
Because the oRing operation introduces ambiguity into 
the search process, the optimal tree for this implementa- 
tion may differ from that which is optimal in the ideal 
case. 

A useful algorithm, primarily a modification of the 
routine for designing an ideal tree, has been developed 
for organizing trees based on oRed records. Experi- 
mental retrieval performance on small static files 
(hundreds of records and queries) has been encouraging 
when the same queries are used for both design and 
test of the tree. A more realistic evaluation has not yet 
been undertaken. 

Optimizing the tree structure on the basis of  actual 
queries may be a rash procedure in applications where 
the frequency distribution of fields and values interro- 
gated tends to fluctuate rapidly and markedly. An 
alternative design approach for such problems is to 
assume a uniform probability distribution of queries. 
The method can be economically implemented within 
the f ramework described in this paper. The number of  
queries satisfied by a given a.v. need only be calculated 
analytically rather than obtained by testing samples. A 
similar expedient is to employ a past sample of queries 
only to estimate the parameters of  an assumed prob- 
ability distribution, and to optimize the retrieval tree 
with respect to this distribution. Such an approach is 
simpler than the direct one when there are many queries 
in the design set. It  can also be effected so as to reduce 
the risk due to radical changes in query characteristics. 

The time-varying behavior of  this system is not 
known. Its performance under fluctuations in query 
characteristics and an appreciable update load has yet 
to be evaluated. 

The tree search described may possibly be a fore- 
runner of  retrieval systems whose organization is 
closely tuned to actual operating experience. Since 
design is based on sample queries and records, the 
retrieval tree is potentially adaptive, like a feedback 
control system, continuously reorganizing itself with- 
out manual intervention in order to adjust to changes 
in query and data distributions. 
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The working set model for program behavior has 
been proposed in recent years as a basis for the design 
of scheduling and paging algorithms. Although the 
words "working set" are now commonly encountered 
in the literature dealing with resource allocation, 
there is a dearth of published data on program working 
set behavior. It is the purpose of this paper to present 
empirical data from actual program measurements, 
in the hope that workers in the field might find experi- 
mental evidence upon which to substantiate and base 
theoretical work. 
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Definitions 

The working set W(t,T) of a process is the collec- 
tion of information referenced by the process in the 
time span ( t -  T,t). The domain of definition of t 
and T is time, expressed in some adequate unit, and 
since we are interested in paging machines, we will 
take the domain of definition of W to be the set of 
virtual pages allowed to be referenced. Another vari- 
able, the working set size, w(t,T), is simply the number 
of pages in the working set. Its expected value, E~(w(t, 
T)), is denoted by ~(T). As the process executes, it will 
reference pages not present in the working set. The 
reentry rate, l(t,T), is the number of pages reentering 
the working set per unit time. It is defined as 

l(t,T) = I W( t+T ,T )  -- W(t,T) I 
T 

The notation means that if A and B are sets, I A] 
is the number of elements in the set A, and A -- B is a 
set composed of elements x such that x is an element of 
A and x is not an element of B. The expected value of 
the reentry rate can be written as l(T), a function of 
T alone. It is proved in [1] that 

d ~(T) 
~ ( T )  - 

d T  

The distribution of working set sizes is an interesting 
quantity to consider. Let [G(s,T) = Probability (w(t, 
T) < s), and [g(s,T) = Probability (w(t,T) = s). 

A complete discussion of the working set model 
for program behavior is found in [1]. 

Design of the Experiment 

To investigate program working set behavior, a 
wholly interpretive simulator designed to monitor 
any IBM System/360 program was used. A set of 
routines gathers information on which pages a pro- 
gram references at every instruction. The pages are 
then annotated in a Boolean matrix kept in core. 
When the program requests an I / 0  operation, the 
pages it references are also noted down by a routine 
that examines the channel program. All data reduction 
is done after the monitor relinquishes control. To 
calculate W(t,T) it is sufficient to know W(t,1), since 

W(t,T) = W ( t - I , T - 1 )  13 W(t,1), for T > 1. 

The data are later presented on an IBM 2250 
Graphic Display Unit, and a conversational system 
permits the choice of parameters and of functions to 
be displayed. The data thus presented can be sent upon 
request to an off-line plotter. 

