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Abstract
This paper proposes a sensor data anonymization model that is
trained on decentralized data and strikes a desirable trade-off be-
tween data utility and privacy, even in heterogeneous settings
where the sensor data have different underlying distributions. Our
anonymization model, dubbed Blinder, is based on a variational
autoencoder and one or multiple discriminator networks trained in
an adversarial fashion. We use the model-agnostic meta-learning
framework to adapt the anonymization model trained via federated
learning to each user’s data distribution. We evaluate Blinder under
different settings and show that it provides end-to-end privacy pro-
tection on two IMU datasets at the cost of increasing privacy loss
by up to 4.00% and decreasing data utility by up to 4.24%, compared
to the state-of-the-art anonymization model trained on centralized
data. We also showcase Blinder’s ability to anonymize the radio
frequency sensing modality. Our experiments confirm that Blinder
can obscure multiple private attributes at once, and has sufficiently
low power consumption and computational overhead for it to be
deployed on edge devices and smartphones to perform real-time
anonymization of sensor data.

CCS Concepts
•Computer systems organization→ Sensor networks; • Security
and privacy;

Keywords
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1 Introduction
Networked, embedded sensors are prevalent in today’s urban in-
frastructure and mobile devices. The vast amount of data emitted
by them and the increasing ability to train machine learning models
on resource-constrained devices have paved the way for numer-
ous applications. For example, timeseries generated by the inertial
measurement unit (IMU) in a smartphone or wearable can be used
to train machine learning models to detect an individual’s activ-
ity, health, and vital signs in near real-time [18, 29, 77]. While
mobile and edge devices that integrate these sensors bring con-
venience to our lives, they also put our privacy at risk as sensor
readings can be exposed to an untrusted party with malicious in-
tent [7, 34, 46, 59, 64]. This adversary can infer an individual’s
private attribute, such as gender, race, body size and fitness, with-
out their consent, by training a model on data that was originally
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Figure 1: Illustration of Blinder’s training on decentralized
data and its application to anonymize each user’s private
attribute(s).

gathered for a different purpose, e.g., tracking changes in their
public attribute, such as activity.

Several methods have been developed to date to support privacy-
preserving inferences about public attributes of an individual, while
mitigating attribute inference attacks that target their private at-
tributes. They can be broadly classified into data obfuscation and
anonymization [35, 50, 59], differential privacy [56, 58], secure
multi-party computation (SMC) [55, 70], and homomorphic encryp-
tion [20, 65] based methods. Data obfuscation methods remove or
distort patterns in the sensor data that contain information about
private attributes. Unlike differential privacy, which is more appli-
cable to a large data repository, they can be applied to streaming
data from one or multiple sensors. Moreover, they have less compu-
tational overhead than SMC and homomorphic encryption, making
them a natural fit for mobile and edge devices, which typically have
limited compute power and run on a battery.

Recent advances in deep generative models have made possi-
ble the development of sophisticated anonymizationmodels that are
more suitable for embedded sensor systems. For instance, Anonymiza-
tion AutoEncoder [59], Olympus [66], and ObscureNet [35] use
autoencoders and adversarial training to learn a representation of
sensor data that can be used to artificially generate anonymized sen-
sor data. Since public and private attributes are usually entangled
in the latent space (e.g., slow movement can indicate both activity
and age group), modifying the learned latent representation to ob-
scure an individual’s private attribute often lowers its utility for the
desired inference task, resulting in a trade-off between privacy and
data utility for each individual. Training an anonymization model
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that yields the best privacy-utility trade-off is a difficult task, espe-
cially for a diverse set of users. On the one hand, an anonymization
model trained on a small number of samples pertaining to a single
user may not generalize well to new samples due to overfitting.
Moreover, public or private attribute classes are more likely to have
an unequal representation in the training dataset when it includes
samples from a single user only (e.g., an individual who bikes reg-
ularly may run only occasionally). This diminishes the ability of
the anonymization model to generalize to new samples. On the
other hand, training an anonymization model on a large dataset to
tackle non-i.i.d. data and attribute imbalance issues would require
many users to send their raw sensor data along with their attributes
to a central server. This server might be a semi-honest or honest-
but-curious (HBC) adversary [32], which performs computation
correctly but “on the side” uses the obtained data to their advantage
(e.g., to monetize the users’ private attribute1). Existing anonymiza-
tion models either do not generalize well to a large heterogeneous
population or are trained on large centralized data failing to protect
the privacy of users who contributed their sensor data. This calls
for a data anonymization technique that protects the privacy of
users, both during the model training phase and after it is deployed
to anonymize sensor data.

Federated learning allows a set of users to cooperatively train
a model, in this case a powerful data anonymization model, with-
out exchanging their local data and private attributes. By updat-
ing parameters of the local model on the respective device, it en-
sures that the user’s privacy is protected while the model is being
trained. However, the standard Federated Averaging algorithm (Fe-
dAvg) [60] cannot be adopted in heterogeneous settings, where
users’ data distributions are not identical, i.e., local data fail to
represent the overall distribution [40, 53]. This is because local
gradient estimates are biased when the users’ sensor data have
different distributions, and performing aggregation on the biased
estimates could degrade the performance of the anonymization
model.

In this paper, we propose Blinder, a novel data anonymization
model based on a variational autoencoder and discriminator net-
work(s). By using adversarial training, and appending public and
private attributes to the learned latent representation, we deliber-
ately structure the latent space of the autoencoder to generate the
anonymized version of sensor data. We show that the anonymized
sensor data contains nearly the same amount of information about
the public attribute, yet much less information about the private
attribute than the original sensor data (see Section 7.6).

Blinder is trained using a personalized federated learning algo-
rithm to address data heterogeneity and class imbalance issues.
Specifically, we apply meta-learning to federated learning to en-
hance generalizability and enable personalization of the anonymiza-
tion model [21, 26]. By offloading model training to the client side,
users that participate in the training phase are not required to share
their raw sensor data and attributes with a central server. The high
adaptability of the meta-learned anonymization model makes it
effective even for new users who did not previously take part in the

1Many companies presently collect and monetize their users’ personal data [44], from
web browsing and shopping habits to lifestyle and health conditions inferred from
their sensor data, which is the focus of this paper. They can be viewed as an HBC
adversary.

training phase. They can fetch parameters of the fully trained Blin-
der from the server and perform adaptation on a small portion of
their local data before using this personalized model to anonymize
their sensor data. We summarize our main contributions below:

• We develop a novel sensor data anonymization model based
on a variational autoencoder and one or multiple discrimi-
nator networks. Being trained via a meta-learning-based
federated learning algorithm, Blinder is the first anonymiza-
tion model that offers end-to-end privacy protection while
achieving high data utility in heterogeneous settings. We
tackle the class imbalance issue that we face during model
training by adopting re-sampling strategies to balance the
distribution of public attributes. To balance the distribution
of private attributes, even in the extreme case where there
are missing private attribute classes in a user’s data, we
synthesize shadow samples by taking advantage of Blinder’s
decoder. These techniques pave the way for training Blinder
using a personalized federated learning framework, improv-
ing its ability to learn from non-i.i.d. data and generalize to
unseen users that might have different data distributions.

• We evaluate Blinder on two IMU datasets and one Wi-Fi
sensing dataset, and compare it with four baselines. Our
results show that Blinder provides strong privacy protection
in the entire data consumption life cycle. We show that it
can effectively reduce the accuracy of intrusive inferences
(a measure of privacy loss) about one or multiple private
attributes without a substantial reduction in the accuracy
of desired inferences (a measure of data utility).

• Wedeploy Blinder on 3 Android smartphones and 1 NVIDIA
Jetson Nano (representative of an IoT edge device) and
conduct real-world experiments to corroborate that Blinder
has low power consumption and can perform real-time
anonymization of data emitted by the embedded sensors.2

2 Related Work
2.1 Privacy-Preserving Data Analytics
Significant progress has been made in recent years towards develop-
ing privacy-preserving techniques for mobile and IoT devices that
are equipped with various sensors. Differential privacy (DP) [5, 25]
provides mathematically verifiable privacy guarantees by adding
perturbations to the data. However, without factorizing the private
attribute(s) and selectively introducing perturbations, applying DP
to sensor data could significantly deteriorate its utility. Techniques
based on SMC [31, 68] and homomorphic encryption utilize se-
cret sharing algorithms and cryptographic methods to provide
information-theoretic security such that the participating parties
can perform computation based on a portion of encrypted data,
without being able to reconstruct the original data. Despite these
advantages, SMC and homomorphic encryption have large compu-
tational overhead and can quickly drain the battery life of mobile
devices [30, 76].

Recent progress in deep and adversarial learning [36, 80] has
brought a new perspective to data anonymization. Deep neural net-
works [48] can be embedded in the sensor data processing pipeline
2Our implementation of Blinder and the mobile application is available on GitHub:
https://github.com/sustainable-computing/blinder.
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to hide or remove patterns in timeseries that can be correlated to
private attributes with moderate computational overhead. Liu et
al. [57] propose Privacy Adversarial Network (PAN), an encoder
trained in an adversarial fashion to produce feature representations
that do not contain sensitive user information. Li et al. propose
DeepObfuscator [50] which jointly trains a convolutional neural
network (CNN) comprising a feature extractor and the desired task
classifier, together with two adversarial network components de-
signed to reconstruct data and predict private attributes. Rather
than extracting anonymized feature representations, Malekzadeh et
al. [59] andHajihassnai et al. [35] propose the use of an autoencoder-
based architecture to obscure private attributes in the latent space
of an autoencoder. In similar work, Olympus [66] jointly optimizes
the utility loss and inference accuracy on top of an autoencoder
to achieve utility-aware data anonymization. Bertran et al. [12]
use adversarial neural networks to match the distributions of the
public and private attributes, and perform data obfuscation without
changing the format of input data. We categorize these models as
format-preserving data anonymization for they retain the original
data format, allowing legacy applications to seamlessly consume
the anonymized data. Nevertheless, they are only useful when the
training dataset is publicly available or users that participate in
the anonymization model training are willing to give up on their
privacy. In contrast, Blinder protects users’ privacy even when the
anonymization model is being trained or updated.

Distributed privacy-preserving techniques eliminate the need
for sharing (potentially private) user data with a service provider by
taking advantage of local computation. There have been substantial
efforts in recent years [72, 75] to utilize federated learning (FL)
to avoid sharing private user data with untrusted servers during
model training. However, these papers assume that application de-
velopers will redesign the application to fit their federated learning
framework. Mo et al. [61] study the privacy risks in FL frameworks
and propose deploying FL onto Trusted Execution Environments
(TEE) to preserve privacy and defend against data reconstruction
attacks with a small system overhead. While TEEs can become
prevalent in the future, we take a different approach and develop
a privacy-preserving framework that does not require additional
hardware. TIPRDC [49] is a privacy-preserving data crowdsourcing
framework enabled by training a feature extractor through an adver-
sarial game to conceal private attributes. It maintains data utility by
maximizing the mutual information between raw data and the com-
bination of the private attribute and extracted feature. Yet, TIPRDC
extracts privacy-preserving feature representations, hence devel-
opers must update their application for it to be compatible with
the anonymized features. It differs from our data anonymization
model which generates an anonymized version of data that has the
same dimensions as its input (both are in the same space), allowing
existing applications to readily use the anonymized data without
any modification. Table 1 compares Blinder and the previous work
on privacy protection that uses machine learning techniques.

