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CR Categories: 5.30 
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Description 
This algorithm analyzes the skew representation [x]-[~] of the 

symmetric group ~r~ corresponding to a pair of partitions 

(X) = (X~, X 7 , . . . ,  X~) and (u) = (~,, ~ 2 , . . . ,  u~) where 

r~_s 

m >_u~>_ " '"  > u ~  (I) 
X~>_ul ( l _ < i _ < s )  

(see Robinson [4, see. 2.5]). The analysis takes the form 

[xl-[u] = ~(,~ c~,~ M, (2) 

where the summation is over all partitions (v) of n, the coefficients 
e (,) being nonnegative integers. 

The method used may be described as follows: construct all 
possible diagrams which can be built up in accordance with the 
following two rules. 
(a) Replace u, of the nodes in the Young diagram corresponding 
to (x) by identical symbols a. in such a way that: (i) the unchanged 

nodes form a regular Young diagram; and (ii) no two identical 
symbols a, lie in the same column. Then replace u,-i further nodes 
by identical symbols a~_~ in accordance with the same rules, and 
so on, finally replacing Ul nodes by identical symbols a~. 
(b) In the final diagram the altered nodes should form a lattice 
permutation of al~XCC~z 2 . . .  a~ u' (Robinson [4, sec. 2.4]) when 
read from right-to-left through successive rows. 

Then the pattern of unchanged nodes in each diagram so con- 
structed defines a term [u] in the analysis. 

This method appears not to have been explicitly stated in the 
above form before, but is an immediate consequence of Little- 
wood's method for analyzing the outer product IX]. [u] (see Little- 
wood [3, sec. 6.3, th. V], Robinson [4, sec. 3.3]), noting that c(~) 
is also the coefficient of [X] in the analysis of [u]. [u] (Littlewood 
[3, sec. 6.4, th. VIII]). 

In the procedure, binary models of those partitions (u) in (2) 
for which c(v) ~ 0 are stored, in lexicographic order, in nu[l], 
n u [ 2 ] , . . . ,  nu[p], the corresponding values ¢(,) being stored in 
c[1], c[2], . . . ,  c[p]. The binary model used is due to Com6t [1], 
a partition (v) = (u~, ~ , . . . ,  ut) being represented by the number 

2 '~ -n  + 2 ~ - n - ~ 2  -I- " ' "  if- 2 ~ 4- I .  (3) 

The techniques used are similar to those employed in [2]. In 
particular, two two-dimensional arrays lam and sigma are required. 
Corresponding to any particular diagram, lain [i, j] specifies the 
number of nodes in row j which are still unchanged when all the 
symbols c~,, a~_1 , . . .  , ai have been inserted (j  = i, i -k- 1, . . . ,  r), 
and sigma [i, j] specifies the total number of symbols ai  inserted 
in rows i, i q- 1, . . . ,  j. Thus the quantities lam[i,j] are generated 
by the equation 

lam[i,j] = lam[i-q-l,j] -- sigma[i,j] q- sigma[i,j--1]. (4) 

The rules for constructing the diagrams impose the restrictions 

sigma[i--l , j--1] >_ sigma[i--l,j] -- lam[i,j] q- lam[i,j+l] (5) 

and 

sigma[i-- 1,j-- 1] > sigma[i,j]. (6) 

Each time array lam is completed, a term 

(u) = (lain[l,1], lam[l,2] . . . . .  lam[l,r]) (7) 

is added to the analysis. 
Note 1. In view of the identity 

[x].[u] = [xl+u~, x,+u.., . . . . .  x ,+m,  Xl, x~ . . . .  , x~] - [x~q, 

procedure skew may also be used to analyse the outer product 
[X].[u]. It is, however, less convenient for this purpose than pro- 
cedure outer product of Hunter [2]. 

Note 2. Value o f  p. It is difficult to predict the value of p in 
any example. Clearly, p <_ p(n), where p(n) denotes the number of 
partitions of n. On the other hand, for any value of n, there are 
partitions (X) and (u) for which p = p(n), namely, (X) = 
(n ,n -1  . . . . .  1), (u) = ( n - l ,  . . . .  1). 
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Algorithm 
procedure skew (r, s, lambda, mu, p, c, nu); 

value r, s; integer r, s, p; integer array lambda, mu, c, nu; 
begin 
comment Input parameters. 

r: the number of parts in partition (X). 
s: the number of parts in partition (~). 
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lambda:  the part Xl is stored in lambda[i], i = 1, 2 , . . . ,  r. 
mu: the part ui is stored in mu[i], i = 1, 2 , . . . ,  s. 
Output parameters. 
p: the number of terms on the right in (2) for which 

c(~) ~ O. 
ha: Binary models (3) of the partitions (v) in (2) for which 

c(,) ~ 0 are placed in lexicographic order in nu[1], 
nu[2] . . . .  , nu[p]. 

c: c[i] contains the coefficient c(,) of the partition whose 
binary model is in nu[i]; 

integer i , j ,  k ,  x ,  y;  
integer array lain[1 : s -k  1,1 : r], sig~na[1 :s--k 1,0: r]; 
p :=  O; for i :=  1 step 1 until s do lam[iq- l , i ]  := lambda [il; 
for j  :=  s -b l  step 1 until rdo 
begin 

lam[sq- l , j ]  := lambda[j];  s i g m a [ s - l - l , j - - l  ] := 0 
end; 
for i : = 1 step 1 until s do sigma[i, r] := mu[i]; 
k := mu[s] -- lambda[r]; s igma[s,  s - - l ]  :=  O; 
for j : =  r - -  l step - - l  until s do 
begin 

s igma[s , j ]  := i f k  >__ 0 then k else O; 
k .: = sigma[s,  j ]  -- lambda~]  q- l a m b d a l j - k  I I 

end; 
i : =  s; 

build: 
f o r i : =  i step - - l  until l do 
begin 

f o r j  :=  i step 1 until r do 
lain[i, j]  := lain[i-l-l ,  j]  -- sigma[i,  j]  q- sigma[i,  j -  1]; 
if i ~ 1 then 
begin 

k := m u [ i - - l ]  --  lain[i, r]; s i g m a [ i - - l ,  i - -2]  := O; 
for j : = r step -- 1 until i do 
begin 

s igma [ i -  1, j -- 1 ] : = if k > s igma  [i, j]  then k 
else sigma[i,  j]; 
k := s i g m a [ i - - l , j - - 1 ]  --  l a m [ i , j - - l ]  -t- lam[i , j ]  

