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A virtual memory computer system with a fast buffer 
(cache) memory between primary memory and the 
central processing unit is considered. The optimal 
distribution of a program between the buffer and primary 
memory is studied using the program's lifetime function. 
Expressions for the distribution of a program which 
maximizes the useful fraction of the cost-time integral 
of primary and fast buffer storage are obtained for 
swapping and nonswapping buffer management policies. 
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1. Introduction 

Economical and technological considerations dictate 
that there be a wide difference in operating cycle time 
between the central processing units and the primary 
storage facility of present day computer systems. While 
the former is in the order of 100 ns, the latter is in the 
us range so that full use of the potential cpu throughout 
cannot be made with this organization. In recent years 
the inclusion of a small high-speed memory to serve as a 
buffer between the cpu and primary memory has become 
technologically and economically feasible [1], and has 
been shown to allow the system throughput to approach 
that of one in which primary memory speed is commen- 
surate with cpu speed. The purpose of this paper is to 
study an aspect of the design of such a buffer memory, 
namely its size, in the context of a virtual memory 
system. 

Virtual memory gives the programmer the illusion 
of programming with no constraints on the amount of 
primary memory space available to him by automatically 
managing several levels of storage [2]. This approach is 
particularly useful in multiprogrammed or time-shared 
systems since here several programs reside in the system 
simultaneously, with subsequent multiplexing of the 
cpu and the input-output units among them. It is com- 
mon with such systems that all portions of a program 
cannot be maintained in primary memory so that 
"faults" to secondary storage occur when information 
not in primary memory is referred to. The average time 
between these faults depends on the amount of primary 
storage space available to a program, on the manner in 
which the portions of a program residing in primary 
memory are chosen, and on other factors. Based on 
empirical evidence, Belady and Kuehner [3] have charac- 
terized the dependence of the mean time between faults 
upon the storage space available to a program by means 
of their lifetime function, which is used in this paper to 
describe program behavior. 
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2. Preliminaries 

In this section we shall briefly review the fast buffer 
(cache) memory operation as described in [1 ], and pro- 
vide an outline of the basic ideas related to the Belady- 
Kuehner lifetime function [3]. 

In m i  360/85 implementation [1], both the fast 
buffer (FB) and primary memory (Vi) are partitioned 
into equal-sized sectors so that at a given instant of time 
each FB sector is assigned to contain the contents of 
some PM sector. When a program generates a reference 
to a sector not in the FB, the FB sector which has been 
least recently used is assigned to the I'M sector just re- 
ferred to. The whole contents of the PM sector are not 
transferred all at once into the FB sector, however. 
Each sector consists of 64 words only four of which (a 
block) are transferred, with the word which was just 
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referred to being transferred first and being loaded 
simultaneously into the cpu. The remaining blocks of 
the sector are loaded into the FB sector set aside for them 
as demand arises. 

The subject of our study is a similar organization 
within a virtual memory machine [2]. 

The lifetime function e(s) for a program computing 
with s amount  of storage (which may be less than the 
size of the program) was introduced by Belady and 
Kuehner [3] to characterize the mean time between 
faults to secondary storage for programs running on a 
virtual memory machine. Based on empirical evidence, 
they indicate that for a useful range 0 ~< s ~ R, the 
lifetime function is given by e(s) = a'a"s k where a '  is a 
program property, a" relates the cycle time of the 
storage medium from which the program is being 
executed to real time, and 1.5 ~< k ~< 2.5. This expres- 
sion is not based on the assumption of any particular 
memory management policy, and it is stated [3] that 
changing this policy will not affect the form of e(s) 
drastically. By memory management policy here we will 
mean two things: the replacement policy (e.g. least 
recently used, last-in-first-out, etc.) [2]; and the size 
of the blocks being replaced (the page size). Through- 
out this paper it will be assumed that the same replace- 
ment policy ~ is used for the FB and eM, and that for the 
page and block sizes in question (we will use the term 
"b lock"  for the unit of storage transfer between l~B 
and Pg, and "page"  for the transfers between PM and 
the secondary storage medium) the lifetime function 
is invariant. Our central assumption is that the F8 and 
PM space available to a program is such that the above 
expression for the lifetime function is valid. We will 
write a = a'a",  with a" being the value obtained for 
the FB. 

