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ABSTRACT

The metadata service (MDS) sits on the critical path for distributed
file system (DFS) operations, and therefore it is key to the over-
all performance of a large-scale DFS. Common “serverful” MDS
architectures, such as a single server or cluster of servers, have a
significant shortcoming: either they are not scalable, or they make
it difficult to achieve an optimal balance of performance, resource
utilization, and cost. A modern MDS requires a novel architecture
that addresses this shortcoming.

To this end, we design and implement 𝜆FS, an elastic, high-
performance metadata service for large-scale DFSes. 𝜆FS scales a
DFS metadata cache elastically on a FaaS (Function-as-a-Service)
platform and synthesizes a series of techniques to overcome the
obstacles that are encountered when building large, stateful, and
performance-sensitive applications on FaaS platforms. 𝜆FS takes
full advantage of the unique benefits offered by FaaS—elastic scaling
and massive parallelism—to realize a highly-optimized metadata
service capable of sustaining up to 4.13× higher throughput, 90.40%
lower latency, 85.99% lower cost, 3.33× better performance-per-cost,
and better resource utilization and efficiency than a state-of-the-art
DFS for an industrial workload.
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1 INTRODUCTION

Many different fields in computing have enjoyed successes in part
due to the availability of large amounts of data [2, 20, 23, 28, 33, 34,
36, 41, 65]. Data-intensive applications [18, 24] in these fields are
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characterized by varied, heterogeneous I/O patterns in which I/O
bottlenecks are not uncommon [35, 46, 64]. Large-scale, distributed
file systems (DFSes), such as Google File System (GFS) [38] and
Hadoop Distributed File System (HDFS) [57], are commonly used by
these data-intensive applications. DFSes often use an architecture
that decouples metadata management from file I/O [14, 38, 57].
DFS metadata tracks global file system namespace information,
including hierarchical directories and file names. These DFSes use
a centralized metadata management component called a metadata
service (MDS), which executes file system namespace operations,
such as file open, close, and mv. In a DFS, client applications acquire
a file’s permission and location information from the MDS before
accessing the file’s contents. Therefore, the performance of the
MDS is key to the overall efficiency of a DFS.

Scaling the performance of an MDS is challenging. Using a ded-
icated server (e.g., GFS [38], HDFS [57]) to host the MDS is not
scalable and may suffer from poor performance during highly dy-
namic workloads.

Researchers have proposed various ways to overcome the scala-
bility challenges of DFSMDSes. IndexFS [54] is amiddleware that of-
floads metadata storage and processing to a scaled-out, table-based,
key-value store cluster that is co-located with the data storage clus-
ter. InfiniFS [49] uses the same scaled-out cluster architecture as
IndexFS but with deep optimizations along the metadata process-
ing path. HopsFS [51], built on HDFS, further decouples metadata
request handling and metadata storage: it offloads the metadata
storage to a distributed, sharded, in-memory database (MySQL NDB
Cluster [16]) and utilizes a cluster of stateless NameNodes (metadata
servers in HDFS terminology) to scale DB query handling.

While these systems offer scalable MDS solutions with different
tradeoffs, they have a common issue: they lack elasticity support
at the MDS level. IndexFS and InfiniFS employ a fixed cluster
of metadata servers and use client-side metadata caching exten-
sively for performance improvement. HopsFS provides no metadata
caching on the stateless NameNode side and uses the distributed Na-
meNodes only for handling and scaling client requests. Therefore,
HopsFS’ performance is capped by the capacity of the backend NDB
cluster. All three of these systems require explicit server manage-
ment and a large amount of server resources to be reserved to host
the MDS cluster. As reported in [51], HopsFS requires as many as
60 NameNodes and 12 NDB servers in order to significantly outper-
form vanilla HDFS, the latter of which typically uses a small cluster
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of NameNodes for high availability but not performance. Worse,
under low load conditions, the scaled-out MDS cluster suffers from
low resource utilization.

Serverless computing or Function-as-a-Service (FaaS) has emerged
as a new cloud computing model [4, 42]. FaaS enables developers
to break traditionally monolithic, server-based applications into
finer-grained serverless (or cloud) functions, thereby providing a
new way of building and scaling applications and services. De-
velopers are tasked with providing the function logic while the
FaaS provider is responsible for the notoriously tedious tasks of
provisioning, scaling, and managing backend servers that host the
serverless functions [39].

We find that serverless functions provide an appealing envi-
ronment in which to host and scale the metadata management
component of a large-scale DFS. Using serverless functions pro-
vides several key advantages. First, serverless functions have CPU
and memory resources that are elastically scaled out and in with the
functions. This enables the construction of an elastic MDS that can
achieve optimal performance by dynamically adapting the amount
of resources as the workload shifts. Second, the elasticity offered by
FaaS can greatly improve cost-efficiency and resource utilization
as resources are allocated/deallocated in an on-demand manner
and used more efficiently. Third, the auto-scaling property also
alleviates the need for tedious server management.

The aforementioned challenges pertaining to MDS efficiency and
the emergence of serverless computing together raise a research
question: Can we use serverless functions in a novel way to build a
high-performance, cost-efficient, elastic, and resource-efficient MDS?

To answer this question, we present 𝜆FS, the first serverless-
function-based, elastic MDS for large-scale DFSes. In a nutshell,
𝜆FS features a novel MDS architecture that combines an elastically-
scalable, FaaS-based metadata cache with a persistent, strongly-
consistent metadata store. To minimize network overhead, 𝜆FS
uses the collective memory of a dynamic fleet of serverless func-
tions for metadata caching. However, simply implementing a meta-
data caching layer is insufficient. 𝜆FS further enables elastic and
massively-parallel metadata caching by taking advantage of the
auto-scaling offered by FaaS. Not only does this elasticity improve
metadata query performance, but it also enables high resource effi-
ciency and low cost. Moreover, 𝜆FS effectively decouples the man-
agement of metadata caching (and thus, metadata request process-
ing) and metadata storage so that compute and storage can scale in-
dependently. This fully-disaggregated architecture is driven by the
observations that real-world MDS workloads are bursty [35, 55, 60]
and that it is often difficult to manually determine the right MDS
deployment scale offline [27, 58].

Building an elastic serverless MDS for large-scale DFSes requires
addressing two sets of unique challenges:

• First, FaaS platforms have a series of constraints and limitations
that make it challenging to support data-intensive, stateful ap-
plications efficiently: (1) individual serverless functions have
limited CPU, memory, and network resources, and thus offer
limited data processing, storage, and transfer capacity. (2) Server-
less functions occasionally suffer from long cold start times and
execution timeouts. (3) The typical method to communicate with
serverless functions is via HTTP requests, but this can be slow.

As such, naively porting the stateful MDS of a large-scale DFS to
a serverless platform leads to poor performance.

• Second, while FaaS platforms offer auto-scaling and elasticity, a
careful, holistic MDS redesign is required to fully utilize these
benefits: (1) Performance-sensitive systems such as MDSes re-
quire careful treatment to balance the performance and auto-
scaling tradeoff. (2) Partitioning the file system namespace across
a dynamic fleet of serverless functions introduces interesting
tradeoffs in a FaaS environment. (3) The lack of addressability of
serverless functions means that a metadata entry may be stored
on multiple functions, therefore introducing metadata consis-
tency issues.

𝜆FS addresses these challenges by synthesizing several tech-
niques into an end-to-end, serverless MDS system. First, we find
that 𝜆FS can achieve strong performance using a large number
of serverless NameNodes each having relatively small CPU and
memory resources compared to their serverful counterparts. 𝜆FS
also leverages a hybrid HTTP-TCP RPC mechanism to enable agile,
lightweight, and performance-preserving auto-scaling.

Second, 𝜆FS’ FaaS-powered metadata cache consists of 𝑛 unique
serverless function deployments. 𝜆FS uses path-based hashing of
parent directories to partition the file system namespace among
the 𝑛 deployments in order to support efficient metadata read oper-
ations. Each deployment can automatically scale out to an arbitrary
number of concurrently-running function instances that elastically
support bursts of metadata requests on hot directories. 𝜆FS trades
function-deployment-based auto-scaling (i.e., there is a fixed num-
ber 𝑛 of deployments) for easy-to-manage, deterministic metadata
partitioning. Third, 𝜆FS implements a serverless coherence proto-
col to provide strong consistency in the presence of an arbitrary
number of running “function instances” and clients.

Finally, 𝜆FS re-implementsmanyDFSmaintenance features, such
as block reports and DataNode discovery, in a serverless-compatible
way by publishing information to the persistent metadata store on
a regular interval.

There are a number of benefits and advantages of using FaaS as
the underlying platform for the MDS of a large-scale DFS. Notably,
these benefits would be difficult or impossible to realize using a
traditional, serverful MDS architecture. First, by using a large num-
ber of relatively lightweight serverless functions, overall resource
utilization can be improved, which ultimately leads to better perfor-
mance and cost-efficiency. This cost-efficiency is further enhanced
by the pay-per-use pricing model of FaaS, which drastically lowers
tenant-side costs without negatively impacting performance. This
is quantified using a performance-per-cost metric in §5.2.5.

In addition to cost-related benefits, the MDS can take advantage
of FaaS-based auto-scaling to automatically adapt to changes in
request volume without requiring management by users or admins.
When request volume increases, the MDS automatically scale-outs
to serve the additional requests. When request volume decreases,
the MDS will scale-in, avoiding the problem of low resource uti-
lization and poor cost-efficiency. This completely circumvents the
typical under/over-provision problem faced by serverful systems.

In summary, this paper makes the following contributions:

• We identify scalability and performance issues of HopsFS, a state-
of-the-art DFS with a scaled-out MDS design.
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Figure 1: Architecture of HDFS and HopsFS.

• We explore the design space of serverless metadata management
for large-scale DFSes. We identify the key opportunities and
challenges of using FaaS for this purpose, and we share insights
into how to address these challenges.

• We present the design and implementation of 𝜆FS, a novel meta-
data service that uses massively-parallel serverless functions to
cache and elastically scale the metadata workload. To the best of
our knowledge, 𝜆FS is the first serverless-function-based MDS
for large distributed file systems.

• We demonstrate 𝜆FS’ generality by porting 𝜆FS to two practical
DFSes that have different, scaled-out MDS architectures: HopsFS
and BeeGFS [6] enhanced with IndexFS.