end 
end 

end; 
x : = j : =  1; 
for j :=  j q- 1 while ( i f j > r  then false else lam[i , j]>O) 

do x :=  x X 2 T lam[1,j] q- 1; 
if (if p = 0 then true else x>nu[p]) then 
begin 

p :=  p q- 1; nu[pJ :=  x; c[p] :=  1 
end 
else 
if x = nu[p] then c[p] := c[p] -b 1 
else 
begin 

j : =  1 ; k : = p ;  
search: 

y := ( j + k )  + 2 ; i f x  = n u [ y ] t h e n c [ y ]  := c[y] q- 1 
else 
i f nu[y]  < x A x < nu[y-bl] then 
begin 

for k :=  p step - - l  until y + l d o  
begin, 

c [ k + l ]  :=  c[k]; h u l k + l ]  :=  nu[k] 
end; 
c [y+ l ]  :=  1; nu [y+ l ]  :=  x; p :=  p + 1 

end 
else 
begin 

i f x  < nu[y] then k := y e l s e j  := y; go to search 
end 

end; 
for i : =  1 step 1 until s do 

for y :=  i step 1 until r - 1  do 
if sigma[i,y] < s igma[i ,yq-1]  then 
begin 

sigma[i ,y] := sigma[i,y] -b 1; 
for j : = y step -- 1 until i do 
begin 

k :=  sigma[i, j] --  lam[ iq - l , j ]  -b l a m [ i q - l , j W l ] ;  
s i g m a [ i , j - 1 ]  := if k > s i g m a [ i W l , j ]  then k 
else s igma [i@ 1 ,j]; 
if sigma[/,j-- 1] = 0 then 
begin 

for x :=  j -- 1 step --1 until i d o  s i g m a [ i , x - - l ]  := O; 
go to build 

end 
end 

end 
end s kew  

Algorithm 456 

Routing Problem [H] 
Z d e n ~ k  F e n c l  [Recd .  16 N o v .  1970, 4 Oc t .  1971,  a n d  

28 J a n .  1972] 

R C A ,  C o m p u t e r  S y s t e m s  D i v i s i o n ,  200 F o r e s t  S t ree t ,  

M a r l b o r o u g h ,  M A  0 1 7 5 2  

The algorithm was originally developed as a part of vector 
ordering procedures at the Design Automation Center, RCA, Marl- 
borough, Massachusetts, and was extended to general use in the 
traveling salesman and nonsymmetric routing problem. 

Key Words and Phrases: routing problem, shortest path, traveling 
salesman problem, Hamiltonian circuit 

CR Categories: 5.40 
Language: Fortran 

Description 
The algorithm finds the shortest serial (branchless) connection 

between n nodes of a net beginning in the start node sn and termi- 
nating in the end node en or terminating in any node. Also given 
is the m )< m matrix d of distances (with zero diagonal and not 
necessarily symmetric) between all pairs of nodes, and the vector 
p containing n node numbers to be connected referring to appro- 
priate entries in the matrix d. The algorithm is constructed so that  
for one net (given by the matrix d) various connections, not neces- 
sarily exhausting all of m nodes, may be created; hence n < m. 
The case sn = en is also permitted, which actually yields a Hamil- 
tonian circuit--traveling-salesman problem. If, in input, en = O, 
the start-to-any connection is assumed. Also as an input is the 
number of runs r, which is discussed below. In the output, the 
original vector p is replaced by conjectured optimal sequence of 
n nodes, and l contains the connection length. The matrix d does 
not need to represent a Euclidean net nor be symmetric. Thus 
the algorithm may serve as a more general tool to solutions of 
related problems. 

Since the method is heuristic, which implies it is approximate, 
guaranty of an optimal solution is based on empiric probability. 
The algorithm uses a tour-building method combined with tour-to- 
tour improvements. 

In the first phase, the tour, or sequence of nodes, is built up 
by successively inserting not-yet-involved nodes into the tour. 
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If, in the middle of tour building, the tour, for instance, consists 
of the nodes P l ,  P2, • • •, pk, the next node among the nodes 
pk+l, pk+2,. .  •, pn, and the arc (to be split by the chosen inserted 
node) among the arcs pip2, p z l~ , .  • •, pkPl, are chosen so that 
the tour increment will be minimum; i.e. i (1 _< i _< k) and 
j ( k  < ] <_ n) are chosen in such a manner that d( p i. pj ) -~ d( p~-. ~i + 1 ) 
- d(p~. p~+l) = min. Tour building starts with the are pip1 and ter- 
minates when all n nodes have been included. The tour-building 
approach of this kind for the traveling-salesman problem was 
originated by Karg and Thompson [1] and further developed 
by Raymond [2]. This algorithm, however, handles an open con- 
nection--start-to-end or start-to-any node. The maintenance of 
this property is ensured in the algorithm by assigning to the end- 
to-start or each-to-start distance sufficiently large negative values 
( - n  × max~j[dl;]) which, in some way, firmly attach the end or any 
of n nodes to the start node permitting a circuit to form. In fact, 
the algorithm works on a net as if it were a closed circuit and 
keeps the node configuration by modifying the distance matrix. 
In output, the distance matrix is returned to its original form. 

A tour thus built is hardly optimal and for larger nets it is 
probably far from optimum. The second phase improves the tour 
(for n >_ 3) by the so-called 3-opt method proposed by Lin [3]. 
Improvements consist in exchanging three arcs, or links of the 
given connection by three other links. If there are no more 3 links to 
exchange for tour improvement, the tour is said to be 3-optimal. 
In general, X-optimality can be considered. The implication of the 
3-1ink exchange is essentially in reinsertions. Consecutive node 
chains of length k (1 < k < n) are successively tried to be rein- 
serted (both as are and inverted) into remaining links for tour 
improvements, which actually represent 3-1ink exchanges (and 
also 2-1ink at the same time). A 3-opt tour shows a certain proba- 
bility to be an optimal one in relation to n. Different 3-opt tours 
can be achieved if different initial nodes are chosen, which allows 
us to increase the probability of obtaining an optimal solution. 

The algorithm can run r trials (as specified in input) with 
different initial nodes (Pl,  set automatically), thus obtaining 
different solutions while the best is saved and replaced in the vector 
p in output. For runs r > n (r _< 2n) there is little chance for 
further improvement, because initial nodes repeat and the tour 
development can be affected only by previous contents of the 
vector p on which the tour is built. Probability that the 3-opt 
tour is optimal is somewhat higher in this algorithm, than in the 
one Lin suggests. In contrast to finding a 3-opt solution from a 
given random sequence of nodes, the fast building of an appropriate 
tour in the first phase considerably reduces the number of rein- 
sertions in the second phase. The algorithm generalization to the 
noncyclic and nonsymmetric problems, in comparison to the 
traveling-salesman problem, increases computational time. 

