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A simple technique for the symbol-table lookup of 
structured variables based on simple automata theory 
is presented. The technique offers a deterministic solution 
to a problem which is currently handled in a 
nondeterministic manner in PL/I and COBOL compilers. 
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Introduction 

Two programming languages commonly used today, 
PL/I and COBOL, offer the programmer flexibility in 
defining his data layout by the use of structured vari- 
ables. Figures 1 and 2 show a typical three-level struc- 
ture from a PL/I program. Ordinarily various data 
attributes such as type and length would be specified 
for each name; however, for the purpose of this paper, 
the information is superfluous and will be omitted. 

The tree structure in Figure 2 illustrates how nicely 
the structured variable delineates the hierarchical na- 
ture of the data. For instance, each ADDRESS must be 
made up of three lines. The primary advantage is the 
multitude of referencing methods for the actual use of 
the variables. Ordinarily, each item can be referenced 
by its tree name, that is, the list of all nodes down to 
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and including the referenced node. For example, the 
city name would be referred to as 

ADDRESS. THIRD_LINE. CITY 

Making use of the hierarchical nature of the structured 
variable, the entire street address or second line could 
be referred to as 

ADDRESS.SECOND_LINE 

In this last example, ADDRESS is said to qualify 
SECOND_LINE, thus making the reference specific; and 
the entire reference is called a qualifier list. 

All is not this simple since, in the general case, the 
entire tree name need not be given. The city name 
could also be referenced as 

ADDRESS.CITY or  THIRD_LINE.CITY 

or even just CITY. This is included for the benefit of the 
programmer, but does nothing to aid the compiler 
writer. To further complicate the situation, each 
qualifier list is not necessarily unique. In the above 
example, ADDRESS could be either the entire three line 
address or simply the street number in the second line. 
This conflict could be cleared by requiring all names to 
be unique, however the only requirement which is ac- 
tually imposed is that any particular qualifier list refer 
to a unique node. Thus ADDRESS would not be permitted 
even though the entire structure is legal. The rule is 
that only enough qualifiers to make a reference unique 
are required although others are allowed. 

One of the basic functions needed in any compiler is 
the ability to maintain a symbol table and to look up 
variable name references in this table. In languages 
such as FORTRAN and ALGOL this is usually accomplished 
through the use of a sequentially ordered symbol table 
and some type of hash function for performing the table 
lookup. This is usually the most efficient solution. 
Figure 3 illustrates that this straightforward technique 
is not well suited to PL/I or COBOL. Where in FORTRAN 
or ALGOL each name appears only once (in a subroutine 
or block) with a single set of attributes, in this case 
each name appears twice and may very possibly have 
different attributes in each place. In other words, the 
actual symbol table entries cannot be ,4 or B or C or D, 
but their uniquely qualified occurrences, such as 
,4.B.C, ,4.B.D, etc. 

The problem to be solved, then, is the recognition 
that while ,4.B is a valid reference because it is unique, 
,4.C is not, since it may be either A.B.C or A.C 
(where C is at level 2). 

Current Solution 

The solution to this problem used in a typical com- 
piler [1, 2] consists of two parts. First, a standard hash 
function is applied to the first (left-most) qualifier 
in the reference. Instead of getting an address in the 
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Fig. 1. PL/I structured vari- 
able, example I. 
DECLARE 1 ADDRESS 

2 FIRST_LINE 

3 NAME 

3 TITLE 

2 S E C O N D _ L I N E  

3 ADDRESS 

3 STREET NAME 

2 THIRDLINE 

3 CITY 

3 STATE 

3 Z I P C O D E  

Fig. 2. Tree structure associated with the structured variable in 
Figure 1. 
LEVEL 

1 ADDRESS 

2 FIRSTLINE SEGONDLINE THIRD LINE 

3 NAME TITLE ADDRESS STREET NAME CITY STATE ZIP CODE -- 

Fig. 3. Example 2. 
DECLARE 1 A 

B 

3 

3 

2 C 

3 

J B 

2 A 

symbol table which will give the attributes of the vari- 
able, the resulting address is an entry into a complicated 
structure which is simply a replica of the original struc- 
ture with convenient links added. Figure 4 shows such 
a structure for example 2. In this figure, the left-most 
box in each row (boxes 1, 4, 7, and 10) would contain 
the actual display code name of the variable to avoid 
needless duplication. Each of the remaining boxes repre- 
sents one uniquely qualifiable instance of the name. 
The dashed lines link different occurrences of the same 
name, the solid lines actually represent the hierarchical 
structure of the data, linking each name to one of its 
successors. 

