
Operating C. Weissman
Systems Editor

The Distribution of a
Program in Primary and
Fast Buffer Storage
Erol Gelenbe
Institut de Recherche d'Informatique et
d'Automatique

A virtual memory computer system with a fast buffer
(cache) memory between primary memory and the
central processing unit is considered. The optimal
distribution of a program between the buffer and primary
memory is studied using the program's lifetime function.
Expressions for the distribution of a program which
maximizes the useful fraction of the cost-time integral
of primary and fast buffer storage are obtained for
swapping and nonswapping buffer management policies.

Key Words and Phrases: cache, virtual memory,
lifetime function, cost-time integral, fast buffer

CR Categories: 4.3, 6.2, 6.3

1. Introduction

Economical and technological considerations dictate
that there be a wide difference in operating cycle time
between the central processing units and the primary
storage facility of present day computer systems. While
the former is in the order of 100 ns, the latter is in the
us range so that full use of the potential cpu throughout
cannot be made with this organization. In recent years
the inclusion of a small high-speed memory to serve as a
buffer between the cpu and primary memory has become
technologically and economically feasible [1], and has
been shown to allow the system throughput to approach
that of one in which primary memory speed is commen-
surate with cpu speed. The purpose of this paper is to
study an aspect of the design of such a buffer memory,
namely its size, in the context of a virtual memory
system.

Virtual memory gives the programmer the illusion
of programming with no constraints on the amount of
primary memory space available to him by automatically
managing several levels of storage [2]. This approach is
particularly useful in multiprogrammed or time-shared
systems since here several programs reside in the system
simultaneously, with subsequent multiplexing of the
cpu and the input-output units among them. It is com-
mon with such systems that all portions of a program
cannot be maintained in primary memory so that
"faults" to secondary storage occur when information
not in primary memory is referred to. The average time
between these faults depends on the amount of primary
storage space available to a program, on the manner in
which the portions of a program residing in primary
memory are chosen, and on other factors. Based on
empirical evidence, Belady and Kuehner [3] have charac-
terized the dependence of the mean time between faults
upon the storage space available to a program by means
of their lifetime function, which is used in this paper to
describe program behavior.

Copyright © 1973, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

This work was partially supported by a Rackham Research
Grant from the University of Michigan. Author's present address:
IRIA, Domaine de Voluceau, 78 Rocquencourt, France.

431

2. Preliminaries

In this section we shall briefly review the fast buffer
(cache) memory operation as described in [1], and pro-
vide an outline of the basic ideas related to the Belady-
Kuehner lifetime function [3].

In m i 360/85 implementation [1], both the fast
buffer (FB) and primary memory (Vi) are partitioned
into equal-sized sectors so that at a given instant of time
each FB sector is assigned to contain the contents of
some PM sector. When a program generates a reference
to a sector not in the FB, the FB sector which has been
least recently used is assigned to the I'M sector just re-
ferred to. The whole contents of the PM sector are not
transferred all at once into the FB sector, however.
Each sector consists of 64 words only four of which (a
block) are transferred, with the word which was just

Communications July 1973
of Volume 16
the ACM Number 7

http://crossmark.crossref.org/dialog/?doi=10.1145%2F362280.362292&domain=pdf&date_stamp=1973-07-01

referred to being transferred first and being loaded
simultaneously into the cpu. The remaining blocks of
the sector are loaded into the FB sector set aside for them
as demand arises.

The subject of our study is a similar organization
within a virtual memory machine [2].

The lifetime function e(s) for a program computing
with s amount of storage (which may be less than the
size of the program) was introduced by Belady and
Kuehner [3] to characterize the mean time between
faults to secondary storage for programs running on a
virtual memory machine. Based on empirical evidence,
they indicate that for a useful range 0 ~< s ~ R, the
lifetime function is given by e(s) = a'a"s k where a ' is a
program property, a" relates the cycle time of the
storage medium from which the program is being
executed to real time, and 1.5 ~< k ~< 2.5. This expres-
sion is not based on the assumption of any particular
memory management policy, and it is stated [3] that
changing this policy will not affect the form of e(s)
drastically. By memory management policy here we will
mean two things: the replacement policy (e.g. least
recently used, last-in-first-out, etc.) [2]; and the size
of the blocks being replaced (the page size). Through-
out this paper it will be assumed that the same replace-
ment policy ~ is used for the FB and eM, and that for the
page and block sizes in question (we will use the term
"b lock" for the unit of storage transfer between l~B
and Pg, and "page" for the transfers between PM and
the secondary storage medium) the lifetime function
is invariant. Our central assumption is that the F8 and
PM space available to a program is such that the above
expression for the lifetime function is valid. We will
write a = a'a", with a" being the value obtained for
the FB.