A considerable number of test examples have been run by the 
algorithm including the three problem types mentioned and the 
non-Euclidean and nonsymmetric problems. To outline the capa- 
bility and how the "cost-approximation" factor r should be set 
for various n's, a survey of tested problems is presented, most of 
which problems have been solved and published before. The algo- 
rithm in Fortran was run on the RCA's SPECTRA 70/45 (fixed- 
point add time equals 8.88 usec), and is recommended for a high 
probability (over 95 percent) of obtaining an optimum if r = 2 
to 5 for n < 10 and r = 5 to 15 for n < 30. For higher n's, unless 
cost is out of consideration and r can be set up to 2n, the checking 
of successive results is advisable to see how improvements are 
developing (p and 11 should be checked after the tour-length calcu- 
lation). These checks can also serve for getting suboptimal solutions. 

In the program, the distance matrix d is in fixed-point mode, 
which makes computation faster and does not seem to be a serious 
restriction. Decimal order range of distances is expected to be 
small enough to be represented in fixed point, and calculations 
(additions and subtractions) will, most likely, not face overflow 
problem. 

The arrays ID and Q should have the maximum subscript set 
at least to n. 

Survey o f  tested problems 

Conjec tu red  tl 
Ref.  n s n  e n  o p t i m u m  r o p t  [see] 

K a r g  a n d  T h o m p -  1 2 118 1 
son  [1] 5 1 0 e n  = 5  108 1 < 1  

1 1 148 I 

R a y m o n d  [2] 1 5 165 1 
7 1 0 en = 4 140 I < 1 

1 1 179 1 

Barache t  [41 1 2 350 1 
10 1 0 e n  = 7  298 1 

1 1 378 2 1 . 4  
1 2 308 1 

10" 1 0 e n  = 7 257 2 
I 1 336 2 

A u t h o r  1 2 102 1 
12 1 0 e n  = 12 95 1 3 . 0  

1 1 114 1 

A u t h o r  I 6 117 1 
13 1 0 e n  = 1 2  102 ! 3 . 0  

1 1 130 1 

He ld  and  K a r p  [5] I 25 ** 1517 10 2 1 . 8  

25 I 0 ~ = 2 5  1517 2 2 2 . 3  
I 1 ** 1711 1 2 9 . 7  

K a r g  and  T h o m p -  1 33 ** 10655 2 5 3 . 6  
** 

s o n [ l ]  33 1 0 e n = 1 4  10585 10 5 3 . 4  
1 1 ** 10861 6 5 3 . 7  

* N o n s y m m e t r i c  p r o b l e m  (two dis tances  changed :  (6, 5) = 1, a n d  (8, 3) = 1). 
** Resu l t s  ob t a ined  f r o m  10 runs .  

The algorithm is believed to be applicable also to problems 
in which all connections do not necessarily exist. In terms of graph 
theory a graph representing the net to be routed need not be com- 
plete; i.e. every pair of vertices may be connected only in one of 
the two possible directions. The graph, however, must be strongly 
connected; i.e. there must be a path joining any pair of arbitrary 
distinct vertices. Nonexisting arcs might be expressed by assigning 
to the appropriate distances dk~ sufficiently large positive values, 
for instance n X maxi~- [dii]. 

Symbol summary 
n number of nodes to be connected (2 < n < m). 
p vector containing n node numbers (in output, it contains 

node number sequence of conjectured shortest path). 
sn start node number (1 < sn < m; no check is provided whether 

sn is contained in p). 
en end node number (1 _< en <_ m; if en = 0, start-to-any con- 

nection is assumed; en = sn is allowed, which is traveling- 
salesman problem; no check is provided whether sn is con- 
tained in p) 

m order of distance matrix d (m >_ n _> 2). 
d m × m matrix of distances of all node pairs (zero diagonal, 

not necessarily symmetric). 
1 length of conjectured shortest path (output). 
r number of runs (trials; r < 2n). 
ropt serial run number during which optimum has been achieved. 
tl average computational time of one run in seconds. 
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Algorithm 
SUBROUTINE ROUTNG(N, P, ON, EN,  M, D ,  L,  H) 
INTEGER P ( N ) ,  D(M,M),  ID (6O) ,  0 ( 6 0 ) ,  ON, EN, R 

C N - NUMBER OF NODES TO BE CONNECTED 
C P - NODE NUMBER VECTOR ( I N  O U T P U T ,  O P T I M A L  C O N N E C T I O N )  
C ON- START N O D E  NUMBER 
C EN- END NODE NUMBER 
C M - DISTANCE MATRIX O R D E R  
C D - D I S T A N C E  MATRIX 
C L - S H O R T E S T  C O N N E C T I O N  L E N G T H  ( O U T P U T )  
C R - NUMBER OF RUNS 
C GET LARGE NUMBER (= N X MAX D ( I J J ) )  

LARGE = 0 
DO 2 0  I = I , M  

DO I0  J = I , M  
I F  (D ( I , J ) .GT .LARGE)  LARGE = D ( I , J )  

1 0  C O N T I N U E  
O0 C O N T I N U E  

LARGE = L A R G E * N  
C DEFINE NON-EXISTING ARCS BY ASSIGNING 
C T H E I R  D I S T A N C E S  LARGE N E G A T I V E  V A L U E S  

I F  (EN.NE*O) GO TO 40 
DO 3 0  I = I , M  

I O ( I )  = D ( I , S N )  
D ( I , S N I  = - L A R G E  
D ( S N n S N )  = 0 

3 0  C O N T I N U E  
40  I F  ( S N * E Q * E N  . 0 R *  E N . E Q . O )  GO TO 50 

I D ( 1 )  = D ( E N ,  S N )  
D ( E N ,  S N )  = - L A R G E  

C RUN R T R I A L S  
5 0  L = L A R G E  

DO 2 8 0  I R S = I , R  
C BUILD TOUR BY SUCCESSIVE I N S E R T I N G  
C NOT-YET-INVOLVED NODES 
C INITIATE TOUR IS CONSIDERED AS 
C ARC P ( I )  TO P ( I )  

DO 90 J S = f i , N  
MIN INC=  LARGE 

C T R A C E  A L L  NOT-YET-INVOLVED NODES 
C TO CHOOSE THE ONE WITH MINIMUM INCREMENT 

DO 7 0  J=JS, N 
d p  = p ( J )  
J E  = J S  - ! 