2.2 Federated Learning and Personalization
Federated learning [60] is a standard framework for training ma-
chine learning models on decentralized data. While the FedAvg
algorithm can achieve good performance when users’ local datasets

have the same underlying distribution, it may not work when they
contain imbalanced classes or their features are non-i.i.d. Data
augmentation-based techniques are especially effective in address-
ing the class imbalance issue [15, 23, 38, 47] through oversampling
the minority class or downsampling the majority class. However,
balancing the class distribution across all local datasets might re-
quire the server to know the class distribution in each local dataset
a priori. Some previous work proposes creating a new layer, in addi-
tion to the aggregation server and users, to balance the class distri-
bution more effectively. For example, Wang et al. [74] note that the
magnitude of gradient updates correlates with the number of sam-
ples in each class, so they introduce a monitor that infers the overall
class distribution across all local datasets in each round of FL. Upon
detection of an imbalance aggregation, a ratio loss is computed to
balance the contribution of each class in the probability prediction.
Duan et al. [24] propose Astraea, a self-balancing FL framework
that combines data augmentation and a set of mediators between
the clients and aggregation server. The mediators reschedule the
training process based on the clients’ data distribution, allowing a
group of users holding a collection of data with partial equilibrium
to participate in training sequentially. These approaches require
redesigning the existing FL framework to incorporate the inter-
mediate layer. FedSens [78] eliminates the intermediate layer by
training a reinforcement learning agent on the edge to determine
whether the edge device should perform a local model update and
send it to the server. Meanwhile, the aggregation server adaptively
controls the global update frequency based on the received local up-
dates. However, none of the above papers discusses the case where
some classes can be completely missing. BalanceFL [67] considers
the missing class issue and proposes a distillation loss that allows
the local model to inherit the knowledge of missing classes from
the global model. This work ensures the local updates are “pseudo-
uniform” by applying balanced sampling, data augmentation, and
regularization terms. Thus, the global model aggregated on nearly
balanced local updates could achieve the ideal performance even
using the vanilla FedAvg algorithm.

The non-i.i.d. feature issue is more challenging and may concur-
rently occur with the class imbalance issue. To address this problem,
several papers have investigated model personalization in federated
learning [9, 21, 22, 26, 39, 41, 51, 69]. For instance, FedRep [21] learns
a shared neural network model that extracts common feature rep-
resentations using FL, then allows users to add a few layers on top
of the shared network to enable personalized learning on heteroge-
neous data. Dinh et al. [69] propose pFedMe, which uses the Moreau
envelope as a regularization term and allows users to train a person-
alized model for their local data distribution in parallel to the global
model. Similarly, Deng et al. [22] enable model personalization by
mixing the parameters of the global model and a user’s local model
through a weighted summation, where the weights are updated
in each communication round. Both approaches show acceptable
performance on heterogeneous datasets for users who contributed
to the model training, but it is unclear whether the learned global
model can efficiently adapt to data from unseen users who might
have a different feature distribution. To our knowledge, none of the
above papers uses federated learning to train an anonymization
model that provides a reasonable trade-off between privacy and
data utility, while accounting for data heterogeneity.
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Related Work End-to-end Privacy Compatible w/ Legacy Apps Require Hardware
Privacy-Preserving Feature Extraction [36, 49, 50, 57, 80] ✗ ✗ ✗

Format-Preserving Data Anonymization [12, 35, 59, 66] ✗ ✓ ✗

Privacy-Preserving Federated Learning [72, 75] ✓ ✗ ✗

Privacy-Preserving Federated Learning in TEE [61] ✓ ✗ ✓

Blinder (Our Approach) ✓ ✓ ✗

Table 1: Comparison between Blinder and prior work on
machine learning-based privacy protection.

Meta-learning [28, 62] is a powerful “learning to learn” approach
that can be used to train a highly adaptive model by learning from
multiple tasks, each with limited data samples. Applying meta-
learning to federated learning makes it possible to forgo data shar-
ing, while maintaining fast convergence on small data batches with
enhanced adaptation capability (see [6, 8, 16, 26]).

With growing applications of generative adversarial networks
(GAN), some efforts have been made to train a GAN on decen-
tralized data using federated learning. Fan et al. [27] study the
federated training of GAN considering different data skewness and
server-client synchronization settings. The authors show that when
the data distribution is highly skewed, the performance of FedAvg
is unsatisfactory due to weight divergence. Similar observations
have been made in [54], where updates of local generators are ag-
gregated using maximum mean discrepancy (MMD) to improve
the performance of FL-GAN [37] in the presence of non-i.i.d. data.
GANs have also been employed to synthesize local data samples,
thereby enabling personalized federated learning [13]. However,
in that work, the GAN itself is trained on the user device rather
than on decentralized data using personalized federated learning.
Although the above-mentioned papers provide useful insight into
training a generative model on non-i.i.d. data in the FL setting, they
neither investigate training a generative model using a personal-
ized federated learning algorithm, nor do they consider the most
extreme case of non-i.i.d. data where some classes are completely
missing.
Novelty of this paper: Despite recent efforts to enable adaptation
in the federated learning framework, no related work applies a
personalized federated learning algorithm to train a complex gener-
ative model for data anonymization on decentralized user data. This
problem presents unique challenges that are not encountered when
training a general machine learning model via federated learning
in heterogeneous settings. Specifically, in addition to having differ-
ent feature distributions, users typically have heavily imbalanced
public attributes, and a fixed set of private attributes (i.e., the issues
of missing classes described in Section 6).

3 Problem Definition
We represent the dataset that pertains to userU𝑖 and is stored on
their device as D𝑖 = {(𝑋,𝑌,𝑌 )}, where 𝑋 is one segment of their
sensor readings, 𝑌 is the corresponding public attribute, and 𝑌 is
the corresponding private attribute that the user would like to con-
ceal. Data from 𝑁 users constitute the dataset D = {D1, ...,D𝑁 }.
For example, in the Human Activity Recognition (HAR) task, the
data points generated byU𝑖 ’s IMU sensor are denoted 𝑋 , the user’s
activity is denoted 𝑌 , and their private attribute, such as weight
or gender, is denoted 𝑌 . The user’s private attribute might be im-
mutable, e.g., their race or weight,3 or vary over time, e.g., their
3Although an individual’s weight can change over time, the timescale of its changes
is much slower than the rate at which sensor data is generated, so it can be deemed
immutable for the purpose of this study.

geographical location. In this work, we assume that the user’s pub-
lic and private attributes are categorical variables, taking values
from a finite set, and that there is at least one user-defined private
attribute that must be protected.

Our goal is to anonymize sensor data in a mobile or edge de-
vice such that the leakage of private information is minimized
while data utility is maintained. The end-to-end privacy protection
is achieved in two parts. The first part is a data anonymization
model that effectively obscures the private attribute(s) so that it
cannot be inferred by an adversary that has access to this data. This
model takes as input the raw sensor data 𝑋 , obscures the private
attribute(s), and produces anonymized data 𝑋 . Ideally, unwanted
inferences of the private attribute 𝑌 from 𝑋 should attain the same
accuracy as random guessing. Meanwhile, 𝑋 should maintain its
utility for the task of inferring the public attribute, 𝑌 . The second
part is to eliminate the need for sharing users’ raw sensor data D
for training the anonymization model. We propose to distribute
and offload the anonymization model training to users’ local de-
vices, then perform model aggregation to build an adaptable global
anonymization model.

Adversary Model We consider a practical semi-trusted setting,
illustrated in Figure 1, in which the service provider or application
that performs desired inferences on the user’s anonymized sensor
data 𝑋 , and the central server involved in training Blinder are both
an HBC adversary (aka passive adversary defined in [32, 33]). This
adversary uses a parametric model to correctly perform operations
that are required to complete the assigned task, e.g., making the
desired inference about the user’s public attribute given𝑋 . However,
the adversary has an incentive to take a peek at the shared data and
use another machine learning model, i.e., the intrusive inference
model, to identify the user’s private attribute𝑌 given𝑋 . We assume
both models are pre-trained on a batch of raw sensor data, which
can be gathered by the adversary. Additionally, the adversary may
have access to the true private attribute that corresponds to some
data, enabling it to perform a powerful re-identification attack [35].
We expand on this in Section 5.2.

4 Blinder’s Architecture
We present Blinder’s architecture and describe the role of each neu-
ral network in this architecture. The autoencoder is a generative
model known for its superb ability to extract latent representations.
The variational autoencoder (VAE) [42] introduces regularization
of the latent space to ensure continuity and completeness, the prop-
erties that are essential for generating meaningful new data. Our
motivation for building Blinder on top of the VAE architecture is
that data anonymization can be viewed as a data generation task
subject to a constraint that the newly constructed data must con-
tain sufficient information about the public attribute and very little
information about the private attribute(s). To enable this, we condi-
tion the decoder on public and private attributes, and extend the
VAE architecture using an auxiliary neural network (i.e., a discrimi-
nator) per private attribute to allow for adversarial training, which
is essential for avoiding the information leak about the private
attribute(s) through latent variables.

For simplicity, we discuss obscuring a single private attribute
in this section. It is a straightforward extension to simultaneously
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Figure 2: Architecture of Blinder’s anonymization model.

anonymizemultiple private attributes by addingmore discriminator
networks and conditioning the decoder on all of them (see the
discussion in Section 7.7).

4.1 A Generative Model for Anonymization
Blinder consists of three neural networks: probabilistic encoder,
decoder, and discriminator networks as depicted in Figure 2. For
anonymizing timeseries sensor data, we construct the encoder and
decoder by stacking multiple fully connected layers, which are pa-
rameterized by 𝜃 and 𝜙 , respectively. The encoder network takes
as input segmented timeseries data 𝑋 from one or multiple sensors,
and learns a multivariate Gaussian distribution with mean 𝜇 and
log-covariance 𝜎 over latent representations. The latent representa-
tion of𝑋 , denoted by 𝑍 , is randomly sampled from this distribution.
A random variable 𝜖 sampled from the standard Gaussian distribu-
tion is incorporated in the VAE to reparameterize the latent features.
This step introduces randomness into the data reconstructed by
the decoder and makes it possible to learn 𝜇 and 𝜎 through back-
propagation [43]. The latent representation is derived from 𝑋 and
𝜖 :

𝑍 = 𝜇 (𝑋 ;𝜃 ) + 𝜖 · 𝑒
𝜎 (𝑋 ;𝜃 )

2 , 𝜖 ∼ N(0, 𝐼 ). (1)
The reparameterized latent features are then fed to both the decoder
and discriminator. We first describe the decoder which aims to
reconstruct the input data from its latent representation 𝑍 ; we
denote the reconstructed data segment by 𝑋 . In Blinder, instead
of having the decoder generate 𝑋 from 𝑍 , we send 𝑍 ⊕ 𝑌 ⊕ 𝑌 to
the decoder, where ⊕ is the concatenation operation, 𝑌 and 𝑌 are
private and public attributes associated with 𝑋 , respectively. We
pass 𝑌 as a separate feature to the decoder to make the distribution
of the private attribute in the reconstructed data 𝑋 depend on the
given 𝑌 . Thus, in the anonymization stage, we can manipulate 𝑌 to
reconstruct data samples that contain information about a different
private attribute, concealing the true private attribute of the user.