The structure shown in Figure 4 obviously contains 
all the information in the original structured variable 
and thus can be used to lookup any desired reference. 
The following procedure accomplishes just this. 
1. Apply the hash function to the first qualifier in the 
list to find the entry point into the structure. This will 
point to one of the rows shown in Figure 4. 
2. List all paths leaving all occurrences of this name 
as candidates. The remaining steps are repeated for 
each candidate. 
3. Pick a candidate and delete it. Follow the path to its 
successor. Find the name. Compare this name with 
the next qualifier. 
4. If the names compare, bypass the qualifier and add 
all paths out of the box to the list of candidates. 
5. If the names do not compare, add all paths out of 
the box to the list of candidates. 
6. A candidate is disqualified if the hierarchy is ex- 
hausted before the list of qualifiers is used up. 
7. A candidate is added to the list of final candidates if 
its qualifiers are exhausted before the hierarchy is. 

This process is repeated until all candidates are either 
disqualified or added to the list of final candidates. 
If there are no final candidates, the item is not defined. 
If there is one final candidate, the item is uniquely 
defined and referenced. If there is more than one final 
candidate, the reference is ambiguous and therefore 
not allowed. 

As an example, the procedure may be applied to the 
reference A.C. After the application of step 2 above 
the list of candidates is: Box 2 path 1, Box 2 path 2, 
Box 3. Applying steps 3 to 7 on the first candidate, the 
new list is: Box 2 path 2, Box 3, Box 5 path 1, Box 5 
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Fig. 4. Typical symbol table data structure for example 2. 
I 

I I 
I 

.... r - -  -1BOX0 r 

F . . . . . . . . . . . . . . . . . . . .  b 

U_~ . . . . .  J 

Fig. 5. Application of current Fig. 6. Application of curren 
method to A.C. method to A . B . A .  

I t e r a t i o n  B y p a s s  I t e r a t i o n  B y p a s s  
of 3 to  7 C a n d i d a t e s  q u a l i f i e r  o f  3 to 7 C a n d i d a t e s  q u a l i f i e r  

Box Z pa th  1 ye s  (A) Box ~ p a t h  I y e s  (A) 
Box 2 pa th  2 B o x  2 pa th  2 
Box  3 Box  3 

1 Box 2 pa th  2 no 
Box 3 1 B o x  ~ p a t h  Z y e s  (D) 

B o x  d 
Box 5 pa th  1 B o x  5 pa th  i 
Box 5 pa th  Z BOX 5 path 2 

2 Box 3 ye s  (C) 
B o x  5 pa th  I 2 B o x  3 no 
B o x  5 pa th  Z Box  5 pa th  1 
Box Z pa th  Z ( f inal )  Box 5 pa th  Z 

Box 9 

3 Box 5 pa th  1 no 
Box 5 pa th  2 d Box  5 pa th  1 n o  
Bo x  z path  z ( f inal )  Box  5 p a t h  2 

Box  9 
4 Box  5 path 2 no 

Box 2 path  z ( f inal )  4 Box 5 pa th  2 no 
B o x  9 

5 Box 2 path  2 ( f inal )  ye s  (C) Box  i I  
Box 5 path Z ( f ina l t  

5 B o x  9 no 

A m b i g u o u s ,  e i t h e r  A. C o r  A. B. C Box  11 
B o x  8 

6 Box  11 n o  
Box 8 
B o x  12 

Fig 7. Application of  current 7 Box S . o  

method to B . C .  Bo~ lZ 
Bypass 7 Box 8 no 

B o x  lZ  I t e r a t i o a  
of 3 to 7 C a n d i d a t e s  q u a l i f i e ~  

8 Box  12 no 
B o x  5 pa th  I y e s  (B) 
Box 5 path 2 
Box 6 9 -- no 

1 Box 5 path 2 no 
B o x  6 
Box 11 

2 Box 6 yes  (C) 
Box 11 
Box 8 ( f ina l }  

3 Box I f  no 
Box 3 
Box 8 ( f ina l )  

4 Box 3 no 
B o x  8 ( f inal )  

5 Box 8 ( f inal )  no 

U n i q u e l y  d e f i n e d  r e f e r e n c e  B.C.  