• We extensively evaluate 𝜆FS using real-world workloads and
microbenchmarks. Our results show that 𝜆FS achieves up to
4.13× higher throughput, 90.40% lower latency, and 85.99% lower
cost than HopsFS and 3.33× greater performance-per-cost than
HopsFS augmented with a metadata cache while providing better
resource utilization.

2 BACKGROUND AND MOTIVATION

Different DFS architectures have different tradeoffs, but there is
one commonality: all existing solutions use an architecture that
separates metadata management and file data storage manage-
ment. In this section, we use HDFS and HopsFS, two representative,
production-ready DFSes, as examples to illustrate the two gener-
ations of MDS architectures used by today’s DFSes. Specifically,
HopsFS uses a cluster of scaled-out, stateless metadata servers in
front of a scaled-out, strongly-consistent metadata store to support
a scalable MDS for the widely used HDFS. Therefore, HopsFS pro-
vides an ideal platform to experiment with and demonstrate the
efficacy of 𝜆FS. This section describes the common limitations of
state-of-the-art MDS solutions to further motivate 𝜆FS.
Hadoop Distributed File System. The Hadoop Distributed File
System (HDFS) is an open-source implementation of GFS [38] and is
widely used in practice [57]. HDFS storesmetadata in thememory of
a Java process referred to as the Active NameNode. This metadata is
replicated to a Standby NameNode, which is used for checkpointing
and failure recovery. File system operations are executed atomically
by the Active NameNode, thereby providing strong consistency for
file system metadata. POSIX semantics are relaxed in order to allow
for streaming access to the system data. See Figure 1(a).

DataNodes are responsible for storing file data. Each DataNode
connects to both the Active and Standby NameNodes. A DataNode
periodically generates reports that are sent to the NameNode. These
reports are used to ensure the NameNode’s block map is consistent
with the actual data stored in DataNodes. The JournalNodes are

used to synchronize state between the Active and Standby NameN-
odes. ZooKeeper [40] provides automatic failover and leader election
for the NameNodes.
HopsFS. HopsFS [51] is a distributed file system developed as an
extension of HDFS. HopsFS provides a scaled-out metadata manage-
ment layer by decoupling the storage and manipulation of metadata.
Specifically, HopsFS supports multiple stateless NameNodes. The
NameNodes persists the metadata to a pluggable storage backend
and collectively serve metadata requests made by clients. HopsFS
uses MySQL Cluster NDB [15] for this persistent backend data store.
The architecture of HopsFS is shown in Figure 1(b).

Each NameNode uses a Data Access Layer (DAL) that provides
a generic interface to an arbitrary persistent storage backend. This
interface is used to manipulate the metadata stored within NDB.
All file system operations require the resolution of each path com-
ponent in order to check for permissions and path validity. HopsFS
introduces techniques to mitigate the performance impact of path
resolutions, such as an “INode Hint Cache”, which allows clients
to cache metadata prefixes locally to reduce the number of round
trips required for path resolution from 𝑁 round trips (for a path of
length 𝑁 ) to just one single batch query. The cluster of stateless Na-
meNodes cooperates to handle DataNode failures. The NameNodes
elect a leader NameNode to perform administrative tasks.
Limitations of Today’s Scaled-Out MDSes. For the remainder
of the paper, we do not focus on issues that HopsFS has already
addressed—𝜆FS uses the same decoupled compute-and-storageMDS
architecture and uses the same DAL to interface with the persistent
metadata store used by HopsFS. Instead, we focus on the scalabil-
ity and elasticity problems with HopsFS’ statically-fixed, stateless
NameNode cluster design, which we describe next.

There are several aspects of HopsFS’ design that hinder HopsFS’
MDS efficiency. First, the use of stateless NameNodes necessitates
the retrieval of metadata from the persistent metadata store for
every single metadata operation. This means that HopsFS’ perfor-
mance is capped by the capacity of the backend NDB cluster. The
compute (NameNode) and storage (NDB) resources, though phys-
ically decoupled, are essentially logically-bundled resources that
need to be configured together. Otherwise, system performance can
rapidly degrade if either of the two layers becomes a bottleneck.

Second, HopsFS and other scaled-out MDS solutions [49, 54, 63]
lack elasticity and require an admin to empirically configure a
statically-fixed deployment of compute and storage resources for
the serverful MDS cluster. This leads to a choice between resource
under-utilization and degraded performance: if the admin provi-
sions compute resources for the peak load of the metadata workload,
the systemwastes both compute and storage resources; if the admin
provisions resources for the average demand, then the performance
degrades when the load increases beyond the provisioned capacity.
Terminology. Before describing 𝜆FS’ design, it is necessary to
define some terminology. First, 𝜆FS’ NameNodes are organized into
multiple serverless function deployments. Function deployments
consist of user-written code to be executed when the serverless
function runs, configuration info, and metadata, all of which is
registered under a unique name with the FaaS platform. The code
for a NameNode is written (in Java) as the body of a serverless
function. 𝜆FS registers a configurable number of uniquely named
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Figure 2: The 𝜆FS architecture.

serverless NameNode functions with the FaaS platform. (The bodies
of these functions are identical; the names are different.)

When a user invokes a serverless function defined by a particular
deployment, the FaaS platform automatically provisions an instance
of that function based on the configuration info specified when the
deployment was registered. Thus, a function instance refers to an in-
stantiated, running serverless function. A NameNode then refers to
the Java application executing within the function instance. When
we say that a function instance “belongs” to a deployment, we mean
that the instance is an instantiation of the serverless function de-
fined by that deployment. Only one NameNode can execute within
a function instance, so the two terms are used interchangeably.

3 𝜆FS DESIGN

𝜆FS enables elastic metadata service for large-scale DFSes such
as HDFS. 𝜆FS uses a hybrid, FaaS-optimized RPC mechanism that
uses both TCP-based RPC and HTTP-based RPC together to enable
high throughput and reduced latency (§3.2). 𝜆FS uses a serverless-
function-based memory caching layer for DFS metadata caching
(§3.3) and features an agile auto-scaling policy to enable elastic
and parallel metadata processing at the caching layer (§3.4). While
caching reduces the number of network hops per request, 𝜆FS’
auto-scaling significantly improves the cache’s throughput. 𝜆FS also
introduces a simple coherence protocol to ensure strong consistency
of metadata operations within the serverless cache (§3.5). Note that
𝜆FS is also usable with other DFSes: as we will show in §4, 𝜆FS can
enhance BeeGFS [6] as a drop-in replacement for IndexFS.

3.1 𝜆FS Overview

Figure 2 shows the architecture of 𝜆FS. Clients issue RPC metadata
requests to NameNodes, just as clients do in HopsFS. The difference
is that each 𝜆FS NameNode is a Java serverless function execut-
ing within a container managed by the serverless platform. RPC
metadata requests are initially performed as HTTP invocations di-
rected towards the platform’s API gateway. The serverless platform
routes HTTP requests it receives to already-running NameNodes,
if available, or it starts a new NameNode if none are running.

Once a NameNode is up and running, it can establish direct
TCP connections back to clients (after first interfacing with clients
through HTTP requests). TCP-based RPC requests serve as a lower-
latency alternative to HTTP-based RPC requests, as only one net-
work hop (client to NameNode) is required for a TCP RPC. Hybrid
TCP and HTTP RPC mechanisms are discussed in §3.2.
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Figure 3: 𝜆FS supports two different types of metadata RPC

requests: HTTP-based and TCP-based RPCs.

Another key difference between 𝜆FS and HopsFS is that the
serverless NameNodes in 𝜆FS: are (1) not stateless, and (2) are elas-
tic. This allows the dynamic cluster of serverless NameNodes to
collectively form an elastic metadata caching layer. When a NameN-
ode receives a metadata request, it checks whether the requested
metadata was retained on the NameNode from a previous function
invocation. The retained metadata on the NameNodes thus form a
cache. The caching system is discussed further in §3.3.

To support elastic caching, 𝜆FS’ NameNodes are organized into 𝑛
individual function deployments. We partition the namespace among
the function deployments by consistently hashing on the parent
directory path of each file/directory. For example, we may hash
the file “/dir/note.pdf” to the deployment named “NameNode5”. In
this case, the client would issue an HTTP RPC for the deployment
“NameNode5”, or issue a TCP RPC to an already-running function
instance of the NameNode5 deployment. If the NameNode that serves
this request already has the target metadata cached locally, then a
network hop to the persistent metadata store is avoided, resulting in
lower latency for the request. Individual function deployments au-
tomatically scale out in response to the sudden increase of metadata
requests. Our agile auto-scaling policy is described in §3.4.

𝜆FS uses a pluggable “Coordinator” service for tracking NameN-
ode liveness and coordinating NameNodes during write operations.
𝜆FS currently supports both ZooKeeper and MySQL Cluster NDB.
The Coordinator is used in the coherence protocol described in §3.5.

𝜆FS’ design capitalizes on the unique benefits of serverless com-
putingwhile accounting for the challenges that the platform presents.
First, 𝜆FS takes advantage of the intra-deployment auto-scaling of-
fered by FaaS to rapidly and transparently scale-out in response to
bursts of work. Not only does this enable 𝜆FS to responsively and
elastically adapt to changing workload characteristics in real-time,
but it also improves 𝜆FS’ resource efficiency and resource utiliza-
tion. When system throughput returns to normal levels, 𝜆FS will
transparently scale-in to avoid incurring additional costs. Using tra-
ditional, serverful VMs in place of serverless functions would result
in significantly reduced elasticity and either wasted resources or
poor performance (depending on how resources are provisioned).

3.2 Hybrid Serverless RPC Mechanism

𝜆FS utilizes two different RPC pathways in order to provide high
system throughput and high elasticity. Specifically, HTTP RPCs
directed to the serverless platform’s API gateway are used to scale-
out the number of serverless function instances as the load increases.
At the same time, NameNodes establish direct TCP connections
back to clients. Clients can then use this direct connection as a low-
latency alternative to HTTP requests. During our experiments, we
found that the average end-to-end latency for read operations was
1-2ms for TCP RPCs and 8-20ms for HTTP RPCs. Clients issue TCP
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RPCs whenever possible due to the significantly lower latency. (TCP
RPCs also experience much smaller end-to-end latency variance
compared to HTTP RPCs.) The lower latencies lead to substantially
higher throughput and overall much lower costs due to the reduced
overhead for each file system operation.

