 7. Developing the control �ow

editor does not list the terminal since it has no path to a
member that results with a boolean.
In addition to the alternatives induced by the byproduct,

the syntax dictates a fairly limited number of control alter-
natives:

• a delete alternative that acts as a “backspace” button,
erasing the last link in the �uent-style chain;

• a subscript alternative ([]), only shown if the byprod-
uct is an array;

• a wildcard alternative (*), only shown if the expression
is empty (new expression) and it is inside a subscript
or if it is an argument of a call/signal;

• an iterative alternative (*) placed at the beginning of
the action, only shown if the expression is the action’s
main expression;

• a redirect alternative (→), only shown if the expression
is main and it has one or more byproducts;

• a string alternative for typing a constant string, only
shown if the expression is empty; and

• a number alternative for typing a number constant,
only shown if the expression is empty.

This is in contrast to standard GPLs, which may contain
many more alternatives for the relevant operators (unary,
binary, and ternary) and for the relevant opening or closing
parentheses. However, standard GPLs typically would not
include the wildcard and iterative alternatives.
When the action box is selected (enters edit mode), the

CDE places an extend symbol such as a plus or a pencil at
the end of every expression. These symbols mark the points
where the expressions could grow. Fig. 7b shows two plus
symbols at the end of the main expression and at the end of

the expression plate located inside the subscript. Then, when
the developer selects an extend symbol, a drop-down menu
opens, listing all the possible alternatives that are relevant
at the end of the expression. The list contains all the things
(shown in cyan) and all the functions/event signals (shown
in magenta) that could be chained at that point, plus a small
number of control alternatives at the beginning (shown in
gray). In Fig. 7b, for example, only two control alternatives
are relevant: delete and iterative.

The projectional editor colors the extend symbols to indi-
cate expression validity. Red indicates that the expression
currently does not satisfy a constraint, and blue is used in
all other cases. The red symbols remains persistent after the
action box is no longer in edit mode. This is meant to clearly
indicate the presence of a problem that prevents the program
from running.

5.1.5 Textual View. In addition to the graphical editing
by mouse only, the CDE enables conventional typing using
a keyboard. This could be used as a gateway for professional
developers that require hands on the keyboard. The typ-
ing is not entirely free since the structured editor provides
smart word completion and keeps the expression structurally
sound. While typing, the CDE shows the relevant alterna-
tives in a drop-down menu, like in the graphical editing case,
disallowing keys that are not in the initials of the alternatives.
The typing is done in the action box or in a special 1-line bar
referred to as the expression bar (similar to the formula bar

of a spreadsheet).
The alternatives listed in the drop-down menu could be

ordered alphabetically; by their natural order in the things;
by frequency of use; or by a smart algorithm that predicts the

113

Onward! ’23, October 25–27, 2023, Cascais, Portugal Assaf Avishahar-Zeira and David H. Lorenz

probability for selecting every alternative. Such an algorithm
may use AI capabilities that are built from analyzing many
examples in many domains of problems.
In order to enable collaboration, the CDE support cloud

programming, adopting a concept used in Google docs (or
Google sheets), where the cursor (or cell frame) is colored to
identify the collaborator. Similarly, when an action is selected
by another developer, the action frame changes to a color
di�erent than blue, and when hovering, the name of the user
is shown (as a tool-tip).

5.1.6 Projecting anAction. The projectional editormain-
tains the AST, and this is used for code coloring; for opening
Camel Case (e.g., weAre is projected as we are); for cleaning
unnecessary parentheses; for cleaning unnecessary connec-
tive symbols such as dots; and for showing the thing’s icon
when hovering. These measures create a human friendly
representation with an improved readability.
For those that prefer the binary in�x notation, the pro-

jectional editor may convert upon request the �uent style
notation to the corresponding binary in�x notation. For ex-
ample,

a plus(b) times(c)

could be projected as:

(a + b) * c

5.2 Thing Broker

The thing broker app (Fig. 5) interacts with the developer
and with the two related DBs: the local inventory and the
global marketplace. When the developer instructs the thing
broker app to “share” the thing in focus, the thing is copied
from the inventory to the marketplace. It also allows the
developer to purchase things from the marketplace and copy
them to the inventory.
The thing broker app acts like a standard e-commerce

arena (like Amazon or AliExpress). It maintains the follow-
ing records for every thing: name, icon, owner domain, de-
scription, price,6 promotion, search keywords, program brief
with function and rule and event headers, documentation,
hyperlink for more information (optional), dependency bun-
dle, date posted, number of downloads, rating (such as 1-5
stars), developer reviews, related products (things), and num-
ber of stock items (may be relevant for physical things, for
example).

