
Because the oRing operation introduces ambiguity into
the search process, the optimal tree for this implementa-
tion may differ from that which is optimal in the ideal
case.

A useful algorithm, primarily a modification of the
routine for designing an ideal tree, has been developed
for organizing trees based on oRed records. Experi-
mental retrieval performance on small static files
(hundreds of records and queries) has been encouraging
when the same queries are used for both design and
test of the tree. A more realistic evaluation has not yet
been undertaken.

Optimizing the tree structure on the basis of actual
queries may be a rash procedure in applications where
the frequency distribution of fields and values interro-
gated tends to fluctuate rapidly and markedly. An
alternative design approach for such problems is to
assume a uniform probability distribution of queries.
The method can be economically implemented within
the f ramework described in this paper. The number of
queries satisfied by a given a.v. need only be calculated
analytically rather than obtained by testing samples. A
similar expedient is to employ a past sample of queries
only to estimate the parameters of an assumed prob-
ability distribution, and to optimize the retrieval tree
with respect to this distribution. Such an approach is
simpler than the direct one when there are many queries
in the design set. It can also be effected so as to reduce
the risk due to radical changes in query characteristics.

The time-varying behavior of this system is not
known. Its performance under fluctuations in query
characteristics and an appreciable update load has yet
to be evaluated.

The tree search described may possibly be a fore-
runner of retrieval systems whose organization is
closely tuned to actual operating experience. Since
design is based on sample queries and records, the
retrieval tree is potentially adaptive, like a feedback
control system, continuously reorganizing itself with-
out manual intervention in order to adjust to changes
in query and data distributions.

Operating
Systems

C. Weissman
Editor

Empirical
Working Set
Behavior
Juan Rodriguez-Rosell
The Royal Institute of Technology
Stockholm

The working set model for program behavior has
been proposed in recent years as a basis for the design
of scheduling and paging algorithms. Although the
words "working set" are now commonly encountered
in the literature dealing with resource allocation,
there is a dearth of published data on program working
set behavior. It is the purpose of this paper to present
empirical data from actual program measurements,
in the hope that workers in the field might find experi-
mental evidence upon which to substantiate and base
theoretical work.

Key Words and Phrases: virtual memory, paging,
working set, software measurement, program behavior

CR Categories: 4.3

Received September 1972; revised January 1973

References
1. Sussenguth, E.H. Jr. Use of tree structures for processing
files. Comm. A C M 6, 5 (May 1963), 272-279.
2. Scidmore, A.K., and Weinberg, B.L. Storage and search
properties of a tree-organized memory system. Comm. A C M 6,
1 (Jan. 1963), 28-31.
3. Arora, S.R., and Dent, W.T. Randomized binary search
technique. Comm. ,4CM 12, 2 (Feb. 1969), 77-80.
4. Patt, Y.N. Variable length tree structures having minimum
average search time. Comm. A C M 12, 2 (Feb. 1969), 72-76.
5. Frazer, W.D. A proposed system for multiple descriptor data
retrieval. In Some Problems in Information Science, M. Kochen
(Ed.) Scarecrow Press, New York, 1965, pp. 187-205.
6. Casey, R., and Nagy, G. An autonomous reading machine.
IEEE Trans. Comp. 17, 5 (May 1968), 492-503.

556

Copyright © 1973, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, an algorithm
is granted, provided that ACM's Copyright notice is given and
that reference is made to the publication, to its date of issue, and
to the fact that reprinting privileges were granted by permission
of the Association for Computing Machinery.

This work has been supported by a research grant from IBM
Svenska A.B., and a scholarship from the French government.
Author's address: Division of Applied Mathematics, Brown Uni-
versity, Providence, RI 02912.

Communications September 1973
of Volume 16
the ACM Number 9

http://crossmark.crossref.org/dialog/?doi=10.1145%2F362342.362356&domain=pdf&date_stamp=1973-09-01

Definitions

The working set W(t,T) of a process is the collec-
tion of information referenced by the process in the
time span (t - T,t). The domain of definition of t
and T is time, expressed in some adequate unit, and
since we are interested in paging machines, we will
take the domain of definition of W to be the set of
virtual pages allowed to be referenced. Another vari-
able, the working set size, w(t,T), is simply the number
of pages in the working set. Its expected value, E~(w(t,
T)), is denoted by ~(T). As the process executes, it will
reference pages not present in the working set. The
reentry rate, l(t,T), is the number of pages reentering
the working set per unit time. It is defined as

l(t,T) = I W(t+T ,T) -- W(t,T) I
T

The notation means that if A and B are sets, I A]
is the number of elements in the set A, and A -- B is a
set composed of elements x such that x is an element of
A and x is not an element of B. The expected value of
the reentry rate can be written as l(T), a function of
T alone. It is proved in [1] that

d ~(T)
~ (T) -

d T

The distribution of working set sizes is an interesting
quantity to consider. Let [G(s,T) = Probability (w(t,
T) < s), and [g(s,T) = Probability (w(t,T) = s).