Figure 3 depicts the two different types of metadata RPCs that
𝜆FS supports. The first, labeled as step (1), is a standard HTTP
invocation directed to the API gateway of the FaaS framework
(e.g., OpenWhisk). At step (2), the FaaS API gateway will route
this request to a serverless function invoker, which will submit the
request to an existing NameNode, or the invoker will provision a
new instance if none exist or all are busy serving other requests. A
NameNode that serves an HTTP request will subsequently establish
TCP connections back to the clients that issued the HTTP request
if no such connection already exists as shown in step (3).

By default, all clients on the same VM will use the same TCP
server (on that VM) to communicate with serverless NameNodes.
Users can optionally configure 𝜆FS to assign at-most 𝑛 clients to
each TCP server. New TCP servers are automatically created for
new clients as needed. Clients transparently include their IP address
and the ports for all TCP servers on their VM within HTTP request
payloads, which enables the NameNodes to proactively connect to
the servers.

Clients also temporarily share connections with one another. Con-
sider the process illustrated in Figure 4. Client 𝑎 wishes to submit a
metadata request to deployment 2 (𝐷2). In step 1, 𝑎 finds that there
is no existing connection between its TCP server and an instance
of 𝐷2. Thus, in step 2 client 𝑎 contacts the other TCP servers on its
VM and finds that TCP Server 2 has an existing connection to an
instance of 𝐷2. In step 3, 𝑎 uses TCP Server 2 to issue its metadata
request. After fulfilling the request, NameNode 2𝑎 establishes a
TCP connection back to client 𝑎’s assigned TCP server.

When HTTP requests time out, clients could resubmit the re-
quests to the FaaS platform immediately, causing a request storm
that could overwhelm the FaaS platform and lead to the over-
provisioning of NameNodes. We designed the client library so that
clients sleep before resubmitting requests, following an exponential
backoff delay pattern with randomized jitter added.

Similarly, if a TCP connection between a client and a NameN-
ode is dropped, then any incomplete requests are transparently
re-submitted by the client. The client will first determine if there
are any other active TCP connections to instances from the target
deployment. If so, then these connections will be used to re-submit
the requests. If not, then the client queries the other TCP servers
on its VM, if any, for active connections, and uses any connection it
finds to resubmit its request. If no such TCP connections exist, then

Serverless
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Hit!2 5
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Persistent
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Figure 5: A walkthrough of 𝜆FS’ caching protocol.

the client will simply fall-back to HTTP to re-submit the request.
Additionally, NameNodes temporarily cache results returned to
clients in the event that network delays or other failures prevent
the client from receiving the result. When the NameNode receives a
re-submitted request, it will attempt to return cached results before
re-performing the requested operation.

3.3 Serverless Metadata Cache

𝜆FSNameNodes provide a serverless caching layer for performance.
We partition the file namespace across all the NameNode deploy-
ments by consistently hashing on the parent INode ID. Each de-
ployments’ NameNodes are then responsible for caching a partition
of the namespace, and clients route metadata RPCs based on this
partitioning scheme.

NameNodes cache more than just the metadata associated with
the terminal INode in a particular path. Specifically, they cache the
metadata for all INodes contained within a particular path. Cached
metadata is stored in a trie data structure maintained in-memory
on the NameNode. This caching scheme allows for metadata read
operations to avoid going to the persistent metadata store, as Na-
meNodes can serve the read entirely from their local cache, called
a cache hit. A cache miss occurs when missing metadata must be
retrieved from the metadata store. Once the metadata is retrieved,
the NameNode will cache the metadata in its local cache for future
read operations.

Figure 5 provides an illustration of 𝜆FS’ serverless metadata
caching. In step (1), the client issues a metadata request for the file
“/nts/notes.txt”. This results in a cache hit on the NameNode in
step (2). As a result, this NameNode can return the metadata directly
to the client in step (3) without having to first retrieve it from the
metadata store. Next, the client issues another metadata RPC for the
file “/bks/book.pdf”. This request is routed to a different NameNode
in step (4) and results in a cache miss in step (5). In step (6), the
consulted NameNode retrieves the metadata from the metadata
store, which caches the metadata on the NameNode. Finally, the
metadata is returned to the client in step (7).

3.4 Agile Serverless NameNode Auto-Scaling

A metadata cache reduces per-operation latency and improves sys-
tem throughput; however, a cache alone is insufficient for support-
ing large-scale, burstyworkloadswhilemaximizing cost-effectiveness
and resource efficiency. An MDS equipped with a cache must still
be statically provisioned by the user ahead of time. This creates
a dilemma for the user, which is to over- or under-provision the
resources, trading off performance and cost-efficiency. In order to
avoid this trade-off, we implement an agile and lightweight auto-
scaling policy for managing coordinated scaling within a serverless
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Figure 6: Mathematical model of the agile and lightweight FaaS auto-scaling in 𝜆FS.

framework. We begin by motivating the design of our auto-scaling
policy before discussing the general model in detail.

When clients issue metadata requests, they issue either a TCP
RPC or an HTTP RPC (§3.2). Clients will choose to issue a TCP RPC
whenever a TCP connection exists to a NameNode in the target
deployment. This is because TCP RPCs incur significantly lower
overhead compared to HTTP RPCs; clients only choose HTTP RPCs
as a last resort, when no TCP connections exist. However, TCP RPCs
are not FaaS-aware. Only HTTP RPCs are routed through the FaaS
platform and thus enable the platform to detect when additional
containers are needed. Therefore, exclusive use of TCP RPCs will
ultimately lead to poor scalability and elasticity by preventing auto-
scaling, which leads to overload and performance degradation. This
scenario highlights an interesting trade-off between performance
(low latency and high throughput) and elasticity.

To address the scenario above, we implement an agile and light-
weight auto-scaling policy based on a randomized HTTP-TCP re-
placement mechanism. Each TCP RPC is probabilistically replaced
by an HTTP RPC, with a configurable probability. As the request
load increases, the absolute number of HTTP RPCs should increase,
enabling the FaaS platform to provision additional serverless con-
tainers as needed. In essence, the randomized replacement mech-
anism allows for a majority of RPCs to be TCP-based while still
enabling auto-scaling to occur, leading to better elasticity and scal-
ability while achieving low latency and high throughput.

The auto-scaling policy can be modeled using the equation in
Figure 6, where 𝛼 is a parameter encoding the load level (requests
per second and load concurrency), and ConcurrencyLevel is the
function-level concurrency of each individual NameNode. To sup-
port function-level concurrency, we extended OpenWhisk [3] to
enable control over how many unique HTTP RPCs a single func-
tion instance can serve simultaneously. This parameter provides
coarse-grained control over the degree of auto-scaling, as small
changes in this value will have a large impact on the number of
provisioned NameNodes. The closer that the ConcurrencyLevel
is to its minimum value of 1, the greater the degree of auto-scaling.
Meanwhile, the HTTP-TCP replacement probability provides fine-
grained control over auto-scaling. We find that empirically setting
the probability of random HTTP-TCP replacement to a value ≤ 1%
tends to provide the best performance for the request loads and
resource limits we used.

𝜆FS’ auto-scaling policy reuses the FaaS platform’s existing auto-
scaling facility while remaining agile and performance-preserving.
We choose not to use sophisticated feedback-based policies, such
as Kubernetes’ Horizontal Pod Autoscaling algorithm [10], as these
policies typically require a long feedback-loop delay, which cannot
be tolerated if sudden load bursts must be dealt with quickly.We
envision that this model is readily applicable to and useful for future
performance-sensitive FaaS-based systems. It provides an effective

Algorithm 1 𝜆FS Coherence Protocol

(1) For each 𝑑 ∈ D, 𝑁𝐿 subscribes to and listens for liveness and
ACK notifications before issuing an INV, whose payload includes
the metadata to be invalidated, to that deployment. All of this
is performed using the Coordinator. ACKs are not required from
NameNodes that terminate mid-protocol.

(2) Upon receiving an INV, NameNodes in each 𝑑 ∈ D first invali-
date their caches before responding with an ACK.

(3) Once 𝑁𝐿 has received all required ACKs, the write operation can
safely continue. Metadata changes/updates are persisted to the
persistent datastore.

methodology that enables FaaS platforms to embrace high-throughput,
low-latency stateful applications.

3.5 Coherence Protocol

Supporting stateful and parallel caching atop serverless NameN-
odes requires special treatment for concurrent metadata operations,
as multiple function instances for the same NameNode deployment
may cache replicas of the same metadata. Like HDFS, 𝜆FS’ metadata
operations fall into the following two categories: single INode op-
erations that operate on a single file or directory (e.g., read/create
file), and subtree operations that operate on one or more directories
spanning many INodes (e.g., recursive mv and delete).

Inspired by cache/memory coherence algorithms [43, 47], we
designed a modular, serverless memory coherence protocol that
guarantees data consistency for DFS metadata. The protocol uses
a simple ACK-INV mechanism to ensure that NameNodes have in-
validated their caches before any new metadata is persisted to the
metadata store. That is, when a NameNode performs a write oper-
ation on an INode, it issues an invalidation (INV) to the instances
in the deployment responsible for caching each piece of metadata
related to the modified INode. The write operation blocks until all
active NameNodes have acknowledged (ACK’d) this INV, at which
time the write operation can safely proceed. Our coherence protocol
utilizes the pluggable “Coordinator” service to facilitate commu-
nication among the NameNodes. The Coordinator is used to keep
track of which NameNode instances are actively running in which
deployments and to deliver the ACKs and INVs. 𝜆FS builds a subtree
coherence protocol atop the simple, single-INode-based protocol
(see Appendix D).

To describe the coherence protocol, we use the following nota-
tions. First, recall that there are 𝑛 deployments across which the
NameNodes are partitioned. Let D denote the set of deployments
caching at least one piece of metadata in the target path of a write
operation. Next, let 𝑁𝐿 denote the “leader” NameNode, which is
the NameNode performing the write operation. To orchestrate the
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Table 1: Lines of code required by the different components

involved in the development and evaluation of 𝜆FS.

