2309.12841v1 [cs.LG] 22 Sep 2023

arxXiv

Reward Function Design for Crowd Simulation via
Reinforcement Learning

Ariel Kwiatkowski
ariel kwiatkowski@polytechnique.edu
Institut Polytechnique de Paris
Palaiseau, France

Julien Pettré
julien.pettre@inria.fr
INRIA
Rennes, France

-
.
-
1)
»
.
B 22223
n 2333
o o 3 33333
u 2333
33223
.
[L .
u u
= []
| L]

(a) Circle scenario. (b) Corridor scenario.

.....

(c) Crossing scenario.

Vicky Kalogeiton
vicky.kalogeiton@polytechnique.edu
Institut Polytechnique de Paris
Palaiseau, France

Marie-Paule Cani
marie-paule.cani@polytechnique.edu
Institut Polytechnique de Paris
Palaiseau, France

(d) Choke scenario. (e) Car scenario.

Figure 1: Agent’s initial positions and goals in five scenarios: (a) Circle with 40 agents. (b) Corridor with 50 agents. (c) Crossing
with 50 agents. (d) Choke with 20 agents. (e) Car with 20 agents. In each scenario, agents must reach the goal with the same
color as them. In the circle scenario, initial starting positions are randomly perturbed during each episode. In the car scenario,

the obstacle at the bottom of the scene moves upwards.

ABSTRACT

Crowd simulation is important for video-games design, since it en-
ables to populate virtual worlds with autonomous avatars that nav-
igate in a human-like manner. Reinforcement learning has shown
great potential in simulating virtual crowds, but the design of the
reward function is critical to achieving effective and efficient results.
In this work, we explore the design of reward functions for rein-
forcement learning-based crowd simulation. We provide theoretical
insights on the validity of certain reward functions according to
their analytical properties, and evaluate them empirically using a
range of scenarios, using the energy efficiency as the metric. Our
experiments show that directly minimizing the energy usage is a
viable strategy as long as it is paired with an appropriately scaled
guiding potential, and enable us to study the impact of the differ-
ent reward components on the behavior of the simulated crowd.
Our findings can inform the development of new crowd simula-
tion techniques, and contribute to the wider study of human-like
navigation.

1 INTRODUCTION

Reinforcement Learning (RL) holds a unique potential for simula-
tion of human crowds, offering flexibility and power that traditional
control or planning algorithms often lack. However, successfully
using RL for this purpose brings about new challenges, primarily
rooted in the need to design an effective reward function.

The design of the reward function is crucial for the success of
RL algorithms in real-world applications. The balance between
sparsity and density of rewards has major implications for the
performance of these algorithms. Sparse rewards may lead to the
standard algorithms not converging in reasonable time. Conversely,
overly dense reward could potentially impact the optimal policy and
the relative performances of various suboptimal policies. This issue
is particularly relevant in the context of simulating human crowds
where, apart from clear objectives like navigation and collision
avoidance, the goal of reproducing human-like behavior remains
somewhat vague.

During locomotion, humans tend to move at a certain com-
fortable speed that is specific to the individual, usually around
1.3m/s [Whittle 2008]. Following Guy et al. [2010], this is as a
result of minimizing the energy expended when moving between
two points. In principle, this measure could be used as a reward
function for an RL agent to optimize. In practice, however, this
tends to be ineffective due to the unique structure of energy mini-
mization, where agents must take short-term negative rewards to
obtain long-term positive rewards. The typical solution is designing
an artificial reward function, lacking an explicit connection to the
energy minimization aspect, but focusing on rewarding movement
towards the goal at the right speed.

We propose the development of a more principled reward func-
tion that takes into consideration energy efficiency of motion, serv-
ing as a proxy for human-likeness. This choice stems from the lack

of metrics that specifically quantify human-likeness in existing lit-
erature. It is important to note that energy efficiency does not fully
describe human behavior, ignoring aspects like long-term goals and
subtle inter-personal interactions. Nonetheless, this approach lays
the groundwork for more advanced future methods.

We validate our approach both theoretically and empirically.
First, we analyze the properties of various reward functions under
the discounted utility paradigm. Second, we train RL agents using
these reward functions, and compare their performance using the
metric of energy usage.

Our contributions are:
(1) Physically-based extension of the energy usage model that
accounts for acceleration.
(2) Evaluation of various reward functions as proxies for en-
ergy minimization.

2 RELATED WORK

Crowd simulation has gained considerable attention in the field
of computer graphics, artificial intelligence, and robotics. Early
techniques relied on rule-based systems, and force-based or velocity-
based methods (see [Toll and Pettré 2021] for a review). Recently,
there has been an increasing interest in employing Reinforcement
Learning (RL) and Deep Reinforcement Learning (DRL) for crowd
simulation [Kwiatkowski et al. 2022]. In this section, we briefly
summarize prior work that is relevant to RL crowds simulation.
Reinforcement Learning. RL is an approach to learning se-
quential decision-making processes, where agents interact with
their environment to maximize cumulative rewards. State-of-the-
art RL algorithms frequently use neural networks, such as in the
Policy Gradient Theorem [Sutton et al. 1999] and Proximal Policy
Optimization (PPO) algorithm [Schulman et al. 2017]. The latter
has become the de facto standard on-policy algorithm due to its
simplicity and efficiency, and is the algorithm we use in this work.
Reward function. Designing the right reward function is a
critical aspect of RL as it shapes the agent’s behavior and learning
process. It is often nontrivial and requires striking a balance be-
tween simplicity and expressiveness [Ng et al. 1999]. Sparse rewards
may lead to difficulties in exploration, while overly dense rewards
can result in unintended behaviors or suboptimal solutions [Sutton
and Barto 2018]. Several works have addressed reward function de-
sign, including inverse reinforcement learning (IRL) [Abbeel and Ng
2004; Ng and Russell 2000], which aims to learn the reward function
by observing expert demonstrations, and reward shaping [Ng et al.
1999], which augments the original reward function to guide the
agent’s learning towards a desired behavior. In multiagent settings,
designing the reward function becomes even more challenging, as
the interactions between agents need to be considered [Leibo et al.
2017]. As such, the importance of reward function design in RL
cannot be understated, as it directly influences the agent’s learning
efficiency, generalization capability, and ultimately, the quality of
the learned policy. In this work, we draw from the idea of using a
potential term, and adapt it to the crowd simulation setting.
Crowd Simulation via DRL. Various studies have applied DRL
to crowd simulation tasks. Long et al. [2018] focus on multiagent
robotic navigation tasks, while Lee et al. [2018] demonstrate that
a single trained RL agent can control multiple agents in diverse

Kwiatkowski et al.

crowd scenarios. Sun et al. [2019] train groups of agents by fol-
lowing leader agents, and other works [Xu et al. 2020; Zheng and
Liu 2019] combine DRL with velocity obstacle components for
collision-free movement. To generate high-quality trajectories, Xu
and Karamouzas [2021] use real-world human trajectory data to
train a supervised model that evaluates the human-likeness of gen-
erated trajectories. Hu et al. [2022] and Panayiotou et al. [2022]
employ parametric RL approaches to produce heterogeneous be-
haviors and configurable agent personalities. Lv et al. [2022] model
realistic crowds in combat simulations using the concept of emo-
tional contagion. Kwiatkowski et al. [2023b] explore the impact of
observation spaces on the effectiveness of RL for crowd simulation.
In this work, we introduce a more principled approach of designing
the reward function for human-like crowds.