C FeR EACH N O T - Y E T - I N V O L V E D  NODE TRACE A L R E A D Y  
C B U I L T - U P  TOUR TO CHOOSE THE MINIMUM I N C R E M E N T  ARC 

DO 6 0  I = I , J E  

I P  = P ( 1 )  
IPI = P ( I + I )  
I F  ( I . E Q . J E )  I P I  = P ( 1 )  
I N C  = D ( I P , J P )  ÷ D ( J P * I P 1 )  - D ( I P ,  I P I )  
I F  ( INC.GE.MINING) 60 TO 60 
J l  = J 
I t  = I 
MININC = I N C  

60 C O N T I N U E  
7 0  C O N T I N U E  

C STRETCH TOUR BY INSERTING THE CHOSEN NODE P(JI) 
C BETWEEN THE NODES P ( I I )  AND P ( I I + I )  

SO J l  = J l  - 1 
I F  ( J I . E Q . I I )  GO TO 9 0  
IP = P ( J I )  
P ( J I )  = P ( J I + I )  
P I J | + I )  = I P  
GO TO 8 0  

9 0  CONTINUE 
C CORRECT TOUR BY 3-OPT METHOD 
C VARY C O N S E C U T I V E  CHAIN L E N G T H  K 

NI  : N - I 

IF ( N . L T . 3 )  GO TO 2 1 0  
DO ODD K f b N I  

I C O U N T  = 0 
C SHIFT C O N S E C U T I V E  C H A I N  
C THROUGHOUT SEQUENCE OF N NODES 

1 0 0  I C O R =  0 
DO 190 J = I , N  

C C A L C U L A T E  C H A I N  L E N G T H  I N  FORWARD 
C AND BACKWARD DIRECTION 

L I  = 0 
LR = 0 
I F  (K,EO.I) GO T0 1 ~ 0  
I=J 
Kl = l 

110 IF ( I *GT°N)  I = I - N 
IP = P(1)  
I P I  = I ÷ I 
I F  ( I P I . G T . N )  I P I  = I 
I P I  = P(IPI) 

L1 = LI ÷ D( IP ,  I P I )  
LR = LR + D ( I P I , I P )  
I = I + I 
Hl  = El + I 

I F  ( H I . L T . K )  GO TO I l O  
C FOR EACH POSITIONED CHAIN (AS IS AND INVERTED) 
C CHECK ALL ARCS IF INSERTIDN IMPROVES TOUR 

120 MINING = LARGE 
J l  = d + H - 1 
IF ( J I . G T . N )  J l  = d l  - N 

DO ISO I : b N  
IF ( J . L E . J I  .AND. ( I . G E . J  .AND. I . L E , J I ) )  GO TO 

* 1 5 0  
IF ( J . G T . J I  .AND. ( I . L E . J I  .OR, I . G E , J ) )  GO TO 150 
IP = P(1)  
Jp = p ( J )  
J P I  = P ( J I )  
IPI = I + I 
IF ( I P I . G T . N )  IPI  = I 
J E  = I P I  
I F  (IPI*EO.J) I P I  = J l  ÷ I 
IF ( I P I . G T * N )  IPI  = I 
I P I  = P ( I P I )  
LN = LI 
IR = O 

130 INC = D ( I P , J P )  + LN + D ( J P I , I P I )  - D( IP ,  I P I )  
I F  ( INC.GT.MININC .OR. (ING-EQ.MINING .AND. 

* ( JE -NE.J  .OR. JE.EQ-J .AND. I R . E Q . I ) ) )  GO TO 140 
I 1  = I 
I R I  = I R  
M I N I N C  = I N C  

1 4 0  I F  ( I R . E Q . I )  GO TO 1 5 0  
I R  = 1 
LN L R  
J S  = J P  
J P  = J P I  
J P I  = J S  
GO TO 1 3 0  

1 SO C O N T I N U E  
I = I I  + 1 
IF (I,GT.N) I = I 
I F  ( I * E Q . J  *AND. I R I . E 0 o 0 )  GO TO 190 

C R E I N S E R T  CHAIN OF LENGTH K STARTING IN J 
C BETWEEN NODES P ( I I )  AND P ( I I + I )  

ICOR = 1 
J S  = J 
J E  = 0 
I F  ( IR I *EQ.OI  GO TO 1 6 0  
JS = J l  
J E  = -I 

1 6 0  K l  = 0 
I T O  KI = R l  + 1 

IF (KI .GToK) GO TO 190 
I = d S  
J S  = J S  + J E  
I F  ( J S ° L T , I )  J S  = N 

I O O  I P  = I + 1 
IF ( I P . D T . N )  IP = I 
JP = P ( I )  
P ( I )  : P ( I P )  
P ( I P )  = JP 
I = I + 1 
I F  ( I * G T . N )  I = 1 
I F  { I P - I I )  1 8 0 ~  1 7 0 ,  1 8 0  

1 9 0  C O N T I N U E  
IF (ICOH.EO.O) GO TO 2 0 0  
ICOUNT = ICOUNT + l 
IF ( ICOUNT.LT.N) G~ TO I00 

200 CONTINUE 
C ORIENT TOUR I ; I T H  SN IN P(1)  

2 1 0  DO 2 3 0  I = I , N  
I F  ( P ( I ) . E Q . S N )  GO T ~  2 4 0  
J S  = PC1) 
DO 2RO J = l , N l  

P (J )  = P ( J + I )  
2 2 0  CONTINUE 

PCN) = J S  
2 3 0  C O N T I N U E  

C CALCULATE TOUR LENGTH 
2 4 0  L I  = O 

DO 250 I = I , N I  
I P  = P ( I )  
I P I  = P ( I + I )  
LI = LI + D ( I P , I P I )  

0 5 0  C O N T I N U E  
I P  = P(1)  
IF ( S N . E Q . E N )  LI  = LI + D ( I P I J I P )  

C SAVE SOLUTION, IF BETTER, AND SET NEV. INITIATE NODE 
IF ( L I . G E . L )  GO TG 270 
L = LI  
DO 260 I = I , N  

O(1) = P ( I )  
2 ~ 0  CC~TINUE 
2 7 0  J = I R E  + I 

I F  ( J o G T , N )  J = J - N 
J b  = ~ ( I )  
P(1)  = P ( J )  
P(.I)  = J S  

2 3 0  C C ~ I I  I~!E 
C ;~ES] ' ( i . ,F ,~ ANO b J i 4 Y  : ) [ L T A N C E S  

OL. > - 9 0  I = l ,  
P ( I )  = :'(I) 