To run the experiments, the monitoring system 
is loaded in a virtual machine running under control 
of  the Cambridge Monitor System, CMS [2]. The re- 
suits correspond to the monitoring of widely used 
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system components, like assemblers and compilers, 
as well as user programs. All programs were run using 
the operating system CMS, which was itself also 
monitored and worked under the illusion of having 
256K 8-bit bytes of memory available in the virtual 
machine. This address space was divided in pages of 
1K, 2K, 4K, and 8K bytes, giving respectively 256, 
128, 64, and 32 pages. This structure permits observa- 
tion of the influence of page size upon the working 
set of programs. 

It must be pointed out that any program running 
under CMS can be monitored. We do not attempt to 
discuss "typical" user behavior in this paper. Our aim 
is to show the type of data that can be obtained and 
some of the conclusions that can be drawn about pro- 
gram behavior. The programs available to us under the 
CMS system have not been written with a paging 
mechanism in mind. On the other hand, care has been 
taken when developing CMS to reorganize the system 
nucleus to produce fewer page exceptions. 

Presentation of Results 

It would be impossible to present all the data and 
all the interesting combinations of parameters. More 
data are found in [10]. Data are presented for the Uni- 
versity of Waterloo's G-level assembler, as modified 
by Grenoble University to run under CMS, which 
assembled a program about 300 instructions long. 
It was the same assembler program used in [3]. All 
data are for a page size of 4096 8-bit bytes, the page 
size actually employed by the IBM System 360/67, 
unless otherwise indicated. 

Figure 1 gives w(t,To), with To fixed at 5000 in- 
structions, for the assembler. The assembler was 
written without a paging mechanism in mind, and it 
does overlaying. Some of the peaks (viz. those at 25000, 
1100000, 1300000, 1550000, and 2000000 instructions) 
as are caused by this overlaying. The other peaks 
are probably caused by changes in the working set 
the assembler enters and exits loops. As T increases, 
the peaks remain, becoming wider in the graph. The 
near-equal-amplitude oscillation about a mean value 
(i.e. from 250000 instructions to 1000000 instruc- 
tions in the case of the assembler) disappears, leaving 
only the maximum value. When the page size is de- 
creased, the relative importance of the peaks de- 
creases. 

Figures 2 and 3 are, respectively, the assembler's 
average working set size as a function of T, together 
with the standard deviation, and the average reentry 
rate. It can be seen that the standard deviation reaches 
a maximum, as predicted by the theory [1]. The co- 
efficient of variation is rather small in all cases, de- 
creasing as T increases. After T = 500000 instructions, 
both the standard deviation and the reentry rate are 
very small. Computing working set sizes at intervals of 
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this order of magnitude allows a process to accumulate Fig. 1. 
about 75 percent of the pages it will need, and the ,o, 
paging rate will be extremely low. The working set size ,o 
will essentially be determined by the heights of the 
peaks. 

Figures 4 and 5 detail the region between 5000 and 7o 
50000 instructions, judged to be most interesting for 
scheduler design [3]. In this range, the standard devia- 
tion is nearly constant even though there are sizable 
differences in working set sizes. The reentry rate curves ~, 
are invariably concave upward. 3o 

Figure 6 presents the frequency function and the 
cumulative distribution function for the working set 
size of the assembler. It seems that programs have ,o 
definite preferences for some working set sizes. There 
has been some debate on whether the distributions 
should be normal [5, 6]. Actually the question that 
arises is, in which range of parameters are normal dis- 
tributions good approximations to the distribution func- Fig. 2. 
tions of working set sizes? How good an approximation 1o, 
is depends, of course, on the criterion used in judging. ,0 
Among the salient characteristics of normal distributions 

ao 

is symmetry about the mean value, where the only 
maximum of the function occurs. It is desirable that the 7o 
function to be approximated share as many charac- 
teristics as possible with the normal distribution func- 
tion. Now choose a value for T, say To, and let ~' 

40 

S== = max w(t, To), S=i, = min w(t, To), 
t t :tO 

S m a x  + S t a i n  2 0  

S o =  2 ' 
10 

so that the frequency function of the working set sizes is 

0 <_ g(s, To) <_ 1, for Smin <~ S < Smax, 
g(s, To) = 0, otherwise. 