When purchasing a thing, the thing broker app takes care
of the billing; it debits the buyer’s domain and credits the
seller’s domain, leaving some commission to the “house” (to
the thing broker). If some things in the dependency bundle
have a price tag, then the cost of the downloaded thing would
be the accumulated cost, and the buyer get the breakdown
of the cost. In such case, the thing broker app takes care

6After a period of time, the thing may become available at no cost in the

public domain, much like a patent that expired.

of distributing the payment, crediting the various domains.
Likewise, if the developer decides to return the thing and
cancel the purchase, the thing broker app performs the same
actions in the reverse order.

Some things might be located outside the cloud (e.g., an ex-
ternal chat-bot, an external web-server, or a physical sensor),
in which case they are represented in the marketplace only
with their mock alternative. When the developer purchases a
physical thing such as a sensor, it is the responsibility of the
seller to ship the real thing to the buyer as a standard mer-
chandise. The thing broker app is open for third parties that
wish to post things developed in a di�erent environment.
For example, an oracle reports of airplanes take-o�s and
landing, an AI server, a third party database, etc. Again, in
that case the third parties only post the mock alternative in
the marketplace, and this mock communicates with the real
thing. Third parties are responsible for the availability of the
real thing (it is not the responsibility of the Too platform).

5.2.1 Upload (Sharing). The local inventory contains a
subset of the global marketplace, with all the things that
were purchased, plus some local things that were developed
in the domain. When the developer posts a thing for sharing,
the thing is copied from the inventory to the same address at
the marketplace, along with the dependency bundle attached
to it.

5.2.2 Download (Purchasing). When the thing is pur-
chased via the thing broker, the thing is copied from the
global marketplace to the same address at the local inven-
tory, and then the dependency bundle is opened and the things
in the bundle are copied to the locations dictated by their
paths. At this stage it might be that the domain contains al-
ready one or more of the imported things (it contains already
the purchased thing or one of the things in its dependency
bundle).
In such a case the platform analyzes the discrepancy to

verify that the copy can go silently. Otherwise, the platform
prompts the developer to resolve the con�ict and make the
decision whether or not to copy. Silent copy could occur
when the imported thing is backward-compatible containing
“harmless” additional functions, rules, or events. For example,
an imported string thing that contains in addition the replace
function.

5.2.3 Versioning. The dependency bundle is a set of things
that are known to compile and run together, along with their
path information and speci�c version numbers. When the
developer runs program foo, the CDE automatically saves
the things in the dependency bundle of foo and assigns them
a version number. At that time, thing foo also receives a
version number and is saved. Later on the developer may
assign to foo and its dependency bundle a meaningful label.

114

Could No-Code Be Code? Onward! ’23, October 25–27, 2023, Cascais, Portugal

red[R]

blue[B]green[G]

Figure 8. Real vs. mock instances

Note that the CDE also saves things automatically during
development. However, these micro-versions are created for
undo and redo purposes and do not get version numbers.

5.2.4 Labeling. Labeling is di�erent from versioning since
it applies to a group of things rather than a single thing.
When the developer assigns a label to a thing, this unique
label is attached also to the dependency bundle. In this way,
at need, the developer may go back to a history label and
restore the things in the bundle to recover a sound working
version.

6 Language Internals

Too runtime model is based on software components that
can be deployed and run independently. Each component
runs in a separate process with a dedicated service that can
bring it up in case of failure. A component may also run on
a di�erent machine, or in a di�erent geographical location
(e.g., consider a sensor programmed in C++, running inside
a Shrimp pool in Guayaquil, Ecuador).

Fig. 8 describes three components (three large circles) that
correspond to instances of the following three programs:

red { notifies }

green { red }

blue { red green }

Instance blue[B] contains instances red[R] and green[G]. How-
ever, since instances are unique, blue[B] contains the mocks
of these instances (small circles). The mocks provide a thin
interface that communicates with the real instance (via RPC).

6.1 Silent vs. Non-silent

A thing in Too can be either silent or non-silent. A thing
is de�ned as silent if it does not generate any signal nor
receive any signal, recursively. Recursively means that its
minors must also be silent. A string and a number are silent
and likewisemath is silent since it only contains the numbers
c and 4 that are silent (and a collection of functions).

Thing gmail, on the other hand, is non-silent since it gen-
erates the notifies·email signal (to notify other things of an in-
coming email). Likewise red, green, blue are non-silent (since
red noti�es).

We use this dichotomy to automatically identify the com-
ponents in the system; components are the non-silent things.
The user may choose to activate a non-silent instance (a com-
ponent) or leave it inactivated, but cannot activate a silent
instance. Note that there is no point in activating a silent
thing since the result of running it is the same as not running
it (no output). For those (rare) cases in which there is a need
to reference a silent thing (e.g., boolean) from other things,
the library contains a corresponding non-silent version (e.g.,
boolean·parameter).