3. High-Speed Buffer Size as a Function of Primary 
Storage Space 

Suppose that P is the amount of primary storage 
space occupied by some program, and let B be the size 
of fast buffer space it occupies. If e(s) is the average 
time between faults for the program for storage space 
s (the lifetime function), assuming s refers to allocated 
buffer space, we see that on the average a reference to 
primary memory is generated each e(B) seconds during 
computation of the program. When such a reference 
occurs, assume that a fixed time u elapses to transfer a 
(fixed sized) block of information from primary to fast 
buffer memory. Evidently it will sometimes happen 
that the information referred to is not in primary 
memory, in which case a fixed time y is spent in trans- 
ferring a (fixed sized) page from secondary to primary 

1 If the contents of the FB are also held in PM, it is necessary 
that the replacement policy does not violate this as would be the 
case with a random policy. 
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memory, and an additional time u is spent in bringing 
a required portion of the page into the buffer. For  a 
total computing time between faults to secondary 
storage of e(P) ,  e ( P ) / e ( B )  faults to primary storage will 
occur. This statement requires clarification. If the size 
of the fast buffer had been P, e(P)  would be the unin- 
terrupted computing time in the buffer. With the present 
organization, however, this amount  of computation 
time is interrupted e ( P ) / e ( B )  times. Note that the 
contents of the buffer pertaining to the program in 
question are also contained in primary memory, and 
that this discussion is valid if the buffer and primary 
memory are managed using the same replacement 
algorithm. 

The cost of maintaining the program in primary and 
fast buffer memory is 

= P a t- cB (1) 

in terms of the unit cost of primary memory, where c 
is the unit cost of buffer memory per unit cost of prim- 
ary memory. In a total cost-time integral of 

~(e(e)  + ( e ( e ) / e ( B ) ) u  + y) (2) 

only ~e(P) is expended in useful computation. The ratio 

e(e)  (3) 
n = e(e)  + (e(P)/e(B))u + y 

is then a measure of utilization of the cost-time integral, 
assuming that the program does not have to wait for 
the attention of the cpu, and that the time the program 
spends in acquiring its space P is short compared to 
its total residence time in the system. Belady and Kueh- 
ner [3] have indicated that for a useful range of values 
of s, starting at s = 0, e(s) = a s k represents the life- 
time function fairly accurately, a and k being constants, 
where a is program and system dependent and k ~ 2. 
For  a detailed discussion of this claim the reader is 
referred to [3]. 

n is a measure of how efficiently storage is being 
utilized by a program. Therefore let ~, the buffer and 
primary storage cost for the program, be kept constant, 
and let us examine how a = P / B  affects n. Using 
e(s) = a s k we now rewrite 

n = a P k / ( a e  k + uak + Y), (4) 

and since 

P = ~,~/ (c  + ,~), (5) 

we remain with 

a~ka~ (6) 
n = a~ka ~ at - u(c + a)%~ k + y (c  + ol) k 

Keeping ~ constant and solving dn/da  = 0 we see that 
n is maximized for a given by 

so  = [ ( y / u ) c ]  I"~+" (7) 

since 

a2,~/do,~ I.=~o < 0. 
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That  ce0 should grow with y/u  and with c is not counter- 
intuitive. I t  is somewhat surprising, however, that it is 
independent of a since it represents some program 
properties as well as the speed of computat ion [3]. 
Another interesting aspect is the variation of ceo with 
k. A larger k is indicative of  greater program locality, 
or better memory  management,  or both; with programs 
performing better in these respects, one sees that more 
space should be allocated to the fast buffer with con- 
stant cost ~. Finally, it is interesting to note that  ce0 is 
independent of ~, and can be deduced solely from pro- 
perties of  the system and the program. 