In addition to the private attribute 𝑌 , Blinder relies on the pub-
lic attributes to condition the latent features, such that a single
anonymization model can learn a reconstruction strategy that
works best for every public attribute label. Intuitively, different
patterns in timeseries data may contain information about the pri-
vate attribute depending on the public attribute label. For example,
suppose our goal is to anonymize gender (private attribute) while
maintaining data utility for human activity (public attribute) recog-
nition. The most significant physiological and behavioral differ-
ences between the two genders can be the whole-body movements

when users walk, but only upper-limb movements when they sit
down.

Finally, we describe the role of the discriminator module. Ob-
serve that since the VAE conditions the latent representation 𝑍
on the private attribute 𝑌 , it is possible to change the original 𝑌
to a fictitious 𝑌 to generate 𝑋 that contains information about a
different private attribute. However, there are no guarantees that
the original private attribute cannot be inferred from the latent rep-
resentation itself. We employ an adversarial network in the model
training to scrub information about the private attributes from
the latent representation 𝑍 . Specifically, a multi-layer perceptron
(MLP), parameterized by 𝜂, is included in Blinder to simulate an
adversary who wishes to infer the private attribute from the latent
representation.

4.2 Loss Function
We introduce different terms in the loss function that are optimized
to train Blinder. The first term is the standard VAE loss. Instead
of maximizing the marginal likelihood which is intractable, the
VAE is trained to maximize a lower bound on the marginal log
likelihood, called the evidence lower bound (ELBO) [43], and is
given by E𝑄 (𝑍 |𝑋 ) [log 𝑃 (𝑋,𝑍 ) − log𝑄 (𝑍 |𝑋 )]. ELBO has two terms:
the reconstruction loss and a regularization term. The reconstruc-
tion loss uses the expected log likelihood to measure the similarity
between the raw data 𝑋 and the reconstructed data 𝑋 . The regu-
larization term enhances the model generalizability and punishes
overfitting by encouraging the representations to distribute across
the latent space. We use L2 loss as the reconstruction loss and Kull-
back–Leibler (KL) divergence for regularization. Thus, the VAE’s
loss function can be written as:

L𝑉𝐴𝐸 (𝑓⟨𝜃,𝜙 ⟩)=−E𝑍∼𝑄𝜃

[
log 𝑃𝜙 (𝑋 |𝑍,𝑌,𝑌 )

]
+𝐷𝐾𝐿 (𝑄𝜃 (𝑍 |𝑋 ) | |𝑃𝜙 (𝑍 )),

(2)
where 𝐷𝐾𝐿 is the KL divergence term that measures the distance
between the prior latent distribution 𝑃 (𝑍 ) ∼ N (0, 𝐼 ) and the pos-
terior distribution 𝑄𝜃 (𝑍 |𝑋 ), 𝑓⟨𝜃,𝜙 ⟩ is the parameterized mapping
function for the encoder and decoder, i.e. 𝑋 = 𝑓⟨𝜃,𝜙 ⟩ (𝑋 ). The VAE
loss is the total loss of the encoder and decoder networks and can
be backpropagated and optimized via gradient descent.

The next term in the loss function quantifies the performance
of the discriminator. It calculates the cross-entropy between the
inferred private attribute 𝑌 ′ and the actual private attribute 𝑌 asso-
ciated with the input data segment. We express the discriminator’s
loss as:

L𝐷𝑖𝑠𝑐 (𝑓𝜂 ) = −
∑︁
𝑌

𝑌 log 𝑃𝜂 (𝑌 ′) = −
∑︁
𝑌

𝑌 logE𝑍∼𝑄𝜃

[
𝑃𝜂 (𝑌 ′ |𝑍 )

]
,

(3)
where 𝑓𝜂 is the mapping function of the discriminator parame-
terized by 𝜂. The adversarial training process can be viewed as a
minimax game, where the probabilistic encoder in the VAE aims to
extract a latent representation from the input data segment such
that the decoder can reconstruct the original data, but the discrimi-
nator cannot infer the private attribute from this representation. To
encourage the encoder to learn latent representations that are not
correlated with the private attribute and cannot be easily linked
back to it, we add the negative loss of the discriminator to the VAE
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loss and formulate the total loss function that will be minimized:

L(𝑓⟨𝜃,𝜙,𝜂⟩) = −𝛼 · E𝑍∼𝑄𝜃

[
log 𝑃𝜙 (𝑋 |𝑍,𝑌,𝑌 )

]
+𝛽 · 𝐷𝐾𝐿 (𝑄𝜃 (𝑍 |𝑋 ) | |𝑃𝜙 (𝑍 ))
−𝛾 · L𝐷𝑖𝑠𝑐 (𝑓𝜂 ) .

(4)

The above loss function takes into consideration both the quality of
the reconstructed data and the ability to conceal private attributes.
Thus, optimizing this loss function minimizes the weighted combi-
nation of the reconstruction loss and KL divergence term to encour-
age the reconstructed data segment to maximally retain non-private
information. Meanwhile, the discriminator loss is maximized to en-
sure an adversary cannot infer private information from the latent
representations, boosting Blinder’s anonymization capability. Note
𝛼 , 𝛽 , and 𝛾 are three hyper-parameters that are tuned empirically
using grid search to balance privacy and utility. We elaborate the
process of optimizing Blinder’s loss function using a personalized
federated learning algorithm in Section 5.1.

When extending Blinder to protect multiple private attributes
𝑌1, ..., 𝑌𝑘 , additional discriminators can be introduced to ensure
that 𝑍 does not contain information about any of these attributes.
Specifically, the loss of these discriminators, i.e. 𝐿𝐷𝑖𝑠𝑐1 , ..., 𝐿𝐷𝑖𝑠𝑐𝑘 ,
are appended to Blinder’s loss and optimized simultaneously. More-
over, all these private attribute labels are sent to the decoder along
with the public attribute and 𝑍 .

5 Distributed Training of Blinder
We first outline the personalized federated learning algorithm
where a central server coordinates a number of devices so that
they can jointly train Blinder on their local data. We then explain
how fully trained Blinder can be used to anonymize sensor data on
each device.

5.1 Meta-Learned Anonymization Model
We consider learning the parameters of a global anonymization
model M on training data residing on 𝑁 mobile/edge devices
as our main learning task T . This task is divided into 𝑁 sub-
tasks: S1,S2, ...,S𝑁 , where each sub-task entails learning a local
anonymization modelM𝑖 onU𝑖 ’s local data. This allows us to align
the definition of tasks in our problem with meta-learning, and con-
sequently apply meta-learning to federated learning. In federated
learning, the main task T is learned by taking the average of the
parameters of local modelsM𝑖 via FedAvg [60]. In a classification
task, FedAvg could cause the global model to be biased toward the
majority classes that have more data samples, deviating from the
main task of training a model that performs well for all classes. To
address this issue, we learnM through meta-learning. The meta-
learned task differs from the task in FL in that our global model
is optimized towards the direction that could quickly adapt to all
sub-tasks. We illustrate this difference in Figure 3, where the arrow
between T 𝑡 and T 𝑡+1 is the update direction of the main task in
iteration 𝑡 , and S∗

𝑖
is the optimal update direction for each sub-task

S𝑖 . Assuming that the local data in sub-tasks S2 and S3 correspond
to a non-minority class, the update direction of the main task could
be biased towards these classes, resulting in poor performance for
the minority class, which exists in the local data of subtask S1. In

Algorithm 1: Distributed training of Blinder
Data: Client set S, no. clients selected for training𝑚,

meta-learning rate 𝜆, local training dataset D𝑖 , local learning
rate 𝜆𝑖 , support set size 𝑠 , query set size 𝑞, communication
rounds per epoch 𝑡

Result: Blinder’s parameters: {𝜃,𝜙, 𝜂}
Server Executes :

1 Initialize {𝜃 1, 𝜙1, 𝜂1}
2 for each epoch 𝑐 = 1, 2, . . . do
3 S𝑐 ← randomly select𝑚 clients from S
4 for each communication round 1, 2, . . . , 𝑡 do
5 for each client 𝑖 ∈ S𝑐 (in parallel) do
6 Send model {𝜃𝑡 , 𝜙𝑡 , 𝜂𝑡 } to client 𝑖
7 Receive updated gradients: {∇𝜃𝑡 L(𝑓⟨𝜃 ′𝑡

𝑖
,𝜙 ′𝑡

𝑖
⟩|𝜂′𝑡

𝑖
) ,

∇𝜙𝑡 L(𝑓⟨𝜃 ′𝑡
𝑖
,𝜙 ′𝑡

𝑖
⟩|𝜂′𝑡

𝑖
) , ∇𝜂𝑡 L𝐷𝑖𝑠𝑐 (𝑓𝜂′𝑡

𝑖
|𝜃 ′𝑡

𝑖
) }

8 end
// Update global model parameters

9 𝜃𝑡+1 ← 𝜃𝑡 − 𝜆
𝑚

∑𝑚
𝑖=1 ∇𝜃𝑡 L(𝑓⟨𝜃 ′𝑡

𝑖
,𝜙 ′𝑡

𝑖
⟩|𝜂′𝑡

𝑖
)

10 𝜙𝑡+1 ← 𝜙𝑡 − 𝜆
𝑚

∑𝑚
𝑖=1 ∇𝜙𝑡 L(𝑓⟨𝜃 ′𝑡

𝑖
,𝜙 ′𝑡

𝑖
⟩|𝜂′𝑡

𝑖
)

11 𝜂𝑡+1 ← 𝜂𝑡 − 𝜆
𝑚

∑𝑚
𝑖=1 ∇𝜂𝑡 L𝐷𝑖𝑠𝑐 (𝑓𝜂′𝑡

𝑖
|𝜃 ′𝑡

𝑖
)

12 end
13 end

Client Executes :
14 Pulling 𝜃, 𝜙, 𝜂 from the server
15 Sample support set D𝑖𝑠 and query set D𝑖𝑞 from D𝑖

16 𝜇 (𝑋𝑖𝑠 ;𝜃 ), 𝜎 (𝑋𝑖𝑠 ;𝜃 ) ← 𝑓𝜃 (𝑋𝑖𝑠 )
17 𝑍𝑖𝑠 ← 𝜇 (𝑋𝑖𝑠 ;𝜃 ) + 𝜎 (𝑋𝑖𝑠 ;𝜃 ) ⊙ 𝜖, 𝜖 ∼ N(0, 𝐼 )
18 𝑋𝑖𝑠 ← 𝑓𝜙 (𝑍𝑖𝑠 ⊕ 𝑌𝑖𝑠 ⊕ 𝑌𝑖𝑠 )
19 𝑃 (𝑌𝑖𝑠 |𝑍𝑖𝑠 ) ← 𝑓𝜂 (𝑍𝑖𝑠 )

// Adapt models on support set D𝑖𝑠

20 𝜂′ ← 𝜂 − 𝜆𝑖∇𝜂L𝐷𝑖𝑠𝑐 (𝑓𝜂 |𝜃 ) , with 𝜃 fixed
21 ⟨𝜃 ′, 𝜙 ′ ⟩ ← ⟨𝜃,𝜙 ⟩ − 𝜆𝑖∇⟨𝜃,𝜙⟩L(𝑓⟨𝜃,𝜙⟩|𝜂 ) , with 𝜂 fixed

// Compute gradients on query setD𝑖𝑞

22 Estimate meta lossL(𝑓⟨𝜃 ′,𝜙 ′⟩|𝜂′ ),L𝐷𝑖𝑠𝑐 (𝑓𝜂′ |𝜃 ′) on D𝑖𝑞

23 Compute gradients on meta loss w.r.t. {𝜃, 𝜙, 𝜂}:
{∇𝜃 L(𝑓⟨𝜃 ′,𝜙 ′⟩|𝜂′ ), ∇𝜙L(𝑓⟨𝜃 ′,𝜙 ′⟩|𝜂′ ), ∇𝜂L𝐷𝑖𝑠𝑐 (𝑓𝜂′ |𝜃 ′ ) }

24 Send gradients to the server

personalized FL, the update direction of the main task is computed
such that it enables better generalization for all sub-tasks.

