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ABSTRACT

This doctoral research focuses on generating expressive 3D facial
animation for digital humans by studying and employing data-
driven techniques. Face is the first point of interest during human
interaction, and it is not any different for interacting with digital
humans. Even minor inconsistencies in facial animation can disrupt
user immersion. Traditional animation workflows prove realistic
but time-consuming and labor-intensive that cannot meet the ever-
increasing demand for 3D contents in recent years. Moreover, recent
data-driven approaches focus on speech-driven lip synchrony, leav-
ing out facial expressiveness that resides throughout the face. To
address the emerging demand and reduce production efforts, we
explore data-driven deep learning techniques for generating con-
trollable, emotionally expressive facial animation. We evaluate the
proposed models against state-of-the-art methods and ground-truth,
quantitatively, qualitatively, and perceptually. We also emphasize
the need for non-deterministic approaches in addition to deter-
ministic methods in order to ensure natural randomness in the
non-verbal cues of facial animation.
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1 INTRODUCTION AND MOTIVATION

Computer animation is a form of digital art that has become an
increasingly popular medium in the entertainment industry, with
applications in film, video games, advertising, and more. With the
inception of "metaverse", the demand for animated content has
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now reached an unprecedented level with additional applications
beyond those pertaining to the entertainment, such as- healthcare,
education, and virtual social interaction. Traditional workflows
for creating animated content cannot meet this ever-increasing
demand, as they involve several steps, including modeling, rigging,
texturing, animation, and rendering, which require specialized soft-
ware tools and a skilled team of animators, artists, and technicians.
Although traditional animation workflows are irreplaceable for
scripted scenes in high-budget projects such as animated films and
video game cut-scenes, they are not feasible for real-time 3D ap-
plications pertaining to XR. In such applications, animations need
to be generated on-the-fly, depending on the interaction context.
As a result, new workflows for generating animation driven by
data need to be proposed, implemented, and properly evaluated.
Recent developments in deep learning techniques have proven to
be particularly useful for such data-driven workflows for gesture
synthesis [Nyatsanga et al. 2023] and they hold immense poten-
tial for being applied to facial animation synthesis as well. More
specifically, speech-driven facial animation synthesis is now being
widely explored in both academic research [Cudeiro et al. 2019; Fan
et al. 2021a; Xing et al. 2023] and industry [JALI 2023]. While these
works mostly concentrate on lip-sync, the ability to synthesize
appropriate expressive non-verbal facial cues, is not yet being ad-
dressed as much. In this research, motivated by the aforementioned
facts, we will address the gap by employing and evaluating state-
of-the-art deep learning techniques for the 3D facial animation
generation task ensuring not only lip synchrony but also emotional
expressiveness that resides throughout the face.

As humans, we are particularly perceptive to even the most
subtle facial cues while interacting with others. To ensure an im-
mersive experience, digital humans must faithfully convey real-life
naturalness not only with body gestures but also with appropri-
ate facial expressions coherent with the context of the interaction.
Extensive research has been conducted and is ongoing in the do-
mains of 3D face shape generation[Li et al. 2017; Sanyal et al. 2019],
detection and analysis of facial action units and expressions[Tian
et al. 2001], and performance-based or motion-capture-based facial
motion mapping in both offline and online settings[van der Struijk
et al. 2018]. In contrast, fewer research works are being carried
out, and even fewer are open researches that address audio/speech-
driven facial animation. Moreover, current production workflows
can benefit from this as these models can generate speech-driven
facial animation in games and movies by just using voice acting,
which would significantly decrease production time and cost. Some
studies investigated only audio-driven 3D facial animation[Cudeiro
et al. 2019; Fan et al. 2021a; Xing et al. 2023], while others inves-
tigated text-driven animation[Hu et al. 2021]. Another direction
investigates both audio and text-driven facial animation[Fan et al.
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2021b]. Since audio is highly correlated with the lower facial re-
gion (i.e., lip and jaw), and emotion and contextual information are
correlated with the upper face region, extensive research needs to
be carried out that generates full facial animation that is expres-
sive, driven not only by speech but also emotion and contextual
information. Moreover, facial motion, more specifically non-verbal
elements residing in face is non-deterministic in nature [Ng et al.
2022]. Therefore, models that can resemble such non-determinism
in generation of diverse facial animations, should be proposed and
evaluated.

The main goal of this research is to explore state-of-the-art deep
learning techniques in order to propose multimodal data-driven
facial animation synthesis approaches for both offline and online
use-cases that can process multimodal information and generate fa-
cial animations of virtual humans in accordance with input speech,
emotion, context, etc. The proposed approaches will be extensively
evaluated in terms of both objective and subjective analyses, along
with ablations studies.