The lifetime function, as defined and measured by 
Belady and Kuehner [3] and used in this paper, makes no 
distinction between the execution of instructions which 
modify program data and those which do not, or merely 
involve "read"  accesses to memory.  The implicit as- 
sumption throughout this section has been that instruc- 
tions which modify program data are executed only in 
the fast buffer (as all other instructions) so that whenever 
a block in the fast buffer is to be replaced, it is copied 
back into primary memory  if it has been modified. I f  
special hardware facilities exist, it is possible to carry 
out this transfer from the r s  into PM simultaneously 
with the transfer of  a block from PM to the FB. 

In the IBM 360/85, on the other hand, each instruc- 
tion modifying data must be executed both in the FB 
and in I'M. This evidently slows down the operation of 
the system. In the next paragraph we examine the op- 
t imum choice of a in the case that "write" instructions 
are executed in PM as well as the FB. 

Let r write instructions per unit time be executed in 
the FB, and suppose that the execution of a write in- 
struction requires w' units of time in the FB and w 
units of  time in PM. It  is evident that r. e(B) is the num- 
ber of  write instructions executed on the average in the 
r~ before a reference is made to a block which is not 
in the r-B but is in PM. Clearly, r. e(B). w' is a fraction 
of e(B) and represents the part  of e(B) expended in 
writes. I f  writes have to be executed into PM as well as 
the buffer, this can be done in two ways: either the 
write in PM and the FB are executed sequentially (one 
after the other), so that the actual time between refer- 
ences to a block not in the FB but in PM is e(B). (1 + wr) 
with a useful fraction of the cost-time integral we call 
m ;  or the writes are executed in parallel so that the 
corresponding length of time is e(B). (1 + (w -- w')r) 
with the reasonable assumption that w > w' leading to 
a useful fraction of the cost-time integral nz • 

I t  is seen that 2 

e ( P ) - ( 1  q-- w.r)  (8) 
~ = e(P) + (e(P)/e(B))(u + wr.e(B)) + y 

and 

= e ( P ) . ( 1  + w.r) 
~2 e(P) + (e(P)/e(B))(u q-- (w -- w')r.e(B))y" (9) 

For  both (8) and (9), the value of a maximizing nt ,  712, 

is a solution of ak~kak-l(c + ce)k-l(cy -- ua k+l) = O. 
The solution of the equation is given by 

ce = O, - c ,  [cy/uFk+k 

The first solution sets (8) and (9) to zero, while the 
second is unrealizable. Therefore the value of ce maxi- 
mizing (8) and (9) is given by 

ao = [cy/u] 11k+1 for which 

d2nl/dce 2 Ice = ao < O, and a~12/dce z Ice = ceo < O. 

Thus we see that the effect of write operations reduces 
the useful fraction of the cost-time integral but leaves 
ce0 unchanged. 

4. Independent Fast Buffer and Primary Memory 
Contents 

In the previous sections the assumption had been 
that  all program sectors in the rB were also contained 
in PM. This approach is inefficient in its utilization of  
memory  space but frees the system from the necessity 
of  transferring blocks from the rB to PM when blocks 
not in the rB are referenced, if writes are executed in 
both FB and PM. 

This section is devoted to the analysis of a manage- 
ment policy which maintains disjoint portions of  a pro- 
gram in the FB and PM SO that total memory  space is 
more efficiently used. Such a technique is not without 
its costs. At each reference to a block of information 
which is in PM, but not in the FB, it is necessary to re- 
move one of the blocks in the FB and to copy it into PM 
to make a place for the incoming block. This requires 
special hardware, as well as a buffering area in PM. 
An additional requirement is some form of address 
translation hardware similar to that found in paged 
virtual memory  systems--since program address refer- 
ences will have to be translated into appropriate  laM or 
FB physical addresses. The more efficient utilization of 
space, however, may be well worth this additional cost. 
The useful fraction of the cost-time integral now is 

= e (P  + B) (10) 
78 e(P + B) + (v + u). (e(P + B)/e(B))  + y 

where v is the additional time necessary to transfer a 
block from FB to PM when a block in PM but not in F8 
is referenced. Note  that v may be zero if the transfer into 
FB is carried out simultaneously with the transfer out. 
Using (5) and the expression for e(s), we obtain an 
expression whose derivative is given by 

d~/dce = (c + a) k-l.k--~a~k (1 + a)  k-1 
(11) 