When a component is constructed, its silent members are
constructed locally as real instances (there is no need to
reference them via RPC). This means that if two components
instantiate a similar silent thing (e.g., instance “Bob" of thing
string), then each maintains a di�erent copy of this instance,
and changing one does not a�ect the other.

A silent thing consumes fairly limited resources resulting
in a small footprint in memory. A non-silent thing consumes
much more resources, both in memory and network. It gen-
erates periodic notifies·alive signals, and it keeps an open
connection to the message server in order to send and re-
ceive signals. For example, a booleanwould consume a single
byte in memory, while a boolean·parameter would consume
about 10KB (this is the footprint of a TCP client), and would
consume in addition network resources.

6.2 Binding Tree

At construction, when resources are allocated, the instances
are named and optionally also initialized. The names and ini-
tialization strings come from a binding JSON �le. The JSON
is a tree arranged as an interleaved structure of instances
and things, and it is generated automatically. List. 3 is an
example for a binding JSON that corresponds to the greatlight
program in Sect. 4.7.4.

6.3 Initialization

A special initialize function is called right after the thing’s
resources are allocated and all the minors are constructed.
This function enables both the developer and the user to pro-
vide initialization values. The developer controls the degree
of user involvement in the initialization. It could be that the
entire initialization is left for the user; that the developer
provides some initialization that the user can override; or
that the developer blocks the user completely and provides
initialization values alone.

6.4 Run-Shallow vs. Run-Deep

There are two running modes in Too. Run-deep activates
the component and its internal members, recursively. Run-
shallow only activates the component, leaving its members
intact. The run-shallow mode is useful when the user needs
to minimize the system’s downtime. This may create syn-
chronization problems in case the minor is not yet running,

115

Onward! ’23, October 25–27, 2023, Cascais, Portugal Assaf Avishahar-Zeira and David H. Lorenz

Listing 3. Binding JSON �le

{

"thingName": "greatlight",

"instances": [{

"instanceName": "", "initial": "",

"things": [{

"thingName": "sun",

"instances": [{

"instanceName": "Boston", "initial": "",

"things": []

}]

},{

"thingName": "terminal",

"instances": [{

"instanceName": "Console", "initial": "",

"things": []

}]

}]

}]

}

or the minor is not updated to support the same functional-
ity. However, the system generates appropriate error events
that could be processed further. The run-deep mode is useful
when the system has gone through a major revision and
needs to restart all relevant components to make sure they
are all synchronized.

7 Real-World Deployment

An early version of Too in text-based mode was released
in 2020 and used by professional developers. The current
version with its CDE is available since 2023, and used by
both professional and citizen developers. Its library currently
contains about 40 things, including: vector, matrix, random,
list, gmail, thread·interface, go, channel, hash, io, os, regexp, pdf,
unicode, image, error, voice·caller, etc.

7.1 Experience Building Systems

Too is in its infancy but is already being used experimentally
in domains such as Precision Agriculture (PA), End-to-End
Factory Automation, and Robotic Process Automation (RPA).

7.1.1 SystemA–AgricultureCultivation Farm. In late
summer 2020, a large indoor farming startup company de-
ployed Too as a control system. It has been in production
ever since. To date, tens of millions of dollars have been
invested in the 15 indoor spaces controlled by Too.
The system analyses abnormal conditions in the farm,

such as the operation of electricity, cooling/heating units,
and humidity/temperature/CO2 in the growing rooms. For
example, a generator thing reads the number of times the
generator has started (via an rs485 thing), and when this
number increases, it sends voice calls (via a voice·caller thing)

to the persons in charge to indicate that the operation is now
running on the generator and not on the power grid.
The system was developed in two months by an expert

(a programmer). Today, the system is controlled by two citi-
zens. The system processes about 100, 000 events daily, by
about 25 components with about 100 instances (plus about
100 physical sensors).

7.1.2 System B – Cosmetics Factory. The system con-
trols various processes in the laboratory, such as �lling to the
threshold, closing the heater when the temperature reaches
a certain level, and controlling the process of emulsion by
changing the speed of the mixer as the temperature changes,
and alerting when to add the next phase.

The system was developed in 2023 by a citizen under the
supervision of an expert (programmer). The system is in
daily use, and now two citizens constantly improve it. Once
the system establishes con�dence, the factory plans to use it
to control production processes on the shop �oor.

7.1.3 System C – RPA. The system converts leads re-
ceived through a Contact Us form on a website, and sends
them using an sms thing to the appropriate sales represen-
tative based on the City �eld. Each sales representative has
a territory de�ned by a comma-separated list of cities. The
system is triggered by email messages containing the contact
form in a JSON object. It decomposes the object into a contact
thing and then uses the contains function of the string thing
to check if the sales rep’s territory contains the city.