2 9 0  C O N T I N U E  
IF (E'J.'J:£,O) UC I 0  3 1 , 3  
DO 3 0 . )  I = 1 , ~  

O ( I , ~ N )  = ll)Cl) 
3 0 0  C C , ~ i  I H U E  
3 1 0  I F  ( S N . E ' O . E N  .Ol ' . .  E N . E u * O )  GO TO 3 2 0  

D ( E N ,  L N )  = I O ( l )  
3 0 0  t . E  f O < N  

ENo  
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Algorithm 457 

Finding All Cliques of an 
Undirected Graph [H] 
C o e n  B r o n *  a n d  J o e p  K e r b o s c h t  [Recd .  27 A p r i l  

1971 a n d  23 A u g u s t  1971] 

* D e p a r t m e n t  o f  M a t h e m a t i c s  t D e p a r t m e n t  o f  In -  

d u s t r i a l  E n g i n e e r i n g ,  T e c h n o l o g i c a l  U n i v e r s i t y  E i n d -  

h o v e n ,  P .O .  B o x  513,  E i n d h o v e n ,  T h e  N e t h e r l a n d s  

Present address of C. Bron: Department of Electrical Engineering, 
Twente University of Technology, P.O. Box 217, Enschade, The 
Netherlands. 

Key Words and Phrases: cliques, maximal complete subgraphs, 
clusters, backtracking algorithm, branch and bound technique, 
recursion 

CR Categories: 3.71, 5.32 
Language: Algol 

Description 
bttroductian. A maximal complete subgraph (clique) is a 

complete subgraph that is not contained in any other complete 
subgraph. 

A recent paper [1] describes a number of techniques to find 
maximal complete subgraphs of a given undirected graph. In this 
paper, we present two backtracking algorithms, using a branch- 
and-bound technique [4] to cut off branches that cannot lead to a 
clique. 

The first version is a straightforward implementation of the 
basic algorithm. It is mainly presented to illustrate the method used. 
This version generates cliques in alphabetic (lexicographic) order. 

The second version is derived from the first and generates 
cliques in a rather unpredictable order in an attempt to minimize 
the number of branches to be traversed. This version tends to pro- 
duce the larger cliques first and to generate sequentially cliques 
having a large common intersection. The detailed algorithm for 
version 2 is presented here. 

Description o f  the algorithm--Version 1. Three sets play an 
important role in the algorithm. (1) The set compsub is the set 
to be extended by a new point or shrunk by one point on traveling 
along a branch of the backtracking tree. The points that are eligible 
to extend compsub, i.e. that are connected to all points in compsub, 
are collected recursively in the remaining two sets. (2) The set 
candidates is the set of all points that will in due time serve as an 
extension to the present configuration of compsub. (3) The set 
not is the set of all points that have at an earlier stage already 
served as an extension of the present configuration of compsub and 
are now explicitly excluded. The reason for maintaining this set 
trot will soon be made clear. 

The core of the algorithm consists of a recursively defined 
extension operator that will be applied to the three sets Just de- 
scribed. It has the duty to generate all extensions of the given 
configuration of compsub that it can make with the given set of 
candidates and that do not contain any of the points in not. To 
put it differently: all extensions of compsub containing any point 
in not have already been generated. The basic mechanism now 
consists of the following five steps: 

Step 1. Selection of a candidate. 
Step 2. Adding the selected candidate to compsub. 
Step 3. Creating new sets candidates and not from the old sets by 

removing all points not connected to the selected candidate 
(to remain consistent with the definition), keeping the old sets 
in tact. 

Step 4. Calling the extension operator to operate on the sets just 
formed. 

Step 5. Upon return, removal of the selected candidate from 
compsub and its addition to the old set not. 

We will now motivate the extra labor involved in maintaining 
the sets not. A necessary condition for having created a clique is 
that the set candidates be empty; otherwise compsub could still be 
extended. This condition, however, is not sufficient, because if 
now not is nonempty, we know from the definition of not that the 
present configuration of compsub has already been contained in 
another configuration and is therefore not maximal. We may now 
state that compsub is a clique as soon as both not and candidates are 
empty. 

If at some stage trot contains a point connected to all points in 
candidates, we can predict that further extensions (further selec- 
tion of candidates) will never lead to the removal (in Step 3) of that 
particular point from subsequent configurations of not and, there- 
fore, not to a clique. This is the branch and bound method which 
enables us to detect in an early stage branches of the backtracking 
tree that do not lead to successful endpoints. 

A few more remarks about the implementation of the algo- 
rithm seem in place. The set compsub behaves like a stack and can 
be maintained and updated in the form of a global array. The sets 
candidates and not are handed to the extensions operator as a 
parameter. The operator then declares a local array, in which the 
new sets are built up, that will be handed to the inner call. Both 
sets are stored in a single one-dimensional array with the following 
layout: 

]not [ candidates 

index values: l ..... ne ............... ce .... 

The following properties obviously hold: 

1. ne < ce 
2. ne = ce:empty (candidates) 
3. ne = 0 :empty (trot) 
4. ce = 0 :empty (not) and empty (candidates) 

= clique found 

If the selected candidate is in array position ne q- 1, then the second 
part of Step 5 is implemented as ne : = ne + 1. 

In version 1 we use element ne + 1 as selected candidate. This 
strategy never gives rise to internal shuffling, and thus all cliques 
are generated in a lexicographic ordering according to the initial 
ordering of the candidates (all points) in the outer call. 

For an implementation of version 1 we refer to [3]. 
Description o f  the algori thm--Version 2. This version does not 

select the candidate in position ne + 1, but a well-chosen candidate 
from position, say s. In order to be able to complete Step 5 as 
simply as described above, elements s and ne + 1 will be inter- 
changed as soon as selection has taken place. This interchange 
does not affect the set candidates since there is not implicit ordering. 
The selection does affect, however, the order in which the cliques 
are eventually generated. 

Now what do we mean by "well chosen"? The object we have 
in mind is to minimize the number of repetitions of Steps 1-5 in- 
side the extension operator. The repetitions terminate as soon as 
the bound condition is reached. We recall that this condition is 
formulated as: there exists a point in not connected to all points in 
candidates. We would like the existence of such a point to come 
about at the earliest possible stage. 