• (y(c  -- 1) --  (1 + a)~+l(v + u ) )  

where X is the denominator  of (10) and as usual 

2 Note that the multiplicative factor (1 + w.r) in (8) and (9) 
represents the slowdown due to write operations and does not affect 
the optimum value of a. 
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a = P/B .  It  is seen that  the value of c~ maximizing 
na is given by 

= r (c -- 1)yll/k+l so' L v S--F u / - 1 (12) 

S. Extension to Other Hierarchies and Conclusions 

The previous sections have been devoted to the 
presentation of a simple and useful analytic method for 
the design of a storage hierarchy consisting of a cache 
memory  and pr imary memory  backed by a secondary 
storage device. I t  is evident that  this method can be ex- 
tended to design more complicated hierarchical struc- 
tures. For  more precise results, it is also possible to use 
more accurate expressions for the lifetime function. Of  
course, it is to be expected that  dosed  form expressions 
(like the one obtained for a 0 above) will not always be 
obtainable so that one will have to turn to numerical 
methods. 

In what follows, we will examine a more complicated 
hierarchy than the one studied above, and it will be 
shown that  this more complicated hierarchy will yield a 
larger 7, if properly designed, than the FB-PM-Secondary 
Memory  hierarchy studied above, for the same cost ~. 

Consider a hierarchy consisting of an FB, a PM, a 
slow core (SC) memory,  and a secondary storage (drum 
or disk). Suppose that all of the information contained 
in the FB is also in PM. Information in PM is disjoint of  
that  in sc so that  when a reference is made to a sector 
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in sc but not in r i  (and therefore not in the rB) the 
sector is transferred from sc to PM and some sector in 
PM is transferred into sc to make place for an incoming 
sector. Of  course, special hardware facilities and address 
translation hardware is assumed to be available. The 
replacement algorithm (Least-Recently-Used or First- 
In-First-Out, etc.) as well as sector size is assumed to 
be the same at all levels. 

Let B, P, E, be the sizes of  r~, PM, SC, respectively. 
We will use c to denote the unit cost of  r~ space per 
unit cost of  PM space; similarly, d is the unit cost of  
sc space per unit cost of  PM space. Thus, the total  cost 
of the hierarchy is ~ = P + cB + dE per unit PM cost. 
We also use a = (P/B)  and 3" = (E/B).  Thus, the use- 
ful fraction 74 of the cost-time integral, if write opera- 
tions into PM are neglected, is given by 

e ( P  + E)  
74 = e(P + E) + (e(P + E ) / e ( P ) ) x  ' (13) 

+ ( e ( P ) / e ( B ) )  u + y 

where u is the time to transfer a block f rom PM to the 
FB, x is the time to transfer a block f rom sc into PM 
and the FB (and to transfer out a block f rom PM into 
SC), and y is the time necessary to transfer a block f rom 
the rotating (drum or disk) secondary memory  into 
sc. Equation (13) is rewritten as 

a~(,~ + 3")~ 
n~ = a~k( a + 3")k + (1 + 3"/a)kHkx ' (14) 

+ .kHku + yH k 

where H = a + c + d3". Some analysis shows us that  
the values of  a and 3" maximizing 74 are the solutions of  
two simultaneous nonlinear equations for which dosed  
form solutions cannot  be determined. Therefore, in 
Figure 1, 74 has been plotted against a for a constant 
value of 3" which maximizes 3'4 for the various parameter  
values used in the example. 

The opt imum value of 3" is also determined nu- 
merically. The plotted curve shows that  for this case 
74 is highly sensitive to variations in a near its maxi- 
mum. In the same figure, n of eq. (3) has been plotted 
against a for the same parameter  values and, in par- 
ticular, the same cost ~. 

One sees that, for the same cost, the more elaborate 
hierarchy yields a much better utilization of the cost- 
time integral, though this cost does not include that  
for special hardware to implement the hierarchies (i.e. 
only the memory  space cost is included). In both  
curves, the effect of read operations into PM has been 
neglected. 
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