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Figure 1: We synthesize facial animation in real time via two convolutional neural nets. On the left, the v2c network maps
video input (𝑠𝑣) while the a2c network maps audio input (𝑠𝑎) and voice activation (𝛼). These signals are fused and applied to a
FACS encoded facial rig. Audiovisual inputs yield quality animation when both are present as well as robustness in the absence
of either. We optimized the system for production on our target of operating on low-end mobile devices.

ABSTRACT
We present an approach for generating facial animation that com-
bines video and audio input data in real time for low-end devices
through deep learning. Our method produces control signals from
audiovisual inputs separately, and mixes them to animate a charac-
ter rig. The architecture relies on two specialized networks that are
trained on a combination of synthetic and real world data and are
highly engineered to be efficient in order to support quality avatar
faces even on low-end devices. In addition, the system supports
several levels of detail that degrade gracefully for additional scaling
and efficiency. We showcase how user testing has been employed
to improve performance and a comparison with state of the art.
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1 INTRODUCTION
Real-time face animation for virtual 3D characters has important
applications such as AR/VR, interactive 3D entertainment, pre-
visualization and video conferencing. Yet despite important research
breakthroughs in facial tracking and performance capture, there are
few commercial examples of real-time facial animation applications
in the consumer market. Further, mass adoption requires real-time
performance on commodity hardware and visually pleasing ani-
mation that is robust to real-world conditions without requiring
manual calibration. We present a deep learning based framework
for synthesizing facial animation from combined video and audio
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that addresses most of these challenges. Our formulation is fast and
produces visually pleasing animations even on low-end devices.

Our approach inputs audio and video for direct animation control
for rigged faces in real time. To this end, we employ the Facial
Action Coding System (FACS) [Ekman and Friesen 1978] to define
a set of controls to deform a 3D face mesh rig. Our adoption of
FACS is twofold. First, FACS controls are intuitive and therefore
easy to use. And second, they are rather ubiquitous [Apple 2021]
and transferable between rigs. The aim for our deep learning-based
method is to take real-time video as input and output a set of FACS
with minimal delay. To achieve this, we opt for a per-frame solution
and rely on the network architecture to impose temporal continuity
through causal convolution in order to regress FACS values that
are smooth over time. Further, we propose an audio solution that
specifically targets the mouth and jaw FACS controls. We combine
the two in our multimodal approach using per-control blending
values and the voice activity probability (see Figure 1).

The strength of using multimodal input includes not only im-
proved “lip sync” through a specialized audio component, but also
redundancy that aids in continuity during occlusion, poor lighting,
and single viewpoint limitations. Furthermore, our formulation
allows us to disregard either of the video or voice inputs and cre-
ate FACS animations from the available signal, making it robust
in real-world communication use cases. The system is designed
to be immediately usable by a wide spectrum of users including
those on low-end devices. Our contributions also include a method
for extensive use of synthetically rendered frames in training. We
harness the strength of these frames by linking the computer gen-
erated and real world images through facial landmarks. With this,
our video network is trained on millions of carefully crafted and
well-distributed image sequences. Notably, these contain consistent
and controllable samplings of facial pose sequences which are hard
to find in real-world data sets. In conjunction, the audio network
is carefully trained on hybrid audio data from audio books and
real-world speech in a manner that makes it robust to environment
and voice variation, while maintaining sharp FACS production.

We posit that fused audiovisual signals are more robust and have
higher visual quality than either used separately. We perform vari-
ous ablation studies that reveal the contributions and weaknesses
of the components of each network. We also showcase our meticu-
lous study of the engineering highlighting optimizations aimed at
real-time performance on low-end devices, and a method for user
testing to improve overall visual fidelity of avatar animation and
address known issues.

2 RELATEDWORK
Recently, deep learning has been applied to the problem of face
tracking and animation with great success. Several works use con-
volutional models to predict facial landmark locations for images
and videos [Bulat et al. 2021; Bulat and Tzimiropoulos 2017; Chen
et al. 2019; Kumar et al. 2020]. The results are precise, but these
approaches are unsuitable for real time use on mobile devices given
their proposed architectures and compute budgets.

In PFLD [Guo et al. 2019], the authors propose a lightweight
parameterizable architecture based on MobileNetV2 [Sandler et al.
2018] for 2D landmark prediction. MobileNetV2 is a convolutional

architecture optimized to run on mobile CPUs. It reduces the total
compute and the size of its basic blocks by using separable con-
volutions: depth-wise convolutions followed by point-wise (1𝑥1)
convolutions, instead of regular 2D-convolutions.

Feng et al.[2018] use a single convolutional model to simultane-
ously generate 3D face alignment and 3D face reconstruction from
a single image. Grishchenko et al.[2020] directly estimate a 3D face
mesh from images using an attention mechanism to improve eye
and mouth accuracy. Their architecture runs in real time on mobile
GPUs. Laine et al.[2017] propose a real time deep learning method
to predict vertex positions of the input face using a convolutional
network. A drawback of that system is that the model must be
be retrained for each user, unlike ours which generalizes. Wood
et al.[2022] regress dense 2D landmark positions along with their
certainty using a convolutional model trained on 100K realistic
synthetic images, and use the outputs to fit a 3D model.

Vision transformers (ViT) have outperformed convolutional neu-
ral networks on several computer vision tasks. Recently, Xu et
al. [2022] propose a set of ViT based networks to regress 2D body
keypoints. The compute and memory requirements make these
architectures less suitable for low-end mobile devices. Feng et
al. [2021] train a model which regresses a parameterized face model
given in-the-wild images, disentangling personalization and ex-
pression parameters by means of self-supervised training and dif-
ferential rendering. The created avatars are animatable via these
parameters. According to the authors, their system can fail due to
extreme head pose and lighting, and is not robust to extreme occlu-
sion. They also list as future work imposing temporal continuity
on their tracking.