Algorithm 1 is our personalized federated learning algorithm. In
each global epoch of this federated learning algorithm, the central
server randomly selects a subset of 𝑚 ≤ 𝑁 clients from the 𝑁
available clients to participate in the model training. We assume a
selected client will remain available in this epoch and contribute to
the model aggregation in multiple rounds of communication with
the server. At the beginning of each round, the server broadcasts
a copy of the global anonymization model to each selected client
(device). Each selected client U𝑖 then performs a two-step meta-
learning optimization based on its local datasetD𝑖 . In the first step,
U𝑖 updates their local model on a small portion of data of size 𝑠 ,
sampled from D𝑖 . We call this small training batch, the support
set according to the conventions of few-shot learning, and denote
the support set of U𝑖 by D𝑖𝑠 = {𝑋𝑖𝑠 , 𝑌𝑖𝑠 , 𝑌𝑖𝑠 }. The local encoder
parameterized by 𝜃𝑖 takes as input the sensor data segment 𝑋𝑖𝑠 and
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Federated Learning Personalized Federated Learning

Figure 3: Different aggregation methods used in FL. The ar-
row between T 𝑡 and T 𝑡+1 indicates the update direction of
the main task in iteration 𝑡 . Arrows labeled S∗1 , S

∗
2 , and S

∗
3

show the optimal direction for sub-task S1, S2, and S3, re-
spectively.

maps it into a latent representation 𝑍𝑖𝑠 . The latent representation
𝑍𝑖𝑠 serves two purposes. First, 𝑍𝑖𝑠 , 𝑌𝑖𝑠 and 𝑌𝑖𝑠 are concatenated and
fed to the decoder to reconstruct the anonymized data 𝑋𝑖𝑠 . Second,
the discriminator, playing the role of the adversary, tries to predict
the private attribute given 𝑍𝑖𝑠 . Hence, the training process for the
discriminator and VAE forms an adversarial minimax game, as
discussed in Section 4. The parameters of the local discriminator 𝜂𝑖
are first optimized through backpropagation, while the parameters
of the encoder are fixed (we write L𝐷𝑖𝑠𝑐 (𝑓𝜂 ) as L𝐷𝑖𝑠𝑐 (𝑓𝜂 |𝜃 ) in
Algorithm 1 to emphasize this). Then, we fix 𝜂𝑖 to optimize the
parameters of the encoder and decoder, i.e., 𝜃𝑖 and 𝜙𝑖 (hence we
write L(𝑓⟨𝜃,𝜙,𝜂⟩) as L(𝑓⟨𝜃,𝜙 ⟩ |𝜂 )). The updated model parameters
𝜃 ′, 𝜙 ′, 𝜂′ are learned from the support set to optimize the client’s
local sub-task S𝑖 . The pseudocode for the first step optimization is
shown in Algorithm 1 from Line 16 to 21. For better convergence,
the first-step optimization can be repeated multiple times, each
time is a local training step.

In the second step, we sample another batch ofU𝑖 ’s local data
D𝑖𝑞 , namely the query set, where D𝑖𝑠 ∩ D𝑖𝑞 = ∅, to compute
the meta loss L(𝑓⟨𝜃 ′,𝜙 ′ ⟩) and L𝐷𝑖𝑠𝑐 (𝑓𝜂′ ) of the model updated on
the support set in the first step. The meta loss is computed on a
query set that is distinct from the support set for better general-
ization and enhanced performance on unseen data. By computing
the gradients on the meta loss with respect to the original global
anonymization model 𝜃, 𝜙, 𝜂, the global anonymization model can
directly acquire more general knowledge of sub-task S𝑖 . Hence,
the meta-learned local losses yield an optimization direction that
supports better adaptation for all sub-tasks. The local meta losses
can be passed to the central server to perform loss aggregation,
then a backpropagation step is performed on the aggregated loss
to update 𝜃, 𝜙, 𝜂. However, this approach requires sharing local
computational graphs with the central server for backpropagation,
introducing additional communication overhead. For a more effi-
cient implementation, we take an alternative approach based on
Federated SGD [60], to first compute the gradients on the meta
losses with respect to the global model parameters 𝜃, 𝜙, 𝜂 on the
client side, then send the gradients (rather than the meta losses)
back to the central server. The second-step optimization is sum-
marized in Algorithm 1 from Line 22 to 24. Note that we explore
the feasibility of data anonymization under distributed settings fol-
lowing a standard FedSGD. Applying more advanced aggregation
methods, such as [53, 73], to Blinder would be a straightforward
extension, which is not discussed in this work.

After receiving the gradients from a sufficient number of clients,
the server updates the parameters of the global anonymization

model 𝜃 , 𝜙 , 𝜂 through a weighted aggregation. The update rules are
fromLine 9 to 11, where 𝜆 is themeta learning rate,∇⟨𝜃𝑡 ,𝜙𝑡 ⟩L(𝑓⟨𝜃 ′𝑡𝑖 ,𝜙 ′𝑡𝑖 ⟩ |𝜂′𝑡𝑖 )
and ∇𝜂𝑡L𝐷𝑖𝑠𝑐 (𝑓𝜂′𝑡

𝑖
|𝜃 ′𝑡𝑖 ) are the gradients computed by the clients.

5.2 Anonymization Process
Upon obtaining the trained Blinder, clients can retrain this model
on their local data (as an optional adaptation step) and then use it to
anonymize their sensor data by predicting the corresponding public
attribute using a pre-trained machine learning model and manipu-
lating the private attribute, both of which are appended to the latent
representation𝑍 before feeding it to the decoder.While it is possible
to change the private attribute using a fixed bijective function, this
anonymization process does not mitigate the re-identification attack
as discussed in [35]. To put it simply, if we always change private
attribute class 𝑖 to private attribute class 𝑗 , the adversary can easily
learn this mapping and foil the data anonymization. To address this
problem, we adopt a stochastic anonymization approach, which
draws a private attribute in a uniformly random manner from the
set of values the private attribute can take and pass it to the decoder
to obscure the data samples. This approach only requires the prior
knowledge of the set of possible private attribute classes.

6 Addressing Heterogeneity
We present the key challenges in handling imbalanced class distribu-
tions in FL. These challenges are addressed by utilizing re-sampling
techniques and Blinder’s decoder to balance the distribution of
public and private attributes in each user’s device, respectively.

6.1 Public Attribute Distribution
In supervised learning, the model trained on an imbalanced dataset,
where classes are not represented equally, would be biased towards
the majority class (i.e., the class with most samples) and perform
poorly for samples that belong to minority classes (i.e., classes with
fewer samples). This problem is exacerbated in federated learning
because the majority class could be different across the clients
that collaboratively train a model, creating a challenging non-i.i.d.
data situation [53, 73]. Specifically, training Blinder on distributed
sensor data via personalized federated learning forces the global
model to be updated according to the aggregate of heavily-biased
local gradients when the distributions of public attributes vary
significantly among the clients. This hampers the performance of
Blinder. To address this issue, we balance the distribution of public
attributes via a combination of over-sampling and under-sampling
techniques.

In this work, we say a dataset is not balanced when a majority
class contains at least twice as many data samples as the minority
class. To increase the number of data samples from the minority
classes, simply oversampling from the existing dataset could pro-
duce many duplicate samples and cause overfitting. Instead of do-
ing that, we leverage SMOTE [15] to generate unique, high-quality
data samples to supplement minority public attributes. SMOTE
randomly draws samples from the minority classes and finds their
𝐾 most similar neighbors among the real samples. A feature space
is then generated from the selected sample and its 𝐾 nearest neigh-
bors, from which the synthesized data will be sampled. We evaluate
the quality of the synthesized data using public and private attribute
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Figure 5: Generation of
shadow samples using Blin-
der’s VAE architecture. Data
flow is shown in red.

classifiers, both of which are pre-trained on the original data. We
find that these classifiers identify the public and private attributes
of the synthesized data with 96% to 98% accuracy. Moreover, we
resort to random under-sampling of the majority class to better
balance the distribution when the number of data samples in the
majority class is several orders of magnitude higher than that of
the minority classes.

6.2 Private Attribute Distribution
Consider a practical, yet challenging case in which the user’s pri-
vate attribute does not vary with time (the assumption made in
Section 3). This creates a non-trivial overfitting issue in FL and sig-
nificantly degrades Blinder’s privacy-preserving capability. More
precisely, when a user’s local dataset contains only one private
attribute class, the local discriminator becomes unusable as it will
quickly overfit and predict the correct private attribute regardless
of how the latent representation is extracted. Figure 4 depicts a
drastic decline in the local discriminator loss (the blue curve) as a
result of overfitting. Recall that in the minimax game between the
discriminator and encoder, the discriminator must provide useful
feedback to the encoder to facilitate learning a latent representation
that contains no information about the private attribute. An over-
fitted discriminator cannot provide this feedback, preventing the
encoder from learning how to conceal the private attribute in the
latent representation. With multiple local anonymization models
failing to perform well in their respective tasks, the anonymization
capability of the aggregated global anonymization model would
degrade too.

The personalized federated learning algorithm can partially mit-
igate this issue compared to the standard federated learning algo-
rithm thanks to the application of meta-learning. To fully address
this issue, we augment each user’s local data by synthesizing sam-
ples that contain information about other possible private attribute
classes. This can diversify the private attribute in each user’s dataset,
thereby avoiding overfitting of the local discriminator.