Energy efficiency. A commonly used objective for generating
and evaluating trajectories is the Principle of Least Effort (PLE).
Its origins trace back to Zipf [1949], who proposes that human be-
havior is broadly characterized by minimizing the perceived effort.
Taking energy consumption as a measure of effort, this implies a
formulation of human-like trajectories being the energy-efficient
ones, which has also been used in prior work on crowd simula-
tion [Bruneau et al. 2015; Guy et al. 2010]. In our work, we extend
this paradigm to also be applicable to training crowds with RL.

3 ENERGY USAGE MODEL

In this work, we follow the hypothesis of the Principle of Minimum
Energy (PME) as stated by Guy et al. [2010], according to which
humans tend to choose their trajectories based on minimizing the
energy usage. Therefore, we use the energy efficiency as the main
benchmark for the quality of a given trajectory. While it does not
fully describe human-likeness, it is well-defined and easy to estimate
with a simple model.

As a starting point, we consider a model of energy usage based
on biomechanical research [Whittle 2008], and used as a metric in
a number of works concerning crowd simulation [Bruneau et al.
2015; Guy et al. 2010; Hu et al. 2022; Kwiatkowski et al. 2023b; Xu
and Karamouzas 2021]. We estimate the energy used in a discrete
timestep At as:

E = (e5 + e,,0°) At (1)
where e and e,, are parameters specific to a given person, with
typical values of eg = 2.23 and ey, = 1.26 in SI units, computed per
unit mass [Whittle 2008].

It is important to keep in mind that this model does not account
for acceleration or turning, and instead only applies to linear motion.
In this case, the optimal velocity (i.e. one that minimizes the energy
usage on a fixed straight trajectory) is v* = +/es/e,y. This value
emerges from integrating the energy usage across the entire path —
moving too quickly uses too much energy, and moving too slowly
extends the duration of the trajectory, also increasing the energy
usage.

3.1 Acceleration correction

In order to improve the energy estimation, we expand the model
in Equation 1 so that it also considers the acceleration of agents
throughout their trajectories. We start by deriving its basic form.
Consider a body moving at a constant velocity v, subject to a force

Reward Function Design for Crowd Simulation via Reinforcement Learning

0.200
—— Basic model
Acceleration correction

o
=
~
w

0.150

0.125

0.100

0.075

0.050

Energy usage per timestep

0.025
1.200 1.225 1.250 1.275 1.300 1.325 1.350 1.375 1.400
Velocity v

Figure 2: Energy used in a single timestep when moving at
a velocity of v, after having the velocity of 1.3m/s in the
previous timestep, with At = 0.01s.

opposite to the direction of movement F; = —Av. In Newtonian
mechanics, we know that the amount of energy used during dis-
placement is E = Fs, where F is the applied force, and s is the
distance. To adapt this to our discrete model, we factor out the
timestep, obtaining E = Fo At. Substituting the force of drag F,
and setting A = e,, we get:

E = — At = —e,,0° At 2)

This is the energy lost due to drag in each timestep. To counteract
it, the agent needs to use energy equal to the absolute value of this
quantity. Combining it with with a constant basal energy usage of
esdt, we get e = esdt + ewv2dt, recovering Equation 1.

To extend this reasoning, consider an agent that moves at ve-
locities vg and v in two consecutive timesteps, that is with an
acceleration a = ”;t”" . Assume that the agent is applying a certain
force F, in an arbitrary direction in order to modify its velocity.
Using simple Euler integration, we have:

v = vy + FAt — e\ uoAt = (1 — ey, At)vy + FAL 3)

Transforming this to obtain the force, we get:
1 1
F= E(U — (1 -ewAt)vg) = E(U — g + eyvoAt) (4)

From this we can compute the energy usage as follows:
E=F-ovAt
=0-0—0- v+ e,y VAL
U —0
At
= (v-a+ewvy - v)At (5)

=v-(YAt + e\vq - 0AL

Again taking the absolute value and adding a basal energy usage,
we obtain our proposed model for energy usage:

E=(es+|v-a+eywv-v|) At 6)

To better understand Equation 6, consider an agent moving with
linear acceleration a in the following four cases:

(1) Constant motion a = 0

(2) Accelerationa >0 < v >y
(3) Passive deceleration 0 > a > —eyvy < vg > 0 >
(1 - eywAt)og
(4) Active deceleration a < —e,vy & v < (1 — e\, At)vg
In the first case a = 0, the agent moves at a constant speed
v = ||vg|| = ||o1]]- The energy usage is then:

E = esAt + |0+ eyy0? | AL = (e5 + eyv°) At (7)

which agrees with Equation 1.
If a > 0, the agent increases its movement speed. The energy
usage then simplifies to:

E = (es + av + eyugv) At
= (es + ey (v — aAt)v + av) At
= (es + et + (1 - eyAt)av)At
~ esAt + e4,0° At + avAt (8)

where the term avAt corresponds to the additional kinetic energy
needed to move at a velocity v.

If a < 0, the agent decelerates. Note, however, that there are
two distinct possibilities. If the agent simply stops putting in effort,
it will automatically slow down by a factor of (1 — e, At). We
call any deceleration below this threshold passive deceleration,
which decreases the energy usage. In contrast, if the agent wants
to slow down to a speed lower than (1 — e,,At)vo, this is active
deceleration, which requires using additional energy.

We depict this relationship in Figure 2. When the velocity re-
mains constant at v = vp = 1.3 m/s, the energy usage is the same
in both models. The lowest energy usage (i.e. only from the basal
metabolic rate) occurs at v = (1 — e,,At)vg = 1.28 m/s, when the
agent decelerates naturally.

4 NAVIGATION REWARD DESIGN

Our main goal in this work is designing a reward function which,
when optimized, leads to a policy that minimizes the energy usage,
as estimated using the model from Section 3. In this section, we
discuss a few issues in designing such a reward function.

4.1 Energy as reward

A natural starting point is simply using a reward equal to the
negative energy usage:

R = —e;At — ey v’ At 9)

or
R=—esAt — |v - a+eyvp - v|At (10)
This formulation has two critical issues, which make it unfit for
being used as a reward function directly. To see this, consider the
base reward of Equation 9 for simplicity.

