
Programming T.A. Standish
Languages Editor

A Simple Technique for
Structured Variable
Lookup
Geoffrey W. Gates and David A. Poplawski
Michigan State University

A simple technique for the symbol-table lookup of
structured variables based on simple automata theory
is presented. The technique offers a deterministic solution
to a problem which is currently handled in a
nondeterministic manner in PL/I and COBOL compilers.

Key Words and Phrases: symbol table organization,
PL/I and COBOL structured variables

CR Categories: 4.12

Introduction

Two programming languages commonly used today,
PL/I and COBOL, offer the programmer flexibility in
defining his data layout by the use of structured vari-
ables. Figures 1 and 2 show a typical three-level struc-
ture from a PL/I program. Ordinarily various data
attributes such as type and length would be specified
for each name; however, for the purpose of this paper,
the information is superfluous and will be omitted.

The tree structure in Figure 2 illustrates how nicely
the structured variable delineates the hierarchical na-
ture of the data. For instance, each ADDRESS must be
made up of three lines. The primary advantage is the
multitude of referencing methods for the actual use of
the variables. Ordinarily, each item can be referenced
by its tree name, that is, the list of all nodes down to

Copyright © 1973, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

Authors' address: Computer Science Department, Michigan
State University, East Lansing, MI 48823.

561

and including the referenced node. For example, the
city name would be referred to as

ADDRESS. THIRD_LINE. CITY

Making use of the hierarchical nature of the structured
variable, the entire street address or second line could
be referred to as

ADDRESS.SECOND_LINE

In this last example, ADDRESS is said to qualify
SECOND_LINE, thus making the reference specific; and
the entire reference is called a qualifier list.

All is not this simple since, in the general case, the
entire tree name need not be given. The city name
could also be referenced as

ADDRESS.CITY or THIRD_LINE.CITY

or even just CITY. This is included for the benefit of the
programmer, but does nothing to aid the compiler
writer. To further complicate the situation, each
qualifier list is not necessarily unique. In the above
example, ADDRESS could be either the entire three line
address or simply the street number in the second line.
This conflict could be cleared by requiring all names to
be unique, however the only requirement which is ac-
tually imposed is that any particular qualifier list refer
to a unique node. Thus ADDRESS would not be permitted
even though the entire structure is legal. The rule is
that only enough qualifiers to make a reference unique
are required although others are allowed.

One of the basic functions needed in any compiler is
the ability to maintain a symbol table and to look up
variable name references in this table. In languages
such as FORTRAN and ALGOL this is usually accomplished
through the use of a sequentially ordered symbol table
and some type of hash function for performing the table
lookup. This is usually the most efficient solution.
Figure 3 illustrates that this straightforward technique
is not well suited to PL/I or COBOL. Where in FORTRAN
or ALGOL each name appears only once (in a subroutine
or block) with a single set of attributes, in this case
each name appears twice and may very possibly have
different attributes in each place. In other words, the
actual symbol table entries cannot be ,4 or B or C or D,
but their uniquely qualified occurrences, such as
,4.B.C, ,4.B.D, etc.

The problem to be solved, then, is the recognition
that while ,4.B is a valid reference because it is unique,
,4.C is not, since it may be either A.B.C or A.C
(where C is at level 2).

Current Solution

The solution to this problem used in a typical com-
piler [1, 2] consists of two parts. First, a standard hash
function is applied to the first (left-most) qualifier
in the reference. Instead of getting an address in the

Communications September 1973
of Volume 16
the ACM Number 9

http://crossmark.crossref.org/dialog/?doi=10.1145%2F362342.362358&domain=pdf&date_stamp=1973-09-01

Fig. 1. PL/I structured vari-
able, example I.
DECLARE 1 ADDRESS

2 FIRST_LINE

3 NAME

3 TITLE

2 S E C O N D _ L I N E

3 ADDRESS

3 STREET NAME

2 THIRDLINE

3 CITY

3 STATE

3 Z I P C O D E

Fig. 2. Tree structure associated with the structured variable in
Figure 1.
LEVEL