1.1 Research Question(s)

With the aforementioned motivation, the following main research

questions will govern the progress of this doctoral research -

e Main RQ1. Can deep learning approaches synthesize data-driven
3D facial animation that is as good as performance capture (i.e.-
the ground-truth)?

e Main RQ2. Do animations synthesized by the data-driven ap-
proaches perform well in terms of perceived realism?

Where RQ1 would be answered by the objective evaluation while

RQ2 would be answered by subjective evaluation. Additionally, the

following sub research questions will allow us to conduct experi-

ments that will help us answer the two main research questions-

e Sub RQ1. Can we disentangle emotional expressiveness from
speech input to control the expressiveness of the generated ani-
mation?

e Sub RQ2. Do non-deterministic generative models synthesize

more perceived realism in facial animation compared to deter-

ministic models?

Sub RQ3. Can we employ vision-based reconstruction models

to create synthetic datasets with labeled emotion information in

order to address the scarcity of large audio-4D datasets?

Sub RQ4. Can vertex-based proposed models be extended to

work on blendshape-based data?

2 BACKGROUND AND RELATED WORK

Related work on data-driven facial animation can be divided into
two main categories- vision-based and speech-based where our
focus is on the latter. There has been extensive work and research
done in neural-rendering of talking head animations in 2D pixel
space [Guo et al. 2021; Lu et al. 2021; Stypulkowski et al. 2023; Wu
et al. 2021]. However, due to the limitations of rendered videos,
which are not useful in 3D interactive applications, this research
will address speech-driven facial animation in 3D space.

[Karras et al. 2017] proposed an end-to-end convolutional neural
network approach that takes advantage of linear predictive cod-
ing to learn an encoding of audio or speech that can be used to
disambiguate facial expression variations in a latent space. The
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authors trained their network using their in-house dataset captured
with a traditional vision-based industry solution, DI4D [DI4D 2023].
Their approach can generalize to unseen and arbitrarily long audio
sequences from any speaker, language, and emotion. However, the
animation in the upper face region still suffers from generating
realistic variations. [Taylor et al. 2017] proposed a deep learning
approach to learn a one-to-one mapping between phonemes and
visemes. However, it can be argued that a one-to-one mapping
of phonemes and visemes can suffer from generating natural lip
motions as a specific phoneme can have many representations in
the lip motion. [Cudeiro et al. 2019] presented a generic speech-
driven facial animation framework that is trained on 4D scans of
12 subjects uttering 40 sentences each, in which 255 unique sen-
tences are present across the dataset. The authors present the VOCA
model that takes audio and a template neutral mesh as input and
outputs a facial animation sequence in accordance with the input
audio. The authors take advantage of the pretrained DeepSpeech
[Hannun et al. 2014] to extract audio features and use the FLAME
[Li et al. 2017] head model to learn identity factors in the dataset.
The proposed model generalizes to unseen audio, controllable via
speaking styles, shape, and pose. However, VOCA fails to realisti-
cally synthesize upper face motion and argues that the upper facial
region is weakly correlated with speech information. [Richard et al.
2021] presented a framework for speech-driven facial animation by
learning a categorical latent space based on a novel cross-modality
loss together with reconstruction and landmark losses that disen-
tangles speech-correlated and uncorrelated information. During
inference, a U-net-like decoder autoregressively generates facial
animation on template face mesh. [Fan et al. 2021a] proposed a
transformer-based approach to address speech-driven facial anima-
tion called FaceFormer. The authors proposed an autoregressive
transformer architecture to solve a sequence modeling problem
for speech-driven facial animation. The encoder leverages a self-
supervised speech model, Wav2Vec 2.0 [Baevski et al. 2020], which
is a pretrained speech model to address the scarcity of available
data in existing audio-visual datasets. [Aylagas et al. 2022] proposed
an audio-driven approach that incorporates retargeting to a rigged
face and includes tongue animation, which has not been addressed
by other works. In Learning2Listen [Ng et al. 2022], the authors
proposed a network based on VQ-VAE to model the listener anima-
tion in a dyadic setting. More recently, [Xing et al. 2023] proposed a
VQ-VAE based speech-driven autoregressive transformer animation
generation model, CodeTalker, that is inspired by both FaceFormer
and Learning2Listen.

To our knowledge, [Karras et al. 2017; Peng et al. 2023] addressed
emotional expressiveness for audio-driven 3D facial animation syn-
thesis task. Our goal is to explore and study the emotional expres-
siveness in speech-driven 3D facial animation synthesis in more
detail and answer the research questions introduced in the previous
section by proposing novel approaches for the synthesis task.