A complete discussion of the working set model
for program behavior is found in [1].

Design of the Experiment

To investigate program working set behavior, a
wholly interpretive simulator designed to monitor
any IBM System/360 program was used. A set of
routines gathers information on which pages a pro-
gram references at every instruction. The pages are
then annotated in a Boolean matrix kept in core.
When the program requests an I / 0 operation, the
pages it references are also noted down by a routine
that examines the channel program. All data reduction
is done after the monitor relinquishes control. To
calculate W(t,T) it is sufficient to know W(t,1), since

W(t,T) = W (t - I , T - 1) 13 W(t,1), for T > 1.

The data are later presented on an IBM 2250
Graphic Display Unit, and a conversational system
permits the choice of parameters and of functions to
be displayed. The data thus presented can be sent upon
request to an off-line plotter.

To run the experiments, the monitoring system
is loaded in a virtual machine running under control
of the Cambridge Monitor System, CMS [2]. The re-
suits correspond to the monitoring of widely used

557

system components, like assemblers and compilers,
as well as user programs. All programs were run using
the operating system CMS, which was itself also
monitored and worked under the illusion of having
256K 8-bit bytes of memory available in the virtual
machine. This address space was divided in pages of
1K, 2K, 4K, and 8K bytes, giving respectively 256,
128, 64, and 32 pages. This structure permits observa-
tion of the influence of page size upon the working
set of programs.

It must be pointed out that any program running
under CMS can be monitored. We do not attempt to
discuss "typical" user behavior in this paper. Our aim
is to show the type of data that can be obtained and
some of the conclusions that can be drawn about pro-
gram behavior. The programs available to us under the
CMS system have not been written with a paging
mechanism in mind. On the other hand, care has been
taken when developing CMS to reorganize the system
nucleus to produce fewer page exceptions.

Presentation of Results

It would be impossible to present all the data and
all the interesting combinations of parameters. More
data are found in [10]. Data are presented for the Uni-
versity of Waterloo's G-level assembler, as modified
by Grenoble University to run under CMS, which
assembled a program about 300 instructions long.
It was the same assembler program used in [3]. All
data are for a page size of 4096 8-bit bytes, the page
size actually employed by the IBM System 360/67,
unless otherwise indicated.

Figure 1 gives w(t,To), with To fixed at 5000 in-
structions, for the assembler. The assembler was
written without a paging mechanism in mind, and it
does overlaying. Some of the peaks (viz. those at 25000,
1100000, 1300000, 1550000, and 2000000 instructions)
as are caused by this overlaying. The other peaks
are probably caused by changes in the working set
the assembler enters and exits loops. As T increases,
the peaks remain, becoming wider in the graph. The
near-equal-amplitude oscillation about a mean value
(i.e. from 250000 instructions to 1000000 instruc-
tions in the case of the assembler) disappears, leaving
only the maximum value. When the page size is de-
creased, the relative importance of the peaks de-
creases.

Figures 2 and 3 are, respectively, the assembler's
average working set size as a function of T, together
with the standard deviation, and the average reentry
rate. It can be seen that the standard deviation reaches
a maximum, as predicted by the theory [1]. The co-
efficient of variation is rather small in all cases, de-
creasing as T increases. After T = 500000 instructions,
both the standard deviation and the reentry rate are
very small. Computing working set sizes at intervals of

Communications September 1973
of Volume 16
the ACM Number 9

this order of magnitude allows a process to accumulate Fig. 1.
about 75 percent of the pages it will need, and the ,o,
paging rate will be extremely low. The working set size ,o
will essentially be determined by the heights of the
peaks.