Several previous works have looked at producing facial anima-
tions from speech. Karras et al. [2017] propose a convolutional
network to regress the per-vertex difference vectors from a neutral
face. They input also an emotional state during training, which
allows them to modify the emotional expression at inference time.
Cudeiro et al. [2019] propose a mechanism to condition the convo-
lutional model on the speaker identity during training, allowing
the model to produce different realistic speaking styles. The model
takes as inputs DeepSpeech [Hannun et al. 2014] features and the
speaker identity, and predicts FLAME [Li et al. 2017] parameters
allowing for generalization of both the input speaker and the an-
imated target. MeshTalk [Richard et al. 2021] produces not only
mouth region animation but also plausible animations in the rest of
the face such us blinks or brow movements. The approach is based
on a categorical latent space that disentangles audio-correlated and
audio-uncorrelated information based on cross-modality loss.

Faceformer [Fan et al. 2022] produces very high quality 3D face
mesh predictions taking raw audio as input by using a transformer-
based autoregressive model with an audio encoder based on a self-
supervised pretrained Wav2vec 2.0 [Baevski et al. 2020] model.
Their solution is various order of magnitude larger in size, memory
footprint and compute than ours, and not suitable for low end-
devices. Codetalker [Xing et al. 2023] uses a very similar architec-
ture as Faceformer, but their autoregressive encoder-decoder is pre-
trained to learn a discrete motion prior using a VQ-VAE codebook
which enforces plausible facial expressions and motions. FaceX-
HuBERT [Haque and Yumak 2023] also leverages the power of self-
supervised training this time using a pretrained HuBERT [Hsu et al.
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2021] encoder. Their decoder, based on GRU layers, predicts vertex
displacements. Although lighter than Faceformer and Codetalker
is still computationally too expensive for low-end devices. These
recent works predict mesh vertices which cannot directly used on
any rig without a retargeting step.

The Snap [Chen et al. 2018] method generates facial anima-
tion from audio and video like ours, however that requires an ex-
plicit neutral expression calibration. That limits robustness and
convenience for real-world use where a single user’s camera angle,
lighting, makeup, and facial hair may frequently change between
sessions. Another method combining audio and video inputs is
Abdelaziz et al. [2020] which, as with our method, outputs FACS
to drive animation, and also runs on a mobile device. They train
a network with independent trunks for audio and video which
are concatenated at the very end to regress mouth related FACS,
while the rest are regressed solely from the video input. A modality
dropout during training forces the network to use information from
both modalities.

3 OVERVIEW
Following the abstract schematic in Figure 1, multimodal input
streams are taken as input and separately converted to two unique
control inputs, 𝑠𝑣 and 𝑠𝑎 , for FACS from video and audio as well
as 𝛼 for mixing the two signals based on the predicted presence of
speaking. Our system computes these values directly as audio and
video regressed animation parameters, as opposed to geometric
values such as 2D landmarks or the 3D face mesh. Each of the
multimodal channels is processed in trained deep learning based
systems which are both uniquely designed to be efficient on low-
end hardware and robust to environment. The core elements of
each is described along with our proposed network architecture and
our method for training each, for video (Section 4) and for audio
(Section 5). Our approach and considerations for combining these
signals is next (Section 6). Special data preparation and use is key
to our approach, we describe this in detail (Section 7). Further, we
showcase that we are able to develop the system to correct issues
through addition of new animation training sequences and targeted
user testing (Section 8). We present our LOD approach, levels and
control next (Section 9). The highlights of our implementation and
engineering optimizations follow (Section 10). Finally we describe
our results (Section 11), discussion and conclude (Section 12).

4 VIDEO TO ANIMATION
For video to animation (v2c), our aim is a real-time tracking system
that can convert a video sequence taken as (frame-by-frame) input
and output FACS controls and head pose for each frame. Further,
our goal is to make this functionality available to a broad audi-
ence, implying a range of compute capabilities. To this end the
proposed architecture shown in Figure 2 supports levels of detail
(LODs) which enables it to trade off animation quality for lower
computation cost. The resulting system supports smooth operation
and makes real-time facial animation accessible on a wide range of
devices.

In its lowest compute mode we rely on a lightweight multi-task
model that jointly predicts face probability, landmarks, head pose
and FACS weights. By lightweight model we mean that the model

can produce outputs at least at 30fps on mid-range mobile devices.
We call this model BaseNet.

With sufficient compute budget the system switches into run-
ning extra compute for more fidelity. In this operating mode the
facial landmarks predicted by BaseNet are used to get a tight crop
alignment of the face using procrustes which is fed to a larger
network called HiFiNet that predicts higher quality FACS weights.
BaseNet and HiFiNet share the same type of architecture based on
MobileNetV2 [Sandler et al. 2018] but use different configurations
(changing input resolution, number of residual blocks and layers)
which are optimized for efficiency in the case of BaseNet and for
quality and accuracy in the case of HiFiNet. Both consist of a mul-
titask feature encoder that feeds several task specific sub models
and are trained using real and synthetic data.

The input to BaseNet is a frame with an aligned face. In order
to find a face within the full input frame coming from the camera
we use the first two stages of MTCNN [Zhang et al. 2016]. The
first MTCNN stage, called Proposal Net (P-Net), is in charge of
finding face proposals, while the second, Refinement Net (R-Net),
refines and filters the initial proposals providing faces in the form of
bounding boxes. BaseNet is then run on these proposals to provide
a face probability, landmarks, FACS and head pose. We are not
limited to using MTCNN for the face proposal phase, other face
detectors could be used.

To achieve real-time performance, and assuming we only track
a face at a time, we take advantage of the correlation between
consecutive frames. Namely, once an initial face is detected, we
skip the MTCNN proposal network and directly run BaseNet by
using the landmarks of the previous frame to align the input face.
The face proposal network is only executed if the face probability
predicted drops below a specific threshold. This results in an average
speed up of 10x compared to running the face proposal network
on every frame.