3 PROBLEM FORMULATION

The problem of generating output 3D facial animation driven by
corresponding input data can be formalized as a sequence modeling
problem where the input can be audio together with other modali-
ties (e.g. emotion, text semantics, context, etc.) and the output is
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a temporally aligned sequence of 3D facial animation. Both de-
terministic and non-deterministic sequence-to-sequence modeling
approaches can be formalized as follows -

Given an input data, X (can be combination of different modali-
ties such as- speech, emotion, subject ID, etc.) and temporally input
aligned output sequence Y7 = (y1, y2, y3, ..., yT), where T is the total
number of visual frames (can be both 4D mesh sequence or vector
of parameterized blendshape data). The goal is to propose neural
network approaches to learn the mapping between X and Y so that
in inference time, the model can synthesize f/T = (1,92, 93, ---» UT)
from arbitrary unseen input data X.

4 GENERAL APPROACH

The general approach throughout this research would be to address
the Sub RQs one-by-one. For each Sub RQ, we will (i) explore and
review the current state-of-the-art in data-driven facial animation
as well as core deep learning techniques, (ii) propose novel method
for data-driven models, and (iii) evaluate the method with respect
to state-of-the-art methods and ground-truth.

4.1 Datasets

In order to conduct experiments and answer the research questions
presented earlier, we will use multiple audio-visual datasets. We
will use 3D mesh-based datasets (i.e. BIWI[Fanelli et al. 2010], VO-
CASET[Cudeiro et al. 2019], and Multiface [Wuu et al. 2022]) and
blendshape-based datasets (i.e. BEAT [Liu et al. 2022] and our in-
house dataset, UUDaMM- Utrecht University Dyadic Multimodal
Motion Dataset).

42 SubRO1

Sub RQ1 states - "Can we disentangle emotional expressive-
ness from speech input to control the expressiveness of the
generated animation?"

To answer this, we need a dataset that comprises utterance se-
quences in a binary manner in terms of emotional expressiveness.
BIWI is such a dataset where actors were asked to speak 40 sen-
tences, firstly with a neutral expression and secondly with emotion.
This results in a balanced and appropriately labeled dataset which
is perfect for experiments related to this Sub RQ. We employ the
state-of-the-art self-supervised HuBERT[Hsu et al. 2021] model
to encode speech and semantics in a text-less manner to propose
an end-to-end deterministic sequence modelling approach that we
call FaceXHuBERT [Haque and Yumak 2023]. In this model, we
incorporated an emotion embedding based on the binary emotion
label to be able to distinguish the emotion-specific motion that
resides mostly in the upper face region. Furthermore, we also found
that due to the robustness and generalizable capabilities of Hu-
BERT, using a simple GRU to decode facial animation would suffice,
decreasing training time and complexity by a large margin. Our
experiments demonstrate better results in terms of quantitative met-
rics compared to other methodologies. Additionally, our qualitative
analysis shows how the network distinguishes the emotion-specific
and speech uncorrelated motions residing in the face (see Fig. 1).
The user study also demonstrates that emotionally expressive syn-
thesized animations by our model are perceived as more realistic
than the ones generated by other models. Furthermore, this work
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Figure 1: Emotional expressivity disentanglement using our
approach, FaceXHuBERT[Haque and Yumak 2023] that can
generate facial animations that are style controllable by a
binary emotion label. Fig. 1a is generated with neutral expres-
sion whereas Fig. 1b is generated with emotional expressivity.
Fig. 1c shows the colorized difference based on per-vertex
distances between neutrally and expressively generated an-
imations where extreme red depicts 100% of the computed
distance and extreme blue depicts 0% of the computed dis-
tance. It is evident that the emotional expressivity signal
effects the facial regions that are uncorrelated or loosely
correlated with speech but correlated with emotional expres-
siveness.

shows that given a strong audio-encoder and a balanced dataset
with correctly labeled emotion information, we can generate con-
trollable emotionally expressive facial animation that is perceived
as realistic. Visual results of the proposed approach can be seen
in the accompanying video. For further details, we refer to the
FaceXHuBERT paper [Haque and Yumak 2023].

4.3 SubRQ2

Sub RQ2 states - "Do non-deterministic generative models syn-
thesize more perceived realism in facial animation compared
to deterministic models?"