3. High-Speed Buffer Size as a Function of Primary
Storage Space

Suppose that P is the amount of primary storage
space occupied by some program, and let B be the size
of fast buffer space it occupies. If e(s) is the average
time between faults for the program for storage space
s (the lifetime function), assuming s refers to allocated
buffer space, we see that on the average a reference to
primary memory is generated each e(B) seconds during
computation of the program. When such a reference
occurs, assume that a fixed time u elapses to transfer a
(fixed sized) block of information from primary to fast
buffer memory. Evidently it will sometimes happen
that the information referred to is not in primary
memory, in which case a fixed time y is spent in trans-
ferring a (fixed sized) page from secondary to primary

1 If the contents of the FB are also held in PM, it is necessary
that the replacement policy does not violate this as would be the
case with a random policy.

432

memory, and an additional time u is spent in bringing
a required portion of the page into the buffer. For a
total computing time between faults to secondary
storage of e(P) , e (P) / e (B) faults to primary storage will
occur. This statement requires clarification. If the size
of the fast buffer had been P, e(P) would be the unin-
terrupted computing time in the buffer. With the present
organization, however, this amount of computation
time is interrupted e (P) / e (B) times. Note that the
contents of the buffer pertaining to the program in
question are also contained in primary memory, and
that this discussion is valid if the buffer and primary
memory are managed using the same replacement
algorithm.

The cost of maintaining the program in primary and
fast buffer memory is

= P a t- cB (1)

in terms of the unit cost of primary memory, where c
is the unit cost of buffer memory per unit cost of prim-
ary memory. In a total cost-time integral of

~(e(e) + (e (e) / e (B)) u + y) (2)

only ~e(P) is expended in useful computation. The ratio

e(e) (3)
n = e(e) + (e(P)/e(B))u + y

is then a measure of utilization of the cost-time integral,
assuming that the program does not have to wait for
the attention of the cpu, and that the time the program
spends in acquiring its space P is short compared to
its total residence time in the system. Belady and Kueh-
ner [3] have indicated that for a useful range of values
of s, starting at s = 0, e(s) = a s k represents the life-
time function fairly accurately, a and k being constants,
where a is program and system dependent and k ~ 2.
For a detailed discussion of this claim the reader is
referred to [3].

n is a measure of how efficiently storage is being
utilized by a program. Therefore let ~, the buffer and
primary storage cost for the program, be kept constant,
and let us examine how a = P / B affects n. Using
e(s) = a s k we now rewrite

n = a P k / (a e k + uak + Y), (4)

and since

P = ~,~/ (c + ,~), (5)

we remain with

a~ka~ (6)
n = a~ka ~ at - u(c + a)%~ k + y (c + ol) k

Keeping ~ constant and solving dn/da = 0 we see that
n is maximized for a given by

so = [(y / u) c] I"~+" (7)

since

a2,~/do,~ I.=~o < 0.

Communications July 1973
of Volume 16
the ACM Number 7

That ce0 should grow with y/u and with c is not counter-
intuitive. I t is somewhat surprising, however, that it is
independent of a since it represents some program
properties as well as the speed of computat ion [3].
Another interesting aspect is the variation of ceo with
k. A larger k is indicative of greater program locality,
or better memory management, or both; with programs
performing better in these respects, one sees that more
space should be allocated to the fast buffer with con-
stant cost ~. Finally, it is interesting to note that ce0 is
independent of ~, and can be deduced solely from pro-
perties of the system and the program.