Figures 4 and 5 detail the region between 5000 and 7o
50000 instructions, judged to be most interesting for
scheduler design [3]. In this range, the standard devia-
tion is nearly constant even though there are sizable
differences in working set sizes. The reentry rate curves ~,
are invariably concave upward. 3o

Figure 6 presents the frequency function and the
cumulative distribution function for the working set
size of the assembler. It seems that programs have ,o
definite preferences for some working set sizes. There
has been some debate on whether the distributions
should be normal [5, 6]. Actually the question that
arises is, in which range of parameters are normal dis-
tributions good approximations to the distribution func- Fig. 2.
tions of working set sizes? How good an approximation 1o,
is depends, of course, on the criterion used in judging. ,0
Among the salient characteristics of normal distributions

ao

is symmetry about the mean value, where the only
maximum of the function occurs. It is desirable that the 7o
function to be approximated share as many charac-
teristics as possible with the normal distribution func-
tion. Now choose a value for T, say To, and let ~'

40

S== = max w(t, To), S=i, = min w(t, To),
t t :tO

S m a x + S t a i n 2 0

S o = 2 '
10

so that the frequency function of the working set sizes is

0 <_ g(s, To) <_ 1, for Smin <~ S < Smax,
g(s, To) = 0, otherwise.

Fig. 3.
For the normal to be a good approximation to .4~E-0~

g(s, To), it is desirable that ~(T0) = So, and that
.3Sr~E-03 g(s, To) be symmetrical about So exhibiting only one

maximum located at So. Now consider the IBM .a,,~-=
System/360 [9], and fix To = 1 instruction. Every .~E-=
instruction in this system can reference from a minimum
of one page, as in the case of register-to-register in- .~+1~-o,
structions, to a maximum of eight pages, in the case of .,t~-o~
an execute instruction distributed over two pages

. 1 7 4 E - 0 3

whose subject instruction is also distributed over two
pages and references two main memory arguments, .131~-oa
both of which must equally be distributed over two

. 8 7 1 E - 0 4

different pages. To anyone familiar with IBM Sys-
tem/360 programs, it is clear that the number of .,~-o~
register-to-register instructions far exceeds the number
of execute instructions, particularly those so taxing
that their execution requires eight pages in memory. In
fact, it is probable that the majority of instructions
refers only to one page. An analogous argument holds
at the other end of the spectrum of T values. Thus we
find that the frequency function will lack the desired
symmetry, even if the referenced pages are mutually

ASSEMBLER

w(t~T0) for T O = 5UUO instruction~

• ,iii•. • . i i , • . . i i . . . , ii j . o . , i i . . . , + i i

t Axis

Each division is 50000 instructions

ASSEMBLER

Average working set size

and standard deviation

+CT)

f

Sdev.(~)

• • ,, . .. ,, . • • • , • • • • • • • • ~ . • ~. ~ . j • , , 0 •

T Axis

Each division is 50000 instructions

Pages

ASSEMBLER

Average reentry rate I(T)

, , , , , , j , , , , m , , , , . t , , , + - . rr. - - r ~ ,

T Axis

Each division is 50000 instructions

558 Communications
of
the ACM

September 1973
Volume 16
Number 9

25

20

15

Sdev. (~)

ASSEMBLER

Average working set size
and standard deviation

~(T)

J

T Axls
Each division is 5000 instructions

Page___~s

Instruction

ASSEMBLER
e reentry rate](T)

Fig. 5.
,436E-03

.3~2E-~

.349E-03

. ~ - 0 3

.261~r-03

.21~-03

.1?4£-03

.13tE-03

.8~'1E-04

. 4 ~ - 0 4

T Axis
Each division is 5000 instructloss

Fig. 6.

1.00

0 .90

0 .80

0.?0

0.60

0.50

0,40

0 .30

0.20

0.10

/
ASSEMBLER

Erequency and distribution functions
for T O = 5000 instructions

Fig. 4.

30

RoZ;E DIEPRPID 20 40 60 80 100

independent. Asymptotic uncorrelation does not seem
to be a sufficient condition to insure nearly normal
distribution functions.

These arguments correspond to T values that are
outside of the range of interest for system design, but
it is not clear in which range normal approximations
are applicable. Figure 6 evidences the same lack of
symmetry, and the mean value differs from the most
probable value, in this case, for T values that can be
considered acceptable for system design.

Figures 7 and 8 show the variation in working set
size and in reentry rate as a function of T, using the
page size as parameter, for the assembler. It can be seen
that halving the page size less than doubles the average
working set size. More memory will thus be available
for multiprogramming, the drawback being the in-
creased page fault rate. For example, decreasing the
page size from 4K to 1K roughly quadruples the page
fault rate. This could mean that paging channels which
are adequate to handle the page traffic resulting from
4K page sizes might risk saturation.