A citizen created this program unsupervised after watch-
ing three training videos: one showing an example of the
contains function of the string thing, a second video demon-
strating how to convert a JSON object into a thing, and a
third video describing the gmail thing. The system processes
about 10 leads a day.

7.2 Lessons Learned

Even with No-Code support, software development is gen-
erally challenging for citizens. What seems to be trivial for
professional developers may be complicated for citizens. For
example, OOP was supposed to be very natural but turned
out to be intricate especially the invocation of a method
(function in Too). Likewise, lacking education in Boolean
algebra, creating expressions with multiple operands (such
as “not a or not b") was confusing for citizens.
However, with su�cient training and mentoring in the

early stages, citizens succeeded in creating simple systems.
Moreover, in time they modi�ed and extended these systems
into complex systems. Generally, after a kick-start, citizens
begun to bene�t from developing themselves.

The concepts of components, events, and rules were easier
to grasp by citizens. Breaking the programming task into
smaller tasks was critical. Citizens had no problems with the
�owchart style in the rules and functions sections. Citizens
had some di�culties with the members section, �nding the

116

Could No-Code Be Code? Onward! ’23, October 25–27, 2023, Cascais, Portugal

appropriate thing in the inventory. They requested better
documentation and a search function. Creating actions in
the rules section was the most complicated task for citizens.
The main di�culty was with the concept of by-products
(�uent style function chaining does not exist in spreadsheets
and is new to most).
Cloud programming was found to be very useful. It en-

abled a mentor and a novice to work together on the same
program and solve problems in a tight loop. Having a play-
ground was also very helpful. The playground was a good
place for citizens to gain con�dence because there is no
penalty for mistakes there.7

7.3 Citizen Feedback

We have interviewed 10 citizens, 5 of whom were asked to
solve a similar problem (create a thing with a few rules).
There were four levels of di�culty for solving the problem:
(i) modifying parameters; (ii) local changes; (iii) creating a
new thing; and (iv) creating a complete project with multiple
things.

In general, we saw that with no training, citizens succeed
with problems of type (i) mainly because Too programs are
small and there was no problem locating the relevant param-
eter. With minimal training, they coped well with simple
problems of type (ii) involving adding and modifying actions
and conditional actions. Complex problems of type (ii) in-
volving arrays, wildcard operators, and iterations required
additional training or mentoring. Similarly, with minimal
training citizens succeeded with problems of type (iii), creat-
ing a new thing and new rules within that thing.
As for problems of type (iv), these required experienced

citizens. Indeed we saw that less experienced citizens could
not generalize the RPA solution to n reps, which requires
iteration and an additional thing (rep). Instead, the outcome
was a long chain of if sentences (checking if rep1 contains
the city, otherwise if rep2 contains the city, etc.)

7.4 Threats to Validity

Answering the question “could No-Code be Code?” requires a
user study to proper evaluate whether or not citizens could
truly develop themselves No-Code solutions in Too. With-
out a user study, the No-Code narrative should be taken
cautiously. Although citizens are not required to write code,
they do perform drag-and-drop operations on code blocks.
Hence, they still need to read and understand “Code.” How-
ever, our experience so far suggests that the ability to build
a No-Code solution depends more on the complexity of the
problem at hand and less on the skills of the developer.
It is di�cult to separate out what we believe would be

intuitive to citizens and what would actually prove to be in-
tuitive to citizen developers. Nevertheless, in our experience

7When programming errors might have led to a substantial impact on the

business, mentoring was a must.

citizens could be mentored on concepts in Too that were
new to them despite their lack of training in programming.

Finally, we note that Too is in active development and has
evolved over time. Thus, the user-experience with Too may
have varied as a result of this evolution.

8 Discussion and Related Work

No-Code programming is a special case of Low-Code (visual)
programming [13]. Low-Code requires minimal but some
programming skills, targeting professionals that lack exper-
tise in a speci�c domain, whereas No-Code requires technical
skills but no programming skills, targeting end-users who
are citizens.
Both No-Code and Low-Code are special cases of visual

programming languages that use visual elements such as
blocks, graphs, and �owcharts to represent code. However,
not every graphical language is necessarily No-Code.
Block-based coding languages [21] are visual program-

ming languages that let end users create programs by con-
necting program elements graphically rather than textu-
ally [38]. For example, Scratch8 [28] is a popular visual pro-
gramming language for children that uses blocks to represent
commands. More generally, Blockly9 [25] is a JavaScript
library for building a customized visual programming editor
that uses interlocking blocks to represent elements of the
code. With Kogi [37], a tool for deriving Blockly code from
a simpli�ed context-free grammar of a given language [36],
a block-based coding visual environment can be generated
for many languages. However, not every block-based coding
visual environment necessarily provides a No-Code program-
ming experience for citizen developers, because the graphical
abstractions do not necessarily hide the complexity of the
underlying language.