Component LoC Component LoC

Benchmark drivers 15,000 Docker images 2,100
𝜆FS 36,685 Python scripts 4,493
hammer-bench 3,160 𝜆IndexFS 4,472
SQL+Shell scripts 435 Total: 67,352

coherence protocol, 𝑁𝐿 actively communicates with other NameN-
odes via the Coordinator.

The coherence protocol is described in Algorithm 1. It is con-
ceptually divided into three steps. There is also a small amount of
clean-up that is performed after the protocol terminates; this step
is omitted for simplicity. The protocol guarantees the serialization
of concurrent writes by utilizing exclusive locks in the persistent
datastore. First, consider how once the leader NameNode 𝑁𝐿 re-
ceives all ACKs from its followers, it is necessarily true that all other
NameNodes will have invalidated their caches. Next, 𝑁𝐿 will have
taken exclusive write-locks on the metadata in the persistent data-
store, so it will be impossible for another NameNode to read and
cache the metadata before it is updated. This effectively serializes
write operations against any other concurrent writes on the same
data, thereby guaranteeing strong consistency.

3.6 Fault Tolerance

By default, both single INode and subtree operations do not span
multiple NameNodes; however, amulti-node subtree batchingmech-
anism (described in-detail in Appendix D) may be enabled to reduce
the latency of subtree operations. 𝜆FS reuses HopsFS’ transaction
model, and thus both individual request- and NameNode-level fail-
ures are handled exactly as HopsFS handles them. Clients transpar-
ently resubmit subtree operations to other NameNodes in the event
of a crash. In the multi-node case, the failure of any node will be
treated as though the entire operation failed, and clients will simply
resubmit the operation. Since 𝜆FS’ persistent data store provides
ACID transaction semantics, and coupled with 𝜆FS’ consistency
protocol, failures cannot leave the namespace in an inconsistent
state. Likewise, 𝜆FS’ Coordination service ensures that crashes are
detected, enabling the easy removal of locks held by crashed Na-
meNodes.

4 IMPLEMENTATION

Implementing 𝜆FS. 𝜆FS is implemented as a fork of HopsFS 3.2.0.3.
Both 𝜆FS [11] and the benchmarking application [12] are open-
sourced. 𝜆FS can be used as a drop-in replacement for HopsFS
since 𝜆FS’ client API is a superset of the HopsFS API. 𝜆FS uses a
deployment of Apache OpenWhisk [3] as its FaaS platform. 𝜆FS
also supports other FaaS platforms including Nuclio [19]. Notably,
adding support for Nuclio required just 108 additional lines of Java
code in 𝜆FS. Additionally, 𝜆FS uses MySQL Cluster NDB 8.0.26 as its
persistent metadata store and ZooKeeper [40] as its “Coordinator”
service.
Porting 𝜆FS to IndexFS. We have also ported 𝜆FS to IndexFS,
a scalable middleware MDS [54] for DFSes such as BeeGFS [6].
Thanks to 𝜆FS’ modular design, the integration of 𝜆FS and IndexFS
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Figure 7: Porting 𝜆FS to IndexFS.

is conceptually similar to that of 𝜆FS and HopsFS, as shown in
Figure 7. We briefly discuss a few key differences below.

First, vanilla IndexFS relies on LevelDB to pack metadata into
SSTables [13]. We decouple in-memory metadata handling from
backend LevelDB by packaging the logic into serverless functions,
and only using LevelDB as the persistent metadata store. Second,
IndexFS leverages a sophisticated metadata partitioning algorithm
adapted from GIGA+ [53]. After discussions with the IndexFS au-
thors, we developed an alternative partitioning scheme that is easier
to integrate with 𝜆FS. This scheme uses hashing to partition direc-
tories across LevelDB SSTables by directory names. Third, to make
C++ based IndexFS compatible with 𝜆FS’ Java-based serverless
functions, we addressed multiple engineering challenges involving
cross-language data types and library compatibility (e.g., Java’s Kry-
oNet [8] is not available for C++). Overall, we find that porting 𝜆FS
is managable as 𝜆FS is designed to be modular and generalizable.
For simplicity, we refer to our 𝜆FS-ported IndexFS as 𝜆IndexFS.

Porting 𝜆FS to Commercial FaaS Platforms. It is straightfor-
ward to port 𝜆FS to commercial FaaS platforms such as AWSLambda.
𝜆FS’ core techniques are not dependent on any particular FaaS plat-
form. This includes 𝜆FS’ RPC mechanism, as other frameworks
have successfully used TCP-RPC-like mechanisms on commercial
FaaS platforms in the past [37]. 𝜆FS could in theory be deployed on
any FaaS platforms that support custom-container-based function
deployment [1, 9, 17]. One challenge is how to minimize the perfor-
mance impact of warm function reclamation [62], which we leave
as our future work.

Summary of Implementation Efforts. We have implemented
𝜆FS and the software used for its evaluation in roughly 63,624 lines
of Java/C++ code (see Table 1), completed over the course of more
than two person-years. The benchmarking software constitutes
18,160 LoC, while 𝜆FS and 𝜆IndexFS together are composed of
approximately 41,157 LoC.

5 EVALUATION

5.1 Experimental Setup & Methodology

In order to elucidate the effectiveness of 𝜆FS’ various techniques
and optimizations, we evaluated 𝜆FS against a number of other file
systems. Specifically, we compared 𝜆FS against three state-of-the-
art distributed file systems: HopsFS, IndexFS [54], and CephFS [63].
We also performed experiments that evaluated 𝜆FS’ performance
against that of a modified HopsFS, denoted “HopsFS+Cache”, whose
NameNodes had been augmented with an in-memory metadata
cache similar to that of 𝜆FS. HopsFS+Cache serves as a serverful,
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cache-based DFS baseline. Finally, we compared 𝜆FS with Infini-
Cache [61], an in-memory object cache implemented atop FaaS, in
order to better understand the efficacy of 𝜆FS’ FaaS caching layer.
InfiniCache uses a static, fixed-size deployment of cloud functions
to serve I/O operations via short TCP connections that require
invoking functions for every operation. InfiniCache thus serves
as an approximation of 𝜆FS with no auto-scaling or long-lived
TCP-RPC request mechanism. All experiments were performed
on Amazon Web Services (AWS), and results were verified to be
consistent with results obtained on Google Cloud Platform (GCP).

The experiments used deployments of the OpenWhisk serverless
platform and MySQL Cluster NDB. Like 𝜆FS, HopsFS uses MySQL
Cluster NDB as its persistent metadata store. OpenWhisk was de-
ployed on AWS Elastic Kubernetes Service (EKS). All other VMs
were deployed on AWS EC2. All AWS VMs used the r5.4xlarge

instance type (16 vCPU and 128GB RAM). MySQL Cluster NDB
8.0.26 was deployed on GCE and EC2 with a single master node and
four data nodes. We configured each NDB storage node according
to the sample configuration provided by HopsFS. Unless otherwise
specified, each 𝜆FS NameNode was configured with 6.25 vCPU and
30GB RAM. HopsFS’ NameNodes were configured with 16 vCPU,
64GB RAM, and 200 RPC handlers. For clarity, we defer the descrip-
tion of the setup for the portability experiment with IndexFS to §5.7
as IndexFS’ architecture is different from HopsFS.

To ensure a fair comparison between 𝜆FS and HopsFS, we allo-
cated an equal amount of vCPUs and RAM to each framework’s
NameNode cluster (unless otherwise specified). However, impos-
ing a fixed, total vCPU limitation on 𝜆FS’ NameNodes implicitly
restricted the maximum performance of 𝜆FS compared to what 𝜆FS
could have achieved with the nearly unbounded resources typically
provided by FaaS platforms. Because of this self-imposed bound
on vCPUs, unrestricted 𝜆FS scale-outs would have over-used re-
sources, leading to thrashing and severe performance degradation.
To prevent this, 𝜆FS’ scaling behavior was “toned down”, and con-
sequently 𝜆FS never actively provisioned more than 92.77% of the
available vCPUs during these experiments. (We describe 𝜆FS’ anti-
thrashing technique in Appendix C.) The resource scaling tests
presented in §5.3.2 illustrate how 𝜆FS’ performance improves as
more resources are allocated to 𝜆FS, thereby providing insight into
how 𝜆FS would perform with nearly unbounded resources.

Our evaluation aims to answer the following questions:

• How does 𝜆FS perform under industrial workloads (§5.2)?
• To what extent does 𝜆FS’ elasticity improve performance, scala-
bility, resource- efficiency, and cost-efficiency (§5.2.4, §5.4, §5.2.5,
§5.3.3)?

• How does 𝜆FS scale for individual DFS operations compared to
other large-scale DFSes (§5.3)?

• Is 𝜆FS resilient to serverless NameNode failures (§5.6)?
• Can 𝜆FS benefit other DFSes besides HopsFS (§5.7)?

5.2 Industrial Workload

In this section, we present and discuss the results of executing
a real-world, industrial workload on both 𝜆FS and HopsFS. The
workload is based on the one used in HopsFS’ evaluation, which
was generated using statistics from traces of Spotify’s 1600-node

Table 2: Relative frequency of the file system operations used

in the Spotify workload experiment.

Operation Percentage Operation Percentage

create file 2.7% read file 69.22%
mkdirs 0.02% stat file/dir 17%
delete file/dir 0.75% ls file/dir 9.01%
mv file/dir 1.3% Total Read Ops 95.23%

HDFS cluster. The frequencies of the file system operations are
shown in Table 2.

5.2.1 Experimental Setup. We implemented a DFS benchmark that
can generate bursty file system loads bymodifying the hammer-bench
utility used to conduct HopsFS’ evaluation [26, 51]. Our benchmark
randomly varies system throughput over the course of the work-
load’s execution in order to accurately simulate a real-world DFS
workload [55]. Specifically, the workload is executed for 5 minutes.
Every 15 seconds, the benchmark generates a random throughput
value Δ from a Pareto distribution with a shape parameter 𝛼 = 2.
(Please refer to [55] for a discussion on why the Pareto distribution
is useful in this scenario.) Each client VM will attempt to sustain
𝛿 = Δ

𝑛 ops/sec, where𝑛 is the total number of client VMs. If less than
𝛿 operations are completed in a given second, then the remaining
operations roll over to the next second.