4.1 Network Architecture
Each of BaseNet and HiFiNet employ a feature encoder that feeds
multiple task specific decoder models (Figure 2). We co-train
BaseNet feature encoders (𝐸𝑣𝑙 , 𝐸𝑣ℎ) and landmarks (𝐷𝑙 ) and face
probability (𝐷𝑝 ) decoders on a mix of synthetic and real images.
We train all headpose (𝐷𝑧 ) and FACS (𝐷𝑣𝑙 , 𝐷𝑣ℎ) solely on synthetic
video.

Our task specific decoders for FACS (𝐷𝑣𝑙 , 𝐷𝑣ℎ) and head pose
(𝐷𝑧 ) are small, temporally aware neural networks that use high level
features of the encoder as their input. In contrast to the encoder
they are trained on continuous sequences of video data rather than
single images and are therefore able to learn temporal relationships
between frames. The architecture of the FACS prediction decoder
(Figure 2) consists of 3 layers of causal convolutions with a kernel
size of 2x1, followed by an LSTM layer and a fully connected layer.
Our causal convolution layers are applied over the time dimension.
This allows the model to implicitly learn filtering functions that are
able to reduce jitter while maintaining responsiveness. Furthermore,
using small temporal sub models allows us to reduce the size of
the feature encoder even further without compromising quality
because the availability of temporal information allows the decoders
to compensate for the features coming from the smaller encoder.
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Figure 2: Overview of the video to animations system (v2c). The encoder models 𝐸𝑣𝑙 and 𝐸𝑣ℎ provide high level information on
a per frame basis which is then accumulated over time and processed by the FACS decoder models 𝐷𝑣𝑙 and 𝐷𝑣ℎ . The BaseNet
contains three additional decoder models for regressing landmarks (𝐷𝑙 ), face probability (𝐷𝑝 ) and head pose (𝐷𝑧 ).

BaseNet andHiFiNet encoders differ in the input resolution, num-
ber and size of MobilenetV2 blocks. The decoders or temporal FACS
models have identical architectures but different trained weights.
In Table 3, we present some of the architecture and performance
details for each of the architectures. The final architectures were
obtained by doing systematic ablation studies looking at jitter and
positional error in FACS as well as model size, while keeping the
compute as low as possible for a desired given quality.

4.2 Training
Training a FACS model in a supervised way directly from synthetic
data is not straightforward, because the domain gap between our
synthetic data and actual real faces is large. This means that the
feature representations learned by a network trained on a synthetic
dataset are different from ones required for real data and the model
is not able to generalize.

Figure 3: We train our video to animation models (BaseNet
and HiFiNet) in two phases. In the first phase we train a
feature encoder by regressing 175 facial landmarks. In the
second phase, we freeze the weights of the encoder and train
a FACS regression temporal model.

To solve this problem we split the training up into two phases.
Firstly, we train our feature encoder network on regressing land-
marks from both synthetic and real data. Although the landmarks

are not used to regress FACS this helps the model to learn a repre-
sentation that is valid for both real and synthetic data. The result of
this training phase is a feature encoder that is able to encode high
level features of faces, which can be used as inputs to subsequent
processing stages.

To jointly train the encoder 𝐸𝑣 and the landmarks sub model 𝐷𝑙 ,
we linearly combine two different loss terms:

• 𝐿𝐿𝑀𝐾 , Positional Loss on landmarks We use the RMSE of
the regressed positions.

• 𝐿𝐶𝑂𝑁 , Consistency Loss on landmarks. This encourages
landmark predictions to be equivariant under different trans-
formations [Honari et al. 2018]. It allows to use pairs of real
images without landmark annotations.

In the second training phase we train the actual FACS decoder.
We use the previously trained feature encoder, weights frozen. By
doing so we can make sure that the encoder retains its capability
to work on real data, while the FACS regression model is trained
on synthetic data using the high level features of the encoder as
its input. To train the FACS decoder, we linearly combine several
different loss terms:

• 𝐿𝑃𝑂𝑆 , Positional Loss on FACS. We use the MSE of the re-
gressed FACS.

• 𝐿𝑉𝐸𝐿 , Velocity Loss. We reduce jitter using temporal losses
over synthetic animation sequences. A velocity loss inspired
by [Cudeiro et al. 2019] is the MSE between the target and
predicted velocities. It encourages overall smoothness of
dynamic expressions.

• 𝐿𝐴𝐶𝐶 , Acceleration Regularization Loss. In addition, a reg-
ularization term on the acceleration is added in order to
reduce FACS weights jitter (its weight kept low to preserve
responsiveness).

5 AUDIO TO ANIMATION
Our deep learning based audio to animation (a2c) component takes a
raw audio sequence as input and outputs a subset of speech-related
FACS controls (𝑠𝑎 , e.g., jawOpen, mouthPucker, mouthStretchRight)
and also voice-activity likelihoods (𝛼) for use in the Audio/Video
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mixing of Section 6. The audio to animation system needs to gen-
eralize well across different types of voice, be robust to noisy en-
vironments, and be computationally efficient in order to deploy
on low-end mobile devices. This is accomplished with separately
trained encoder and decoder stages. As shown in Figure 5, the en-
coder is trained using audio from many speakers, with the goal of
finding a speaker-independent latent representation of the speech.
The output animation decoder is then fine-tuned using a smaller
set of FACS labeled videos.

Figure 4: Overview of the audio to animations system (a2c).
The audio-to-animations system consists of an encoder, com-
posed of causal convolutional layers, LSTM layers, and a
fully connected layer. This encoder (𝐸𝑎) generates a semantic
embedding of the input audio, which is then fed into FACS
and VAD decoders (𝐷𝛼 , 𝐷𝑡 ) to generate the final animation
outputs.

5.1 Network Architecture
Our audio to animation network (AudioNet) includes two stages:
an encoder (𝐸𝑎) which takes the audio feature (𝑥 ′𝑎) as input and
encodes it into a shared phoneme-aware embedding space, and
decoders (𝐷𝛼 , 𝐷𝑡 ) which are appended after the embedding to esti-
mate task specific outputs, shown in Figure 4.