4.1.1 Local optimum. In an RL training procedure, each agent
begins by taking random actions. In the case of microscopic crowd
simulation, that corresponds to choosing a direction, and setting
either the velocity or the acceleration in that direction. If an action
leads to a higher reward, its probability increases, and if it leads to
a lower reward, its probability decreases.

Consider an agent with a simple objective of moving to a specific
location, maximizing the reward from Equation 9. The reward is

v=1,d=10

v =0.99,d=10
v=0099,d=1

v =0.9995, d = 10

Normalized reward

06 08 1.0 12 14 16 18 2.0
Velocity v

Figure 3: Normalized discounted reward, with energy opti-
mization as the direct objective. Depending on the distance
d and the discount factor y, the global optimum is different,
and in some cases, the optimal behavior is standing still with
v =0.

accumulated from the beginning of the episode, until the agent
reaches the goal, or until a predefined time limit. Note that with
this structure, the real penalty for not reaching the goal is delivered
by the agent having to accumulate the negative reward until the
time limit. If the time limit is sufficiently high, it is better for the
agent to spend some energy in order to reach its goal and not use
any energy afterwards, as compared to spending a long time at rest,
even without using energy for movement.

However, during training, the agent is more likely to try to move,
but fail reaching the goal. It then gets the full time-based penalty,
but also a penalty for using additional energy for movement. The
agent does not know how to reduce the time-based penalty, but it
can decrease its energy usage by slowing down. Eventually, it will
settle into a local optimum of standing still, which is a failure case.

4.1.2 Global optimum. The second problem is related to the fact
that modern RL algorithms predominantly use the discounted utility
paradigm, weighing future rewards with an exponentially decaying
discount factor. Similarly to not reaching the goal, the penalty for
moving too slowly is that the agent will have to spend energy in
many more timesteps towards the end of the episode. When making
a decision at the beginning of the episode, those rewards are heavily
discounted, and thus less important.

Consider now the following experiment: the agent travels in a
straight line, and has to reach x = d while moving at a constant
velocity v. The reward is discounted exponentially with a discount
factor y. In Figure 3, we show the discounted reward for some
values of d and y. The global optimum for a typical discount factor
around 0.99 is v = 0, which corresponds to the agent not moving
at all. Depending on the exact values, the optimal value may be

anywhere between 0 and [:;sv, which is a significant problem if our

goal is training an agent whose optimal velocity is exactly :—;.

Kwiatkowski et al.

The fact that discounting changes the optimal policy is not nec-
essarily unexpected. Naik et al. [2019] show that using discounted
rewards when training RL agents may change the optimal policy.
In many practical problems, this is not a big concern, and the dis-
count factor is treated as yet another hyperparameter. In this case,
however, the discount factor directly impacts the properties of the
environment.

4.1.3 Possible solutions. There are various ways to tackle the prob-
lems described above, but it is important to note that both of them
have to be solved together. In order to avoid the local optimum
of standing still, we could employ a curriculum-based approach,
where the agents initially learn to navigate a short distance with-
out any obstacle. As the training progresses, the distance and the
number of agents can be increased, with the hope that the agents
will not stop moving.

To fix the issue with the global optimum, the obvious solution is
not using any reward discounting. In practice, however, this turns
out to be much more unstable and difficult to train. Alternatively, a
different non-exponential discounting method could be employed,
so that the variance of the gradient estimation is low enough for
efficient training, but the optimal velocity remains correct.

Both of these solutions add a non-negligible amount of com-
plexity to the learning algorithm. While in certain situations that
might be acceptable, note that all these issues stem from the simple
scenario of a single agent navigating to a goal in an energy-efficient
manner. With more complicated applications, the complexity is
likely to become even higher, e.g. via a curriculum designed for a
different objective.

To avoid the compounding complexity, we instead propose chang-
ing the reward function. Ideally, it should remain similar to the
energy usage so that the emergent behavior is still energy-efficient.
It should also tackle both of the aforementioned issues - that is,
the reward for moving towards the goal should be higher than for
standing still, and the optimal velocity should be invariant under
temporal discounting.

4.2 Energy-based potential

Adding a guiding potential to the reward function is a common
technique of making sparse rewards more dense. Ng et al. [1999]
show that adding a reward of the form R(s, a,s") = y®(s”) — ®(s)
does not change the optimal policy for the y-discounted rewards.
Note that this assumes that the discounted reward is the true objec-
tive of the RL task. This is not true in the case of navigation, as we
generally want the global energy usage to be optimal. Nevertheless,
it can serve as inspiration for designing an analogous guiding term.

In the context of human navigation, there is a simple heuristic
that we can use as a guiding potential - the distance from the goal.
Consider the following reward function:

r(v) = —esAt — ey v? At + Cpv - g (11)

where g is a unit vector pointing from the agent to the goal. Note

that the potential term v - § is equal to the change in the distance

between the agent and its goal in two consecutive timesteps.
This induces a total discounted reward of:

Reward Function Design for Crowd Simulation via Reinforcement Learning

T
RV = / dt(e! Y (—esAt — e0® At + épv - g)) (12)
0

To obtain a bound on the value of cp, we set the condition that
when moving directly towards the goal, R(v*) > R(0), i.e. it is better
to move towards the goal than stand still. This implies that ¢, >

. .. . _ %
v/eseyy. For simplicity of further analysis, we define ¢, = N

4.3 Discounting invariance

With a simple simulation, it is clear that there is a nontrivial inter-
action between the values of the discount factor y, the coefficient
¢p, and the optimal velocity vY.

Consider the discounted sum of rewards defined in Equation 11,
with a simple policy of moving towards the goal with a speed v. With
a continuous model of the problem, we can define the discounted
sum of rewards as:

T
RY = / etny (—es — e + cp\/esewv) dt
0

el

1-y
—Ilny

(~ewo? + cpvestw e (13)

We differentiate this expression w.r.t. v to obtain an expression
for the optimal velocity, and interpret it as an implicit function
whose roots correspond to the optimal velocity with a given dis-
count factor y:

y d
(—26W0+Cp) (1 —Y") (—ew02+5pv_eS)Y%d
F(v,y) = “Iny - 02 =0
(14)

Solving this analytically for v is difficult. Instead, we consider
the implicit derivative:

dv _ dF dF

o o w

While the resulting expression is highly complex, it is solvable
for ¢, analytically, yielding the result:

(15)

do B
d_}/ =0 Cp = 2 (16)
This means that using the reward from Equation 11 with ¢, =
24/ese,y, the optimal velocity is independent of the discount fac-
tor. Note that if we consider non-exponential discounting as a
weighted sum of exponential discountings, this conclusion extends
to other discounting methods, enabling the application of meth-
ods like hyperbolic discounting [Fedus et al. 2019] or arbitrary
non-exponential discounting [Kwiatkowski et al. 2023a].