We denote the synthesized data samples containing new private
attributes by 𝑋 ∗, and call them shadow samples because they have
the same feature distribution as the original data samples, yet a
different private attribute than this user’s actual private attribute.
We utilize the feed-forward propagation of our VAE architecture to
generate the shadow samples as depicted in Figure 5. The first step
is to feed original sensor data 𝑋 to the encoder to obtain the latent
representation denoted 𝑍 ∗. The reparameterization in (1) ensures

0 20 40 60 80 100 120
Time Series Data Samples

−4
−3
−2
−1
0
1
2
3
4

M
ag
ni
tu
de
 O
ve
r 3
 A
xe
s

Ra  Accelerometer
Anonymized Accelerometer

(a) Anonymizing accelerometer
data

0 20 40 60 80 100 120
Time Series Data Samples

−4
−3
−2
−1
0
1
2
3
4

M
ag

ni
tu
de

 O
 e

r 3
 A
xe
s

Raw Gyroscope
Anonymized Gyroscope

(b) Anonymizing gyroscope data

Figure 6: Comparison between the original sensor readings
and the anonymized sensor readings on the MotionSense
dataset.

that 𝑍 ∗ is sampled randomly from the latent space distribution.
Next, we pick a private attribute 𝑌 ∗, which can be any private at-
tribute class except the user’s real private attribute 𝑌 . Having been
learned collaboratively by a diverse set of users, Blinder’s decoder
can reconstruct the data segment given any condition, i.e., private
attribute class. Hence, we generate the shadow samples by feeding
𝑍 ∗ ⊕ 𝑌 ∗ ⊕ 𝑌 to the decoder. The shadow samples are then encoded
and their representations are mixed with other representations in
the user’s original support set to train the local discriminator. The
orange curve in Figure 4 shows the discriminator loss on the query
set averaged over all users after incorporating the shadow samples.
It can be seen that the discriminator loss fluctuates near the ran-
dom guess level (0.69 for the binary cross-entropy loss), suggesting
that adversarial training works properly. The main advantage of
our approach is that it simply uses Blinder’s VAE architecture for
augmenting the user’s dataset without relying on an additional
generative model. Besides, it only requires prior knowledge of the
set of possible private attribute labels, which is consistent with
the assumption made for stochastic anonymization in Section 5.2.
By incorporating the shadow samples, Blinder further reduces the
overall accuracy of intrusive inferences by around 5%.

We use the motion sensor data in MotionSense as an example
(details provided in Section 7.1) to compare the original sensor read-
ings with the reconstructed readings by Blinder. As illustrated in
Figure 6, for both accelerometer and gyroscope readings, Blinder
can effectively learn the salient motion patterns from the magnitude
of IMU signals to maintain the activity recognition accuracy. On
the other hand, the high-frequency components of the motion data
are smoothed out as they can reveal the identity or other character-
istics (like body size) of the individual. Notice that the magnitude of
original readings fluctuates in a wider range than anonymized read-
ings. We argue that it is especially helpful to protect certain private
attributes. For instance, the magnitude of the signal has a broader
range for taller/male individuals due to the larger movements they
might make.

7 Evaluation
We compare Blinder with four baselines described below:

Baseline 1 - Anonymization Autoencoder (AAE) [59]: It is an autoencoder-
based data anonymization mode that can serve as an interface
between raw sensor data and untrusted data consumers. Unlike
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Blinder which conditions the latent information and leverages gen-
erative models to conceal private attributes, AAE employs multiple
regularizer modules based on neural networks to control the infor-
mation learned by the autoencoder. The encoder module of AAE
comprises four stacked convolutional layers, each followed by a
batch normalization layer. The decoder module of AAE reverses
the encoding process using transposed convolutional layers and is
also batch normalized. AAE requires to be trained on a centralized
server and hence can serve as the centralized baseline to compare
with distributed anonymization models. We implement AAE based
on the source code released by the authors on GitHub [3]. Note that
AAE uses a deterministic anonymization strategy which makes it
vulnerable to the re-identification attack discussed in [35].

Baseline 2 - ObscureNet [35]: It is a data anonymization model based
on the VAE architecture. It is shown in [35] that it has better privacy-
preserving performance than several other data anonymization
models that utilize autoencoders. This model is trained on a server
that hosts centralized training data; thus, it requires users to send
their raw sensor data along with the corresponding public and
private attributes to this server. Unlike Blinder, which conditions
the latent feature on both private attribute 𝑌 and public attribute 𝑌 ,
ObscureNet only sends the private attribute to the decoder. Hence,
it cannot generalize to all public attributes and requires a dedicated
anonymization model per public attribute. We used the source
code published by the authors on GitHub [1], and considered the
version of ObscureNet that performs stochastic anonymization as
our baseline. Since ObscureNet is trained in a centralized fashion,
comparing it with Blinder will help to understand how training
the anonymization model on decentralized data affects utility and
privacy loss.

Baseline 3 - FedBlinder: We implement the third baseline, named
FedBlinder, by training the three neural networks in Blinder via fed-
erated learning without applying meta-learning. In this case, a cen-
tral server randomly selects𝑚 users from the set of available users
in each epoch to participate in model training and sends them a
copy of the global anonymization model. Each selected user retrains
the received copy of the global model on their device for 5 rounds
using their local data. When the local training process completes,
the updated model parameters (rather than the gradients) will be
transmitted to the central server for FedAvg [60]-based aggregation.
In FedBlinder, we do not apply the rebalancing techniques proposed
in Section 6, nor do we take advantage of meta-learning for fast
adaptation. Therefore, the comparison between Blinder and Fed-
Blinder will highlight the significance of the proposed personalized
federated learning and rebalancing techniques.

Baseline 4 - KD-Blinder: This baseline extends the FedBlinder base-
line by taking advantage of the knowledge distillation (KD) tech-
niques proposed in BalanceFL [67] to tackle missing class and class
imbalance issues in federated learning. Specifically, BalanceFL uti-
lizes a knowledge inheritance technique and incorporates a smooth
regularization term to tackle the missing class issue. Moreover, it
uses inter-class balancing techniques, including class-balanced sam-
pling and feature-level data augmentation, to balance the training
data. Since in our data anonymization task, the private attribute
suffers from the missing class issue and the public attribute suffers

from the class imbalance issue, we apply the knowledge inheritance
and smooth regularization techniques to address the missing class
issue during the auxiliarymodel training, and use the class-balanced
sampling technique and feature-level data augmentation to address
the class imbalance issue when training the CVAE model. We im-
plement these techniques following the source code released by
the authors on GitHub [4]. Note that in BalanceFL [67], the feature-
level data augmentation is performed on the output of the second
last layer in a classifier, but our CVAE model is not a classifier.
Therefore, we perform it on the latent representation generated
by Blinder’s encoder. The comparison between KD-Blinder and
Blinder will show the efficacy of the public attribute rebalancing
technique and shadow sample synthesis that we use in Blinder to
address the missing class issue for the private attribute.

Implementation Details: We implement Blinder, FedBlinder, KD-
Blinder, and ObscureNet using PyTorch [63]. The AAE baseline
is implemented using Keras [19] based on the code [3] released
by the authors. The personalized federated learning algorithm is
implemented on top of the learn2learn library [10]. In each round
of training, we randomly select 40% of all users to participate in
that round. We assume the selected users will stay connected to
the central server (i.e., no stragglers4) until the last round of com-
munication finishes. The local models are trained and averaged
on a single server by different processes to simulate a federated
learning setting, where the server will wait until all participants
send the locally updated models before it aggregates them. The
training batch size is 𝑏 = 𝑠 + 𝑞 = 16 as we do few-shot learning,
with 𝑠 = 1 being the size of the support set and 𝑞 = 15 being the
size of the query set. The dimension of the latent space is set to 25.
We use grid search to tune the hyper-parameters: 𝛼 = 0.9, 𝛽 = 2,
𝛾 = 0.2. Note that for the experiments conducted on MotionSense
(described below), we change the first (last) two layers of the en-
coder (decoder) in Blinder and FedBlinder from fully connected
layers to convolutional (transposed convolutional) layers for better
convergence. For a fair comparison with the baselines, we do not
perform local adaptation on the fully trained Blinder, except in
Section 7.9 where it is discussed.

7.1 Datasets
We evaluate Blinder on three publicly available human activity
recognition (HAR) datasets that include different sensing modal-
ities. The first two datasets, namely MobiAct [14] and Motion-
Sense [59], are collected by IMUs embedded in mobile devices. The
third dataset [11] contains radio frequency signals. This dataset,
which we call the Wi-Fi HAR dataset, utilizes the Wi-Fi channel
state information (CSI).

MobiAct: This dataset contains sensor readings pertaining to 66
participants that perform 12 different daily activities, captured by a
3-axis accelerometer, a 3-axis gyroscope, and an orientation sensor
embedded in a Samsung Galaxy S3 smartphone [14]. We select the
same users and activities that were used in the ObscureNet base-
line [35] for a fair comparison. We use the sensor readings of the

4Dealing with stragglers and connectivity issues is important for the real-world de-
ployment of FL algorithms. However, we ignore these factors here due to the page
limit and the fact that they have been addressed in the past [17, 52].
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accelerometer and gyroscope for 4 daily activities: walking, stand-
ing, jogging, and walking up the stairs, performed by 36 individuals,
20 of them are male and 16 are female. We standardize and segment
timeseries generated by these sensors using a sliding window of 128
samples and a stride length of 10 samples. The data segments of 6
sensor channels are then concatenated to create a one-dimensional
tensor of size 768, which is fed to the anonymization models. Unless
otherwise mentioned, the train-test split ratio is 8:2. The public
attribute classes are the 4 activities described above. We use Blinder
to anonymize two distinct private attributes, namely the user’s (bi-
nary) gender and (ternary) weight group attributes. We categorize
a user’s weight into one of the three weight groups, where group 0
is for weight below 70 kg, group 1 is for weight within 70 kg to 90
kg, and group 2 is for weight above 90 kg. This binning strategy
divides users into three groups that have roughly the same size,
allowing us to model the weight as a categorical variable that can
be anonymized by Blinder.

MotionSense: This dataset contains readings of accelerometer and
gyroscope sensors in an iPhone 6s which is kept in the front pocket
of 24 individuals (14 male and 10 female) who performed 6 different
activities: walking up the stairs, walking down the stairs, walking,
standing, jogging, and sitting. We only consider 4 of the 6 daily
activities, namely walking up and down the stairs, walking, and jog-
ging. The sitting and standing activities are excluded because there
are only a few samples for these activities, and IMU sensor readings
contain little information to distinguish between them when the
individual is not moving. Every individual performs 15 trials for
each activity. For the sake of comparison with the baseline [35],
we focus on gender anonymization only and use the first 9 trials
to create the training set. The remaining 6 trials are used in the
test set. We compute the magnitude over the 3 axes of each sensor
and treat it as the sensor reading. We adopt the same segmentation
technique that was described for MobiAct.