1 ADDRESS

2 FIRSTLINE SEGONDLINE THIRD LINE

3 NAME TITLE ADDRESS STREET NAME CITY STATE ZIP CODE --

Fig. 3. Example 2.
DECLARE 1 A

B

3

3

2 C

3

J B

2 A

symbol table which will give the attributes of the vari-
able, the resulting address is an entry into a complicated
structure which is simply a replica of the original struc-
ture with convenient links added. Figure 4 shows such
a structure for example 2. In this figure, the left-most
box in each row (boxes 1, 4, 7, and 10) would contain
the actual display code name of the variable to avoid
needless duplication. Each of the remaining boxes repre-
sents one uniquely qualifiable instance of the name.
The dashed lines link different occurrences of the same
name, the solid lines actually represent the hierarchical
structure of the data, linking each name to one of its
successors.

The structure shown in Figure 4 obviously contains
all the information in the original structured variable
and thus can be used to lookup any desired reference.
The following procedure accomplishes just this.
1. Apply the hash function to the first qualifier in the
list to find the entry point into the structure. This will
point to one of the rows shown in Figure 4.
2. List all paths leaving all occurrences of this name
as candidates. The remaining steps are repeated for
each candidate.
3. Pick a candidate and delete it. Follow the path to its
successor. Find the name. Compare this name with
the next qualifier.
4. If the names compare, bypass the qualifier and add
all paths out of the box to the list of candidates.
5. If the names do not compare, add all paths out of
the box to the list of candidates.
6. A candidate is disqualified if the hierarchy is ex-
hausted before the list of qualifiers is used up.
7. A candidate is added to the list of final candidates if
its qualifiers are exhausted before the hierarchy is.

This process is repeated until all candidates are either
disqualified or added to the list of final candidates.
If there are no final candidates, the item is not defined.
If there is one final candidate, the item is uniquely
defined and referenced. If there is more than one final
candidate, the reference is ambiguous and therefore
not allowed.

As an example, the procedure may be applied to the
reference A.C. After the application of step 2 above
the list of candidates is: Box 2 path 1, Box 2 path 2,
Box 3. Applying steps 3 to 7 on the first candidate, the
new list is: Box 2 path 2, Box 3, Box 5 path 1, Box 5

562

Fig. 4. Typical symbol table data structure for example 2.
I

I I
I

.... r - - -1BOX0 r

F . b

U_~ J

Fig. 5. Application of current Fig. 6. Application of curren
method to A.C. method to A . B . A .

I t e r a t i o n B y p a s s I t e r a t i o n B y p a s s
of 3 to 7 C a n d i d a t e s q u a l i f i e r o f 3 to 7 C a n d i d a t e s q u a l i f i e r

Box Z pa th 1 ye s (A) Box ~ p a t h I y e s (A)
Box 2 pa th 2 B o x 2 pa th 2
Box 3 Box 3

1 Box 2 pa th 2 no
Box 3 1 B o x ~ p a t h Z y e s (D)

B o x d
Box 5 pa th 1 B o x 5 pa th i
Box 5 pa th Z BOX 5 path 2

2 Box 3 ye s (C)
B o x 5 pa th I 2 B o x 3 no
B o x 5 pa th Z Box 5 pa th 1
Box Z pa th Z (f inal) Box 5 pa th Z

Box 9

3 Box 5 pa th 1 no
Box 5 pa th 2 d Box 5 pa th 1 n o
Bo x z path z (f inal) Box 5 p a t h 2

Box 9
4 Box 5 path 2 no

Box 2 path z (f inal) 4 Box 5 pa th 2 no
B o x 9

5 Box 2 path 2 (f inal) ye s (C) Box i I
Box 5 path Z (f ina l t

5 B o x 9 no

A m b i g u o u s , e i t h e r A. C o r A. B. C Box 11
B o x 8

6 Box 11 n o
Box 8
B o x 12

Fig 7. Application of current 7 Box S . o

method to B . C . Bo~ lZ
Bypass 7 Box 8 no

B o x lZ I t e r a t i o a
of 3 to 7 C a n d i d a t e s q u a l i f i e ~

8 Box 12 no
B o x 5 pa th I y e s (B)
Box 5 path 2
Box 6 9 -- no

1 Box 5 path 2 no
B o x 6
Box 11

2 Box 6 yes (C)
Box 11
Box 8 (f ina l }

3 Box I f no
Box 3
Box 8 (f ina l)

4 Box 3 no
B o x 8 (f inal)

5 Box 8 (f inal) no

U n i q u e l y d e f i n e d r e f e r e n c e B.C.