4.4 Non-finishing penalty

When measuring the energy usage as a reward function, or even as a
metric, there is another consideration that stems from the RL setting
— the time limit. While theoretically an agent could infinitely explore
until they reach the goal, this is impractical. Instead, RL algorithms
typically set a maximum number of timesteps allowed in an episode.

After this limit passes, the episode terminates, regardless of the
state that the agent is in.

In principle, the value of the time limit should not matter as
long as it is sufficient to reach the goal. However, the structure of
the energy-based reward (Equations 9 and 10) makes it potentially
impactful. Let T be the time limit in seconds, d the total distance
from the goal. Moving in a straight line at the optimal velocity v*,

the time needed to reach the goal is T* = % = Z—‘;’d, and the

energy used in this process is 24/esey,d. If this energy is greater
than that of standing still until the end of the episode esT, then
the optimal policy according to the metric may indeed be simply
standing still.

To prevent this, one option is simply setting the time limit so
that T > 2%, in which case moving at the optimal velocity will
result in a lower energy usage than standing still until the end of the
episode. This corresponds to an episode length more than twice as
long as it would take the agent to reach the goal moving at optimal
velocity. A significant drawback of this approach is its inefficiency,
as the duration of each episode is significantly extended, which
increases the amount of time necessary to collect experience for
training. Furthermore, complex scenarios with many agents may
extend the optimal trajectories in ways that are difficult to predict
before training the agents.

Instead we propose two variants of a heuristic that is added as an
additional penalty at the end of the episode if a given agent has not
reached its goal. In the first variant, we use the optimal heuristic
— if the agent is at a distance d from its goal, it incurs a penalty of
2+/eses,d, which corresponds to the energy cost it would take to
reach the goal moving at the optimal speed in a straight line. In
the second variant, instead of using the optimal speed, we use the
average speed towards the goal across the agent’s trajectory to
estimate the remaining energy cost.

Both of these variants have their flaws. Using the optimal heuris-
tic, in certain cases it may be beneficial for agents to only move part
of the way, and then stop when they encounter a more dense situa-
tion, which requires more energy to navigate. While the average
heuristic avoids this issue by directly tying the final penalty to the
agent’s past performance, the estimated velocity has to be capped
at a minimum value (in our experiments: 0.1 m/s). This avoids is-
sues where the agent has made very little progress towards the
goal (which leads to very high penalties, destabilizing the training),
or even made negative progress by moving farther from the goal,
leading to a negative energy cost and a positive final reward.

4.5 Alternative approaches

In existing literature, most approaches to crowd simulation via RL
disregard the problems of energy efficiency, and of encouraging
agents to prefer an intermediate velocity throughout their motion.
The most common approach to obtain motion with an given ve-
locity v* is simply setting v* as the maximum in the environment
dynamics [Hu et al. 2022; Long et al. 2018; Sun et al. 2019; Xu
et al. 2020]. This is then combined with a guiding potential and a
one-time reward for reaching the goal, and due to the incentive
structure of the discounted utility paradigm common in RL, this
leads to the agents mostly moving at the “optimal” (i.e. maximum)
speed. The downside of this approach is that agents are unable to

move faster than that predefined limit, in contrast with humans,
who tend to easily walk, when needed, a little slower or faster than
their optimal comfortable speed.

Other works [Kwiatkowski et al. 2023b; Lee et al. 2018; Xu and
Karamouzas 2021] include a velocity-dependent reward term that
incentivizes moving at a specific speed which is below the high-
est allowed speed. Here we analyze and compare each of those
approaches.

Lee et al. [2018] use a function they call FLOOD, defined as
follows:

FLOOD(v, 9min, Ymao) =

=| min(v — vmin, 0)| + | Max(v — vmax, 0)| (17)

where vmin, Vmax define the range of comfortable speed. When
applied to the linear velocity, this term disincentivizes velocities
outside of the preferred range. While this structure is not directly
connected with energy optimization, it serves a similar purpose of
controlling the movement speed.

A similar structure was used by Xu and Karamouzas [2021]. In
their reward function, they use a velocity regularization term:

r(v) = exp (0ollo - o*]) (18)

where o, is a parameter, and o™ is a vector pointing towards the goal,
whose magnitude is equal to the optimal velocity. In our energy
optimization framework, it is * = v*g = +/es/ewg.

Consider the term within the exponent ||o — v*|| = [[v — v*§]|,
and take its square. Interpreting this as a scalar product, we have
(v —v*g) - (v — v*g). When we multiply the terms, substitute

0* = 4Jes /e,y and use the fact that ||§|| = 1, we get 0? — 2+/es/ewv -
g+ :—fv = % (es + ewv? — 24/esewo - §). This happens to be pro-
portional to the discounting-invariant energy usage with potential.
Note, however, that the final reward used by Xu and Karamouzas
[2021] applies additional operations to this value (square root and
exponent).

Kwiatkowski et al. [2023b] use an explicit potential term, and a
speed similarity term c,|o — 0*|° which does not take into account
the direction of the movement. With the exponent ¢, = 2, this

expands to ¢pov - g — 02 +2, ’:_;U - e%, which is equal to the energy
usage with potential, but with an additional positive term propor-
tional to the agent’s speed. This results in a bicycle-like behavior
where an agent prefers to artificially extend its trajectory while

maintaining its optimal speed, instead of simply slowing down.

5 REWARD EVALUATION

In this section, we empirically evaluate our proposed reward struc-
ture, and compare it to previously proposed formulations. We also
perform an ablation on various parts of the reward function to
investigate their importance and impact on the final results.

5.1 Experimental setup
We performed the experimental evaluation on five crowd scenarios:
(1) Circle - agents start at the perimeter of a circle, and must
reach the antipodal point of the circle. We apply noise to

both the start and goal positions, and add stationary obsta-
cles in the middle of the circle.

Kwiatkowski et al.

(2) Corridor - agents start at two ends of a corridor and must
reach the opposite end.

(3) Crossing - agents start at southern and western ends of per-
pendicularly crossed corridors, and must reach the northern
and eastern ends, respectively.

(4) Choke - agents must pass from west to east through a
narrow opening in a wall.

(5) Car - agents must wait for a moving obstacle to open a
passage to the goal.

In each scenario, all agents are given a time limit of 200 time-
steps, each lasting 0.1 s. Each agent is removed from the simulation
once it touches its goal. Following the classification by Kwiatkowski
et al. [2023b], we use Egocentric observations with Polar Accel-
eration dynamics. Each agent has randomly sampled parameters
of e, e, as defined in Section 3. These values are included in the
observation, and used to compute the individual reward of each
agent.

The main metric we use for evaluation is Energy+, defined as
energy usage with the acceleration correction (Equation 8), plus
the non-finishing penalty using the average heuristic (Section 4.4).
The penalty is meant to additionally penalize agents which do not
reach their goals in time, to ensure that agents cannot hack the
reward function by stopping in the middle of the trajectory.