The lifetime function, as defined and measured by
Belady and Kuehner [3] and used in this paper, makes no
distinction between the execution of instructions which
modify program data and those which do not, or merely
involve "read" accesses to memory. The implicit as-
sumption throughout this section has been that instruc-
tions which modify program data are executed only in
the fast buffer (as all other instructions) so that whenever
a block in the fast buffer is to be replaced, it is copied
back into primary memory if it has been modified. I f
special hardware facilities exist, it is possible to carry
out this transfer from the r s into PM simultaneously
with the transfer of a block from PM to the FB.

In the IBM 360/85, on the other hand, each instruc-
tion modifying data must be executed both in the FB
and in I'M. This evidently slows down the operation of
the system. In the next paragraph we examine the op-
t imum choice of a in the case that "write" instructions
are executed in PM as well as the FB.

Let r write instructions per unit time be executed in
the FB, and suppose that the execution of a write in-
struction requires w' units of time in the FB and w
units of time in PM. It is evident that r. e(B) is the num-
ber of write instructions executed on the average in the
r~ before a reference is made to a block which is not
in the r-B but is in PM. Clearly, r. e(B). w' is a fraction
of e(B) and represents the part of e(B) expended in
writes. I f writes have to be executed into PM as well as
the buffer, this can be done in two ways: either the
write in PM and the FB are executed sequentially (one
after the other), so that the actual time between refer-
ences to a block not in the FB but in PM is e(B). (1 + wr)
with a useful fraction of the cost-time integral we call
m ; or the writes are executed in parallel so that the
corresponding length of time is e(B). (1 + (w -- w')r)
with the reasonable assumption that w > w' leading to
a useful fraction of the cost-time integral nz •

I t is seen that 2

e (P) - (1 q-- w.r) (8)
~ = e(P) + (e(P)/e(B))(u + wr.e(B)) + y

and

= e (P) . (1 + w.r)
~2 e(P) + (e(P)/e(B))(u q-- (w -- w')r.e(B))y" (9)

For both (8) and (9), the value of a maximizing nt , 712,

is a solution of ak~kak-l(c + ce)k-l(cy -- ua k+l) = O.
The solution of the equation is given by

ce = O, - c , [cy/uFk+k

The first solution sets (8) and (9) to zero, while the
second is unrealizable. Therefore the value of ce maxi-
mizing (8) and (9) is given by

ao = [cy/u] 11k+1 for which

d2nl/dce 2 Ice = ao < O, and a~12/dce z Ice = ceo < O.

Thus we see that the effect of write operations reduces
the useful fraction of the cost-time integral but leaves
ce0 unchanged.

4. Independent Fast Buffer and Primary Memory
Contents

In the previous sections the assumption had been
that all program sectors in the rB were also contained
in PM. This approach is inefficient in its utilization of
memory space but frees the system from the necessity
of transferring blocks from the rB to PM when blocks
not in the rB are referenced, if writes are executed in
both FB and PM.

This section is devoted to the analysis of a manage-
ment policy which maintains disjoint portions of a pro-
gram in the FB and PM SO that total memory space is
more efficiently used. Such a technique is not without
its costs. At each reference to a block of information
which is in PM, but not in the FB, it is necessary to re-
move one of the blocks in the FB and to copy it into PM
to make a place for the incoming block. This requires
special hardware, as well as a buffering area in PM.
An additional requirement is some form of address
translation hardware similar to that found in paged
virtual memory systems--since program address refer-
ences will have to be translated into appropriate laM or
FB physical addresses. The more efficient utilization of
space, however, may be well worth this additional cost.
The useful fraction of the cost-time integral now is

= e (P + B) (10)
78 e(P + B) + (v + u). (e(P + B)/e(B)) + y

where v is the additional time necessary to transfer a
block from FB to PM when a block in PM but not in F8
is referenced. Note that v may be zero if the transfer into
FB is carried out simultaneously with the transfer out.
Using (5) and the expression for e(s), we obtain an
expression whose derivative is given by

d~/dce = (c + a) k-l.k--~a~k (1 + a) k-1
(11)

• (y(c -- 1) -- (1 + a)~+l(v + u))

where X is the denominator of (10) and as usual

2 Note that the multiplicative factor (1 + w.r) in (8) and (9)
represents the slowdown due to write operations and does not affect
the optimum value of a.

433 Communications July 1973
of Volume 16
the ACM Number 7

Fig. 1.