Let us assume that with every point in not is associated a 
counter, counting the number of candidates that this point is not 
connected to (number of disconnections). Moving a selected 
candidate into not (this occurs after extension) decreases by one 
all counters of the points in not to which it is disconnected and 
introduces a new counter of its own. Note that no counter is ever 
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Fig. l. Random graphs show the computing time per clique (in 
ms) versus dimension of the graph (in brackets: total number of 
elk aes in the test sample). 
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Fig. 2. Moon-Moser graphs show the computing time (in ms) ver- 
sus k. Dimension of the graph = 3k. Plotted on logarithmic scale. 
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decreased by more than one at any one instant. Whenever a counter 
goes to zero the bound condition has been reached. 

Now let us fix one particular point in not. If we keep selecting 
candidates disconnected to this fixed point, the counter of the 
fixed point will be decreased by one at every repetition. No other 
counter can go down more rapidly. If, to begin with, the fixed point 
has the lowest counter, no other counter can reach zero sooner, 
as long as the counters for points newly added to not cannot be 
smaller. We see to this requirement upon entry into the extension 
operator, where the fixed point is taken either from not or from 
the original candidates, whichever point yields the lowest counter 
value after the first addition to not. From that moment on we only 
keep track of this one counter, decreasing it for every next selec- 
tion, since we will only select disconnected points. 

The Algol 60 implementation of this version is given below. 
Discussion of  comparative tests. Augustson and Minker [1] 

have evaluated a number of clique finding techniques and report 
an algorithm by Bierstone [2] as being the most efficient one. 

In order to evaluate the performance of the new algorithms, 
we implemented the Bierstone algorithm x and ran the three algo- 
rithms on two rather different testcases under the Algol system 
for the EL-X8. 

For our first testcase we considered random graphs ranging 
in dimension from 10 to 50 nodes. For each dimension we gen- 
erated a collection of graphs where the percentage of edges took 
on the following values: 10, 30, 50, 70, 90, 95. The cpu time per 
clique for each dimension was averaged over such a collection. The 
results are graphically represented in Figure 1. 

The detailed figures [3] showed the Bierstone algorithm to be 
of slight advantage in the case of small graphs containing a small 
number of relatively large cliques. The most striking feature, how- 
ever, appears to be that the time/clique for version 2 is hardly 
dependent on the size of the graph. 

Bierstone's algorithm as reported in [1] contained an error. 
In our implementation the error was corrected. The error was 
independently found by Mulligan and Corneil at the University 
of Toronto, and reported in [6]. 

576 

The difference between version 1 and "Bierstone" is not so 
striking and may be due to the particular Algol implementation. 
It should be borne in mind that the sets of nodes as they appear in 
the Bierstone algorithm were coded as one-word binary vectors, 
and that a sudden increase in processing time will take place when 
the input graph is too large for "one-word representation" of its 
subgraphs. 

The second testcase was suggested by the referee and consisted of 
regular graphs of dimensions 3 X k. These graphs are constructed 
as the complement of k disjoint 3-cliques. Such graphs contain 
3 k cliques and are proved by Moon and Moser [5] to contain the 
largest number of cliques per node. 

In Figure 2 a logarithmic plot of computing time versus k is 
presented. We see that both version 1 and version 2 perform sig- 
nificantly better than Bierstone's algorithm. The processing time 
for version 1 is proportional to 4 ~, and for version 2 it is propor- 
tional to (3.14)~ where 3 k is the theoretical limit. 

Another aspect to be taken into account when comparing 
algorithms is their storage requirements. The new algorithms 
presented in this paper will need at most ½M(M+3)  storage loca- 
tions to contain arrays of (small) integers where M is the size of 
largest connected component in the input graph. In practice this 
limit will only be approached if the input graph is an almost com- 
plete graph. The Bierstone algorithm requires a rather unpredict- 
able amount  of store, dependent on the number  of cliques that 
will be generated. This number  may be quite large, even for mod- 
erate dimensions, as the Moon-Moser graphs show. 

Finally it should be pointed out that Bierstone's algorithm 
does not report isolated points as cliques, whereas the new al- 
gorithm does. Either algorithm can, however, be modified to pro- 
duce results equivalent to the other. Suppression of l-cliques in 
the new algorithm is the simplest adaption. 

Acknowledgments. The authors are indebted to H.J. Schell 
for preparation of the test programs and collection of performance 
statistics. Acknowledgments are also due to the referees for their 
valuable suggestions. 
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Algorithm 
procedure output maximal complete subgraphs 2(connected, N); 

value N; integer N; 
Boolean array connected; 

comment The input graph is expected in the form of a symmetrical 
Boolean matrix connected. N is the number of nodes in the 
graph. The values of the diagonal elements should be true; 

begin 
integer array ALL,  compsub[l : N]; 
integer c; 
procedure extend version 2(old, ne, ce) ; 

value he, ce; integer r/e, ce; 
integer array old; 

begin 
integer array new]l : ce]; 
integer nod, fixp; 
integer newne, newce, i, j ,  count, pos, p, s, sel, minnod; 
comment The latter set of integers is local in scope but need 

not be declared recursively; 
minnod := ce; i := n o d : =  0; 

D E T E R M I N E  E A C H  COUNTER V A L U E  A N D  L O O K  FOR 
M I N I M U M :  

f o r i : =  i +  1 whilei <_ c e / ~ m i n n o d ~  Odo 
begin 

p := old]i]; cowtt := 0; j := he; 
C O U N T  D I S C O N N E C T I O N S :  

f o r j  := j + 1 whilej  < ce /~ count < minnod do 
if 7 connected[p, old[j]] then 
begin 

count :=  count + 1; 
SA  VE P O S I T I O N  OF P O T E N T I A L  C A N D I D A T E :  

pos :=  j 
end; 

T E S T  N E W  M I N I M U M :  
if count < minnod then 
begin 

f ixp  := p; minnod := count; 
if i <  r/e then s := pos 
else 
begin s :=  i; PREINCR:  nod :=  l end 

end N E W  M I N I M U M ;  
end i; 
comment If fixed point initially chosen from candidates then 

number of disconnections will be preincreased by one; 
B A C K T R A  CKC Y C L E  : 

for n o d  : = minr/od + nod step -- 1 until 1 do 
begin 

I N T E R C H A N G E :  
p :=  old]s]; old[sJ :=  old[ne + lJ; 
sel := old[he + 1] :=  p; 