Wi-Fi HAR: This dataset utilizes the Wi-Fi channel state informa-
tion (CSI) to perform human activity recognition [11]. The CSI data
is collected using 1 transmitter and 3 receivers in 3 environments.
Since each transceiver pair generates 30 CSI channels, 90 CSI chan-
nels are available in total. Two environments use the line-of-sight
(LOS) configuration and the third one has a non-LOS configuration.
A total of 30 subjects participated in the experiments, with each
environment involving 10 subjects. Each participant performs 5
types of experiments that include 12 different activities; each exper-
iment is repeated 20 times (20 trials). From this dataset, we select 4
activities, namely standing, sitting, lying down, and turning around.
We consider the weight and height of the participants as private
attributes. We use data from Environment 2 with the LOS configura-
tion because the participants’ private attributes are more balanced.
By dividing the participants’ weights and heights into 2 groups
using a boundary of 80 kg and 175 cm, respectively, each weight
and height group contains exactly 5 participants. To preprocess the
data, we compute the signal magnitude of all available channels and
perform data standardization, then we segment the CSI magnitude
using a sliding window with a length of 80 samples and a stride
length of 40 samples. We randomly partition the dataset into the
training set and test set with a ratio of 8:2. We use the same set of

random seeds for data partitioning when repeating the experiments
on Blinder and all baselines to ensure fairness and reproducibility.

7.2 Evaluation Metrics
7.2.1 Impact on Privacy We evaluate the privacy-preserving ca-
pability of an anonymization model by measuring the accuracy of
intrusive inferences about the user-defined private attribute(s) on
the sensor data anonymized by this model. In particular, we adopt
a convolutional neural network (CNN) that consists of 4 convolu-
tional layers followed by 3 fully connected layers as our intrusive
inference model. This intrusive inference model is pre-trained on
raw sensor data as discussed in Section 3, and its accuracy is a
measure of privacy loss. This is because an HBC adversary can
use the intrusive inference model to de-anonymize the previously
anonymized sensor data. Thus, the minimum privacy loss is at-
tained when the intrusive inference model’s accuracy equals the
level of random guessing.

7.2.2 Impact on Data Utility We use the accuracy of desired infer-
ences about the user-defined public attribute on the anonymized
sensor data to quantify the utility of the anonymized data. For
example, in the HAR task, we use the accuracy of a powerful CNN-
based activity recognition model, which we call the desired inference
model, as a measure of data utility. The desired inference model
has the same architecture as the intrusive inference model, and is
pre-trained on raw sensor data as discussed in Section 3. We say
that the maximum data utility is attained when the accuracy of
the desired inference model remains the same after sensor data is
anonymized.

7.2.3 Generalizability Weassess howwell an anonymizationmodel
generalizes to a heterogeneous population, i.e., non-i.i.d. data, and
to new users. First, we study the model’s ability to generalize to
users with different public attribute distributions. To capture the
skewness of the public attribute distribution in a user’s local dataset,
we use an imbalance ratio 𝑅𝐷 , which is defined as the number of
samples in the class with most samples over the number of samples
in the class with fewest samples. We assume all users share the
same imbalance ratio, but may have different public attribute class
distributions. To this end, we randomly pick a subset of the public
attribute classes from each user’s local training set as the majority
class(es), leaving the rest as minority classes. We then reuse the data
synthesis and down-sampling techniques described in Section 6.1,
this time to make the class imbalance issue more pronounced, reach-
ing the target ratio 𝑅𝐷 . By varying 𝑅𝐷 , we can evaluate Blinder and
the baselines under settings with non-i.i.d. public attributes. Note
that, for a fair comparison, we do not rebalance the public attributes
as we normally do in Blinder. Finally, we study the model’s ability
to generalize to users who never participated in model training. Let
𝑅𝑈 be the ratio of the users that participated in model training to
the total number of users. A model that generalizes well should
perform well when trained on a small number of users (low 𝑅𝑈
ratio) and used to anonymize data of new users.

7.3 Privacy-Preserving Performance
We first compare Blinder and the baselines in terms of their privacy-
preserving capability on MobiAct. Suppose the public attribute is
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Figure 7: Intrusive inference accuracy on MobiAct for gender
and weight anonymization.

the user’s activity and the private attribute, which we aim to ob-
scure, is their gender or weight group. We anonymize the sensor
data and report the average accuracy of the intrusive inference
model over 10 trials with different random seeds in Figure 7. The
error bar shows the standard deviation across the 10 runs. Ob-
scureNet exhibits the best privacy-preserving performance among
the five models, resulting in average intrusive inference accuracy
of 51.99% (38.68%) and F1 score of 51.99% (34.97%) in the gender
(weight) anonymization task, reducing the intrusive inference accu-
racy by 43% (53%) compared to the case that the sensor data is not
anonymized. Despite its superb performance (being close to ran-
dom guessing), ObscureNet must be trained in a server that stores
the centralized training data. AAE achieves average intrusive infer-
ence accuracy of 55.72% (54.01%) and F1 score of 54.43% (50.88%)
in the gender (weight) anonymization task. Similar to ObscureNet,
AAE is trained in a centralized fashion. Hence, both ObscureNet
and AAE do not protect the privacy of users in the model training
phase. FedBlinder results in average intrusive inference accuracy
of 50.67% (46.17%) and F1 score of 50.2% (34.4%) for gender (weight)
anonymization task. Although the average gender inference accu-
racy is slightly lower under FedBlinder than ObscureNet, we see
that the standard deviation of both gender and weight inference
accuracy is noticeably higher (larger error bar) under FedBlinder
than both ObscureNet and Blinder. We attribute this unstable per-
formance to the inherent weakness of the vanilla FedAvg algorithm
when applied to datasets with highly imbalanced private attribute
distributions, in this case the presence of just one gender/weight
class in each local dataset. This becomes worse when there are
more private attribute classes, as is the case in the ternary weight
anonymization task, where the average weight inference accuracy
for users in weight group 0 is about 70.2%, which is much higher
than its average accuracy among all three classes. In particular,
FedBlinder performs worst in the weight anonymization task and
exhibits variable performance across different weight groups. The
average weight inference accuracy for users in weight group 0
is about 70.2%, which is much higher than its average accuracy
across the three classes. With the help of knowledge distillation
and inter-class balancing techniques, KD-Blinder achieves a more
balanced performance across the binary gender classes and the
ternary weight classes than FedBlinder, yet it exhibits the worst
privacy protection with an average accuracy (F1 score) of 61.02%
(60.17%) and 56.62% (50.61%) for gender and weight anonymization,
respectively.
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Figure 8: Activity recognition accuracy onMobiAct for gender
and weight anonymization.

Our proposed personalized federated learning framework allows
Blinder to protect users’ private attributes during model training,
similar to FedBlinder and KD-Blinder. That aside, we observe that
Blinder shows a more stable privacy-preserving capability than
both FL-based baselines, resulting in average intrusive inference ac-
curacy of 54.46% (42.16%) and F1 score of 53.91% (37.47%) for gender
(weight) anonymization. The gender (weight) inference accuracy
shows a modest increase of around 2.47% (3.48%) compared to Ob-
scureNet. Blinder outperforms FedBlinder in weight anonymization
not only because of the slightly better overall performance (∼ 4%),
but also more consistent performance for each individual class. The
highest weight inference accuracy among the three weight groups
is 45.58%, only 3.16% higher than the highest weight inference ac-
curacy under ObscureNet. Although the knowledge inheritance
technique used in KD-Blinder seems somewhat effective in deal-
ing with missing classes, KD-Blinder has a lower anonymization
capability than FedBlinder and significantly underperforms Blinder
trained with the shadow samples. We believe this might be because
the knowledge distillation technique prevents missing class labels
from being updated during backpropagation. This could restrict the
learning capability of the auxiliary model and provide less useful
feedback for the encoder to obscure information about the private
attribute.

Figure 9a compares Blinder and the baselines in terms of their
privacy-preserving performance (i.e., obscuring gender) on Motion-
Sense. In general, the performance of the five anonymizationmodels
follows the same pattern as inMobiAct, with ObscureNet having the
best performance and AAE having the worst performance. The av-
erage intrusive inference accuracy and F1 score under ObscureNet
(AAE) are 53.04% and 52.21% (78.23% and 75.39%), respectively.
In particular, we find AAE can only effectively anonymize the
male gender, whereas the intrusive inference model can accurately
predict the anonymized data with the female gender. FedBlinder
performs better than AAE and slightly worse than Blinder, with
average intrusive inference accuracy and F1 score of 60.06% and
56.8%, respectively. Similar to MobiAct, FedBlinder suffers from
the overfitting issue. KD-Blinder performs significantly worse than
FedBlinder but shows better consistency over the 10 runs with
an average accuracy (F1 score) of 77.50% (76.31%). The overall in-
trusive inference accuracy and F1 score under Blinder are 57.04%
and 56.15%, respectively, underperforming ObscureNet by only 4%.
Despite the minor decline in the anonymization performance of
Blinder compared to ObscureNet, which can be attributed to its
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Figure 9: Intrusive inference and activity recognition accu-
racy on MotionSense for gender anonymization.

distributed training, Blinder still outperforms FedBlinder and KD-
Blinder, and reduces the privacy loss by 36.48% compared to the
case that the sensor data is not anonymized.

7.4 Impact on Data Utility
Figure 8 compares the utility of data for the desired inference task,
i.e., HAR, using different models to anonymize the MobiAct dataset.
It can be seen that the two centralized baselines yield the highest
data utility. Specifically, AAE attains average activity recognition
accuracy of 97.95% (98.57%) and F1 score of 86.69% (89.55%) in the
gender (weight) anonymization task, outperforming ObscureNet
in terms of activity recognition accuracy by 0.70% (1.64%) and F1
score by 1.53% (5.49%). When looking at each individual activity
class, we find that ObscureNet achieves more consistent data utility,
whereas AAE sacrifices the data utility for the upstairs activity.
The data anonymized by FedBlinder and KD-Blinder have nearly
the same utility, which is the lowest among all models in both
anonymization tasks. FedBlinder achieves average activity recogni-
tion accuracy of 90.13% (90.03%) in the gender (weight) anonymiza-
tion task, outperforming KD-Blinder by 0.65% (0.19%). Looking at
individual activities, the classification accuracy of ‘jogging’ under
FedBlinder is particularly low, i.e., more than 20% (15%) below the
classification accuracy of the same activity under ObscureNet in
the gender (weight) anonymization task. With the help of the inter-
class balancing techniques, KD-Blinder improves the classification
accuracy of ‘jogging’ by 12.86% (7.54%) compared to FedBlinder
when anonymizing gender (weight). Thanks to the meta-learning-
based personalized federated learning and rebalancing of the public
attribute distribution, Blinder outperforms both FedBlinder and
KD-Blinder in both anonymization tasks. The average overall activ-
ity recognition accuracy on data anonymized by Blinder is 93.77%
(92.69%) in the gender (weight) anonymization task, only 3.49%
(4.24%) less than the ObscureNet baseline. Looking at the break-
down per activity, the activity recognition accuracy under Blinder
is always higher than 85%. For the walking activity that has the
lowest accuracy, we find that most of the misclassified samples are
confused with climbing up the stairs. This is due to their similar
movement patterns in the horizontal plane with the main difference
being in the vertical plane. This result is encouraging given that
Blinder is trained in a distributed fashion.