Facial motion is a human action that naturally has certain non-
deterministic aspects. This means that even during performance
capture, no two takes for a single sequence would be exactly the
same at the frame level and will have randomness based on a prob-
abilistic distribution. With this in mind, Sub RQ2 experiments with
non-deterministic techniques for generative models to synthesize fa-
cial animation. Due to the non-deterministic nature of such models,
evaluation is mostly be based on subjective analysis and user studies,
along with certain quantitative evaluation metrics. We employed
diffusion technique similar to [Tevet et al. 2022] but for face and
proposed FaceDiffuser [Stan et al. 2023]. The proposed approach
generates non-deterministic facial animation sequences that are
coherent with the input audio. Fig. 2 shows the non-deterministic
capability of our approach. Furthermore, the perceptual user study
also demonstrated that majority of the users preferred the anima-
tions generated by the non-deterministic approach to the determin-
istic ones. For more details, we refer to the FaceDiffuser paper[Stan
et al. 2023].
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Figure 2: Animation graphs of some facial controls (i.e.- low-
erlip, eyebrow, gaze, upperlid) of the UUDaMM dataset syn-
thesized using our approach, FaceDiffuser[Stan et al. 2023].
We synthesize animation data multiple times using the same
audio and plot the graphs together with the ground truth
(GT). The black plots depict GT whereas different colored
plots depict different generations. It is evident that our ap-
proach produces lip control values similar to the ground
truth as seen in Fig. 2a while encourages diversity for speech
uncorrelated facial controls as seen in Fig. 2b, Fig. 2c and
Fig. 2d.

4.4 SubRQ3

Sub RQ3 states - "Can we employ vision based reconstruction
models to create synthetic datasets with labeled emotion
information in order to address the scarcity of large audio-
4D datasets?"

Based on the findings from FaceXHuBERT [Haque and Yumak
2023], which addressed sub RQ1, we believe that we can propose
a method to incorporate specific emotion information to generate
emotionally expressive facial animation while having the freedom
to control the emotional aspect during generation. The bottleneck
for this experiment is the lack of appropriate datasets. However,
vision-based 4D reconstruction models such as DECA [Feng et al.
2021] and EMOCA [Danecek et al. 2022] have gained traction in re-
cent years for producing emotionally expressive 3D mesh sequences
from videos. We have seen in [Ng et al. 2022; Peng et al. 2023], such
vision-based models are used to create synthetic datasets using
2D videos. With EMOCA, we plan to employ a similar strategy to
create our own synthetic dataset that will have labeled categories of
emotion together with continuous valence and arousal information
as depicted in Fig. 3.
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(a) EMOCA emotion recognition and 3D face reconstruction
from in-the-wild videos.
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Contempt, 71.41%

Audio extracted Emotion Coarse 3D Detailed 3D
from video Label ion & uction
FLAME parameters with wrinkles

(b) Synthetic dataset creation process by taking the audio from
the source video together with the reconstructed output of
EMOCA.

Figure 3: Synthetic dataset creation process using EMOCA.

4.5 SubRQ4

Sub RQ4 states - "Can vertex-based proposed models be ex-
tended to work on blendshape-based data?"

Finally, for Sub RQ4, we will extend the vertex-based approaches
to work with blendshape-based data and evaluate the networks’
performance quantitatively and in terms of perceived realism and
synchrony. As manipulating blendshapes is real-time friendly and
can be integrated with existing interactive 3D graphics applications,
such a data-driven model can benefit online interactive applications
involving digital humans.

5 EVALUATION

The proposed approaches will be evaluated extensively through
quantitative, qualitative, and perceptual methods. While quantita-
tive evaluation metrics will represent how well a network performs
in producing facial animation that resembles the ground-truth data,
qualitative and perceptual evaluation methods will provide insights
on the visual realism and coherence of the synthesized animations.
Due to the many-to-many mappings between speech and facial mo-
tion in both lower and upper regions of the face, it is recommended
to conduct qualitative and perceptual evaluations to gain a more
appropriate understanding of the performance of the proposed
models, rather than relying solely on quantitative metrics [Cudeiro
et al. 2019; Fan et al. 2021a; Karras et al. 2017]. Furthermore, ab-
lation studies will also be conducted to evaluate the performance
of the proposed models by leaving out key specific modules from
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the original approaches. The ablation study will provide key in-
sights into the importance of specific modules in the final proposed
architectures.

6 DISCUSSION AND CONCLUSION

Speech-driven 3D facial animation can be used in various ways in-
cluding movie/game production, XR applications involving digital
humans, dubbing 3D content to a different languages etc. NPCs in
video games can be animated with ease by voice acting only. Addi-
tionally, manually editing animations for different languages (i.e.
dubbed movies/game cut-scenes in languages other languages than
the original version) is tedious, while such speech-driven animation
synthesis models can be used to train on original speech-animation
paired dataset and later be synthesized in multiple languages, re-
ducing production complexity and increasing quality. However, we
are still far away from having a production-ready and accessible
data-driven model that can enhance the animation workflows. With
this doctoral research, we plan to contribute towards realizing ideal
data-driven 3D facial animation synthesis approaches that not only
generates accurate lip-sync but also conveys natural non-verbal
facial cues with coherent expressiveness.
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