5.2 Reward function structure

Throughout the various reward functions we evaluate in this work,
we use the following components:

(1) Basal energy usage rj, = —es
(2) Velocity-based energy usage ry = —eyo
(3) Dynamics-based energy usage rg = —|v - a + evg - v
(4) Guiding potential rp = 24/esev - g
(5) Preferred speed matching rs = [v — v*|%
(6) Speeding penalty r, = max(v — 0%, 0)
(7) Exponential velocity matching rp, = exp(oy||lo — 0*|])
(8) Final non-finishing penalty using the optimal speed heuris-
tic (Section 4.4) ro
(9) Final non-finishing penalty using the average speed heuris-
tic (Section 4.4) rq
(10) One-time goal-reaching reward r4
(11) Constant collision penalty for each frame when an agent
collides with another agent or an obstacle r,

2

A complete reward function is a weighted sum of a subset of
these terms. For terms (1)-(4) and (8)-(9), their coefficients are equal
to 1 due to their physics-based formulation. Terms (1)-(3) and (5)-(7)
are also multiplied by the duration of the timestep in the simulation.

We primarily focus on evaluating the following reward functions.
Note that all of these variants include components (10) and (11)
(goal-reaching and collision penalty, respectively)

(a) Base curriculum - a curriculum which initially has com-
ponents (4), (6) (with ¢, = 2), and after 200 training steps,
switches to (1), (3), (4), (9)

(b) Base curriculum (no acceleration) — like (a), but using
component (2) instead of (3)

(c) Base curriculum (no heuristic) - like (a), but without
component (9)

Reward Function Design for Crowd Simulation via Reinforcement Learning

1.0
0.8
Q
©
£ 0.6
)]
n
3
004
>
n
02 —— Base curriculum
Energy (no acceleration)
0.0 —— Energy (acceleration)

0 200 400 600 800
Training iteration

1000

Figure 4: Success rates of agents trained with certain reward
functions in the Circle scenario.

(d) Base curriculum (optimal heuristic) - like (a), but using
component (8) instead of (9)

(e) Energy (acceleration) — components (1), (3), (4)
(f) Energy (no acceleration) — components (1), (2), (4)
(2) Energy (no potential) - components (1), (2)

g
(h) Speed matching - components (4), (5), based on Kwiatkowski
et al. [2023b]
(i) Speeding penalty — components (4), (6), based on Lee et al.
[2018]
(j) Exponential velocity matching — component (7), based
on Xu and Karamouzas [2021]

We trained agents using each of these reward functions, and
summarize the results in Section 6.

Furthermore, to investigate the importance of the potential term,
we also evaluated the following reward functions:

(A) Base curriculum - same as reward (a), serving as a base-
line

(B) No potential - same as (A), but without component (4)
(potential)

(C) No potential and final penalty — same as (B), but also
without component (9) (non-finishing penalty)

(D) No potential and goal - same as (B), but also without
component (10)

(E) No potential and goal, optimal heuristic - same as (D),
but with component (10) instead of (9)

(F) Pure energy - same as (C), but also without component
(10) (goal). The second phase of the curriculum only uses
components (1) and (3).

(G) Pure energy, no discounting — same as (F), but the dis-
count factor is set to y = 1 throughout the training

We describe the results of these experiments in Section 6.1.

6 RESULTS

While the details differ based on the scenario, in all of them ex-
cept for the Car scenario, the best-performing reward is a cur-
riculum leading to energy optimization. In the Car scenario, the

400

350

300

Base curriculum
+ No potential
3 250 | ~—— No potential and final
= | —— No potential and goal
8 200 | —— No potential and goal, opt. heuristic
w —— Pure energy
\ Pure energy, no discounting
150
100
A prirgns, 72 A OO AN g AT
50

0 200 400 600 800
Training iteration

1000

Figure 5: Energy+ metric as a function of training progress
with various reward functions. To maintain the performance
from the first stage of the training, it is necessary to either use
a potential term, or set the discount factor to y = 1. Agents
without a potential or a final heuristic converge to stand-
ing still, while other variants’ performance significantly de-
grades.

best-performing reward in terms of the Energy+ metric is directly
optimizing energy from the beginning.

The benefit of the curriculum becomes apparent when we con-
sider the progression of the training. We show the success rates in
the Circle scenario as a function of the training steps in Figure 4.
This scenario has a difficult coordination task embedded in it —
when agents travel through the central part of the scene, they must
avoid many other agents moving in all directions to prevent colli-
sions. Each collision may lead to additional energy usage in order to
resume movement, which effectively increases the collision penalty.
Because of this, agents learn the navigation task much more slowly.
Conversely, using a simple speeding penalty for the initial part of
the training allows the agents to quickly reach a high success rate,
which is then maintained after the reward is switched to energy
optimization.

On the other hand, in the Car scenario, the best-performing
variant is direct energy optimization. This is because agents trained
with speeding penalty (as opposed to energy minimization) initially
converge to attempting to quickly go in front of the car, passing
before it hits them. In contrast, agents trained to minimize energy
usage simply wait for the obstacle to pass, or start moving behind
it. It is difficult to progressively switch from the former to the latter
behavior, so the curriculum fails to produce efficient behavior.

6.1 Is potential necessary?

In Section 4.1, we provide theoretical justification for why simply
optimizing energy is likely to fail. The data in Table 1 confirms at
least the local optimum argument — directly optimizing the energy
usage consistently leads to the worst performance, corresponding to
standing still. To empirically validate our global optimum argument,
we conducted additional experiments on the Circle scenario, using
reward functions (A)-(G).

Kwiatkowski et al.

Table 1: Mean value of the Energy+ metric after training in a given scenario, using a given reward function. Each value is based