U n d e f i n e d reference

Communications September 1973
of Volume 16
the ACM Number 9

Fig. 8. Application of step 1 in the construction of the nondeter-
ministic finite state automaton for example 2.

QUALIFER

, S T ~ A B C D

S A B

A -- A.B A.C .-

B B.A

A.B -- A.B.C A.B.D

A.C A.C.D

B.A

A.B.C-

A.B.D

A.C.D

Fig. 9. Final nondeterministic finite state automaton lbr example 2.

Q U A L I F I E R

A C D B

S A B.A B A.B A.C A.B.C

A -- A.B A.C A.B.C

B B.A

A.B A,B.C

A.C

B.A

A,B,C

A.B.D

A,C.D

A.B.D A.C.D

A.B.D A.C.D

A.B.D

Fig. 10. Deterministic finite state automaton for example 2.

s

A B . A

B A . B

A . C A . B . C

A . B . D A . C . D

A . B

B . A

A . B . C

A . B . D

A . C . D

Q U A L I F I E R

1

z

3

4

5

6

7

8

9

10

path 2, and the next qualifier is not bypassed. The entire
procedure is carried out in Figure 5. Figures 6 and 7
contain additional examples.

The obvious disadvantage of this method is the re-
quirement for several paths through the qualifier list
and the resulting enumeration of all possible paths.
The internal symbol table structure directly reflects the
original structured variable and is thus easy to construct.
However, since the table is constructed only once while
several references will be made to it, it would be better
to put extra effort into the construction so that each
reference requires only a single pass through the qualifier
list.

563

Deterministic Solution

The solution to this is recognition of the fact that
the original data structure for example 2 is just another
method of describing a regular expression [3] and all
possible legal qualifications are simply cases of this
regular expression. Furthermore, if the finite state
automaton which accepts the regular expression is
constructed in a clever way, it will produce all possible
final candidates in one pass through the qualifier list.

If we define A to be the string of length 0 and 3~ to
be the regular expression A U X, that is, zero or one
occurrence of the symbol X, then we can apply the
language of regular expressions to example 2 pro-
ducing:

A(/3 (C Ul:3) U(~/)) UB((~ UD) U C/) U C U D U
BA UA

While this representation does not convey any new
information about this particular structure, it does allow
the application of some of the basic results of automata
theory to the problem. First, since the data structure can
be represented by a regular expression [4, Th. 3.10],
there is a nondeterministic finite state automaton which
accepts the regular expression. This is in essence what
the process described above and in Figures 5, 6, and 7
implements. However, due to the nondeterministic
nature of the solution, enumeration of all solutions is
required. However, by [4, Th. 3.3] if a nondeterministic
machine exists, there is an equivalent deterministic
machine, thus eliminating the need for enumeration.

The procedure for construction of the nondetermin-
istic machine is as follows:
1. In addition to the unique start state, S, each state is
labeled by the longest string of qualifiers which goes
from S to the state. The interconnections representing
these longest strings are filled in. (See Figure 8.)
2. Form the closure of the machine resulting from
step 1. That is, since state S can reach state A, copy row
A into row S. Repeat until there are no more copies to
be made. (See Figure 9.)

The deterministic machine corresponding to this
may be constructed as indicated in the proof of [3, Th.
3.3] and is shown for example 2 in Figure 10.