It is rightly pointed out in [7] that the optimal page
size is primarily influenced by fragmentation and
efficiency of page transport operations. It is suggested
that, from the point of view of fragmentation, the op-
timal page size should be close to 50 words. That this
optimal page size depends largely on the operating
system can be seen easily. Consider CP-67 [8]. In this
operating system every virtual machine can be con-
sidered as a process, and the whole page table of the
virtual machine is always present in core. Furthermore,
in addition to the information contained in the page
table and intended for the dynamic address translation
mechanism, it is necessary to have information intended
for the operating system. An extension to the page table
is needed. A total of 10 bytes, constantly present in
main memory, is needed for each page of every virtual
machine that is logged-into the system. It is easy to
calculate, based on the formula given in [7], that from
the point of view of fragmentation and for CP-67,
the optimal page size ranges from 512~/20 bytes for a
256K bytes virtual machine, to 512v/80 bytes for a
1024K bytes virtual machine. This is obviously a
chicken-versus-egg question, in the sense that one may
wonder what changes in operating system design would
have been made had other page sizes been available.
The fact remains, however, that careful consideration
must be given to the operating system's structure before
attempting to calculate optimal system parameters.
Large page sizes are not only due to considerations
about efficiency of page transport operations. It is not
clear whether for all operating systems there is a great
discrepancy between the page size for maximum storage
utilization and the page size for maximizing page
transport efficiency. Also, evidence in [4] seems to
indicate that better restructuring of programs is achieved
when large page sizes are employed.

Data as shown in Figures 7 and 8 may serve as

559 Communications September 1973
of Volume 16
the ACM Number 9

Fig. 7. Fig. 8.

' Instruction

':: !iii !iilI} ! Ill i!,il iil i ill! i ',i !i!!

" " ' t I ' ~ * * ~ - ' + ' t ¢ l t ~ * *

10'
i n 1 0 0 0 £ n a t r u e t : £ o n s

guidelines when trying to determine optimal page size
from the point of view of page transport efficiency.
However, many factors come into play when consider-
ing this problem. The multiprogramming level of the
system affects cpu utilization. Both the choice of page
size and the choice of T affect the paging rate. Care
must be taken to insure that paging channels do not
become bottlenecks. The hardware characteristics of
the devices involved and the system's configuration
must also be taken into consideration.

Conclusion

It has been the object of this paper to present data
about program working set behavior. It is hoped that
experimental computer scientists will provide similar
measurements to compare and ascertain patterns in
program behavior.

Acknowledgments: These experiments have been
conducted at the computing center of the Institute of
Applied Mathematics of the University of Grenoble.
M. Peltier of IBM France Scientific Center has con-
stantly encouraged us in our work, and Professor B.
Arden, has been kind enough to revise the report.
Thanks are also due to the referees and to the editor
for their perceptive criticism.

560

Received February 1972, revised November 1972

References
1. Denning, P.J. Resource allocation in multiprocess computer
systems. Tech. Rep. MAC-TR-50, MIT MAC, Cambridge,
Mass., 1968.
2. CP-67/CMS User's guide. Form GH20-0859-0. IBM Corp.
Tech. Pub. Dep.
3. Rodriguez-Rosell, J. Experimental data on how program
behavior affects the choice of scheduler parameters. Third ACM
Symposium on Operating Systems Principles, Stanford U., 197 I.
4. Hatfield, D.J., and Gerald, J. "Program restructuring for
virtual memory." lBMSyst. J. 10, 3 (1971).
5. Coffman, E.G., and Ryan, T.A. A study of storage
partitioning using a mathematical model of locality. Comm.
ACM15, 3 (Mar. 1972), 185-190.
6. Denning, P.J., and Schwartz, S.C. Properties of the working
set model. Comm. ACM 15, 3 (Mar. 1972), 191-198.
7. Denning, P.J. Virtual memory. Computing Surveys, 2, 3,
1970.
8. CP program logic manual. Form GY20-0590-0. IBM Corp.
Tech. Pub. Dep.
9. IBM System/360 principles of operation. Form A22-6821-4.
IBM Corp. Tech. Pub. Dep.
10. Rodriguez-Rosell, J. The working set behavior of some
programs. Tech. Rept. NA 72-51, Dep. of Inf. Proc., The Royal
Institute of Technology, Stockholm, Sweden, 1972.

Communications September 1973
of Volume 16
the ACM Number 9