U n d e f i n e d  reference 
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Fig. 8. Application of step 1 in the construction of the nondeter- 
ministic finite state automaton for example 2. 

QUALIFER 

, S T ~  A B C D 

S A B . . . .  

A -- A.B A.C .- 

B B.A . . . . . .  

A.B -- A.B.C A.B.D 

A.C . . . .  A.C.D 

B.A . . . . . .  

A.B.C . . . . .  .- 

A.B.D . . . . . .  

A.C.D . . . .  .. 

Fig. 9. Final nondeterministic finite state automaton lbr example 2. 

Q U A L I F I E R  

A C D B 

S A B.A B A.B A.C A.B.C 

A -- A.B A.C A.B.C 

B B.A . . . .  

A.B . . . .  A,B.C 

A.C . . . . . .  

B.A . . . . . .  

A,B,C . . . . . .  

A.B.D . . . . . .  

A,C.D . . . . . .  

A.B.D A.C.D 

A.B.D A.C.D 

A.B.D 

Fig. 10. Deterministic finite state automaton for example 2. 

s 

A B . A  

B A . B  

A . C  A . B . C  

A . B . D  A . C . D  

A . B  

B . A  

A . B . C  

A . B . D  

A . C . D  

Q U A L I F I E R  

1 

z 

3 

4 

5 

6 

7 

8 

9 

10 

path 2, and the next qualifier is not bypassed. The entire 
procedure is carried out in Figure 5. Figures 6 and 7 
contain additional examples. 

The obvious disadvantage of this method is the re- 
quirement for several paths through the qualifier list 
and the resulting enumeration of all possible paths. 
The internal symbol table structure directly reflects the 
original structured variable and is thus easy to construct. 
However, since the table is constructed only once while 
several references will be made to it, it would be better 
to put extra effort into the construction so that each 
reference requires only a single pass through the qualifier 
list. 
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Deterministic Solution 

The solution to this is recognition of the fact that 
the original data structure for example 2 is just another 
method of describing a regular expression [3] and all 
possible legal qualifications are simply cases of this 
regular expression. Furthermore, if the finite state 
automaton which accepts the regular expression is 
constructed in a clever way, it will produce all possible 
final candidates in one pass through the qualifier list. 

If we define A to be the string of length 0 and 3~ to 
be the regular expression A U X, that is, zero or one 
occurrence of the symbol X, then we can apply the 
language of regular expressions to example 2 pro- 
ducing: 

A(/3 (C Ul:3) U(~/)) UB((~ UD) U C/) U C U D U 
BA UA 

While this representation does not convey any new 
information about this particular structure, it does allow 
the application of some of the basic results of automata 
theory to the problem. First, since the data structure can 
be represented by a regular expression [4, Th. 3.10], 
there is a nondeterministic finite state automaton which 
accepts the regular expression. This is in essence what 
the process described above and in Figures 5, 6, and 7 
implements. However, due to the nondeterministic 
nature of the solution, enumeration of all solutions is 
required. However, by [4, Th. 3.3] if a nondeterministic 
machine exists, there is an equivalent deterministic 
machine, thus eliminating the need for enumeration. 

The procedure for construction of the nondetermin- 
istic machine is as follows: 
1. In addition to the unique start state, S, each state is 
labeled by the longest string of qualifiers which goes 
from S to the state. The interconnections representing 
these longest strings are filled in. (See Figure 8.) 
2. Form the closure of the machine resulting from 
step 1. That is, since state S can reach state A, copy row 
A into row S. Repeat until there are no more copies to 
be made. (See Figure 9.) 