For audio feature extraction, given a raw input audio clip, we ex-
tract 26MFCC features at a hop length of 16ms and a window length
of 16ms. Five consecutive frames of MFCC features are packed to-
gether to form the final input to the encoder, which are reshaped
flat before the input. Note that packing consecutive features is the
only systematic latency (40ms, which is calculated as the middle
point of 5 windows of 16ms) introduced into the a2c sub-system.

As a trade-off between representation and computational cost,
we use a simple network architecture to encode the input to a
latent embedding. This network includes: (1) a stack of causal con-
volutional layers followed by batch norm [Ioffe and Szegedy 2015]
and activated by leaky-ReLU [Maas et al. 2013]. The causal con-
volutional layer expands the receptive field without introducing
any additional latency since it only looks at series values from the
past; (2) an LSTM layer that works along the time dimension to
retain a temporal consistent embedding. This choice of encoder
provides a simple yet effective embedding for downstream tasks
and enables the audio to animation system to run in real-time on
low-end mobile devices. This causal convolution followed by an
LSTM pattern used in AudioNet follows the same structure as the
v2c FACS decoder described in Section 4.

Our audio to animation system outputs are structured as mul-
tiple tasks off the encoder. We use one decoder for each task to
estimate the corresponding output from the embedding. These de-
coders share a same architecture except for dimension of the output
layers, including a fully connected layer to reduce the embedding
dimension, followed by an LSTM layer and a fully connected output
layer. Since the first layer reduces the feature dimension (e.g., 64-d),
these decoders run very fast.

Figure 5:We also follow the two-phase training process in the
audio to animation. In the first phasewe train a audio encoder
to output phoneme labels (𝑝ℎ). In the second phase, we add
decoders on top the encoder to regress the FACS weights (𝑠𝑎)
and VAD signals (𝛼).

5.2 Training
In the training of encoder and decoder portions of the network,
audio samples are presented along with various time-aligned la-
bels. The audio samples are augmented with a variety of randomly
selected noise and pitch transformations. In order to improve the
robustness of the model to different types of noise, we augment
the input audio samples by adding randomly generated white noise
or selecting pre-recorded ambient noise, such as street, restaurant,
wind, or rain sounds. To simulate people speaking in different
virtual rooms, we also use impulse response convolution to add
reverberation to the input audio. Additionally, we have found pitch
shifting, gain shifting, and speed changing to be useful techniques
for further augmenting the audio samples.

Early end-to-end training experiments on the encoder+decoder
network revealed that speech-related animation labels varied from
speaker to speaker in ways that led to over-smoothed and muted
FACS predictions. Much sharper results were obtained when train-
ing on a single speaker’s motions. This led us to pre-train the
encoder using only audio, from many different speakers, with the
goal of learning a speaker-independent latent speech representa-
tion. The best results were achieved by pre-training the encoder on
a phoneme prediction task. The intuition is that phonetic speech
has a strong correlation to visual speech units (visemes[Zhou et al.
2018]) arising from themechanics of producing the phonetic sounds.
Training a phoneme recognition task thus favors an internal repre-
sentation that is transformable to continuous analogues of viseme
sequences, represented as FACS curves.
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Specifically, for this phoneme training task, we append a simple
decoder (𝐷𝑝ℎ), which is implemented as a fully connected layer
activated by Softmax, after the embedding to estimate the phoneme
labels. And the encoder along with the phoneme output layer are
trained on phoneme transcripts of the LibriSpeech dataset [Panay-
otov et al. 2015]. To keep the pre-training simple, a sole CTC loss
[Graves et al. 2006] is used without providing any time related
information in the training. The encoder is trained for 100 epochs
with an initial learning rate of 1e-3 and scheduled to reduce to 10
every 30 epochs. The model reaches to 23.6% word error rate on
the validation set after pre-training.

After the encoder training, a phoneme-aware representation
is fed into subsequent decoders, including the FACS decoder and
a VAD (Voice Activity Detector) decoder as a binary (speech vs
no-speech) classification. Once the encoder has been trained, its
weights are frozen before the decoder training may proceed. This
is done so as not to bias the encoder towards the single speaker’s
voice presented during the FACS decoder training. The FACS output
task is trained using FACS-labeled audios from a single speaker [url
2017]. The VAD output task is trained concurrently using labeled
audio examples from the VAD collection. We co-train the voice
activity (𝐷𝑡 ) and FACS (𝐷𝑎) decoders by linearly combining three
loss terms:

• 𝐿𝑃𝑂𝑆 , Positional Loss on FACS for audio, similar to that used
in v2c training but using smoothed L1 norm [Girshick 2015].

• 𝐿𝑉𝐸𝐿 , Velocity Loss, similar v2c and to [Cudeiro et al. 2019],
but implemented as a smooth L1 loss, to stabilize the predic-
tions over time.

• 𝐿𝑉𝐴𝐷 , a cross entropy loss for the voice activity detection
task.

6 MULTIMODAL MIXING (MODMIX)
Animation curves from audio and video sources are linearly blended.
Mixed results 𝑠 are derived from video to animation (𝑠𝑣 ), and audio
to animation results (𝑠𝑎) by:

𝑠𝑖 = 𝑠𝑣,𝑖 (1 − 𝛼) + 𝛼 (𝑤𝑎,𝑖𝑠𝑎,𝑖 +𝑤𝑣,𝑖𝑠𝑣,𝑖 ) (1)

where 𝛼 is a voice activity signal,𝑤𝑣,𝑖 and𝑤𝑎,𝑖 are mixing weights
for video and audio results respectively, and 𝑖 is the FACS index. If
there is no speaking in the audio, 𝛼 is 0 and only predictions from
the video to animation pipeline are contributing to the final result.
If voice activity is detected the 𝛼 signal transitions from 0 to 1 and
the output becomes a weighted combination of results from audio
to animation and video to animation pipelines.