FILL N E W  S E T  not: 
r / e w r / e  : =  i : =  0 ;  

for i :=  i + 1 while i <_ r/e do 
if eonnected[sel, old[i]] then 

begin newne :=  newne + 1; new[newne] :=  old[il end; 
FILL N E W  S E T  cand: 

r/ewee :=  newne; i :=  ne + 1; 
f o r i : =  i +  l w h i l e i < _  cedo  

if connected[sel, old[ill then 
begin newce :=  newce 'k 1; r/ew[newce] :=  old[i] end; 

A D D  TO compsub: 
c :=  c --]- 1; compsub[c] :=  sel; 
if  r/ewce = 0 then 
begin 

integer loc;  
outstrir/g(1, ' clique = ') ; 
for loc :=  1 step 1 until c do 

outinteger(1, compsub[loc]) 
end output o f  clique 
else 
if newne < newce then extend version 2(r/ew, newne, newee) ; 

R E M O V E  F R O M  compsub: 
c := e - -  l; 

A D D  TO not: 
r/e :=  ne + 1; 
if nod > 1 then 
begin 

S E L E C T  A C A N D I D A T E  D I S C O N N E C T E D  TO T H E  FIXED 
POINT:  

S : =  r/e; 

LOOK: FOR C A N D I D A T E :  
s : = s + l ;  
if conneeted[fixp, old[s]] then go to L O O K  

end selection 
end B A C K T R A C K C Y C L E  

end extend version 2; 
for c :=  1 step 1 until N do ALL[c] := e; 
c :=  0; extend version 2(ALL,  O, N) 

end output maximal complete subgraphs 2; 

R e m a r k  on A l g o r i t h m  3 2 3  [G6]  
G e n e r a t i o n  o f  P e r m u t a t i o n s  in  L e x i c o g r a p h i c  O r d e r  

[R.J .  O r d - S m i t h ,  C o m m .  A C M  11 ( F e b .  1968),  117] 

M o h i t  K u m a r  R o y  [Recd .  15 M a y  1972] 

C o m p u t e r  C e n t r e ,  J a d a v p u r  U n i v e r s i t y ,  

I n d i a  

C a l c u t t a  32, 

In presenting Algorithm 323, BESTLEX,  for generating per- 
mutations in lexicographic order, the author has mentioned the 
number of transpositions. It may be remarked here that equal 
numbers of transpositions are required by both B E S T L E X  and 
the previously fastest algorithm, Algorithm 202 [1]. The exact 
number of transpositions (T,) necessary to generate the complete 
set of n I permutations is given by 

Tn = nI ( ~ 1 )  -- ( n + l ) / 2 ,  i f n  is odd, and 
7", = r/! (~-2) - r//2, if r/is even, 

1 1 1 
where ~2~ = 1 + ~-! + ~.. + . . .  + ~ --  1.543 for n >_ 3. 

The above expressions do not include the few extra transpositions 
(equal to the integral part of n/2) required by B E S T L E X  to gener- 
ate the initial arrangement from the final one, as this portion has 
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not been included in Algorithm 202. Therefore, the number of 
transpositions has no importance in the context of the claim that 
BESTLEX is more than twice as fast as Algorithm 202. 

The main factor contributing to the speed of BESTLEX is 
the substantial reduction in the number of comparisons required, 
by the introduction of the own integer array q. Taking into account 
only those comparisons which involve array elements, the number 
of comparisons (C,) required to generate all the n! permutations 
can be shown to be equal to 

n[ 
C,  (Algorithm 202) = ~- [1 + 3,~,_~] + n, 

C,, (BESTLEX) = n! [½q-~,,-l], 

1 1 1 
where ~,, = 1 + ~ q -~- -k  " "  -k~. -- 1.718 forn > 6. 

This shows that the number of comparisons required by BESTLEX 
is lower by .859(n!) (approximately) in the case of the generation 
of all the n ! arrangements. 

Finally, a modification of the BESTLEX algorithm is sug- 
gested which will reduce the number of comparisons again by 
(n!)/2. The modification involves replacement of lines 2-14 of 
Algorithm 323 by the following. 

begin own integer array q[3:n]; integer k, m; 
real t; own Boolean flag; 

comment Own dynamic arrays are not often implemented. The 
upper bound will have to be given explicitly; 

if first then 
begin first := false; flag := true 
for m : =  3 step 1 until n do q[m] := 1 
end of initialization process; 
if flag then 
beginflag :=  false; 

t :=  x[l]; x[1] :=  xt2h x121 := t; 
go to finish 

end; 
flag :=  true; 
for k :=  3 step 1 until n do 

The following deficiencies in the algorithm were noted 
1. The dimensional parameters of ACSPMX, ADSPMX, and 
MUSPMX are incomplete. As an illustration of this consider the 
two matrices [100 
A =  2 0 L00, 

0 0 

[000 
B =  0 3 L0 0 

0 0 

Ool oj 
oq o] 

each of which has four nonzero elements. 
Then the sum matrix has eight such elements, and in general, 

for two matrices with n~ and n2 nonzero elements, the number of 
nonzero elements, n3, in the sum matrix is in the range 0 < n3 < 
n l  -~  n2 • 

However in .4DSPMX the condition used is i11 = n~ = n3. 
Similar arguments apply t o / ICSPMX and MUSPMX. 
To correct this requires extensions to the parameter lists and 

dimension statements, and also it changes the conditional state- 
ments within the subroutines concerned. 

This shows up with the CALL/360-0S system since the com- 
piler performs subscript checking. It would not be evident on most 
compilers including the IBM Fortran IV G compiler. It is, how- 
ever, bad practice to rely on default effects of compilers. 
2. There are three, probably copying, errors in MUSPMX (page 
270). 

(i) Line 33 should be: 
IF(NCA.EQ.NCB) GO TO 3 

(ii) Line 55 should be: 
DO 14J = 1, NRB 

(iii) Line I02 should be: 
CALL IPK(NRB,MC,2,NM) 

References 
1. Shen, Mok-Kong. Algorithm 202, generation of permuta- 
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Added in proof: An improved version of BESTLEX, viz. Al- 
gorithm 323A, Generation of Permutation Sequences: Part 2, by 
R.J. Ord-Smith [Comp. J. 14, 2 (May 1971), 136-139], which also 
incorporates the modification suggested here, has come to the au- 
thor's attention. 