This machine is used by starting in state S and
applying the qualifiers in a left-to-right order. The quali-
fier list is illegal if a required transition is not present in
the machine. Otherwise, when the qualifier list is ex-
hausted, if the deterministic machine is in a state which
represents a single state from the nondeterministic
machine, the item is correctly defined and referenced.
If the final deterministic state represents two or more
states from the nondeterministic machine, then the
item is ambiguous.

The machine finally reached in Figure 10 may then
be applied to various qualifier lists. For example, A.C
ends in state 4, A.C and A.B. C, and is thus ambiguous.

Communications September 1973
of Volume 16
the ACM Number 9

The list A . B . A gets as far as state 6 and has no transition
and is therefore undefined. The list B. C ends in state 8,
A.B.C and is uniquely defined.

Application to Cobol

The above discussion has been concerned with struc-
tured variables in PL/I. However, COBOL also has struc-
tured variables which are similar in every detail except
the actual referencing. Where, in PL/I a reference
would be made as A.B. C, going down the tree, in COBOL
the same variable would be referred to as C OF B OF A.

At first, it would appear that the deterministic finite
state automaton could be constructed in an analogous
way. However, since the list of qualifiers goes from
most specific to least specific this cannot be done. A
machine can be constructed which will tell whether or
not a particular reference is legal but will not give the
specifically referenced variable. This is due to the fact
that the process moves up the tree ending at the top or
broadest reference. The solution to this problem is
simply to stack the qualifiers as encountered in a LIFO
manner. When the end of the qualifier list is reached,
remove the qualifiers one at a time and apply to the
machine constructed above.

Implementation

The discussion above gives an explanation and
motivation of the proposed method. As usual, this form
is not always the most efficient for implementation and
this is true here, too. In this case, an efficient construc-
tion algorithm can be arrived at by considering the form
of the transition matrix for the final deterministic
machine. The matrix appears to be constructed of sev-
eral roughly upper triangular structures where the
transitions in each row are a subset of those in the row
above. Thus, it will be advantageous to construct the
machine working up from the bottom of these tri-
angular portions. The following construction method
makes use of this information to construct the automa-
ton and the symbol table simultaneously.

This method requires a pushdown stack called
CURRENT-STATE, an expandable list called TRANSITIONS
and some mechanism for making entries in the symbol
table. Notice that the initial entry for each unique name
(string of characters) can be made and looked up by
use of a hash function or other traditional technique.
CURRENT--STATE refers specifically to the top element of
the stack and is initialized to 0, the starting state.
1. Get the next name in the structure. (The structure
is scanned going from first to last statement in order of
appearance.)
2. Look up the name in the symbol table. If it doesn't
appear yet, add a header cell containing the display
code characters (column one in Figure 1 I).

564

Fig. 11. Symbol table structure for deterministic look-up.

Box 3 [=1

3. Add a new occurrence of this name with the appro-
priate data attributes (columns two and three, Figure 11).
4. Add a transition from CURRENT_STATE to the new
occurrence of the particular name. In doing this, the
symbol table addresses (box numbers in Figure I1)
should be used rather than actual display code strings.
5. If the next entry to be scanned is at a higher level
number than the current entry, push the new occurrence
on CURRENT_STATE and go to 1.
6. If the next entry to be scanned is at the same level
number, go to 1.
7. If the next entry to be scanned is at a lower level
number, pop CURRENT-STATE once for each level lower
and go to 1.

The results of applying these steps to a structured
variable is a symbol table with one entry for each quali-
fiable occurrence of a name and a list of transitions
(nondeterministic) for doing the look-up. Figure 11
shows the symbol table representation for the structure
in Figure 3. Notice that this diagram is similar to the
one in Figure 4 only without as many links. This link
information is given in the transition list in Figure 12.
The box numbers represent symbol table addresses. The
only restriction on these addresses is that the occur-
rences of the names must be assigned ascending ad-
dresses in the order in which they are encountered.