In order to demonstrate 𝜆FS’ ability to elastically scale in re-
sponse to bursts of metadata requests, the benchmark randomly
generates throughput spikes up to 7× greater than the base through-
put. We ran 2 different versions of the workload: one in which the
Pareto distribution’s scale parameter 𝑥𝑡 = 25, 000 and the other in
which 𝑥𝑡 = 50, 000. The value of 𝑥𝑡 determines the workload’s base
throughput. Both workloads were executed by 1,024 clients across
8 VMs. We allocated 512 vCPUs to HopsFS in order to maximize
its performance during these tests. While allocating less vCPUs
would’ve been cheaper, HopsFS’ performance would’ve suffered,
as shown by the resource scaling tests. Each 𝜆FS NameNode was
allocated 5 vCPUs, and in the 25,000 ops/sec workload, 𝜆FS’ NameN-
ode cluster was collectively allocated just 50% of the total vCPU
allocated to HopsFS’ NameNode cluster in order to better illustrate
𝜆FS’ resource and cost efficiency.

5.2.2 Throughput & Latency. Figure 8(a) shows a throughput com-
parison between 𝜆FS, HopsFS, and HopsFS+Cache during an execu-
tion of the Spotify workload with a base throughput of 25,000 op-
s/sec. Note that each of 𝜆FS’ NameNodes was configured with 6GB
of RAM for the 25,000 ops/sec workload. 𝜆FS achieved an average
throughput of 45,690.34 ops/sec and an average latency of 1.02 ms
during the execution of this workload. HopsFS achieved an average
throughput of 38,134.35 ops/sec and an average latency of 10.58 ms.
HopsFS+Cache achieved an average throughput of 45,945.1032 op-
s/sec and an average latency of 3.348 ms. Summarily, 𝜆FS achieved
90.40% (10.41×) lower latency and 16.53% (1.19×) higher throughput
on average than HopsFS, while using 39.45% less resources. Com-
pared to HopsFS+Cache, 𝜆FS achieved equivalent average through-
put and 69.53% (3.28×) lower latency on average. 𝜆FS was success-
fully completed the entire workload, including the entire 15-second
163,996 ops/sec burst generated at time 𝑡 = 200. Meanwhile, HopsFS’
clients struggled to sustain loads above 38,000 ops/sec. When the
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Figure 8: Throughput and performance-per-cost comparison between the various systems during the Spotify workload. The

number of active 𝜆FS NameNodes (“NNs”) is shown on the secondary 𝑦-axis in both Figure 8(a) and 8(b).
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Figure 9: Cumulative cost of the 25k ops/sec Spotify work-

load. HopsFS’ cost was $2.50. 𝜆FS’ cost was $0.35 using AWS

Lambda’s prices, which are $0.0000166667 per GB-second,

charged at 1ms granularity, and $0.20 per 1M requests [5].

Under the “simplified” costmodel, 𝜆FSNameNodes incur cost

while they’re provisioned, similar to VMs, which overcharges

compared to AWS Lambda’s pay-per-use pricing model.

burst occurred, HopsFS had already “fallen behind” and was strug-
gling to execute operations generated nearly a minute prior. So, 𝜆FS’
peak sustained, throughput was 4.3× higher than that of HopsFS.

Figure 8(b) shows a throughput comparison during an execution
of the Spotify workload with a base throughput of 50,000 ops/sec.
For this test, 𝜆FS’ FaaS platform was allocated 512 vCPU but used
at most 180/512 (35.15%) of the available vCPUs. 𝜆FS achieved an
average throughput of 90,875.60 ops/sec and an average latency of
4.31 ms during this workload. HopsFS achieved an average through-
put of 44,956.28 ops/sec and an average latency of 22.40 ms.

HopsFS was unable to achieve the base throughput of 50,000 op-
s/sec, so it spent the duration of the workload attempting to “catch
up”. Meanwhile, 𝜆FS sustained approximately 250,000 ops/sec dur-
ing the burst at around 𝑡 = 200. To this end, 𝜆FS’ peak, sustained
throughput was 456.09% (5.56×) higher than that of HopsFS.

𝜆FS’ average throughputwas 102.14% (2.02×) greater thanHopsFS’;
similarly, 𝜆FS’ average latencywas 80.76% (5.19×) lower thanHopsFS’.
For “read” operations, 𝜆FS achieved an average latency anywhere
from 6.93×—20.13× lower than that of HopsFS (see Figure 10). How-
ever, 𝜆FS was unable to complete “write” operations as quickly as
HopsFS because of the added overhead required by 𝜆FS’ coherence
protocol. Summarily, HopsFS achieved 1.5×—5.55× shorter “write”
latencies compared to 𝜆FS.

InfiniCache failed to complete either of the two Spotify work-
loads. The FaaS platform became overwhelmed by the volume of

HTTP requests: the high-latency HTTP requests and static, fixed-
size deployment were insufficient for both the base throughput and
bursts of work during the workloads.

Because FaaS assumes a near-unbounded amount of resources,
fixing the amount of vCPU allocated to the platform results in poor
performance and scalability. To perform a fair comparison and high-
light the cost-saving benefits of FaaS, we also compared 𝜆FS against
a “cost-normalized” configuration of HopsFS+Cache, referred to as
“CNHopsFS+Cache”. Specifically, we configured CNHopsFS+Cache
with 72 and 144 vCPU for the 25,000 and 50,000 ops/sec Spotify
workloads, respectively. In doing so, CN HopsFS+Cache incurred
the same monetary cost as 𝜆FS. Considering first the 25,000 ops/sec
workload as shown in Figure 8(a), CN HopsFS+Cache achieved
lower throughput than 𝜆FS, failing to sustain the burst of requests
around the 200th second of the workload. This phenomenon occurs
again during the 50,000 ops/sec workload as shown in Figure 8(b).

5.2.3 In-MemoryMetadata Cache. Tomeasure the performance im-
pact of 𝜆FS’ metadata caching layer, we executed another instance
of the 𝑥𝑡 = 25, 000 workload in which we decreased the capacity of
the serverless NameNode cache to less than half the working set
size (WSS) of the workload. As shown in Figure 8(a), “reduced-cache
𝜆FS” achieved better performance than HopsFS, sustaining between
70,000—80,000 ops/sec during the largest burst. Despite failing to
sustain 163,996 ops/sec, “reduced-cache 𝜆FS” quickly caught up and
completed the remainder of the workload.

5.2.4 Elastic Auto-Scaling. The results of the Spotify workload
demonstrate 𝜆FS’ ability to handle large bursts of work. Figures 8(a)
and 8(b) show that 𝜆FS provisioned additional NameNodes to satisfy
the influx of requests as soon as the workload started. 𝜆FS quickly
scaled-out again near the 200-second mark, which is when the 7×
request burst occurred, demonstrating the effectiveness of 𝜆FS’
auto-scaling policy. With unbounded resources, 𝜆FS could rapidly
scale-out to much higher load spikes. This is supported by the trend
shown in the resource scaling experiments (Figure 12).

5.2.5 Monetary Cost. Figure 9 shows the cumulative cost for the
25,000 ops/sec Spotifyworkload for 𝜆FS, HopsFS, andHopsFS+Cache.
For 𝜆FS, the cost was computed as follows: for every 1 ms interval
of the workload, we billed each NameNode actively serving an
HTTP or TCP request using AWS Lambda’s prices (as described in
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Figure 10: Latency CDFs of 𝜆FS (“𝜆”), HopsFS (“H”), and HopsFS+Cache (“H+C”) for both versions of the Spotify workload.
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Figure 9). If no requests were actively being served by a particular
NameNode, then that NameNode incurred no cost. For HopsFS and
HopsFS+Cache, we billed the cost of the entire 512-vCPU cluster
for each 1 ms interval of the workload. By the end of the work-
load, the cumulative cost of HopsFS and HopsFS+Cache was $2.50
while 𝜆FS’ cumulative cost was just $0.35. By taking advantage of
FaaS’ pay-per-use pricing model and our agile auto-scaling policy,
𝜆FS reduced the cost of executing the workload by 85.99% (7.14×)
compared to HopsFS and HopsFS+Cache while achieving better
performance with fewer resources.

We also computed the cost of 𝜆FS using a simplified pricing
model, which is shown in Figure 9 as “𝜆FS (Simplified).” Under this
model, active NameNode instances incurred cost as long as they
are provisioned [22], which doubled the cost of 𝜆FS compared to
the pay-per-use FaaS pricing model. This illustrates how 𝜆FS takes
advantage of FaaS’ pay-per-use pricing model to greatly reduce
tenant-side costs.

While the use of FaaS can yield improved elasticity, scalabil-
ity, and performance, other primary benefits of FaaS are reduced
tenant-side cost and increased cost-effectiveness. In particular, 𝜆FS’
cost-effectiveness arises from its ability to achieve superior or equiv-
alent performance while using a smaller amount of resources. By
saturating a large number of relatively small, individual serverless
NameNodes, 𝜆FS exhibits high resource utilization and resource
efficiency with respect to the resources provisioned to it by the FaaS
provider. Likewise, by leveraging the pay-per-use property of FaaS,
𝜆FS is ultimately able to reduce workload costs while delivering
equivalent or better performance.

To quantify this notion of cost-efficiency, we define a new met-
ric performance-per-cost, given as one of instantaneous throughput

instantaneous cost or
average throughput

total cost . The units are 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠/𝑠𝑒𝑐𝑜𝑛𝑑
$

(
=

𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

𝑠𝑒𝑐𝑜𝑛𝑑×$
)
,

or operations-per-second-per-dollar. This metric provides a mea-
surement of cost-efficiency — a higher value indicates that the
associated framework is able to achieve a higher performance-cost
ratio, which is desirable. Increasing the value of this metric can
be done using some combination of increasing throughput and
decreasing cost.

Figure 8(c) shows the performance-per-cost for each second of
the real-world Spotify workload for 𝜆FS and HopsFS+Cache. The
cost for HopsFS+Cache is computed as the cost of running the 32
NameNode VMs for one second, whereas the cost for 𝜆FS is calcu-
lated using the pay-per-use pricing model of FaaS. Specifically, the
resources allocated to an active NameNode are only billed if that
NameNode served a request within that second. 𝜆FS achieved signif-
icantly higher performance-per-cost compared to HopsFS+Cache.
This is because 𝜆FS experienced equal or greater throughput com-
pared to HopsFS+Cache for the entirety of the workload while
using significantly fewer resources (at-most 165 or 180 vCPU for
𝜆FS, depending on the workload, compared to the 512 vCPU used
by HopsFS+Cache during both workloads).