Note, with this rather simple approach, we did consider alter-
natives such as an additional network for mixing. However, the
overhead of adding a third network to do this alone was deemed to
be undesirable because the simple mixing technique described was
far less costly (in network and computation) and did not degrade the
quality output of the two input streams. Thus, we concluded that
there is very little to gain from adding a more sophisticated mixing
approach. The core role it plays is to provide a means to combine
and switch the signals, which the simple solution we propose does
well – with practically no cost in download or computation.

Figure 6: Synthetic data is generated for training. The value
of synthetic data is key to our approach - to add precise FACS
data pairing, control (especially extreme) lighting, reduce
jitter, and increase individual subject variation, as well as
offer a much larger dataset than otherwise possible.

7 DATA PREPARATION
The success of our approach relies in part on careful data prepara-
tion for both the v2c and a2c training. In both cases, we leverage an
internal motion capture system for our ground truth data, though
in substantially different ways.

7.1 Real and Synthetic Images
Our deep learning models for video need to generalize to a wide
range of users and be invariant to face shape, age, ethnicity and
gender. Furthermore, the model must be robust to challenging en-
vironmental conditions such as extreme lighting and occlusions.
Training such a model requires a large amount of data. Typically,
supervised learning methods rely on human labeling to generate
training data. However, obtaining ground truth FACS labels for real
data is non trivial because the mapping from facial expressions to
exact FACS weights is ambiguous. Hence generating labels in such
a way would result in a noisy dataset. For this reason we make use
of synthetic data as this allows us to get an exact mapping between
FACS labels and renders of a set of facial rigs. Furthermore, this
also allows us to control the distribution of the dataset in terms of
facial expressions, head poses, gender, age and ethnicity and avoid
undesired biases.

We generate the training data (see Figure 6) in two phases. First,
we generate FACS curves by an offline motion capture system on a
video expression dataset and in a purely procedural fashion, and
then augment both type of animations. Second, we use the gener-
ated animation curves to drive our face model and render animation
sequences using various identities and lighting setups. This yields
continuous sequences, which allows us to take the temporal domain
into account when defining the model architecture. The FACS and
head pose regression decoders are trained purely on synthetic data.
We use a mix of real and synthetic data to train the encoder parts
of both BaseNet and HiFiNet.
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Figure 7: Visualization of our two phase iterativemodel selec-
tion process. We first manually evaluate candidate models by
visually inspecting the performance on an internal dataset.
If it passes, we conduct a user study. If any of the two verifica-
tion steps fail we resort back to generating suitable training
data for the relevant expressions.

7.2 Audio Data
For audio training, the a2c encoder is trained using examples from
audio books in the Librispeech dataset [Panayotov et al. 2015]. The
Montreal forced aligner [McAuliffe et al. 2017] was used to produce
phoneme transcripts from the original text and audio clips. We
retrained examples from over 2400 speakers for a total of 1000 hours
of training data. Sequences are segmented into short (5-10 sec) clips
along silence boundaries to create training examples from longer
clips.

The a2c (FACS) decoder is trained using the audio from single
speaker videos (Barack Obama’s weekly addresses [url 2017]. FACS
labels for these videos are derived using an in-house offline system.
For the results in this paper, we assembled 13 hours of training
data in this manner after filtering out non-frontal face clips. In
addition to the FACS decoder, a voice activity detector is needed for
use in audio/video mixing as described in Section 6. We used the
AVA Spoken Activity Dataset [Roth et al. 2020] , which provided 45
hours of mixed speech/noise audio with speech and background
labels for use in training. Finally, we augment audio examples
with background noise during a2c network module training. There
are two sources of noise: (1) convolution with impulse response
functions, used to simulate audio environments. (2) background
noise recordings from a subset of Audioset [Gemmeke et al. 2017].

8 USER TESTING AND MODEL SELECTION
We performed extensive testing with subjects through the user
study process outlined in Figure 7. As our models train within a few
hours (see Table 1), we were able to run many experiments on our
network architectures, loss weights, and input data. We started off
with quantitative tools for selecting the preferred system. Namely,
our initial model selection for v2c was done based on ground truth
error per frame and ameasure of jitter over the validation sequences.
As well, for a2c, selection was based the word error rate on phoneme
classification for the encoder while the decoder’s selection was
based on jitter and responsiveness measurements. But as we refined
the system, the selection of new models was done by a combination
of internal subjective testing of models, followed by significant
user-in-the-loop testing.

We explain this process with an extended description of a spe-
cific example. Namely, during development, we found out that our
models had learned a strong correlation between the mouth and the
eyes: if the user performed a wink and opened their mouth the wink

Table 1: Training times in hour for the different networks
on a Nvidia Titan Xp.

Network Training
time (h)

BaseNet encoder + landmark & face prob. decoders 5
HiFiNet encoder 8.5
BaseNet/HiFiNet FACS decoder 5
AudioNet encoder (phoneme pretraining) 12
AudioNet FACS + VAD decoders 3

would not be predicted by our models. The issue was identified
as a data distribution problem – we lacked training sequences in
which winks were performed with the mouth open. We used our
data generation system to create a better distribution of sequences
which covered the failure cases, rendered them and trained several
new models. We selected the best among these models looking at
jitter and positional error metrics, followed by subjective visual
inspection of predicted animations on a set of 100 videos which re-
flect different expressions, identities, poses, and lighting conditions
as well as additional ‘live’ tests with the system running. Figure 8
provides a visualization of model performance before and after the
tuning process described above.

Figure 8: Model performance before and after the tuning
process and exemplary training data used for tuning.

We then performed subject testing with about forty users in
which we would do A/B testing between the previous system and
the selected candidate. In the test, users ran two different versions
with two devices (phones) placed side by side and performed a
battery of facial expressions (neutral expression, winks, wink while
opening mouth, large open mouth, frowning, etc.) while looking
at the resulting animations. They were asked to choose the best
for each expression. We gave the users detailed instructions with
examples on how to perform the different expressions. Each user
study replied with between 500 and 800 answers depending on the
number of subjects and expressions evaluated. The supplementary
video showcases examplary outputs from this methods.