The deterministic machine corresponding to this 
may be constructed as indicated in the proof of [3, Th. 
3.3] and is shown for example 2 in Figure 10. 

This machine is used by starting in state S and 
applying the qualifiers in a left-to-right order. The quali- 
fier list is illegal if a required transition is not present in 
the machine. Otherwise, when the qualifier list is ex- 
hausted, if the deterministic machine is in a state which 
represents a single state from the nondeterministic 
machine, the item is correctly defined and referenced. 
If the final deterministic state represents two or more 
states from the nondeterministic machine, then the 
item is ambiguous. 

The machine finally reached in Figure 10 may then 
be applied to various qualifier lists. For example, A.C 
ends in state 4, A.C and A.B. C, and is thus ambiguous. 
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The list A . B . A  gets as far as state 6 and has no transition 
and is therefore undefined. The list B. C ends in state 8, 
A.B.C and is uniquely defined. 

Application to Cobol 

The above discussion has been concerned with struc- 
tured variables in PL/I. However, COBOL also has struc- 
tured variables which are similar in every detail except 
the actual referencing. Where, in PL/I a reference 
would be made as A.B. C, going down the tree, in COBOL 
the same variable would be referred to as C OF B OF A. 

At first, it would appear that the deterministic finite 
state automaton could be constructed in an analogous 
way. However, since the list of qualifiers goes from 
most specific to least specific this cannot be done. A 
machine can be constructed which will tell whether or 
not a particular reference is legal but will not give the 
specifically referenced variable. This is due to the fact 
that the process moves up the tree ending at the top or 
broadest reference. The solution to this problem is 
simply to stack the qualifiers as encountered in a LIFO 
manner. When the end of the qualifier list is reached, 
remove the qualifiers one at a time and apply to the 
machine constructed above. 

Implementation 

The discussion above gives an explanation and 
motivation of the proposed method. As usual, this form 
is not always the most efficient for implementation and 
this is true here, too. In this case, an efficient construc- 
tion algorithm can be arrived at by considering the form 
of the transition matrix for the final deterministic 
machine. The matrix appears to be constructed of sev- 
eral roughly upper triangular structures where the 
transitions in each row are a subset of those in the row 
above. Thus, it will be advantageous to construct the 
machine working up from the bottom of these tri- 
angular portions. The following construction method 
makes use of this information to construct the automa- 
ton and the symbol table simultaneously. 

This method requires a pushdown stack called 
CURRENT-STATE, an expandable list called TRANSITIONS 
and some mechanism for making entries in the symbol 
table. Notice that the initial entry for each unique name 
(string of characters) can be made and looked up by 
use of a hash function or other traditional technique. 
CURRENT--STATE refers specifically to the top element of 
the stack and is initialized to 0, the starting state. 
1. Get the next name in the structure. (The structure 
is scanned going from first to last statement in order of 
appearance. ) 
2. Look up the name in the symbol table. If it doesn't 
appear yet, add a header cell containing the display 
code characters (column one in Figure 1 I).  
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Fig. 11. Symbol table structure for deterministic look-up. 

Box 3 [ =1 

3. Add a new occurrence of this name with the appro- 
priate data attributes (columns two and three, Figure 11). 
4. Add a transition from CURRENT_STATE to the new 
occurrence of the particular name. In doing this, the 
symbol table addresses (box numbers in Figure I1 ) 
should be used rather than actual display code strings. 
5. If the next entry to be scanned is at a higher level 
number than the current entry, push the new occurrence 
on CURRENT_STATE and go to 1. 
6. If the next entry to be scanned is at the same level 
number, go to 1. 
7. If the next entry to be scanned is at a lower level 
number, pop CURRENT-STATE once for each level lower 
and go to 1. 

The results of applying these steps to a structured 
variable is a symbol table with one entry for each quali- 
fiable occurrence of a name and a list of transitions 
(nondeterministic) for doing the look-up. Figure 11 
shows the symbol table representation for the structure 
in Figure 3. Notice that this diagram is similar to the 
one in Figure 4 only without as many links. This link 
information is given in the transition list in Figure 12. 
The box numbers represent symbol table addresses. The 
only restriction on these addresses is that the occur- 
rences of the names must be assigned ascending ad- 
dresses in the order in which they are encountered. 