In Figure 9b, we report the utility of data for the HAR task on
MotionSense when anonymizing gender. ObscureNet achieves the
highest utility, resulting in average activity recognition accuracy

Overall ≤  80kg > 80kg0

20

40

60

80

100

In
tru

si
ve

 In
fe
re
nc

e 
A
cc

ur
ac

y 
(%

)

Random Guess
Raw Data
AAE
ObscureNet
FedBlinder
KD-Blinder
Blinder

(a) Weight anonymization

Overall ≤  175cm > 175cm0

20

40

60

80

100

In
tru

si
ve

 In
fe
re
nc

e 
A
cc

ur
ac

y 
(%

)

Random Guess
Raw Data
AAE
ObscureNet
FedBlinder
KD-Blinder
Blinder

(b) Height anonymization

Figure 10: Intrusive inference accuracy on the Wi-Fi HAR
dataset for weight and height anonymization.

and F1 score of 94.87% and 92.93%, respectively. Blinder (FedBlin-
der) achieves an average activity recognition accuracy of 93.61%
(83.58%), which is 1.26% (11.29%) lower than ObscureNet, and an
F1 score of 91.18% (77.11%). Despite being trained in a centralized
manner, AAE’s performance is on par with Blinder, with a slightly
lower activity recognition accuracy of 92.84%, but a higher F1 score
of 91.66%. This is because AAE can provide more consistent data
utility across all activities, especially for the challenging activity of
going downstairs. The data anonymized by both FedBlinder and
KD-Blinder have significantly lower utility, with KD-Blinder yield-
ing a 0.69% (0.99%) lower average activity recognition accuracy
(F1 score) than FedBlinder. This is mainly due to the difficulty of
differentiating between walking up and down the stairs. Similarly,
we observe that both Blinder and ObscureNet perform the worst
on walking down the stairs, with an average accuracy of 72.4% and
79.26%, respectively. We believe this is because of the data quality
issues in MotionSense. Similar observations are made in [59] where
the latent representations of walking up and down the stairs are
overlapping, and in [35] where walking down the stairs had the
lowest activity recognition accuracy. This data quality issue could
render the inter-class balancing techniques used in KD-Blinder
less effective as they might further deteriorate the quality of data,
resulting in even lower data utility. Blinder, however, generates
high-quality data samples using the SMOTE-based data synthesis
technique. Note Blinder trains a single model to protect data for
all activities whereas ObscureNet protects each activity using a
separate model. Hence, there is a higher probability for Blinder to
confuse walking down the stairs with activities that have similar
movement patterns.

7.5 Data Anonymization on Wi-Fi Signals
In addition to the two IMU sensor datasets, we further study Blin-
der’s data anonymization capability on the Wi-Fi HAR dataset. We
illustrate the intrusive inference accuracy in Figure 10 and activity
recognition accuracy in Figure 11 for weight and height anonymiza-
tion.

When anonymizing the binaryweight group attribute, ObscureNet
exhibits the best privacy-preserving capability, achieving average
accuracy (F1 score) of 51.15% (51.12%). The overall intrusive infer-
ence accuracy of Blinder is marginally better (closer to the random
guessing level) than the centralized AAE baseline, yet it still un-
derperforms ObscureNet by 9.40%. The distributed FedBlinder and
KD-Blinder baselines underperform Blinder by 12.86% and 17.33%,
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Figure 11: Activity recognition accuracy on the Wi-Fi HAR
dataset for weight and height anonymization.

respectively. We find that although the overall intrusive inference
accuracy of AAE is similar to Blinder, AAE is only effective in pro-
tecting the weight group of under 80kg and does not do a great job
for the other weight group. Similar observations can be made when
anonymizing the height attribute as shown in Figure 10b. The over-
all intrusive inference accuracy of Blinder is 66.33%, outperforming
the centralized AAE baseline by 3.54% with more consistent perfor-
mance across 10 trials. Similar to anonymizing the two IMU datasets
and the weight attribute in the Wi-Fi HAR dataset, FedBlinder and
KD-Blinder have the worse performance among all anonymization
models in this case.

Next, we look at the data utility on theWi-Fi HAR dataset. When
performing weight anonymization, the data anonymized by Ob-
scureNet retains the highest utility, attaining average accuracy (F1
score) of 86.58% (86.41%). Blinder and AAE yield a similar activ-
ity recognition accuracy (F1 score) of 78.62% (78.51%) and 79.34%
(79.22%), respectively, although AAE cannot effectively protect the
privacy of both weight groups. KD-Blinder performs the worst
with respect to data utility, achieving activity recognition accu-
racy of ∼ 60%, which is about 5% lower than FedBlinder. When
anonymizing the height attribute, we find that all models perform
similarly compared to anonymizing the weight attribute. Specifi-
cally, ObscureNet yields the highest average accuracy (F1 score) of
87.16% (86.99%). Blinder achieves an average accuracy (F1 score)
of 79.28% (79.16%), which is similar to AAE that shows an average
accuracy of 79.88% and outperforms FedBlinder and KD-Blinder.
The results show that Blinder can be used to anonymize the RF
sensing modality without sacrificing the HAR accuracy. Since Blin-
der can compete with state-of-the-art data anonymization methods
that are trained on centralized data, we believe it is a promising
anonymization technique as it provides strong privacy protection
in the entire data consumption life cycle.

7.6 Information-theoretic Validation of Blinder
So far we have used deep CNN-based intrusive and desired infer-
ence models to show that an acceptable privacy-utility trade-off can
be achieved using Blinder. We now take an information-theoretic
approach to demonstrate Blinder’s privacy-preserving capability, re-
gardless of the inference models. We use Principal Component Anal-
ysis (PCA) [71] to project each data segment into a low-dimensional
space, thereby extracting the most significant 𝑛 feature components.
This is done for the raw sensor data and the anonymized sensor
data. We then use Mutual Information (MI) [45] to measure the
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Figure 12: Mutual information between the low-dimensional
representation of sensor data and public/private attributes
for the gender anonymization task on MobiAct.

mutual dependency between this representation and the public or
private attribute. Hence, higher MI indicates a stronger dependency
between sensor data and the corresponding attribute.

Figure 12 shows the average MI between the principal compo-
nents extracted from the anonymized sensor data and their cor-
responding public/private attributes as we increase the number
of global training epochs. To obtain this result, we performed sto-
chastic anonymization on MobiAct, assuming activity is the public
attribute and gender is the private attribute. We let 𝑛 = 25 so that it
is equal to Blinder’s latent space dimension. The dashed (horizontal)
line shows MI between the raw sensor data and their corresponding
public/private attributes. We observe that Blinder is able to reduce
the dependency between the anonymized data and the private at-
tribute by around 75% at the end of the first global training epoch.
However, the average MI between sensor data and the public at-
tribute also decreases at the early stage of training, indicating the
data utility is initially sacrificed to obscure the privacy attribute.
As Blinder converges, the average MI between sensor data and the
public attribute returns to its initial level. Meanwhile, the average
MI between sensor data and the private attribute remains at a low
level.

7.7 Obscuring Multiple Private Attributes
We consider the practical yet challenging case when a user attempts
to protect multiple private attributes simultaneously. Using the Mo-
biAct dataset as an example, we set activity as the public attribute
and both gender and weight groups as private attributes. In this
case, two discriminators are used in Blinder to ensure that gender
and weight group cannot be inferred from the latent representa-
tion. Moreover, we concatenate the latent representation with both
private attributes and the public attribute before it is sent to Blin-
der’s decoder. We repeat the experiments 10 times and directly
compare Blinder’s performance with ObscureNet’s performance
as reported in [35]. Specifically, the average activity recognition
accuracy (F1 score) under Blinder is 93.64% (78.17%), which is only
2.07% lower than ObscureNet’s performance. For anonymizing the
gender (weight group) attribute, the average intrusive inference
accuracy under Blinder is 58.36% (55.05%), which is around 6.2%
(4.79%) higher than ObscureNet’s performance. To put it in another
context, when anonymizing both gender and weight, Blinder can
reduce the accuracy of gender and weight-group identification by
39.15% and 36.62% respectively, compared to the case where data is
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Figure 13: Impact of heterogeneous training data on Blinder
and FedBlinder in terms of activity recognition and intrusive
inference on MobiAct for gender and weight anonymization.

not anonymized. This suggests Blinder can protect multiple private
attributes by incorporating additional discriminator modules as
needed.

7.8 Addressing Heterogeneity
We compare the generalizability of the anonymizationmodels when
the clients participating in model training have non-i.i.d. data dis-
tributions. Note that ObscureNet bypasses the non-i.i.d. problem
by using attribute-specific models, which are costly to train in
practice. Hence, we exclude ObscureNet from this evaluation. We
vary 𝑅𝐷 from 1 to 9, i.e., from balanced i.i.d. datasets to the case
where each user’s majority public attribute class has 9× more sam-
ples than the respective minority class. We compare the model’s
anonymization capability in gender and weight anonymization
tasks on MobiAct, and show the result in Figure 13. It can be seen
that the increased skewness in public attribute classes does not
have a noticeable impact on the privacy-preserving capability of
the anonymization models; both Blinder and FedBlinder have stable
performance. However, we notice that data utility declines substan-
tially under FedBlinder with more skewed local public attribute
distributions; the overall activity recognition accuracy in the gender
(weight) anonymization task goes down from 92.49% (91.83%) when
𝑅𝐷 = 1 to 85.86% (81.89%) when 𝑅𝐷 = 9. This implies that FedBlin-
der is more susceptible to imbalanced, non-i.i.d. public attribute
distributions. As we discussed in Section 7.4, FedBlinder achieves
activity recognition accuracy of around 90% on MobiAct, which
contains even more imbalanced public attribute classes (𝑅𝐷 ≈ 40).
This is because the original MobiAct dataset only contains imbal-
anced public attribute classes, but the class distributions are almost
identical among the users.

Blinder, however, is more robust to the imbalanced, non-i.i.d.
data and causes less than 2% decline in data utility in both gender
and weight anonymization tasks when increasing 𝑅𝐷 from 1 to
9. This shows that even without the public attribute rebalancing
technique, Blinder can tackle the non-i.i.d. data problem, where the
public attribute classes are heavily imbalanced.

7.9 Generalizing and Adapting to New Users
We explore whether Blinder generalizes to users who have never
contributed to model training. Since FedBlinder shows variable per-
formance for different activities and private attributes, here we only
focus on evaluating Blinder. Figure 14 shows the accuracy of desired
and intrusive inferences averaged over 5 trials on MobiAct, when
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Figure 14: Generalization to
unseen users on MobiAct
dataset for gender anonymiza-
tion.
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Figure 15: Communication
cost and anonymization per-
formance trade-off on Mobi-
Act.

Blinder is trained to perform gender anonymization. Error bars
indicate the standard deviation. We vary 𝑅𝑈 from 0.5 to 0.9 with
increments of size 0.1. We do not consider 𝑅𝑈 < 0.5 since Blinder’s
anonymization performance varies widely across multiple runs due
to the small number of clients that are being sampled. Results show
that Blinder can effectively learn to anonymize gender attribute
under various 𝑅𝑈 values. It achieves the best privacy-preserving
performance when 32 users (about 90% of all users) collaboratively
train the model, showing an average intrusive inference accuracy of
49.7%. When Blinder is trained collaboratively by 18 users only (50%
of the users), the intrusive inference accuracy increases slightly by
1.6%, which is still close to the accuracy of random guessing.