0 . 7 0

0.60

0.50

n 4

n vs

u =4 usec c = 5

x =I00 usec d = 0.2

y =20 msec y = 44.9

a ~k = lO msec

0.40

O. 30 - - / 1"r]

F
/

/

/ /

/

0.20 /
I

/

I

" I

0 I 0 20 30 40 50

a = P/B . It is seen that the value of c~ maximizing
na is given by

= r (c -- 1)yll/k+l so' L v S--F u / - 1 (12)

S. Extension to Other Hierarchies and Conclusions

The previous sections have been devoted to the
presentation of a simple and useful analytic method for
the design of a storage hierarchy consisting of a cache
memory and pr imary memory backed by a secondary
storage device. I t is evident that this method can be ex-
tended to design more complicated hierarchical struc-
tures. For more precise results, it is also possible to use
more accurate expressions for the lifetime function. Of
course, it is to be expected that dosed form expressions
(like the one obtained for a 0 above) will not always be
obtainable so that one will have to turn to numerical
methods.

In what follows, we will examine a more complicated
hierarchy than the one studied above, and it will be
shown that this more complicated hierarchy will yield a
larger 7, if properly designed, than the FB-PM-Secondary
Memory hierarchy studied above, for the same cost ~.

Consider a hierarchy consisting of an FB, a PM, a
slow core (SC) memory, and a secondary storage (drum
or disk). Suppose that all of the information contained
in the FB is also in PM. Information in PM is disjoint of
that in sc so that when a reference is made to a sector

434

in sc but not in r i (and therefore not in the rB) the
sector is transferred from sc to PM and some sector in
PM is transferred into sc to make place for an incoming
sector. Of course, special hardware facilities and address
translation hardware is assumed to be available. The
replacement algorithm (Least-Recently-Used or First-
In-First-Out, etc.) as well as sector size is assumed to
be the same at all levels.

Let B, P, E, be the sizes of r~, PM, SC, respectively.
We will use c to denote the unit cost of r~ space per
unit cost of PM space; similarly, d is the unit cost of
sc space per unit cost of PM space. Thus, the total cost
of the hierarchy is ~ = P + cB + dE per unit PM cost.
We also use a = (P/B) and 3" = (E/B). Thus, the use-
ful fraction 74 of the cost-time integral, if write opera-
tions into PM are neglected, is given by

e (P + E)
74 = e(P + E) + (e(P + E) / e (P)) x ' (13)

+ (e (P) / e (B)) u + y

where u is the time to transfer a block f rom PM to the
FB, x is the time to transfer a block f rom sc into PM
and the FB (and to transfer out a block f rom PM into
SC), and y is the time necessary to transfer a block f rom
the rotating (drum or disk) secondary memory into
sc. Equation (13) is rewritten as

a~(,~ + 3")~
n~ = a~k(a + 3")k + (1 + 3"/a)kHkx ' (14)

+ .kHku + yH k

where H = a + c + d3". Some analysis shows us that
the values of a and 3" maximizing 74 are the solutions of
two simultaneous nonlinear equations for which dosed
form solutions cannot be determined. Therefore, in
Figure 1, 74 has been plotted against a for a constant
value of 3" which maximizes 3'4 for the various parameter
values used in the example.

The opt imum value of 3" is also determined nu-
merically. The plotted curve shows that for this case
74 is highly sensitive to variations in a near its maxi-
mum. In the same figure, n of eq. (3) has been plotted
against a for the same parameter values and, in par-
ticular, the same cost ~.

One sees that, for the same cost, the more elaborate
hierarchy yields a much better utilization of the cost-
time integral, though this cost does not include that
for special hardware to implement the hierarchies (i.e.
only the memory space cost is included). In both
curves, the effect of read operations into PM has been
neglected.

Received July 1971; revised July 1972

References
1. Liptay, J.S. Structural aspects of the System/360 Model 85
II, The Cache. lBMSyst. J. 7, 1 (1968), 15-21.
2. Denning P.J. Virtual memory. Computing Surveys 2, 3 (Sept.
1970), 151-189.
3. Belady, L.A., and Kuehner, C.J. Dynamic space sharing in
computer systems. Comm. ACM 12, 5 (May 1969), 282-288.

Communications July 1973
of Volume 16
the ACM Number 7