The set of transitions constructed above must be 
expanded to form the closure described above and must 
be made deterministic. These two operations can be 
accomplished simultaneously as follows: 
1. Sort the transitions into descending order by current 
state. 
2. Move all transitions for the next state to be processed 
(initially the first state) to a work area. Remove the 

current state and save it. 
3. For  each "next state" add to the working storage 
all transitions out of the state. Again, strip off the cur- 
rent  state and throw it away. Repeat until no more 
transitions are added. This gives the closure of this one 
state. Notice that each "next state" must either appear 
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Fig. 12. Sorted nondeterministic transitions 
refers to a box number in Figure 11). 

Current Input Next 
state symbol state 
11 1 12 
9 7 10 
4 7 8 
4 5 6 
2 5 9 
2 3 4 
0 3 11 
0 1 2 

(each entry 

Fig. 13. Construction of deterministic machiqe before and 
after processing state 2. 

State set 

State Transitions 
11 I 12 
9 7 10 
4 5 6 

7 8 
Working storage 

Current state 2 
Transitions 
3 4 
5 9 
5 6 from state 4 
7 8 from state 4 
7 10 from state 9 
State set (after this step) 

State Transitions 
11 1 12 
9 7 10 
4 5 6 

7 8 
2 3 4 

5 13 combination of states 9 and 6 
7 14 combination of states 8 and 10 

in the state set (initially empty)  or not  appear  at all (a 
state with no transitions ou t )  because o f  the order  o f  
address assignment. 
4. Sort the contents  o f  the working storage on input  
symbol  and make  deterministic (one transit ion per 
input symbol) .  Keep track o f  combined states. 
5. Add  the result o f  step 4 to the state set, and empty 
the working storage. 
6. At  this point, certain state combinat ions  have been 
introduced as a result o f  making  the machine deter- 
ministic. These may  be satisfied one at a time in the 
following manner.  (a) Generate  a unique number  for  
this combinat ion.  (b) Copy  all transitions f rom any 
state in the combinat ion  t o  the working storage. All 
states required must  already be in the state set because 
o f  the order o f  address assignment. (c) Perform steps 4 
and 5 above. (d) Repeat  until all state combinat ions  
are satisfied and then return to step 2. 

This process can best be illustrated by an example. 
Figure 13 shows the contents o f  the state set and work-  
ing storage when state 2 f rom Figure 12 is being proc-  
essed. Figure 14 shows the final state set. This final state 
set, plus the symbol  table, provides all the informat ion 
needed to perform the deterministic table look-up.  

This analysis provides one further piece o f  informa-  
t ion which can be usefully included in a compile-t ime 
error diagnostic. Realizing that  the machine must  
always start in state 0, it is obvious that  it is uncon-  
nected. That  is, some states (and therefore occurrences 
o f  variables) can never be qualified uniquely. In the 
example in Figure 14, states 2, 9, 11 cannot  be reached, 
indicating that  occurrences A, A . C ,  and B cannot  be 
used. Looking  at the initial structure, this is the case, 
since referring to A could be either the A at level 1 or  
the A at level 2 and, while the A at level 2 can be 
uniquely qualified, there is no possibility of  qualifying 
one at level 1. 

Fig. 14. Final deterministic machine state set. 

State set 

State Transitions 
11 1 12 
9 7 10 
4 5 6 

7 8 
2 3 4 

5 13 combination of states 6 and 9 
7 14 combinations of states 8 and 10 

13 7 10 
0 1 15 combination of states 2 and 12 

3 16 combination of states 4 and 11 
5 13 combination of states 6 and 13" 
7 14 combination of states 8 and 10 

15 3 4 
5 13 
7 14 

16 1 12 
5 6 
7 8 

* state 13 already includes state 6 

C o n c l u s i o n  

The discussion presents an application of  simple 
au tomata  theory  to symbol  table organizat ion and 
lookup.  It  clearly demonstrates  the trade-off  between 
construct ing the symbol table and being able to easily 
reference items. Fo r  most  applications the second alter- 
native would seem preferable. 

Received June 1972 
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