on 8 independent training runs. Lower is better

Circle Crossing Corridor Car Choke
Base curriculum 58.2 +0.54 66.38 £ 1.39 77.56 £6.19 | 110.95 £ 3.99 94.97 £ 4.03
B icul
ase CUrfiewtm | 6162+ 0.82 | 7256+ 1.14 | 8526+ 6.07 | 112.81+2.51 | 11218 + 549
(no acceleration)
Base curriculum
a urrl‘u.u 59.18 £ 0.51 65.81+1.03 | 63.29 +0.32 | 95.63 £8.31 | 114.78 £ 12.55
(no heuristic)
B icul
as.e currict .urfl 59.17 £ 1.01 67.56 £ 2.12 69.34 £ 2.1 103.76 £ 6.57 | 94.53 +7.99
(optimal heuristic)
Energ}., 74.59 + 2.48 73.55 £ 3.36 96.19 £9.02 | 85.05+9.36 | 105.58 + 9.09
(acceleration)
Energy
. 67.1 £ 1.97 81.32 £3.26 | 102.75 £5.08 | 108.32 £ 1.26 | 106.39 + 5.43
(no acceleration)
E
nergy. 459.53 £ 53.16 | 454.01 £5.29 | 450.65 + 5.06 | 463.26 + 1.44 460.28 + 1.0
(no potential)
Speed matching 60.13 £ 0.71 81.04 £+ 5.66 68.35 £ 1.7 126.28 £ 2.03 | 276.55 + 14.99
Speeding penalty 58.55 £ 0.87 88.47 £ 4.42 98.71 £ 6.06 | 119.72 £ 1.27 | 130.03 + 5.66
Exponential
. . 63.5+1.73 77.18 £ 4.33 85.33 £ 4.91 107.66 £ 0.7 1299+ 9.4
velocity matching
We show the results in terms of the Energy+ values in Figure 5. B _ _
Th tential variant maintains a reasonable performance, but 1.0 i e
e no potential variant maintains a reasonable performance, bu N ————
its energy efficiency drops compared to the baseline. Both variants
without the final non-finishing penalty (with or without the goal 0.8
reward - (C) and (F) respectively) rapidly deteriorate to a policy -~
which stays still for the entire duration of the episode. The variants 2 0.6
that retain some of their performance are (B) and (D), i.e. ones g™
which still use the average heuristic penalty for not reaching the g
goal, however their success rate is significantly lower than the base- 0.4
line. Using the optimal heuristic (E) instead of the average heuristic
degrades performance significantly, leading agents to slowly ap- 0.2
proach the goal, abusing the generous reward they receive at the
end of the episode. Finally, using pure energy optimization in a 0.0
curriculum without a discount factor retains the same performance -0 1 2 3 4 5 6

as the base curriculum.

This confirms that absent of additional goals, with a discount
factor of y = 0.99, using energy as a reward without a guiding
potential fails to converge to a valid policy, even when initialized
with a goal-seeking policy trained with a different reward function.
This may be mitigated by including a guiding potential, which in
some cases enables effective end-to-end training using that reward
function. Alternatively, if the training converges without discount-
ing, i.e. with y = 1, pure energy may also be a valid approach as a
second (or later) stage of a curriculum. This is consistent with the
analysis by Naik et al. [2019], who describe theoretical problems
with the discounted utility paradigm.

6.2 Impact of acceleration

In order to evaluate the impact of the acceleration correction to the
energy estimation introduced in Section 3.1, we compare agents
trained with the base curriculum, with and without the acceleration

Acceleration

Figure 6: Histogram of accelerations in the Circle scenario,
trained with and without the acceleration-based term in the
reward function.

correction. We show the histogram of accelerations, collected across
8 independent training runs in the Circle scenario, in Figure 6.
The average magnitude of the acceleration across the trajecto-
ries is 0.339 m/s? with the acceleration correction in the energy
estimation, and 0.679 m/s? without it. This result is statistically sig-
nificant with p < 0.01 using the two-sample Kolmogorov-Smirnov
test. This shows that including the acceleration in energy estima-
tion successfully leads to smoother behavior. At the same time, the
energy usage without the acceleration correction remains similar
for both variants — 49.77 + 1.077 and 50.47 + 1.284 respectively,

Reward Function Design for Crowd Simulation via Reinforcement Learning

indicating that the reduced acceleration does not come at the cost
of otherwise less efficient movement.

7 CONCLUSIONS

In this work, we introduce two contributions: a new, more accurate
way to estimate energy usage in the context of crowd simulation,
and a novel reward function formulation for training agents navi-
gating in an energy-efficient manner. We demonstrate a successful
curriculum learning approach, where an initial speeding penalty is
replaced by a simpler energy optimization formulation in later train-
ing stages. This method allows the agents to learn basic navigation
first, and then focus on efficiency.

Our experiments on several crowd navigation scenarios show
that training using an energy-based reward consistently outperform
other reward functions used in prior work. A critical component of
this reward structure is the guiding potential, which ensures that
agents navigate towards the goal, and do not simply stay still to
minimize the energy usage. We empirically verify this conclusion
through additional experiments that exclude this term from the
reward function.

Interestingly, in some scenarios, such as the Car scenario, a
curriculum approach does not provide any benefits, and agents per-
form optimally when trained directly with the energy optimization
reward. This can be attributed to the specific nature of this sce-
nario, where the initial policy learned by the agents with a speeding
penalty makes them rush in front of the moving obstacle, a strategy
that contrasts with the more efficient wait-and-follow behavior
learned through energy optimization. This highlights the potential
need for a more scenario-specific reward formulation or a flexible
curriculum training approach that can adjust itself based on the
scenario complexity and nature.

Furthermore, our analysis of discount factor effects on training
outcomes with a pure energy reward function aligns with the theo-
retical discussions raised by Naik et al. [2019]. It shows that if the
training is conducted without discounting, using energy as a reward
without a guiding potential can converge to a valid policy when ini-
tialized with a goal-seeking policy trained with a different reward
function. This discovery invites future research to explore the util-
ity of different discounting paradigms in such energy optimization
tasks and potentially other reinforcement learning applications.

While the current results are promising, several directions re-
main for future work. The energy estimation for motion with ac-
celeration could be made more accurate by considering the agent’s
physical model more closely. Additionally, the potential function
could be replaced with a more sophisticated heuristic that considers
the actual shortest path to the goal, taking into account other agents
and obstacles. Another possible direction could be developing an
adaptive curriculum that consider the nature of the scenario or
the learning progress of the agent. Finally, integrating this energy-
efficient approach with social norms and considering more realistic
crowd behaviors could lead to generating more realistic behaviors
with RL.

REFERENCES

Pieter Abbeel and Andrew Y. Ng. 2004. Apprenticeship learning via inverse reinforce-
ment learning. In Proceedings of the twenty-first international conference on Machine

learning (ICML "04). Association for Computing Machinery, New York, NY, USA, 1.
https://doi.org/10.1145/1015330.1015430

Marcin Andrychowicz, Anton Raichuk, Piotr Staniczyk, Manu Orsini, Sertan Girgin,
Raphael Marinier, Léonard Hussenot, Matthieu Geist, Olivier Pietquin, Marcin
Michalski, Sylvain Gelly, and Olivier Bachem. 2020. What Matters In On-Policy
Reinforcement Learning? A Large-Scale Empirical Study. arXiv:2006.05990 [cs, stat]
(June 2020). http://arxiv.org/abs/2006.05990 arXiv: 2006.05990.

Julien Bruneau, Anne-Héléne Olivier, and Julien Pettré. 2015. Going Through, Going
Around: A Study on Individual Avoidance of Groups. IEEE Transactions on Visual-
ization and Computer Graphics 21, 4 (April 2015), 9. https://doi.org/10.1109/TVCG.
2015.2391862

Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos,
Larry Rudolph, and Aleksander Madry. 2020. Implementation Matters in Deep
Policy Gradients: A Case Study on PPO and TRPO. arXiv:2005.12729 [cs, stat] (May
2020). http://arxiv.org/abs/2005.12729 arXiv: 2005.12729.