9 LEVEL OF DETAIL (LOD)
We introduce a level of detail (LOD) strategy for the execution
of our audio-video pipeline to selectively improve performance
and ensure a smooth experience for the end user based on their
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hardware and use conditions. We leverage the two-stage nature of
our video pipeline to predict FACS from the BaseNet decoder (𝐷𝑣𝑙 )
or from the HiFiNet decoder (𝐷𝑣ℎ) when possible, to produce better
quality outputs.

We vary the encoder input video rate (30 vs 15 fps), but always
produce 30 fps output. For skipped input frames, we take as input
the encoder’s feature vector from the previous frame, which allows
us to extrapolate the FACS outputs and generate results that are
almost identical to that of running the encoders at 30fps (see Sub-
section 11.2). Our system supports this through its architecture,
particularly the causal convolution blocks which provide a form of
time filtering. The FACS video decoders are much smaller than the
video encoders (see Tables 3 ), making our encoder subsampling
strategy very efficient.

We support four LODs as defined in Table 2, which vary the
encoder (BaseNet or HiFiNet) and subsampling. When FACS are
predicted by HiFiNet, BaseNet is still run to predict head pose, face
probability, and landmarks for alignment. For higher accuracy, we
always run the very efficient a2c if audio input is available.

10 IMPLEMENTATION AND OPTIMIZATION
The implementation of our proposed algorithms included many
careful and evidence based engineering choices and optimization
techniques. Additionally our aim was to optimize our models for
the largest range of possible devices so we explicitly optimized our
models for deployment on devices without any kind of dedicated
neural network inference hardware. We highlight some key choices
that led to the real-time performance of our implementation.

10.1 Pre-training architecture optimization
In the implementation of the BaseNet/HiFiNet subsystem, we draw
inspiration from MobileNetV2 [Sandler et al. 2018] but introduce
critical optimizations for our application’s demands. Namely, we
changed the input resolution, number of layers, depth per layer,

Table 2: LOD scheme as name, encoder, and subsampling.

LOD Network predicting FACS Subsampling
LOD4 HiFiNet None
LOD3 HiFiNet HiFiNet only
LOD2 HiFiNet All
LOD1 BaseNet BaseNet only

Table 3: Architecture and performance information for the
video and audio to animation models. The second column
refers to the model size when stored in float16 precision,
third is the input resolution of each model, and last is the
Multiply-Accumulates (MAccs).

Architecture Model size Input MAccs
float 16 resolution

BaseNet encoder 1.01MB 65x65 5.23M
HiFiNet encoder 1.85MB 129x109 25.22M
Base/HiFiNet FACS decoder 540KB n/a 202K
AudioNet encoder 290KB 130x1 147K
AudioNet FACS decoder 78KB n/a 39K
AudioNet VAD decoder 76KB n/a 38K

and included strided convolutions in the first layers. We also selec-
tively use unpadded convolutions to decrease the feature map size.
Using unpadded convolutions to reduce the featuremap size gives
more control compared to strided convolutions, meanwhile we can
maintain the residual by simply slicing the residual feature map to
match the size of the unpadded convolution’s output feature map.

10.2 Post-training architecture optimization
The next optimization step we incorporated was a post training
architecture optimization step, here we take a trained model and
improve the execution efficiency. This is primarily done by fusing
layers, for example a convolution layer followed by a batch normal-
ization layer can be fused into a single convolution layer by folding
the batch normalization layer frozen variables into the preceding
convolution. To achieve this we used the tensorflow Transform
Graph tool [url 2022] and the NCNN Optimize tool [Tencent 2023].
Additionally we reduced the size of the frozen model 50% by reduc-
ing weights and biases from float32 to float16 precision at negligible
accuracy loss.

10.3 Runtime execution optimization
We designed our algorithms to be executed on a large range of de-
vices we focused on optimizing our models for inference on a CPU.
Usually inference on a GPU is preferred for neural networks but we
didn’t choose this options for two reasons; The first being the fact
that supporting inference on the GPU for a large range of devices
is much harder than supporting inference on the CPU. The second
reason was that due to our convolutional architecture being an
order of magnitude smaller than most convolutional architectures
such as MobilenetV2 [Sandler et al. 2018], we found that execution
on the GPU often took more time compared to execution on the
CPU. Our assumption is that this is due to our architecture being
mostly memory bound as opposed to compute bound due to size
and the abundant use of depth-wise convolutions.

Our most significant optimization adjusting featuremaps to
blocks of 8 scalars; desktop AVX SIMD uses 8-element blocks and
mobile Neon SIMD uses 4 at float32 and 8 for float16. This yields a
net 50% increase in performance (SIMD execution is not perfectly
efficient) [Zhang et al. 2018].

11 RESULTS AND EVALUATION
With our goal of real-time on low-end machines, we have done
extensive performance evaluation of our architectures on different
devices, Table 4 reports inference performance of the different
architectures in our system using the NCNN framework [Tencent
2023]. Figure 9 shows that our system can map a wide range of
input expressions to different characters via FACS.

11.1 Single vs. multimodal frameworks
The supplementary video shows that when using audio input, we
capture more inner-mouth details. For example the mouthPucker
and mouthFunnel shapes have audio-based activations that exceed
video by 30-40%. When only video is used, our method is able
to capture expressions (e.g., furrowing the brow), but does not
accurately reproduce detailed lip movements. By fusing the results
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Table 4: Inference times in ms (mean and standard deviation) on several Android, macOS and Windows Intel based devices for
our network architectures.