Too distinguishes itself from traditional visual languages
in its intent and purpose. The intention of Low-Code plat-
forms is often to reduce coding e�ort in order to enable
rapid development. In comparison, the intention of Too is to
empower citizen developers. Most No-Code and Low-Code
platforms are special purpose, targeting a speci�c domain,
such as No-Code AI (e.g., Obviously.AI)10 or Low-Code
Machine Learning (e.g., AutoML).11 They enable “domain
citizens” to reap the bene�ts of the domain without deep
knowledge of that domain. In comparison, Too is general
purpose.
One of the main goals of Too is to make programming

accessible for citizens. Although Too provides an ecosystem
to create complete software solutions, it would be bene�cial
to have interfaces to other languages. This would enable

8h�ps://www.scratchfoundation.org
9h�ps://developers.google.com/blockly
10h�ps://www.obviously.ai
11h�ps://cloud.google.com/automl

117

https://www.scratchfoundation.org
https://developers.google.com/blockly
https://www.obviously.ai
https://cloud.google.com/automl

Onward! ’23, October 25–27, 2023, Cascais, Portugal Assaf Avishahar-Zeira and David H. Lorenz

integration with modules developed by professional pro-
grammers in di�erent programming languages.
Too currently provides two options for interfacing with

other languages and other development platforms. The �rst
is communication; developers may send and receive event
signals to and from an external module. This would allow a
Too program to invoke certain actions in another external
module, and visa versa; it would allow an external module to
invoke certain action in a Too program. The API is available
over MQTT protocol and in the future also over HTTP.

The second option is a Go language backdoor; developers
may write an entire things in Go language, or some speci�c
functions or some speci�c rules. This is done by uploading
the a Go �le to the appropriate folder. File naming conven-
tion dictates the compiler that a thing (or function or rule)
is written in Go and there is no need to compile it. This
backdoor is useful for implementing things that interacts
with the operating system, for example.

9 Conclusion

This work contributes a GPL that is designed to be accessible
to non-programmers. The design of Too makes it powerful
enough to be general purpose, but at the same time simple
and easy enough to program, understand, and evolve. Too is
intended to be used by citizens (in their native tongue) to help
�ll the anticipated gap between the need for programmers
and their expected dearth.

Designing a programmable, practical, yet citizen-friendly
GPL is a trail-and-error process. It is analogous to taking out
controls and gauges from an aircraft, piece by piece, verifying
that it is still airworthy and easy to �y. For example, Too
is inspired by Go but omits the go keyword for goroutines.
Instead, Too uses go run(thread, "data"), where thread has
the thread entry function start. Too compiles into Go, but it
is not a subset of Go.
Ease of understanding refers to the ease with which a

program written in a language can be understood by a hu-
man. The easier it is to understand the code, the simpler the
language is considered to be. The minimalism of Too helps
keep the abstraction gap between the No-Code graphical
projection (Fig. 4) and the underlying textual code (List. 1)
small and therefore easy to understand. However, minimiz-
ing the language was not a goal in itself; rather, the goal was
language simplicity accessible to citizens.

Some of the features that make Too appealing to citizens
are: projection of the business logic as rules; projection of
the control �ow as a two-dimensional �owcharts; projection
of action blocks in a way that graphically facilitates �exible
edits; and limiting data-structures to a single set of scalars
and arrays.

Other features of Too are important mainly for the blend:
For example, component based architecture is important
for the blend, as citizen developers would greatly bene�t

from sharing and deploying components selectively, that like
in the physical world could be manipulated independently
(turned on/o�, debugged, etc.). Similarly, projectional editing
is important for the blend, as citizens would greatly bene�t
from an intelligent assistant.
Novel features of Too include: the dichotomy between

silent and non-silent things that allows Too to automatically
classify components; the ability to automatically resolve de-
pendencies, without explicit import or include declarations;
and the mechanism for developing an action that marks a
few cursor points for editing at the end of an expression,
which is crucial for No-Code programming in Too.

In designing Too we wanted to create a programming
language that would appeal to both novice and advanced
citizens, in the spirit of spreadsheets, but we may have ended
up with a language of interest to a broader range of users,
including professional developers. The language is small and
simple by design to enable end-users easy entry in creating
simple programs. But it is also expressive enough to enable
advanced users to evolve and create high-end solutions that
involve concurrency, synchronization, complex algorithms,
and complex data-structures.
The Too language permits only a single thing per pro-

gram, which makes programs short, concentrating on a sin-
gle idea. In addition, Too promotes a marketplace where
developers can easily share their things. These two features
encourage contributions, advocating wisdom of the crowd.
Too is a cloud programming language, meaning that sev-
eral developers can collaborate on the same piece of code.
Add to it �owcharts and icons and you get closer to Knuth’s
utopia [17] — “Programming is an Art.”