William Fedus, Carles Gelada, Yoshua Bengio, Marc G. Bellemare, and Hugo
Larochelle. 2019. Hyperbolic Discounting and Learning over Multiple Horizons.
arXiv:1902.06865 [cs, stat] (Feb. 2019). arXiv: 1902.06865.

Stephen J. Guy, Jatin Chhugani, Sean Curtis, Pradeep Dubey, Ming Lin, and Dinesh
Manocha. 2010. PLEdestrians: A Least-Effort Approach to Crowd Simulation.
Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2010), 10
pages. https://doi.org/10.2312/SCA/SCA10/119-128 Artwork Size: 10 pages ISBN:
9783905674279 Publisher: The Eurographics Association.

Kaidong Hu, Michael Brandon Haworth, Glen Berseth, Vladimir Pavlovic, Petros
Faloutsos, and Mubbasir Kapadia. 2022. Heterogeneous Crowd Simulation us-
ing Parametric Reinforcement Learning. IEEE Transactions on Visualization and
Computer Graphics (2022), 1-1. https://doi.org/10.1109/TVCG.2021.3139031

Shengyi Huang, Rousslan Fernand Julien Dossa, Antonin Raffin, Anssi Kanervisto,
and Weixun Wang. 2022. The 37 Implementation Details of Proximal Policy Op-
timization. In ICLR Blog Track. https://iclr-blog-track.github.io/2022/03/25/ppo-
implementation-details/

Ariel Kwiatkowski, Eduardo Alvarado, Vicky Kalogeiton, C. Karen Liu, Julien Pettré,
Michiel van de Panne, and Marie-Paule Cani. 2022. A Survey on Reinforcement
Learning Methods in Character Animation. Computer Graphics Forum 41, 2 (May
2022), 613-639. https://doi.org/10.1111/cgf.14504

Ariel Kwiatkowski, Vicky Kalogeiton, Julien Pettré, and Marie-Paule Cani. 2023a.
UGAE: A Novel Approach to Non-exponential Discounting. https://doi.org/10.
48550/arXiv.2302.05740 arXiv:2302.05740 [cs].

Ariel Kwiatkowski, Vicky Kalogeiton, Julien Pettré, and Marie-Paule Cani. 2023b.
Understanding reinforcement learned crowds. Computers & Graphics 110 (Feb.
2023), 28-37. https://doi.org/10.1016/j.cag.2022.11.007

Jaedong Lee, Jungdam Won, and Jehee Lee. 2018. Crowd simulation by deep re-
inforcement learning. In Proceedings of the 11th Annual International Confer-
ence on Motion, Interaction, and Games. ACM, Limassol Cyprus, 1-7. https:
//doi.org/10.1145/3274247.3274510

Joel Z. Leibo, Vinicius Zambaldi, Marc Lanctot, Janusz Marecki, and Thore Graepel.
2017. Multi-Agent Reinforcement Learning in Sequential Social Dilemmas. In
Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems
(AAMAS °17). International Foundation for Autonomous Agents and Multiagent
Systems, Richland, SC, 464-473. event-place: Sao Paulo, Brazil.

Pinxin Long, Tingxiang Fan, Xinyi Liao, Wenxi Liu, Hao Zhang, and Jia Pan. 2018.
Towards Optimally Decentralized Multi-Robot Collision Avoidance via Deep Rein-
forcement Learning. arXiv:1709.10082 [cs] (May 2018). arXiv: 1709.10082.

Pei Lv, Qingqing Yu, Boya Xu, Chaochao Li, Bing Zhou, and Mingliang Xu. 2022.
Emotional Contagion-Aware Deep Reinforcement Learning for Antagonistic Crowd
Simulation. https://doi.org/10.48550/arXiv.2105.00854 arXiv:2105.00854 [physics].

Abhishek Naik, Roshan Shariff, Niko Yasui, Hengshuai Yao, and Richard S. Sut-
ton. 2019. Discounted Reinforcement Learning Is Not an Optimization Problem.
arXiv:1910.02140 [cs] (Nov. 2019). arXiv: 1910.02140.

Andrew Y. Ng, Daishi Harada, and Stuart J. Russell. 1999. Policy Invariance Under Re-
ward Transformations: Theory and Application to Reward Shaping. In Proceedings
of the Sixteenth International Conference on Machine Learning (ICML ’99). Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 278-287.

Andrew Y. Ng and Stuart J. Russell. 2000. Algorithms for Inverse Reinforcement
Learning. In Proceedings of the Seventeenth International Conference on Machine
Learning (ICML ’00). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
663-670.

Andreas Panayiotou, Theodoros Kyriakou, Marilena Lemonari, Yiorgos Chrysanthou,
and Panayiotis Charalambous. 2022. CCP: Configurable Crowd Profiles. In Special
Interest Group on Computer Graphics and Interactive Techniques Conference Proceed-
ings. ACM, Vancouver BC Canada, 1-10. https://doi.org/10.1145/3528233.3530712

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. 2017.
Proximal Policy Optimization Algorithms. arXiv:1707.06347 [cs] (Aug. 2017).

L. Sun, J. Zhai, and W. Qin. 2019. Crowd Navigation in an Unknown and Dynamic
Environment Based on Deep Reinforcement Learning. IEEE Access 7 (2019), 109544
109554. https://doi.org/10.1109/ACCESS.2019.2933492 Conference Name: IEEE
Access.

https://doi.org/10.1145/1015330.1015430
http://arxiv.org/abs/2006.05990
https://doi.org/10.1109/TVCG.2015.2391862
https://doi.org/10.1109/TVCG.2015.2391862
http://arxiv.org/abs/2005.12729
https://doi.org/10.2312/SCA/SCA10/119-128
https://doi.org/10.1109/TVCG.2021.3139031
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
https://doi.org/10.1111/cgf.14504
https://doi.org/10.48550/arXiv.2302.05740
https://doi.org/10.48550/arXiv.2302.05740
https://doi.org/10.1016/j.cag.2022.11.007
https://doi.org/10.1145/3274247.3274510
https://doi.org/10.1145/3274247.3274510
https://doi.org/10.48550/arXiv.2105.00854
https://doi.org/10.1145/3528233.3530712
https://doi.org/10.1109/ACCESS.2019.2933492

Richard S. Sutton and Andrew G. Barto. 2018. Reinforcement Learning: An Introduction.
A Bradford Book, Cambridge, MA, USA.

Richard S. Sutton, David McAllester, Satinder Singh, and Yishay Mansour. 1999. Policy
gradient methods for reinforcement learning with function approximation. In
Proceedings of the 12th International Conference on Neural Information Processing
Systems (NIPS’99). MIT Press, Cambridge, MA, USA, 1057-1063.