5.3 Scalability

Next, we evaluate the scalability of 𝜆FS, HopsFS, HopsFS+Cache,
InfiniCache, and CephFS using two micro-benchmarks covering
key DFS operations including read, stat file, ls, mkdir, and create

file. All operations target random files and directories across an
existing directory tree. The first microbenchmark tests 𝜆FS’ client-
driven scaling: the ability of 𝜆FS to automatically scale-out as the
number of clients increases, given a fixed resource cap. The second
microbenchmark, which we call resource scaling, tests horizontal
scalability (i.e., performance scaling with more deployments) and
intra-deployment, vertical auto-scaling. The results of these tests
illustrate 𝜆FS’ ability to transparently adapt to increases in both
request load and available resources in order to maximize perfor-
mance. We allocated a maximum of 512 vCPUs to all systems during
these tests, and for 𝜆FSwe provisioned at-most 76 NameNodes, each
with 6.25 vCPUs, meaning 𝜆FS used at-most 76 × 6.25 = 475/512
(92.77%) of its allocated vCPUs during these tests.

5.3.1 Client-Driven Scaling. In this test, the amount of vCPUs allo-
cated to both systems was fixed at 512 vCPUs to maximize perfor-
mance, and each client executed 3,072 operations. The total number
of clients configured for each framework was varied between 8
and 1,024 in order to provide a wide range of scales to evaluate the
frameworks. The results of this experiment are shown in Figure 11.
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Figure 12: Resource scaling comparison between the various systems. The amount of vCPUs allocated to the systems ranged

from 16 to 512. For each problem size, all systems used the same number of clients, each of which performed 3,072 operations.

𝜆FS ultimately achieved higher throughput for all read opera-
tions (i.e., read, stat, and ls) for all problem sizes: 𝜆FS averaged
28.91×, 8.22×, and 20.53× higher throughput than HopsFS for read,
stat, and ls, respectively. CephFS outperforms the other file sys-
tems for read, ls, and stat for the first 4-5 problem sizes but fails
to scale well beyond this point, only outperforming HopsFS and
InfiniCache. 𝜆FS outperforms HopsFS+Cache for read and ls and
achieves comparable performance for stat.

There are several reasons for the throughput differences. First,
𝜆FS’ elastic caching layer efficiently serves metadata to clients
from the memory of serverless functions rather than the persistent
metadata store that is 2 network hops away. This also decreases the
likelihood of the persistentmetadata store becoming a bottleneck, as
it is with HopsFS. Second, 𝜆FS elastically scales-out its NameNodes
in accordancewith its agile auto-scaling policy in order to satisfy the
increasing request load, whereas HopsFS is limited by its fixed-scale
deployment. Under 𝜆FS, there were 20 active NameNode instances
for the 8 client case during the read file test. 𝜆FS then scaled-
out to 74 NameNodes for the 1,024 client case, illustrating the
efficacy of 𝜆FS’ agile auto-scaling policy. It is also worth noting
that 𝜆FS used at-most 462.5, 425, and 475 of the 512 available vCPU
during the read, ls, and stat client-driven scaling tests, respectively.
This illustrates 𝜆FS’ resource efficiency, as 𝜆FS achieves strong
performance with a fraction of the available resources.

For create file and mkdir, the performance disparity between
𝜆FS and HopsFS was not as significant as it was with read-based
operations. The magnitude of the throughput achieved by both sys-
tems is also considerably lower than that of read operations. Specif-
ically, 𝜆FS achieved 49.09% (1.49×) higher throughput than HopsFS
for create file. For mkdir, the two systems achieved roughly the
same throughput. The reason both systems achieved significantly
lower throughput for write operations is because the persistent
metadata store quickly becomes a bottleneck. InfiniCache ex-
perienced poor performance for similar reasons as with the read

operations. HopsFS+Cache also experienced low throughput, as the
consistent hashing scheme used by clients can be bottle-necked by
hot directories. CephFS achieved higher throughput than the other
frameworks. One possible explanation for this is because CephFS’
“capabilities” system [7] enables more efficient write operations
compared to the permission system used by HopsFS and 𝜆FS.

5.3.2 Resource Scaling. For the resource scaling experiments, the
total amount of vCPUs allocated to each framework was varied
between 16 and 512. As such, this experiment helps to elucidate
how 𝜆FS would scale both horizontally and vertically with nearly
unbounded (or at least additional) resources. Note that for each
vCPU value, all systems used the same number of clients, each of
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Figure 13: Performance-per-cost comparison between 𝜆FS

and HopsFS+Cache for read-based file system operations.

which performed 3,072 operations. The largest throughput obtained
is reported.

Figure 12 shows the results. For read operations (read, stat,
and ls), 𝜆FS exhibited significantly better scaling than HopsFS, In-
finiCache, and CephFS, with higher throughput as the resources
scaled. 𝜆FS achieved equivalent or superior throughput compared
to HopsFS+Cache for all operations. For the largest problem size,
𝜆FS achieved 30.67×, 9.30×, and 20.69× higher throughput than
HopsFS for read, stat, and ls, respectively. Likewise, 𝜆FS’ through-
put increased by 34.60×, 34.80×, and 72.08× This occurred because
allocating more resources to 𝜆FS enables a higher degree of auto-
scaling. For smaller vCPU allocations, 𝜆FS’ auto-scaling is limited
and it cannot dynamically adapt to the workload, resulting in worse
performance. The performance trend is less dramatic for write op-
erations since the persistent metadata store is the bottleneck.

𝜆FS’ superior scaling behavior can once again be attributed to
its metadata cache and its agile auto-scaling policy. As the total
amount of vCPUs increases, 𝜆FS provisions an increasingly large
pool of concurrently-running serverless NameNodes. By using a
large pool of relatively “small” serverless NameNodes, 𝜆FS achieves
high resource utilization, as individual NameNodes utilize a major-
ity of their allocated resources. This in turn enables 𝜆FS to achieve
high performance with relatively modest resource allocations.

Though each HopsFS NameNode was configured with 200 RPC
handler threads, HopsFS was not able to fully utilize the allocated
resources, because its stateless NameNodes essentially serve as
proxies, forwarding requests/responses between clients and the
metadata store. This also explains why HopsFS’ NameNodes had a
consistently low CPU utilization at around 70%. Adding more Na-
meNode servers may help, but again, it is difficult to pre-determine
how many NameNodes to deploy for optimal performance and
resource utilization.

5.3.3 Cost-Efficiency. Figure 13 shows the average performance-
per-cost for 𝜆FS and HopsFS+Cache for the client-driven scaling
tests. HopsFS+Cache’s cost was computed as before: the cost of the
32 NameNode VMs running for the duration of the test. The cost
of 𝜆FS was calculated using the simplified pricing model, which
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Figure 14: Performance impact of auto-scaling for 𝜆FS.

may have inflated the reported cost. However, since all active Na-
meNodes were likely busy serving the high request volume for the
entire experiment, the reported cost is likely close to the true cost.

𝜆FS achieved higher performance-per-cost values for both read

file and ls for all problem sizes. For stat file, 𝜆FS achieved
higher performance-per-cost for 8 problem sizes and roughly equiv-
alent performance-per-cost for the others. 𝜆FS achieved higher
performance-per-cost for read file because 𝜆FS achieved equiv-
alent or higher throughput than HopsFS+Cache using a fraction
of the resources; while HopsFS+Cache used 512 vCPU, 𝜆FS used
at-most 475 vCPU by the largest problem size. This phenomenon
occurred to an even greater degree for ls for which 𝜆FS achieved
32.74% higher throughput with fewer resources. For stat file, 𝜆FS
achieved equal or better cost-effectiveness compared toHopsFS+Cache,
as the two frameworks achieved similar performance, but 𝜆FS used
fewer resources. Note that 𝜆FS’ cost-efficiency decreased for the
final few problem sizes. This occurred because 𝜆FS saturated an
increasingly large percentage of its available 512 vCPU resources.
This trend can be avoided by increasing the resources allocated to
the FaaS platform, enabling 𝜆FS to scale-out further.

5.4 Auto-Scaling

Figure 14 shows the impact on system throughput of enabling or
disabling horizontal, intra-deployment auto-scaling for 𝜆FS across
various file system operations. With auto-scaling “enabled”, indi-
vidual deployments were free to scale-out as they did in the other
experiments. With limited auto-scaling, deployments could scale-
out to at most 2-3 active instances. With auto-scaling disabled, each
deployment was limited to a single active NameNode instance.

𝜆FS achieved 2.85−3.17× and 3.53−3.80× higher throughput for
read and stat file operations with auto-scaling enabled compared
to limited and disabled auto-scaling, respectively. This trend is
even more pronounced for ls, with 𝜆FS achieving 3.07× and 14.37×
higher throughput with auto-scaling enabled compared to limited
and disabled auto-scaling, respectively. The difference is less severe
for write operations, as the bottleneck for writes is the persistent
metadata store. These results further illustrate the importance of
the FaaS-enabled agile auto-scaling policy within 𝜆FS’ design as
well as its significant impact on 𝜆FS’ performance.

5.5 Subtree Operations

Table 3: Average end-to-end la-

tency (ms) of subtree mv opera-

tions for varying dir sizes.

Directory Size HopsFS 𝜆FS

262k (218) 7,511.60 6,455.80
524k (219) 14,184.80 12,509.20
1.04M (220) 25,137.00 25,220.80

Table 3 shows the end-
to-end latency of the
mv operation performed
on directories whose
sizes varied between
218 and 220 files. On
average, 𝜆FS completed
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Figure 15: Fault tolerance test under the Spotify workload.
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Figure 16: Comparison between 𝜆IndexFS and IndexFS on

BeeGFS. Agg denotes the writes-followed-by-reads workload.

the mv operation in
16.35% and 13.39% less
time than HopsFS for 218-file and 219-file directories, respectively.
End-to-end latency was roughly equal between HopsFS and 𝜆FS
for 220-file directories. For large subtree operations, the persistent
metadata store becomes the bottleneck, as every write operation
must update persistent state in the database.

5.6 Fault Tolerance

To evaluate 𝜆FS’ fault tolerancemechanisms, we executed the 25,000
ops/sec Spotify workload and manually terminated an active Na-
meNode once every 30 seconds, targeting each deployment in a
round-robin fashion. 𝜆FS began the workload with 36 active Na-
meNodes (225/512 vCPU).