BaseNet HiFi Base/HiFiNet
encoder encoder FACS decoder AudioNet

mean std dev mean std dev mean std dev mean std dev
Device (ms) (ms) (ms) (ms) (ms) (ms) (ms) (ms)

Samsung S6 (Exynos 7420 Octa) 3.8883 0.1647 8.2793 0.2933 0.4268 0.0160 0.6104 0.1081
Samsung Tab Lite S6 (Exynos 9611) 3.0019 0.0691 7.8778 0.1096 0.2491 0.0224 0.5063 0.0316
Samsung S8 (Qualcomm MSM8998) 2.6133 0.1543 7.0503 0.3659 0.2089 0.0261 0.4140 0.0848
Samsung Note9 (Qualcomm SDM845) 1.3564 0.1547 2.8330 0.3784 0.1547 0.0240 0.2726 0.0285
Samsung S9+ (Qualcomm SDM845) 1.3351 0.0504 2.6476 0.0641 0.1462 0.0178 0.2433 0.0149
iPhone 6S (A9) 1.0576 0.0648 2.4224 0.0876 0.1288 0.0134 0.2795 0.0368
Samsung S10e Europe (Exynos 9820) 0.8842 0.0947 1.5246 0.2062 0.0890 0.0087 0.1596 0.0152
Huawei Mate 40 Pro (Kirin 9000) 0.7945 0.0361 1.5726 0.0501 0.0850 0.0104 0.1814 0.0270
iPhone Xr (A12) 0.2836 0.0054 0.8075 0.0134 0.0513 0.0036 0.1245 0.0263
iPhone 12 (A14) 0.2105 0.0522 0.6160 0.0969 0.0371 0.0086 0.0849 0.0124

MBP 2019 (i9-9980HK CPU @ 2.40GHz) 0.4972 0.0531 1.4780 0.0765 0.0797 0.0083 0.1130 0.0304
Windows (i7-8850H @ 2.6GHz) 0.5859 0.0954 1.7332 0.1597 0.0879 0.0222 0.1478 0.0359
Windows (i9-10885H @ 2.40GHz) 0.4955 0.0313 1.5155 0.0692 0.0690 0.0114 0.1427 0.0150

Figure 9: Our system performs well under a large range of input expressions. Because we use the standard FACS abstraction,
these can be mapped to diverse avatar facial geometry.

of both modes we are able to track facial expressions while keeping
good lip sync.

We investigated the impact of temporal information in our archi-
tecture by an ablation study on the v2c decoder. In this experiment,
a baseline architecture replaced the temporal block consisting of
causal convolutions and a LSTM with a fully connected layer. This
resulted in low animation quality due to the high jitter, absent tem-
poral information. We also experimented with adding more fully
connected layers to give the model more capacity. This resulted in
a slightly improved error metric but even higher jitter values. The
causal temporal architecture refers to the architecture proposed in
this paper.While keeping the FACS error constant, it greatly reduces
the jitter. Finally, we experimented with a non-causal version of our
architecture which predicts animations with a delay of one frame.
By doing so, jitter was reduced even further without compromising
the accuracy, but at the cost of introducing a lag. Since our system

needs to be real time, we did not pursue this architecture despite
it’s favorable properties. Table 5 shows results for mean absolute
FACS error and mean jitter over 10 training experiments, as well
as corresponding standard deviations. FACS error is computed on
an internal synthetic test dataset. Jitter is evaluated on a internal
video expression dataset. We compute jitter by aggregating the
FACS first derivatives when they differ in sign from the previous
frame (change of direction in the movement) and dividing them by
the number of frames and FACS.

11.2 LOD accuracy and performance
Our system supports four LOD levels which differ on whether
HiFiNet is run or not, and whether BaseNet and HiFiNet encoders
are run on every frame or on alternate frames (see Section 9). A
lower LOD means less compute per frame is used, however a lower
LOD also means the predictions are less accurate. To compare, we
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compute the mean absolute error when running our video sub-
system on a set of synthetic videos which exercise different facial
expressions and head poses. The error on LOD1 is larger than in
the rest of modes, which is expected since its FACS predictions
come from BaseNet which has much lower capacity than HiFiNet
used in LODs 2,3 and 4. The error difference between the last three
modes is minimal with LOD2 having the largest error and LOD4
the lowest.

Figure 10 shows predicted animation curves (jawOpen, mouth-
Pucker and eyeBlinkLeft) by the four LODs on a short input video.
The differences of LOD2 and LOD3 with respect to LOD4 are mini-
mal, almost not visible, indicating that the subsampling strategies
of LOD2 and LOD3 do not degrade the quality of the predictions.
We quantify the subsampling effect by calculating the prediction
error of LOD2 and LOD3 when taking LOD4 as ground truth. We
used an internal set of 50 videos and a total ∼33k frames (repre-
senting different expressions, identities and lighting conditions)
and calculated the mean absolute error across all the frames and
predicted FACS, resulting in 0.0123 for LOD2 and 0.0059 for LOD3.

As seen in the figure, the main differences in the animation
curves occur for LOD1 with respect to the other modes. This is
expected since the predictions come from two different models
that were trained separately, have different input resolutions and
encoder capacities. Still the trend of each FACS control when com-
paring LOD1 outputs vs the rest is very similar.

In Figure 11, we show the performance of the LOD levels when
run on different devices. We can see how LOD2 requires approxi-
mately half of the inference time on average per frame when com-
pared to LOD4 for almost the same accuracy.

11.3 Comparison to deployed alternatives
We compare our video to animation sub-system against ARKit [Ap-
ple 2021], which generates equivalent FACS outputs taking as input
only video. ARKit is only supported on iPhone X or newer de-
vices, while our proposed solution can run on older devices such
us iPhone 6s and non Apple devices.

We performed a quantitative comparison between the two sys-
tems by measuring jitter and expression asymmetry. Facial symme-
try has been identified as a major contributing factor to perceived

Table 5: Ablation study on the v2c FACS decoder architecture.
Error measures are averaged over 10 experiments.