W. Toll and J. Pettré. 2021. Algorithms for Microscopic Crowd Simulation: Ad-
vancements in the 2010s. Computer Graphics Forum 40, 2 (May 2021), 731-754.
https://doi.org/10.1111/cgf.142664

Michael W. Whittle. 2008. Gait analysis: an introduction (4th ed., reprinted ed.).
Butterworth-Heinemann, Elsevier, Edinburgh.

Dong Xu, Xiao Huang, Zhenlong Li, and Xiang Li. 2020. Local mo-
tion simulation using deep reinforcement learning. Transactions in
GIS 24, 3 (2020), 756-779. https://doi.org/10.1111/tgis.12620 _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1111/tgis.12620.

Pei Xu and Ioannis Karamouzas. 2021. Human-Inspired Multi-Agent Navigation using
Knowledge Distillation. arXiv:2103.10000 [cs] (March 2021). http://arxiv.org/abs/
2103.10000 arXiv: 2103.10000.

S. Zheng and H. Liu. 2019. Improved Multi-Agent Deep Deterministic Policy Gradient
for Path Planning-Based Crowd Simulation. IEEE Access 7 (2019), 147755-147770.
https://doi.org/10.1109/ACCESS.2019.2946659 Conference Name: IEEE Access.

George K. Zipf. 1949. Human Behaviour and the Principle of Least Effort. Addison-
Wesley.

Kwiatkowski et al.

https://doi.org/10.1111/cgf.142664
https://doi.org/10.1111/tgis.12620
http://arxiv.org/abs/2103.10000
http://arxiv.org/abs/2103.10000
https://doi.org/10.1109/ACCESS.2019.2946659

Reward Function Design for Crowd Simulation via Reinforcement Learning

A DISCOUNTING-INVARIANT REWARD

Intermediate equations in 4.3. Derivatives and solutions computed using sympy.

Here we provide the intermediate stages of the computation in 4.3. All computations are performed using sympy - finding the derivatives
and roots of equations.

First, we reiterate the discounted sum of rewards with a discount factor y and a guiding potential with the coefficient c, v/eses,. (Equation 13)

d

T d
1—voe
RY = ‘/0 etiny (—es — ey + cp\/esewv) dt = — 4 (—ewu2 +cpesen — es)

Iny

We differentiate the expression on the right hand side w.r.t. v, looking for a stationary point that corresponds to the optimal velocity v™:

=0

dv
While we cannot solve this analytically for v*, we know that arguments for which F(v*, y) = 0 correspond to optimal velocities with a
given y. We are now interested in finding arguments where ‘fiiy =0, i.e. changes in the discount factor do not affect the optimal velocity. We

02

d
dRrY d [CpVesew eg (1 -re) (CP Vés€w — zewU)
_ = F(u,)/) = —d)/u (— - = _ew) —

¢ log ()

find that by computing the implicit derivative:

d+2v

d
do v (—dzy o (—cpv\/esew +es + ewvz) log (y)2 - dvzy (cp\/esew - 2ewv) log (y) + U3y2 (y? - 1) (cp\/esew - 2ewv))
= =0

dy Y3 (dvzy% (cpvesew — 2en0) log (y) + dy% (d (—cpv/esen, + es + ey0?) log (v) — v (cpu/esew — 2e5)) log (y) + 2e4,0* (y% - 1)) log (y)

Although this expression is even more complex, it turns out to be solvable analytically for cp:

d+2v
v

3 dzesy% log (y)? + dzewvzy% log (y)? - 2dewa3y% log (y) + 2€WU4)/% - 2e,0t
vv/eseqy (dzy% log (y)? - dz)y% log (y) + vzy% - 02)

After substituting numerical values and v = v* = /e%, we get the result ¢;, = 2. This means that if the potential has a coefficient of ¢, = 2,

=2

cp

the optimal velocity will not change with the discount factor.

B ALGORITHMIC DETAILS

The performance of agents trained with PPO tends to significantly depend on the exact implementation details of the algorithm [Andrychowicz
et al. 2020; Engstrom et al. 2020; Huang et al. 2022]. Beyond a set of typical choices used in our implementation (all of which can be found in
the training code), we use a non-standard modification that we call “rewind”, inspired by TRPO.

When performing gradient updates with a given batch of data, the algorithm typically keeps changing the policy until a predefined
number of updates elapses. Alternatively, if the KL divergence between the behavior policy and the learned policy exceeds a predefined
threshold, the process is stopped immediately to obtain a fresh batch of data.

While this approach typically works sufficiently well for maintaining the on-policy assumption of the policy gradient theorem, sometimes
a single gradient update leads to a significant drop in the performance, which would then take many training iterations to recover. To
counteract this effect, we save the policy parameters before each gradient update. If the KL divergence criterion is triggered, the policy is
rolled back to that saved state, ensuring that a single batch of data never leads to an excessive change to the policy.

C REWARD IMPLEMENTATION DETAILS

Due to various differences in the basic simulation setup, including but not limited to the design choices described by Kwiatkowski et al.
[2023b], we were unable to fully reproduce some of the results from prior work. Here, we describe the differences between the reward
functions described in other papers, and our implementations.

Lee et al. [2018] use the function they named FLOOD, which linearly penalizes velocities above 1.5 m/s and below —0.5 m/s. Because our
simulation does not allow backwards movement, this is reduced to a linear penalty to velocities exceeding the optimal velocity (which varies
by agent).

Work by Xu and Karamouzas [2021] focuses on using knowledge distillation for more human-like behavior, but a key component of their
reward function deals with the agents maintaining the right speed. The expression listed in the paper is wy, exp(oy||o — 0*|]), with w, = 0.08
and o, = 0.85. Notice, however, that this structure would incentivize large deviations from the optimal velocity by maximizing ||o — v*||.
Due to the monotonicity of the exponential function, exactly one of these parameters must be negative to optimize the behavior in the
correct dimension. The source code provided with the paper indicates that w, = 0.02 and o, = —0.85, but in our experiments the reverse
convention achieves significantly better results, i.e. wy < 0 and 0, > 0. Furthermore, in our experiments we use w, = —10 together with
adjusted goal and collision rewards, because values closer to the original ones failed to converge to reliable goal-seeking behavior.

	Abstract
	1 Introduction
	2 Related Work
	3 Energy Usage Model
	3.1 Acceleration correction

	4 Navigation reward design
	4.1 Energy as reward
	4.2 Energy-based potential
	4.3 Discounting invariance
	4.4 Non-finishing penalty
	4.5 Alternative approaches

	5 Reward evaluation
	5.1 Experimental setup
	5.2 Reward function structure

	6 Results
	6.1 Is potential necessary?
	6.2 Impact of acceleration

	7 Conclusions
	References
	A Discounting-invariant reward
	B Algorithmic details
	C Reward implementation details