The results of this test are shown in Figure 15. Despite the fail-
ures, 𝜆FS completed the workload as generated, even during the
163,996 ops/sec burst. The darker dashed line shows the number
of active 𝜆FS NameNodes. 𝜆FS’ throughput decreased slightly fol-
lowing a termination event, as some clients were blocked, waiting
for responses to requests that had been sent to the terminated
NameNode. Once these requests timed-out, they were automati-
cally resubmitted by clients. System throughput then rose briefly
as clients temporarily increased their request rate to “make up” for
the drop in throughput that followed the termination event.

5.7 𝜆IndexFS vs. IndexFS

To further demonstrate 𝜆FS’ portability and performance, we com-
pare 𝜆IndexFS with IndexFS. For this test, we used a 7-VM BeeGFS
cluster with 1 management sever, 1 metadata server, 1 storage
server, and 4 BeeGFS client VMs. The cluster had 112 vCPUs and
448GB RAM. IndexFS was deployed on the 4 BeeGFS client VMs,
which adheres to IndexFS’ co-location principle [54]. 𝜆IndexFS
ran 1 LevelDB instance on each BeeGFS client VM and used an
OpenWhisk cluster with 64 vCPUs and 256GB RAM to host the
serverless functions.
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We evaluated 𝜆IndexFS using IndexFS’ built-in benchmarking
tool tree-test. We performed the following two client-driven scal-
ing experiments.For the variable-sized workload, each client ex-
ecuted 10,000 mknod write operations followed by 10,000 random
getattr read operations. For the fixed-sized workload, the total
number of operations was fixed at 1 million writes followed by 1
million random reads. The number of clients varied from 2 to 256.

For read operations, 𝜆IndexFS’ throughput is consistently higher
than that of IndexFS, since most of the metadata is cached in server-
less functions (Figure 16). Notably, for both workloads, 𝜆IndexFS
significantly outperforms IndexFS in terms of write throughput,
largely benefiting from 𝜆IndexFS’ auto-scaling. 𝜆IndexFS’ write
throughput decreases when serving more than 26 clients due to
OpenWhisk’s limited resources (64 vCPUs). Despite the limited
resources, 𝜆IndexFS still out-performs IndexFS, demonstrating the
efficacy and portability of 𝜆FS.

6 RELATED WORK

InfiniFS [49] implements a technique called speculative path reso-
lution and a client-side directory cache to optimize path resolution.
Instead, 𝜆FS opts to use HopsFS’ existing “INode Hint Cache” to op-
timize path resolution. 𝜆FS uses cloud-function-side caching rather
than client-side caching.

IndexFS [54] is a layered, scaled-out MDS middleware built atop
an existing DFS (e.g., PVFS [30] and BeeGFS [6]). IndexFS supports
client-side, stateless caching, similar to the “INode Hint Cache”
used in HopsFS and 𝜆FS. 𝜆FS goes beyond IndexFS by offering MDS
elasticity with a consistent distributed metadata cache built atop
serverless functions.

LocoFS [48] co-locates the metadata of a single directory on the
same server, similar to how 𝜆FS’ partitioning mechanism will co-
locate metadata from single directories on the same deployments.
This scheme can lead to single-node bottlenecks, as one metadata
server can end up serving all requests for a hot directory. 𝜆FS
avoids this bottleneck by leveraging FaaS’ auto-scaling to scale-out
overloaded deployments.

Lustre [14] hashes on file names. CalvinFS [59] hashes on full
pathnames, while Giraffa [25] uses full file paths as primary keys to
the associated metadata. BetreFS uses the pathname as a file index
into the local file system. Lazy Hybrid [29] combines both directory
subtree management and that hashing-based approach with lazy
metadata relocation and lazily updated dual-entry access control
lists. 𝜆FS also uses hashing but hashes on a file’s parent directory.

InfiniCache [61] exploits thememory of AWSLambda functions
for caching large, read-only objects for low-throughput web apps.
InfiniStore [66] is built atop InfiniCache, incorporating a tiered
storage design that adds serverless memory elasticity and persis-
tence. Faa$T [56] co-locates a key-value memory cache with a FaaS
application to optimize the FaaS application’s I/Os. Pocket [45] and
Jiffy [44] provide elastic, serverful, ephemeral storage for serverless
analytics. The DFS workloads that 𝜆FS targets are dramatically dif-
ferent than the applications mentioned above, therefore requiring
new treatments when designing a serverless MDS system.

7 DISCUSSION AND LESSONS

While designing and implementing 𝜆FS, we learned several inter-
esting lessons that have applicability beyond the scope of serverless

DFSmetadatamanagement. First, creating latency-sensitive applica-
tions atop FaaS requires techniques to mitigate the high invocation
overhead of serverless functions. Relying exclusively upon HTTPin-
vocations does not enable systems to achieve high throughput and
low latency; instead, mechanisms such as 𝜆FS’ hybrid invocation
scheme are necessary for achieving good performance.

Notably, introducing techniques to circumvent the large over-
head of HTTP invocations can reduce the system’s ability to harness
the auto-scaling property of FaaS. Such techniquesmust be designed
with care so as to effectively optimize the trade-off between maxi-
mizing performance and maximizing elasticity and scalability. This
can be considered an instance of the performance-parallelism trade-
off—a trade-off that has been observed in FaaS systems from other
domains [31, 32].

The use of FaaS also introduces a number of relatively compli-
cated error states. Serverless functions can be reclaimed by the
cloud provider at any point. If TCP-RPC connections are dropped
unexpectedly, re-establishing connections is non-trivial due to the
lack of addressibility of serverless functions. Additionally, naively
resubmitting erred tasks via HTTP can result in request storms
that overwhelm the serverless platform, leading to extreme over-
provisioning of resources. This can ultimately cause a significant
drop in performance and can cause errors elsewhere in the system—
for example, the persistent metadata store may experience a tem-
porary performance drop due to a wave of new connections from
newly-provisioned NameNodes. To address this, FaaS-based sys-
tems must develop clever techniques to provide fault tolerance that
avoids the aforementioned problems.

Similarly, FaaS-based systems are intended to support hundreds
or thousands of clients. If thousands of clients concurrently issue
HTTP invocations, then the FaaS platform may scale-out more
rapidly than is desired, quickly increasing parallelism beyond what
is necessary to sustain good performance. This can lead to in-
creased costs and thrashing-like behavior, as the system rapidly
over-corrects to changes in traffic patterns.

8 CONCLUSION

𝜆FS is, to the best of our knowledge, the first cloud-native DFS
metadata service, which uses the memory of serverless functions to
cache and elastically scale a DFS’ metadata workload. 𝜆FS achieves
high-throughput, low-latency, low cost, and high resource efficiency
by synthesizing a series of techniques built around a FaaS-based
metadata cache. We have ported 𝜆FS to both HopsFS and IndexFS.
We hope that this work will provide insight for building new, cloud-
native, performance-sensitive backend services on FaaS. 𝜆FS is
open-sourced and is available at:

https://github.com/ds2-lab/LambdaFS.
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A ARTIFACT APPENDIX

A.1 Abstract

This section provides supplementary material and instructions
aimed at facilitating the reproducibility and further exploration
of 𝜆FS and the experiments used to evaluate 𝜆FS and HopsFS. This
collection encompasses a diverse set of resources, including source
code, datasets, configurations, and tools utilized in the experimental
setup. Additionally, detailed instructions for setting up the environ-
ment and executing experiments are provided primarily within the
referenced GitHub repositories.

A.2 Artifact check-list (meta-information)

• Run-time environment: AWS, Linux.
• Hardware: EC2 virtual machines.
• Metrics: Throughput, latency, monetary cost.
• Output: Numerical statistics.
• Experiments: Microbenchmarks, real-world workload trace execu-
tions.

• How much disk space required (approximately)?: 10s of GB
across multiple virtual machines.

• How much time is needed to prepare workflow (approxi-

mately)?: Under 10 minutes once components are deployed and
running. The installation process should take 45 - 75 minutes at
most – significantly less if there are no errors.

• How much time is needed to complete experiments (approxi-

mately)?: 1-3 hours.
• Publicly available?: Yes.
• Code licenses (if publicly available)?: Apache-2.0 license
• Data licenses (if publicly available)?: None.

A.3 Description

A.3.1 How to access. 𝜆FS and the software used for its evalua-
tion are prepacked in Amazon Machine Images (AMI) on Amazon
Web Services. You can find an up-to-date list of publicly-available
Amazon Machine Images (AMIs) corresponding to the various com-
ponents utilized by 𝜆FS and HopsFS in the 𝜆FS GitHub repository
(specifically within the aws-setup/public_AMIs.md file). Likewise,
the setup scripts and associated documentation are available in the
aws-setup/ directory of the 𝜆FS GitHub repository as well.

A.3.2 Hardware and Software dependencies. Our evaluation work-
loads run on AWS EC2 instances in the us-east-1 region. They also
use an Amazon Elastic Kubernetes Service (EKS) cluster on which
OpenWhisk is deployed. OpenWhisk is the Functions-as-a-Service
(FaaS) platform used by 𝜆FS.

𝜆FS, HopsFS, and the primary benchmarking application are
all written in Java (OpenJDK 64-bit 1.8.0_382) and compiled with
Maven 3.6.3. They were developed in an Ubuntu-based environ-
ment (Ubuntu 22.04.1 LTS). Some components of the benchmarking
software also use Python 3.10.12. These software dependencies are
all pre-installed within the publicly-available AMIs.

A.4 Installation

The installation process primarily consists of provisioning the nec-
essary virtual machines on Amazon Web Services, and then adjust-
ing the configuration of software contained within those virtual
machines as-needed. In order to simplify the process of creating the

necessary VMs, we’ve provided a number of Amazon Machine Im-
ages (AMIs) (whose IDs are listed in the public_AMIs.md file within
the aws-setup/documentation/ directory of the 𝜆FS GitHub reposi-
tory). These are all that is required to setup/deploy 𝜆FS and Vanilla
HopsFS as well as run the experiments from our evaluation.