Fig. 3. 
For  the normal to be a good approximation to .4~E-0~ 

g(s, To), it is desirable that ~(T0) = So, and that 
.3Sr~E-03 g(s, To) be symmetrical about  So exhibiting only one 

maximum located at So. Now consider the IBM .a,,~-= 
System/360 [9], and fix To = 1 instruction. Every .~E-= 
instruction in this system can reference from a minimum 
of one page, as in the case of register-to-register in- .~+1~-o, 
structions, to a maximum of eight pages, in the case of .,t~-o~ 
an execute instruction distributed over two pages 

. 1 7 4 E - 0 3  

whose subject instruction is also distributed over two 
pages and references two main memory arguments, .131~-oa 
both of which must equally be distributed over two 

. 8 7 1 E - 0 4  

different pages. To anyone familiar with IBM Sys- 
tem/360 programs, it is clear that the number of .,~-o~ 
register-to-register instructions far exceeds the number 
of execute instructions, particularly those so taxing 
that their execution requires eight pages in memory. In 
fact, it is probable that the majority of instructions 
refers only to one page. An analogous argument holds 
at the other end of the spectrum of T values. Thus we 
find that the frequency function will lack the desired 
symmetry, even if the referenced pages are mutually 
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independent. Asymptotic uncorrelation does not seem 
to be a sufficient condition to insure nearly normal 
distribution functions. 

These arguments correspond to T values that are 
outside of the range of interest for system design, but 
it is not clear in which range normal approximations 
are applicable. Figure 6 evidences the same lack of 
symmetry, and the mean value differs from the most 
probable value, in this case, for T values that can be 
considered acceptable for system design. 

Figures 7 and 8 show the variation in working set 
size and in reentry rate as a function of T, using the 
page size as parameter, for the assembler. It can be seen 
that halving the page size less than doubles the average 
working set size. More memory will thus be available 
for multiprogramming, the drawback being the in- 
creased page fault rate. For example, decreasing the 
page size from 4K to 1K roughly quadruples the page 
fault rate. This could mean that paging channels which 
are adequate to handle the page traffic resulting from 
4K page sizes might risk saturation. 

It is rightly pointed out in [7] that the optimal page 
size is primarily influenced by fragmentation and 
efficiency of page transport operations. It is suggested 
that, from the point of view of fragmentation, the op- 
timal page size should be close to 50 words. That this 
optimal page size depends largely on the operating 
system can be seen easily. Consider CP-67 [8]. In this 
operating system every virtual machine can be con- 
sidered as a process, and the whole page table of the 
virtual machine is always present in core. Furthermore, 
in addition to the information contained in the page 
table and intended for the dynamic address translation 
mechanism, it is necessary to have information intended 
for the operating system. An extension to the page table 
is needed. A total of 10 bytes, constantly present in 
main memory, is needed for each page of every virtual 
machine that is logged-into the system. It is easy to 
calculate, based on the formula given in [7], that from 
the point of view of fragmentation and for CP-67, 
the optimal page size ranges from 512~/20 bytes for a 
256K bytes virtual machine, to 512v/80 bytes for a 
1024K bytes virtual machine. This is obviously a 
chicken-versus-egg question, in the sense that one may 
wonder what changes in operating system design would 
have been made had other page sizes been available. 
The fact remains, however, that careful consideration 
must be given to the operating system's structure before 
attempting to calculate optimal system parameters. 
Large page sizes are not only due to considerations 
about efficiency of page transport operations. It is not 
clear whether for all operating systems there is a great 
discrepancy between the page size for maximum storage 
utilization and the page size for maximizing page 
transport efficiency. Also, evidence in [4] seems to 
indicate that better restructuring of programs is achieved 
when large page sizes are employed. 

Data as shown in Figures 7 and 8 may serve as 
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guidelines when trying to determine optimal page size 
from the point of view of page transport efficiency. 
However, many factors come into play when consider- 
ing this problem. The multiprogramming level of the 
system affects cpu utilization. Both the choice of page 
size and the choice of T affect the paging rate. Care 
must be taken to insure that paging channels do not 
become bottlenecks. The hardware characteristics of 
the devices involved and the system's configuration 
must also be taken into consideration. 

Conclusion 

It has been the object of this paper to present data 
about program working set behavior. It is hoped that 
experimental computer scientists will provide similar 
measurements to compare and ascertain patterns in 
program behavior. 
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