FACS Error FACS Jitter
Architecture mean std dev mean std dev

Baseline 9.2e-2 0.63e-3 46.0e-4 1.9e-5
Causal Temp. 9.2e-2 1.1e-3 7.2e-4 1.4e-5
Non Causal Temp. 9.2e-2 1.5e-3 4.7e-4 0.78e-5

Table 6: Comparison of our system (LOD4) against ARKit in
terms of jitter and asymmetry for our internal general and
symmetric datasets respectively. Lower is better.

FACS Asymmetry FACS Jitter
System mean std dev mean std dev

ARKit 13.0e-3 8.2e-3 8.3e-4 7.7e-4
Ours 3.6e-3 2.3e-3 3.1e-4 1.6e-4
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Figure 10: FACS Animation outputs (jawOpen, mouthPucker
and eyeBlinkLeft) on the same input video sequence for the
different LODs using only the v2c. LODs 2-4 use HiFiNet with
different subsampling modes and yield similar results. LOD1
predictions are dissimilar due to its reliance on BaseNet.

4 3 2 1
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

13.0

14.0
Samsung S6 (Exynos 7420)
Samsung Tab Lite S6 (Exynos 9611)
Samsung S8 (Qc MSM8998)
Samsung S9+ (Qc SDM845)
iPhone 6S (A9)
Samsung S10e (Exynos 9820)
Huawei Mate 40 Pro (Kirin 9000)
Windows (i7-8850H)
MBP 2019 (i9-9980HK)
iPhone Xr (A12)

Level of detail

A
vg

. 
pe

r 
fr

am
e 

av
2c

 e
xe

cu
ti
on

 t
im

e 
(m

s)

Figure 11: Mean inference times in ms on Arm and Intel
devices for different LODs.

Figure 12: Input frame, our LOD4 result, and ARKit for self
occlusion. We predict symmetry for the occluded region.
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attractiveness [Perrett et al. 1999], while jitter on facial animations
is very distracting and unpleasant to see. To measure jitter we use
the metric described in Subsection 11.1. We measure asymmetry
taking the mean absolute value of the difference between symmet-
ric FACS control pairs, for instance between mouthStretchLeft and
mouthStretchRight.

We recorded animation outputs and input videos from ARKit
to then run under our system. We collected a first dataset to eval-
uate jitter. It contains multiple identities performing various ex-
pressions under different lighting conditions and head poses. We
collected a second dataset to evaluate asymmetry, which contains
the same variations but is restricted to symmetrical expressions
such as smiles, puckers, mouth opens frowns and blinks. If the input
expression is symmetric the asymmetry predicted by the system
should be as low as possible. In Table 6, we show the mean and
standard deviation for asymmetry metric on the symmetry dataset,
as well as the jitter metric for the general dataset, comparing our
video subsystem in LOD4 and ARKit. We show improvements in
lower mean jitter and asymmetry than ARKit.

Fig. 12 compares our LOD4 predictions to ARKit for self-
occlusion. Our system produces amore symmetric smile than ARKit.
See the video supplement for more extensive comparison.

12 DISCUSSION AND CONCLUSIONS
In this work, we present a combined audiovisual approach for facial
animation. We are able to achieve robust, real-time results tracking
facial expressions from video, and complement this with a separate
audio to animation model dedicated to estimating lip sync shapes
from user’s speech. Our ability to leverage speech audio also allows
us to infer reasonable mouth movements under occlusion, and
opens up more interesting productization possibilities.

We also propose a multi-tiered LOD system for facial animation.
We can target maximum quality at the expense of higher compute
by running both v2c and a2c together. We extend this LOD idea
further by dividing the v2c model into BaseNet and HiFiNet, and
by introducing a data-driven subsampling approach that allows us
to avoid running our v2c model on every input frame. As demon-
strated in our experiments, this data-driven subsampling deviates
minimally from original, but requires only half of the compute time.

We describe a scalable system for directly regressing FACS
weights from video by training on synthetic data. Using synthetic
data gives us perfect FACS ground truth and allows us to train on
unlimited identities in unlimited lighting conditions. Furthermore,
it becomes trivial to sample the full space of facial expressions that
we need for training in an iterative fashion. The key insight here,
however, is that these benefits are only achievable by first bridg-
ing the domain gap by pretraining on a landmark detection task
with a combination of natural and synthetic images. By directly
regressing FACS from video, we avoid the pitfalls of landmark based
approaches which struggle with the identity vs expression ambi-
guity. And because we regress FACS parameters rather than final
geometry, our tracker can be used with any FACS supported rig.

There are several known limitations of our approach and direc-
tions for future work. Starting with audio lip sync, due to our train-
ing on clear speaking with limited noise augmentations, singing
and jittery long vowels are not interpreted correctly. Further, in

noisy environment, the current system may confuse background
noises as speaking, especially sharp sounds, like knocking. Limits
with the FACS rigs make it difficult to distinguish some vowels (i, e,
a) and these rigs are also limited in their ability to control teeth and
the tongue. As for video to animation, we implemented single face
tracking, although support for multiple faces may be straightfor-
ward. Apart from running BaseNet (and HiFiNet on certain LODs)
per found face, we would need to run a our Face Proposal module
with a certain periodicity to incorporate new faces to the scene. Due
to limitations in the input resolution, BaseNet produces a reduced
set of FACS, including omitting gaze, compared to HiFiNet. Another
limitation of the BaseNet, in contrast to the HiFiNet, is the possible
loss of fast movements, such as blinks, under low lighting condi-
tions due to the reduced temporal resolution. In addition, as we
targeted symmetry, we in turn experience some loss of asymmetry.

As future work, we would like to extend the causal convolu-
tion/LSTM/FC decoder architecture for other real-time tracking
problems such as body mocap. We also think that the LOD ideas
described in the paper, such as temporal subsampling, are use-
ful for improving performance of other real-time computer vision
problems. The idea of using synthetic data to incorporate user pref-
erence followed by retraining is also applicable for other visual
applications that use reinforcement learning with human feedback.
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