The aws-setup/ directory of the 𝜆FS GitHub repository contains
the latest and most up-to-date scripts and documentation concern-
ing the installation, deployment, and execution of the framework.
At a high-level, a majority of the required AWS infrastructure
is created automatically using the create_aws_infrastructure.py

Python script available in the 𝜆FS GitHub repository. There are
also several additional scripts used to automatically apply patches
to various components in order to resolve commonly-encountered
deployment problems.

The source code, as well as additional documentation, is available
in the following GitHub repositories:

(1) 𝜆FS source code (primary artifact)
(2) Benchmarking software (for 𝜆FS)
(3) Benchmarking software (for HopsFS)
(4) 𝜆FS’s OpenWhisk Java runtime (for AWS)
(5) OpenWhisk K8s Helm chart with 𝜆FS-specific configuration

Note that we also created a persistent identifier for the main
artifact, which is available here.

A.5 Experiment workflow

The Vanilla HopsFS and 𝜆FS experiments are primarily orchestrated
using our bench-marking software/application. There is a GitHub
repository containing the latest version of this software for Vanilla
HopsFS in the “/home/ubuntu/repos/HopsFS-Benchmarking-Utility”
directory of the Vanilla HopsFS Client AMI. There is a corre-
sponding repository for the 𝜆FS version in the same directory of
the 𝜆FS Client AMI. This benchmarking application provides an
real-time, terminal-based interface for interaction with both 𝜆FS
and HopsFS. The benchmarking application enables users to per-
form individual file-system operations as well as execute full micro-
benchmarks and real-world workloads.

A.6 Evaluation and expected results

The experiments in the benchmarking utility that correspond to
those described in the evaluation of 𝜆FS are as follows:

(1) Client-driven and resource scaling: 17 “Write 𝑛 Files
with 𝑛 Threads”, 20 “Weak Scaling Reads v2”, 21 “File Stat
Benchmark”, “23 List Directories from File”, 24 “Stat File”,
and 25 “Weak Scaling (MKDIR)”.

(2) Real-world workload: 26 “Randomly-generated workload”

For additional details on how to replicate the experiments de-
scribed in this paper, please refer to the asplos23_experiments.md

file in the ./documentation/ directory of the benchmark utility
GitHub repository.

After selecting a benchmark to execute, the application will re-
quest specific values concerning the number of clients, the number
of operations per client, and in some cases, the number of repeated
trials. The values described in Section 5 can be provided at this
point in order to reproduce the experimental results.
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The application will begin the experiment and report results back
to the user through log messages displayed within the terminal.
These messages will include, among other things, metrics from each
trial of the experiment, including average latency and throughput.

The benchmarking application can be deployed in a distributed
mode, thereby enabling multiple VMs to create 𝜆FS (or HopsFS)
clients. In our evaluation, we used up to 8 VMs in total to execute
benchmarks. The creation and management of these VMs is del-
egated to an EC2 auto-scaling group. This auto-scaling group is
provisioned by the provided installation scripts.

A.7 Experiment customization

You can modify the real-world Spotify workload by modifying the
associated config file. The default location (in the provided AMI)
is “/̃repos/HopsFS-Benchmarking-Utility/workload.yaml”. For a de-
scription of all configuration parameters for real-world workloads,
please refer to the documentation in the 𝜆FS benchmark software’s
GitHub repository.

A.8 Methodology

We performed our evaluation on Amazon Web Services (AWS)
and validated it (i.e., replicated the same results) on Google Cloud
Platform (GCP).

B STRAGGLER MITIGATION

Tail latencies can have a detrimental impact on application perfor-
mance and user experience [21, 50, 52]. In order to mitigate the
negative impact of tail latencies, we employ a technique referred
to as straggler mitigation. 𝜆FS clients maintain a moving-window
average latency. When a request’s latency is sufficiently larger than
the average (based on a configurable threshold), the request is can-
celled and resubmitted to another NameNode. This can reduce the
worst-case tail latencies and lead to higher system throughput. We
found that the average TCP RPC latency is between 1-5ms, so we
default this threshold to 10, meaning TCP requests with a latency
≥ 50ms will be resubmitted.

C ANTI-THRASHING MODE

Typically, the FaaS platform is assumed to provide clients with
virtually infinite compute and memory resources [4], and clients
pay only for the resources they use. However, private clouds have
limited cluster resources for hosting a DFS deployment [35, 54]. Ad-
ditionally, to perform a fair comparison between 𝜆FS and HopsFS,
some form of normalization is required, such as assigning equal
vCPU to both frameworks, or provisioning the frameworks such
that they incur the same monetary cost. However, placing a bound
on the amount of resources can result in thrashing behavior in the
FaaS platform. Recall that the serverless functions are organized
into 𝑛 different deployments, and further that the namespace is
partitioned across these deployments by hashing on the parent di-
rectory’s path. Consider a scenario in which the serverless cluster’s
CPU utilization is approaching 100%. If the FaaS platform attempts
to create a new container, it may have to delete an existing con-
tainer to make room. When this pattern of destroying and creating
containers begins to occur frequently, system throughput plum-
mets. This is because cold starts take a non-negligible amount of

Subtree Operation (Delete)

Figure 17: NameNode 𝑁 1
1 partitioning the sub-operations of

a subtree delete operation to two other NameNodes 𝑁 1
2 and

𝑁 1
3 .

time, and constantly deleting and creating containers results in a
large number of cold starts.

To address this, client processes compute a moving average (with
a configurable window size) of the latency of individual file system
operations. When a metadata request observes a latency that is 𝑇×
greater than the moving average latency, where 𝑇 is a configurable
threshold parameter, the client enters anti-thrashing mode. While
in anti-thrashing mode, the client will opt to issue TCP RPCs for
every metadata operation, even when no TCP connection exists to
the NameNode in the deployment that is responsible for caching
the requested metadata. By reusing TCP connections instead of
issuing HTTP invocations, the FaaS platform will not create addi-
tional containers, as clients will issue requests to existing containers
whenever possible. This will ultimately limit scaling and potentially
result in reduced or leveled-off performance, but it avoids the severe
performance degradation that occurs during thrashing. We find
empirically that setting the threshold 𝑇 between 2-3 provides the
best performance.

D SUBTREE COHERENCE PROTOCOL

HopsFS implements subtree operations using an application-level
distributed locking protocol. Part of this protocol involves partition-
ing the overall subtree operation into a number of sub-operations
that are executed in-parallel.

There are three main phases to this protocol. In Phase 1, an
exclusive lock is acquired on the subtree root, and the subtree lock
flag is persisted to the database (NDB). Active subtree operations
are also stored in a table, which is queried before beginning new
subtree operations in order to ensure no two operations overlap (i.e.,
subtree isolation). In Phase 2, the subtree is quiesced by taking and
releasing database write locks on all INodes within the tree, using
a predefined total ordering to avoid deadlocks. This also builds a
tree data structure in-memory for use during the subtree operation.
Finally, in Phase 3, the whole subtree operation is partitioned into
sub-operations that can execute in-parallel. Batches of INodes are
modified in each transaction in order to improve performance.
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𝜆FS augments the standard HopsFS subtree protocol above by
integrating our serverless memory coherence protocol. A naive
integration of the protocol with the standard subtree protocol would
involve executing the coherence protocol once for each individual
sub-operation. This would result in extremely poor performance
for large subtree operations. To address this, 𝜆FS performs the
coherence protocol just once for the entire subtree. This is done
using a special type of invalidation, referred to as a subtree or prefix
invalidation. Rather than specifying the individual metadata to be
invalidated, 𝜆FS specifies the file path prefix such that any cached
INodes prefixed by this value will be invalidated. We use the subtree
root as this prefix. NameNodes then utilize the trie structure of the
metadata cache (§3.3) to efficiently invalidate all INodes contained
within the subtree.

Subtree invalidations are issued to all deployments responsible
for caching at least one piece of metadata in the subtree. These
deployments are calculated by a NameNode during a step in the
Vanilla HopsFS subtree protocol. Specifically, the NameNode walks
through the subtree in a predefined total order, taking out write
locks. This is done to quiesce the subtree. It is during this step that
we also calculate the set of deployments responsible for caching
metadata in the subtree.

As an example, consider a scenario in which the user deletes
a subtree rooted at directory “/foo/”. This directory may contain
thousands of files and sub-directories. If the baseline coherence
protocol (Algorithm 1) were used here, then thousands of individual
invalidations would be required—one for each INode within the
subtree. Instead, the leader NameNode simply issues a single subtree
invalidation with the prefix “/foo/” to all deployments caching

any metadata within the subtree. Once the leader NameNode has
received all the ACKs, 𝜆FS is free to execute the subtree operation
without running any further instances of the coherence protocol.
Elastically Offloading Batched Operations. The sub-operations
created during subtree operations are typically executed in-parallel
on the NameNode orchestrating the subtree operation. This works
well when each NameNode has a large amount of CPU resources
allocated to it. Serverless NameNodes, however, typically have a
small amount of CPU cores allocated. As a result, executing hun-
dreds or thousands of operations can be slow. To address this, we
designed a technique referred to as serverless offloading. That is,
𝜆FS offloads batches of sub-operations to other NameNodes by tak-
ing advantage of FaaS elasticity in order to increase parallelism
and scalability. The overhead of the coherence protocol is therefore
minimized, thanks to batching and serverless offloading.

The batch size is configurable. We found that larger batch sizes
tend to perform better, as there is a trade-off between increasing
parallelism and the network overhead of offloading the operations.
The batch size parameter defaults to 512. Figure 17 illustrates an ex-
ample of this procedure. In Figure 17, we refer to the 𝑖𝑡ℎ NameNode
in the 𝑗𝑡ℎ deployment as 𝑁 𝑗

𝑖
. We say that a NameNode 𝑁 belongs

to deployment 𝐷𝑖 (the 𝑖𝑡ℎ deployment) using 𝑁 ∈ 𝐷𝑖 .
In this example, the client sends a “rm -rf /foo/bar” operation

to NameNode 𝑁 1
1 , which caches all of the files and sub-directories

rooted under /foo/bar; 𝑁 1
1 offloads level 2 and level 3 of the subtree

to a different set of helper NameNodes, 𝑁 1
2 and 𝑁 1

3 , from deploy-
ment 2 and 3. This does not create a consistency problem as the
helper NameNodes simply help 𝑁 1

1 process part of 𝑁 1
1 ’s load to

speedup the subtree processing.
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