The set of transitions constructed above must be
expanded to form the closure described above and must
be made deterministic. These two operations can be
accomplished simultaneously as follows:
1. Sort the transitions into descending order by current
state.
2. Move all transitions for the next state to be processed
(initially the first state) to a work area. Remove the

current state and save it.
3. For each "next state" add to the working storage
all transitions out of the state. Again, strip off the cur-
rent state and throw it away. Repeat until no more
transitions are added. This gives the closure of this one
state. Notice that each "next state" must either appear

Communications September 1973
of Volume 16
the ACM Number 9

Fig. 12. Sorted nondeterministic transitions
refers to a box number in Figure 11).

Current Input Next
state symbol state
11 1 12
9 7 10
4 7 8
4 5 6
2 5 9
2 3 4
0 3 11
0 1 2

(each entry

Fig. 13. Construction of deterministic machiqe before and
after processing state 2.

State set

State Transitions
11 I 12
9 7 10
4 5 6

7 8
Working storage

Current state 2
Transitions
3 4
5 9
5 6 from state 4
7 8 from state 4
7 10 from state 9
State set (after this step)

State Transitions
11 1 12
9 7 10
4 5 6

7 8
2 3 4

5 13 combination of states 9 and 6
7 14 combination of states 8 and 10

in the state set (initially empty) or not appear at all (a
state with no transitions ou t) because o f the order o f
address assignment.
4. Sort the contents o f the working storage on input
symbol and make deterministic (one transit ion per
input symbol) . Keep track o f combined states.
5. Add the result o f step 4 to the state set, and empty
the working storage.
6. At this point, certain state combinat ions have been
introduced as a result o f making the machine deter-
ministic. These may be satisfied one at a time in the
following manner. (a) Generate a unique number for
this combinat ion. (b) Copy all transitions f rom any
state in the combinat ion t o the working storage. All
states required must already be in the state set because
o f the order o f address assignment. (c) Perform steps 4
and 5 above. (d) Repeat until all state combinat ions
are satisfied and then return to step 2.

This process can best be illustrated by an example.
Figure 13 shows the contents o f the state set and work-
ing storage when state 2 f rom Figure 12 is being proc-
essed. Figure 14 shows the final state set. This final state
set, plus the symbol table, provides all the informat ion
needed to perform the deterministic table look-up.

This analysis provides one further piece o f informa-
t ion which can be usefully included in a compile-t ime
error diagnostic. Realizing that the machine must
always start in state 0, it is obvious that it is uncon-
nected. That is, some states (and therefore occurrences
o f variables) can never be qualified uniquely. In the
example in Figure 14, states 2, 9, 11 cannot be reached,
indicating that occurrences A, A . C , and B cannot be
used. Looking at the initial structure, this is the case,
since referring to A could be either the A at level 1 or
the A at level 2 and, while the A at level 2 can be
uniquely qualified, there is no possibility of qualifying
one at level 1.

Fig. 14. Final deterministic machine state set.

State set

State Transitions
11 1 12
9 7 10
4 5 6

7 8
2 3 4

5 13 combination of states 6 and 9
7 14 combinations of states 8 and 10

13 7 10
0 1 15 combination of states 2 and 12

3 16 combination of states 4 and 11
5 13 combination of states 6 and 13"
7 14 combination of states 8 and 10

15 3 4
5 13
7 14

16 1 12
5 6
7 8

* state 13 already includes state 6

C o n c l u s i o n

The discussion presents an application of simple
au tomata theory to symbol table organizat ion and
lookup. It clearly demonstrates the trade-off between
construct ing the symbol table and being able to easily
reference items. Fo r most applications the second alter-
native would seem preferable.

Received June 1972

References
1. Internal Reference Specifications, 64/65/6600, COBOL
Compiler, Version 3.0. Control Data Corp., 1967.
2. Gries, David. Compiler Construction for Digital Computers.
Wiley, New York, 1971, pp. 239-240.
3. Harrison, Michael A. Introduction to Switching and Automata
Theory. McGraw-Hill, New York, 1965.
4. Hopcroft, John E., and Ullman, Jeffrey D. Formal Languages
and Their Relation to Automata. Addison-Wesley, Reading,
Mass., 1969.

565 Communications September 1973
of Volume 16
the ACM Number 9