Acknowledgments
Many people took part in the design and implementation of Too

during its �ve-year development and construction. We would es-

pecially like to thank Shahar Zeira for shaping the language in its

early stages (making it stateful, introducing the concept that every

thing is made of things including basic types, freeing it from opera-

tors by replacing them with function calls, and more). We thank

Oz Garinkol for his help in shaping the GUI. Finally, we wish to

thank Shahar, Oz, and the anonymous reviewers for their valuable

comments on this work.

References
[1] Md Abdullah Al Alamin, Sanjay Malakar, Gias Uddin, Sadia Afroz,

Tameem Bin Haider, and Anindya Iqbal. 2021. An Empirical Study

of Developer Discussions on Low-Code Software Development Chal-

lenges. In Proceedings of the 18th IEEE/ACM International Conference on

Mining Software Repositories (MSR 2021). IEEE, Madrid, Spain, 46–57.

h�ps://doi.org/10.1109/MSR52588.2021.00018

[2] Md Abdullah Al Alamin, Gias Uddin, Sanjay Malakar, Sadia Afroz,

TameemHaider, and Anindya Iqbal. 2022. Developer Discussion Topics

on the Adoption and Barriers of Low Code Software Development

Platforms. Empirical Software Engineering 28, 4 (Nov. 2022), 1–59.

h�ps://doi.org/10.1007/s10664-022-10244-0

118

https://doi.org/10.1109/MSR52588.2021.00018
https://doi.org/10.1007/s10664-022-10244-0

Could No-Code Be Code? Onward! ’23, October 25–27, 2023, Cascais, Portugal

[3] Ken Arnold and James Gosling. 1996. The Java Programming Language.

Addison-Wesley, Reading, MA.

[4] Corrado Böhm. 1954. Calculatrices Digitales: du Déchi�rage de Formules

Logicomathématiques par la Machine Même dans la Conception du

Programme. Ph.D. Dissertation. L’école Polytechnique fédérale, Zürich,

Switzerland. h�ps://doi.org/10.3929/ethz-a-000090226

[5] Travis Breaux and Jennifer Moritz. 2021. The 2021 Software Developer

Shortage is Coming. Commun. ACM 64, 7 (July 2021), 39–41. h�ps:

//doi.org/10.1145/3440753

[6] Alan A. A. Donovan and Brian W. Kernighan. 2015. The Go Program-

ming Language. Addison-Wesley, Reading, MA, USA.

[7] Brandee Easter. 2020. Fully Human, Fully Machine: Rhetorics of Digital

Disembodiment in Programming. Rhetoric Review 39, 2 (2020), 202–215.

h�ps://doi.org/10.1080/07350198.2020.1727096

[8] TomEverett. 2012. A collection of formal grammars written for ANTLR

v4. h�ps://github.com/antlr/grammars-v4

[9] David Flanagan. 2011. JavaScript: the de�nitive guide (6th ed.). O’Reilly

Media, Inc., Sebastopol, CA.

[10] Martin Fowler. 2009. Projectional Editing. Martin Fowler’s Bliki.

http://martinfowler.com/bliki/ProjectionalEditing.htmlx.

[11] Christopher Michael Hancock. 2003. Real-Time Programming and the

Big Ideas of Computational Literacy. Ph.D. Dissertation. Massachusetts

Institute of Technology, Boston, MA, USA.

[12] Anders Hejlsberg, Mads Torgersen, Scott Wiltamuth, and Peter Golde.

2010. The C# Programming Language (Microsoft .NET Development

Series) (4th ed.). Addison-Wesley, Reading, MA. Annotated Edition.

[13] Martin Hirzel. 2022. Low-Code Programming Models. h�ps://doi.

org/10.48550/arXiv.2205.02282 arXiv:cs.PL/2205.02282

[14] Sebastian Käss, Susanne Strahringer, and Markus Westner. 2022. Dri-

vers and Inhibitors of Low Code Development Platform Adoption.

In Proceedings of the IEEE 24th Conference on Business Informatics

(CBI 2022). IEEE, Amsterdam, The Netherlands, 196–205. h�ps:

//doi.org/10.1109/CBI54897.2022.00028

[15] Lennart C.L. Kats, Richard G. Vogelij, Karl Trygve Kalleberg, and Eelco

Visser. 2012. Software Development Environments on the Web: A

Research Agenda. In Proceedings of the ACM International Symposium

on New Ideas, New Paradigms, and Re�ections on Programming and

Software (Tucson, Arizona, USA) (Onward! 2012). ACM, New York, NY,

USA, 99–116. h�ps://doi.org/10.1145/2384592.2384603

[16] Brian W. Kernighan and Dennis M. Ritchie. 1988. The C Programming

Language (2nd ed.). Prentice-Hall, Englewood Cli�s, NJ.