Turning our attention to data utility, lowering the participation
rate in model training to 𝑅𝑈 = 0.5 has a moderate impact on
utility; the average activity recognition accuracy drops from 94.84%
when 𝑅𝑈 = 0.9 to 89.61% when 𝑅𝑈 = 0.5. But, the lowest activity
recognition accuracy among the 4 activities remains above 80%.
This confirms that Blinder generalizes well to unseen users.

Since Blinder is trained via the personalized federated learning
algorithm, we anticipate that it better generalizes to all users. Even
if the pre-trained Blinder model does not perform optimally for the
unseen users, one can personalize this model through local adapta-
tion. We verify Blinder’s personalization ability when 𝑅𝑈 = 0.5. We
choose the 10 unseen users who had the worst data utility after their
data was anonymized using the pre-trained Blinder, with an aver-
age activity recognition accuracy of 84.47% and intrusive inference
accuracy of 50.61%. For each of these unseen users, we randomly
sample a small portion (< 5%) of their local data and treat it as the
adaptation set to personalize Blinder. The adaptation is performed
on the user’s device by running 80 iterations of local training. We
observe the average data utility under the personalized Blinder
increases by 5.1% to 89.57% across these 10 users. Meanwhile, the
intrusive (gender) inference accuracy remains under ∼ 51% after
personalization. This confirms that Blinder’s anonymization perfor-
mance can be further enhanced for users who did not participate
in the model training through model personalization.

7.10 Trade-off between Communication Cost
and Anonymization Performance

We now study the trade-off between Blinder’s anonymization per-
formance and the communication overhead of the personalized
federated learning algorithm used to train Blinder. Without loss of
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Figure 16: Blinder’s gender anonymization performance for
different batch sizes and global training epochs on MobiAct.

generality, we assume that all users that participate in collaborative
training of Blinder have the same number of data samples, denoted
by 𝐾 . Each user divides its 𝐾 data samples into 𝑡 non-overlapping
batches of data, each of size 𝑏 = 𝑠 + 𝑞, where 𝑠 is the size of the
support set and 𝑞 is the size of the query set. In each round of com-
munication between the server and the selected client (Line 4 in
Algorithm 1), the client uses one batch of data to update the parame-
ters of its local anonymizationmodel before it sends the gradients of
the updated model to the server. Hence, 𝑡 = 𝐾

𝑏
represents the total

number of communication rounds per epoch. Since the gradients
that are sent to the server in each round have a fixed size, the total
communication overhead depends only on 𝑡 for a fixed number of
epochs. While a larger batch size reduces 𝑡 and the communication
overhead accordingly, the client may need more local training steps
(Line 16 to 21 is one training step in Algorithm 1) for the model
to converge, trading communication for local computation. Thus,
Blinder’s anonymization performance depends on both the number
of communication rounds and the number of local training steps.

We tweak the batch size (𝑏 ∝ 1
𝑡 ) to navigate the trade-off be-

tween communication cost and anonymization performance. So
far in our experiments, we have used a batch size 𝑏 = 𝑠 + 𝑞 = 16
with 𝑠 = 1, 𝑞 = 15. We increase 𝑠 and 𝑞 proportionally to obtain the
following batch sizes: 64, 128, and 256. To compensate for fewer
communication rounds when using a larger batch size, we pro-
portionally increase the number of local training steps. Figure 16a
shows an example of Blinder’s training loss for different batch sizes
and communication costs when performing gender anonymization
on MobiAct. It can be readily seen that using fewer communication
rounds per epoch slows down the convergence of Blinder when
training for the same amount of global epochs. As a result, the ac-
tivity inference accuracy achieved by fewer communication rounds
per epoch is reduced compared to the accuracy achieved by more
communication rounds but fewer local training steps as shown
in Figure 16b. We illustrate Blinder’s anonymization performance
over 5 runs in Figure 15. Blinder performs better when it is trained
with more communication rounds (accordingly fewer local training
steps). It achieves average activity recognition of 93.75% and aver-
age intrusive inference accuracy of 53.55% when 𝑏 = 16, 𝑡 = 1000,
Increasing the batch size to 256 (𝑡 = 63), the activity recognition
accuracy falls by around 6% and the intrusive inference accuracy
increases by 5%. Indeed, the amount of communication rounds deter-
mines the communication overhead. Together with the maximum

utility or privacy loss that can be tolerated by the target application,
it would help to find the sweet spot point on this trade-off curve.
8 Deploying Blinder on Mobile and Edge

Devices
8.1 Blinder’s Mobile Application
We develop an Android app and deploy it on smartphones to mea-
sure Blinder’s anonymization latency and power consumption in
the real world. Blinder’s VAE is trained via the proposed person-
alized federated learning algorithm using PyTorch [63]. The pre-
trained model is quantized and serialized such that it becomes
compatible with the PyTorch Mobile framework. The quantized
encoder and decoder have the same size of 6𝑀𝐵. We select 3 An-
droid smartphones with diverse computing powers. They are listed
in Table 2. Our Android app pulls sensor readings from the smart-
phone’s onboard accelerometer and gyroscope. The sampling rate
of both the accelerometer and gyroscope is set to 50𝐻𝑧. Thus, to
achieve real-time data anonymization, Blinder must complete the
anonymization of a data segment before the next data segment
is ready, i.e., within a 200 ms interval. We use the pre-processing
techniques described in Section 7.1. Since the public attribute needs
to be appended to the learned latent representation, a pre-trained
inference model is utilized to predict the user’s public attribute
from the original sensor data segment. In our experiments, we
reuse the desired inference model described in Section 7.4 to pre-
dict the public attribute. The overhead of running this inference
model is measured and lumped with the execution time of other
pre-processing steps. We refer to this total time as preparation time.
The private attribute passed to the decoder is chosen randomly for
stochastic anonymization.

We use PowerTutor [79], an open-source app that takes accu-
rate app-level CPU power consumption measurements, to estimate
the battery drain due to the execution of Blinder. We evaluate the
performance of Blinder when trained for weight anonymization
on MobiAct. The total anonymization latency is reported in Ta-
ble 2. The latency measurement is averaged over anonymizing
1000 sensor data segments and the power consumption is aver-
aged over 20+ minutes of its execution. We find that Blinder’s total
anonymization latency is 8.81 ms on average among the 3 Android
smartphones, which is ∼ 22× faster than our real-time anonymiza-
tion budget. Furthermore, the smartphone’s CPU consumes battery
at around 6.38 J/min when running Blinder, which is around 4×
its idle power consumption. To put it in context, Blinder consumes
around 1.5 − 2× more power than the Google Maps app. Note that
we use a 50𝐻𝑧 sampling rate in our experiment, which is 10× faster
than the default sampling rate used in Android. Thus, Blinder’s
power consumption can be further reduced by adjusting the sam-
pling rate according to the data need of the target application. We
also remark that since the discriminator is just used to train Blinder
and is not loaded when anonymizing sensor data, protecting multi-
ple private attributes is not expected to increase Blinder’s power
draw or computational overhead.

8.2 Anonymization on IoT Edge Devices
Blinder is also deployed on NVIDIA Jetson Nano, which is a rep-
resentative IoT edge device. Jetson is a power-efficient computing
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Device Name Processor Total (ms) Preparation (ms) Encoder (ms) Decoder (ms)
OnePlus 6 Snapdragon 845 10.84 7.55 1.83 1.47
Nokia 6.1 Plus Snapdragon 636 7.05 3.90 1.69 1.46
Samsung Note 4 Exynos 5433 8.55 4.10 2.38 2.06
NVIDIA Jetson Nano Arm Cortex-A57 34.45 22.47 6.16 5.82
NVIDIA Jetson Nano Maxwell GPU 14.76 6.57 3.68 4.51

Table 2: Anonymization latency of Blinder in the weight
anonymization task.

platform, ideal for running applications that could benefit from
GPU acceleration. Our Jetson Nano model has 2 GB of RAM that is
shared by a quad-core CPU and a 128-core GPU. It runs Linux4Tegra
(L4T) OS and NVIDIA Jetpack 4.4 SDK. We installed the PyTorch for
Jetson library to allow the pre-trained Blinder model to be effort-
lessly deployed for real-time anonymization. Since Jetson does not
come with IMU sensors, we simulate sensor data generation using
the APScheduler library [2]. We perform two sets of experiments:
utilizing only the CPU and enabling Jetson’s GPU acceleration.
Other aspects of these experiments are identical to the ones de-
scribed in Section 8.1. As Table 2 shows, when utilizing the CPU
only, Jetson can complete the anonymization task in 34.45 ms on
average, which is much less than our 200 ms time budget. By en-
abling the GPU acceleration capability, the total anonymization
latency decreases by over 40% to 14.76 ms on average. It should
be noted that the total anonymization latency on Jetson is higher
than on smartphones. We believe this is because the OS, required
services, and Blinder are using 2 GB of shared RAM. As a result, run-
ning Blinder on Jetson requires frequent usage of the swap memory,
which runs off a microSD card and has slower I/O performance than
the eMMC/UFS-based storage in smartphones. We do not report
Blinder’s power draw because Jetson has a reliable power supply
(via a USB connector) and is not powered by a battery.

9 Limitations and Discussion
The premise of this work is that there are a number of well-defined
private attributes that users aim to conceal from a passive adver-
sary (described in Section 3) that has access to their sensor data,
for example to make inferences that are valuable to them. One lim-
itation of our work is that Blinder cannot be trained when private
attributes are not well-defined or users deem everything that can
be inferred from their sensor data private, except for a single public
attribute. Additionally, several privacy risks have been identified in
distributed and federated learning that largely stem from sharing
model parameters or gradients with a central server or other clients.
For example, a passive adversary can perform the model inversion
attack to recover the private attribute under certain conditions, and
a more powerful malicious adversary can reduce Blinder’s privacy-
preserving capability through a model poisoning attack. We do not
study these attacks and other adversary models in this work. In
future work, we plan to investigate the potential privacy loss due
to sharing gradients with the server in the personalized federated
learning setting.

10 Conclusion
This paper proposes a novel data anonymization model that can be
deployed on mobile and IoT edge devices. Built on top of a varia-
tional autoencoder, Blinder learns to extract latent representations

that can be conveniently modified to obscure users’ private infor-
mation. We apply meta-learning to federated learning to enable a
number of clients to collaboratively train Blinder, thereby elimi-
nating the need for sending users’ raw sensor data and attributes
to an HBC adversary and providing end-to-end privacy protec-
tion. Blinder employs a public attribute rebalancing technique and
a generative model to tackle the problems related to imbalanced,
non-i.i.d. data in the federated learning setting. Our extensive eval-
uation suggests that Blinder has strong anonymization capability,
can effectively reduce the accuracy of intrusive inferences to nearly
the same level as random guessing, generalizes well to heteroge-
neous data and new users, and can be extended to obscure multiple
user-defined private attributes simultaneously. Furthermore, real-
world deployment of Blinder on smartphones and a representative
edge device confirms that it is suitable for performing real-time
anonymization of timeseries generated by embedded sensors.
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