[17] Donald ("Don") Ervin Knuth. 1974. A.M. Turing Award lecture. h�ps:

//amturing.acm.org/award_winners/knuth_1013846.cfm

[18] Donald Ervin Knuth and Luis Trabb Pardo. 1976. The Early Develop-

ment of Programming Languages. Technical Report STAN-CS-76-562.

Computer Science Department, School of Humanities and Sciences,

Stanford University, Stanford, CA, USA.

[19] David H. Lorenz and John Vlissides. 2001. Designing Components

versus Objects: A Transformational Approach. In Proceedings of the

23rd International Conference on Software Engineering (ICSE 2001). IEEE

Computer Society, Toronto, Canada, 253–262. h�ps://doi.org/10.1109/

ICSE.2001.919099

[20] Yajing Luo, Peng Liang, Chong Wang, Mojtaba Shahin, and Jing Zhan.

2021. Characteristics and Challenges of Low-Code Development:

The Practitioners’ Perspective. In Proceedings of the 15th ACM/IEEE

International Symposium on Empirical Software Engineering and Mea-

surement (Bari, Italy) (ESEM ’21). ACM, New York, NY, USA, 1–11.

h�ps://doi.org/10.1145/3475716.3475782

[21] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and

Evelyn Eastmond. 2010. The Scratch Programming Language and

Environment. ACM Trans. Comput. Educ. 10, 4 (Nov. 2010), 16:1–16:15.

h�ps://doi.org/10.1145/1868358.1868363

[22] Nicholas D. Matsakis and Felix S. Klock, II. 2014. The Rust Language.

Ada Lett. 34, 3 (Oct. 2014), 103–104. h�ps://doi.org/10.1145/2692956.
2663188

[23] Michael Metcalf, John Reid, and Malcolm Cohen. 2018. Modern Fortran

Explained: Incorporating Fortran 2018 (5th ed.). Oxford University Press,

Oxford. h�ps://doi.org/10.1093/oso/9780198811893.001.0001

[24] Je� Meyerson. 2014. The Go Programming Language. IEEE Software

31, 5 (2014), 104–104. h�ps://doi.org/10.1109/MS.2014.127

[25] Erik Pasternak, Rachel Fenichel, and Andrew N. Marshall. 2017. Tips

for Creating a Block Language with Blockly. In Blocks and Beyond

Workshop (B&B 2017), Franklyn Turbak, Je� Gray, Caitlin Kelleher,

and Mark Sherman (Eds.). IEEE, Raleigh, NC, USA, 21–24. h�ps:

//doi.org/10.1109/BLOCKS.2017.8120404 Position statement.

[26] Rob Pike. 2015. Simplicity is Complicated. Invited Talk at the European

Go Conference (dotGo). Paris, France.

[27] Daniel Pinho, Ademar Aguiar, and Vasco Amaral. 2023. What about

the usability in low-code platforms? A systematic literature review.

Journal of Computer Languages 74 (2023), 101–185. h�ps://doi.org/10.

1016/j.cola.2022.101185

[28] Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie

Rusk, Evelyn Eastmond, Karen Brennan, Amon Millner, Eric Rosen-

baum, Jay Silver, Brian Silverman, and Yasmin Kafai. 2009. Scratch:

Programming for All. Commun. ACM 52, 11 (Nov. 2009), 60–67.

h�ps://doi.org/10.1145/1592761.1592779

[29] Benjamin Roussey. 2017. Roll Your Own: What The Citizen Developer

Wave Means For Your Enterprise IT Security. TechGenix. h�ps:

//techgenix.com/citizen-developer-enterprise-it-security

[30] Apurvanand Sahay, Arsene Indamutsa, Davide Di Ruscio, and Alfonso

Pierantonio. 2020. Supporting the Understanding and Comparison of

Low-code Development Platforms. In Proceedings of the 46th Euromicro

Conference on Software Engineering and Advanced Applications (SEAA

2020). IEEE, Portoroz, Slovenia, 171–178. h�ps://doi.org/10.1109/

SEAA51224.2020.00036

[31] Bjarne Stroustrup. 1994. The Design and Evolution of C++. Addison-

Wesley, Reading, MA.

[32] Fahim Su�. 2023. Algorithms in Low-Code-No-Code for Research

Applications: A Practical Review. Algorithms 16, 2 (2023), 108. h�ps:

//doi.org/10.3390/a16020108

[33] Clemens Szyperski, Dominik Gruntz, and Stephan Murer. 2002. Com-

ponent Software: Beyond Object-Oriented Programming (2nd edition

ed.). Addison-Wesley, Reading, MA, USA.

[34] David Thomas and Andrew Hunt. 2000. Programming Ruby: the prag-

matic programmer’s guide. Addison-Wesley, Reading, MA.

[35] Guido van Rossum. 1994. Python Reference Manual. Technical Report

Release 1.0.2. Centrum Wiskunde & Informatica (CWI), Amsterdam,

The Netherlands.

[36] Mauricio Verano Merino, Tom Beckmann, Tijs van der Storm, Robert

Hirschfeld, and Jurgen J. Vinju. 2021. Getting Grammars into Shape

for Block-Based Editors. In Proceedings of the 14th ACM SIGPLAN

International Conference on Software Language Engineering (Chicago,

IL, USA) (SLE 2021). ACM, New York, NY, USA, 83–98. h�ps://doi.org/

10.1145/3486608.3486908

[37] Mauricio Verano Merino and Tijs van der Storm. 2020. Block-Based

Syntax from Context-Free Grammars. In Proceedings of the 13th ACM

SIGPLAN International Conference on Software Language Engineering

(Virtual, USA) (SLE 2020). ACM, New York, NY, USA, 283–295. h�ps:

//doi.org/10.1145/3426425.3426948

[38] David Weintrop and Uri Wilensky. 2017. How Block-based Languages

Support Novices. Journal of Visual Languages and Sentient Systems 3

(July 2017), 92–100.

Received 2023-04-28; accepted 2023-08-11

119

https://doi.org/10.3929/ethz-a-000090226
https://doi.org/10.1145/3440753
https://doi.org/10.1145/3440753
https://doi.org/10.1080/07350198.2020.1727096
https://github.com/antlr/grammars-v4
https://doi.org/10.48550/arXiv.2205.02282
https://doi.org/10.48550/arXiv.2205.02282
https://arxiv.org/abs/cs.PL/2205.02282
https://doi.org/10.1109/CBI54897.2022.00028
https://doi.org/10.1109/CBI54897.2022.00028
https://doi.org/10.1145/2384592.2384603
https://amturing.acm.org/award_winners/knuth_1013846.cfm
https://amturing.acm.org/award_winners/knuth_1013846.cfm
https://doi.org/10.1109/ICSE.2001.919099
https://doi.org/10.1109/ICSE.2001.919099
https://doi.org/10.1145/3475716.3475782
https://doi.org/10.1145/1868358.1868363
https://doi.org/10.1145/2692956.2663188
https://doi.org/10.1145/2692956.2663188
https://doi.org/10.1093/oso/9780198811893.001.0001
https://doi.org/10.1109/MS.2014.127
https://doi.org/10.1109/BLOCKS.2017.8120404
https://doi.org/10.1109/BLOCKS.2017.8120404
https://doi.org/10.1016/j.cola.2022.101185
https://doi.org/10.1016/j.cola.2022.101185
https://doi.org/10.1145/1592761.1592779
https://techgenix.com/citizen-developer-enterprise-it-security
https://techgenix.com/citizen-developer-enterprise-it-security
https://doi.org/10.1109/SEAA51224.2020.00036
https://doi.org/10.1109/SEAA51224.2020.00036
https://doi.org/10.3390/a16020108
https://doi.org/10.3390/a16020108
https://doi.org/10.1145/3486608.3486908
https://doi.org/10.1145/3486608.3486908
https://doi.org/10.1145/3426425.3426948
https://doi.org/10.1145/3426425.3426948

	Abstract
	1 Introduction
	1.1 General Purpose Programming Languages
	1.2 Simplicity is Complicated
	1.3 Contribution

	2 Objective
	2.1 Limitation of Current No-Code Platforms
	2.2 Desiderata for a Citizens' GPL

	3 Language Design Principles
	3.1 Thing-based
	3.2 Event-driven
	3.3 Third-party Composition
	3.4 Marketplace for Things
	3.5 Simple Programming

	4 Language Definition
	4.1 Thing
	4.2 Aliases
	4.3 Imports
	4.4 Signals and Rules
	4.5 Actions
	4.6 Functions
	4.7 Iterations
	4.8 Byproducts and Redirection

	5 Cloud Development Environment (CDE)
	5.1 Projectional Editing
	5.2 Thing Broker

	6 Language Internals
	6.1 Silent vs. Non-silent
	6.2 Binding Tree
	6.3 Initialization
	6.4 Run-Shallow vs. Run-Deep

	7 Real-World Deployment
	7.1 Experience Building Systems
	7.2 Lessons Learned
	7.3 Citizen Feedback
	7.4 Threats to Validity

	8 Discussion and Related Work
	9 Conclusion
	References