R e m a r k  on A l g o r i t h m  408 [F4] 

A Sparse  M a t r i x  P a c k a g e  (Par t  I) 

[ John M i c h a e l  M c N a m e e ,  Comm.  A C M  14 (Apr .  1971), 

265-273]  

E .E .  L a w r e n c e  [Recd .  1 F e b r u a r y  1972, 12 M a r c h  1973] 

C e n t r a l  A p p l i c a t i o n  L a b o r a t o r y ,  M u l l a r d  L i m i t e d ,  

N e w  R o a d ,  M i t c h a m ,  Su r r ey  C R 4  4 X Y ,  E n g l a n d  

The subroutines constituting Algorithm 408 were, with the 
exception of MFSPMX and WRSPMX, tested on an IBM 360/65 
using CALL/360-0S. The author's alteration (iii) was introduced, 
i.e. declaration of the M-array to be half length. Other changes 
were introduced in order: (a) to make the algorithm more con- 
versational in a time shared environment; and (b) to improve the 
speed of the sorting procedure in PERCOL. 

R e m a r k  on A l g o r i t h m  4 2 0  [J6]  

H i d d e n - L i n e  P l o t t i n g  P r o g r a m  

[ H u g h  W i l l i a m s o n ,  Comm.  A C M  

100-103] 
15 (Feb .  1972), 

H u g h  W i l l i a m s o n  [Recd .  9 Oct .  1972] 

N a t i o n a l  C o n - S e r v ,  I n c o r p o r a t e d ,  A u s t i n ,  T e x a s  

The input quantities to subroutine HIDE referred to in the 
following paragraphs (e.g. N1, NFNS, "input curve to be plotted") 
are described in the block of comment statements at the beginning 
of HIDE as originally published. 

If N1 < 0, DO loop 71 is not executed properly, since the 
upper limit, N1, is less than the lower limit, 2. This affects only 
checking for monotonicity in the input abscissa array; otherwise, 
if the inputs are correct, the performance of the program is not 
affected. 

The error is corrected if the first 11 executable statements are 
replaced by the following (the first executable statement of the 
original program, which is not changed, is listed for clarity): 

IF(MAXDIM.LE.0) R E T U R N  
IFPLOT = I 
IF(N1.GT.0) GO TO 76 
N1 = --N1 
IFPLOT = 0 
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Fig. 1. Wi thout  verticals. 
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Fig. 2. With verticals to aid visualization. 
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76 DO 71 l = 2,NI 
IF(X(I - -1 ) .LT.X(I ) )  GO TO 71 
M A X D I M  = 0 
G O  TO 75 

7l C O N T I N U E  
IF(NG.GT.0)  GO T O 5000 

On computers  in which all variables are not  automatical ly  
set to zero before execution, F N S M I  is not  properly initialized 
if N F N S  <_ O. To correct this, s imply insert the s ta tement  

FNSM1 = 0. 

before the s ta tement  

IF(NFNS.LE.0)  G O  T O 46 

The latter is the sixth s ta tement  after For t ran  s ta tement  n u m -  
ber 74. 

F N S M 1  will still be improper ly  defined if N F N S  = 1. If 
only one curve is to be plotted, however, t ranslat ing to s imulate  
stepping in the depth d imens ion  will no t  be done, so set N F N S  = 
-- 1 for only one curve to be plotted. 

In some  cases, the three-dimensional  surface is easier to visual- 
ize if (nearly) vertical lines are drawn at  the left edge of  each curve; 
this effect is illustrated by Figures l and  2. The  verticals are 
added by inserting ( X M I N %  Y M I N )  as the first point  in each 
input  curve to be plotted, where ~ is a small  positive n u m b e r  
( IO- -4 )<DELTAX would be appropriate) .  

The  au thor  appreciates very much  the c o m m e n t s  received 
form readers o f  Communica t ions  regarding implementa t ion  of  
H I D E  on different computers .  

Remark on Algorithm 429 [C2] 

Localization of the Roots of a Polynomial [C2] 
[W. Squire, Comm. A C M  15 (Aug. 1972), 776-777] 

H.B. Driessen and E.W. LeM. Hunt [Recd. 13 Oct. 
1972, 29 Jan. 1973] 

Supreme Headquarters Allied Powers of Europe, 
Technical Center, P.O. Box 174, The Hague, The 
Netherlands 

There seems to be an  error in this a lgori thm. If we take the 
polynomial :  

z 4 -}- ao.z 2 d- a3z 3 q- a,z .q- a~ = O, 

then after the second pass through the K-loop of  the logical func- 
tion H R W T Z R ( C ,  N ) ,  the te rm (aza3--a4)a4 --  asa2 is tested for a 
minus  sign. However,  the te rm which should be tested according 
to the Rou th -Hurwi t z  criterion is (a2a3--a,)a4 --  asa2 ~. If  this 
term is negative then there are no  roots with positive real parts.  

As  an  example,  if the polynomial  

z 4 q- 5.6562 z 3 + 5.8854z 2 d- 7.3646 z + 6.1354 = 0 

is s tudied with the help of Algor i thm 429 one will find as output :  

Roots  are in an  annu lus  o f  inner  radius .454 E -k- 00 and  
outer  radius .836 E q- 01; 

There  are no real positive roots;  
The  negative roots  (if any) are between -- .454 E q- 00 an d  

-- .836 E + 01; 
There  are no roots  with positive real parts. 

However,  if one calculates the roots of  this equation,  one will 
find approximately:  

zl = --1.0001 
z~ = --4.7741 
z3.~ = +0 .0089  -I- 1.1457 i 

S ta tement  20 + 1 in the logical funct ion H R W T Z R ( C , N ) ,  
which was originally "C1 = C(1)",  should be amen d ed  to read 
"C1 = C ( 1 ) / C 1 " .  

As a by-product  of  our  investigation, it turns  out  that  the  
structure of  the logical funct ion H R  W T Z R  can  be simplified by 
abandon ing  the logically redundant  steps C ( K ) =  C ( K + I ) .  

The  following listing incorporates both the correction and  
the simplifications. The  funct ion has  been parameter  tested on a 
CDC-6400.  

L O G I C A L  F U N C T I O N  H R W T Z R  (C,N) 
D I M E N S I O N  C(N)  
H R W T Z R  = .FALSE.  
IF (C(1) .LE.0. .OR.C(N).LE.0. )  R E T U R N  
C1 = C(1) 
M = N - - 1  
D O  30 I = 2,M 
DO 20 K = I ,M,2 

20 C(K)  = C(K)  -- C ( K + I ) / C I  
ct  = c(t)/c1 
IF  (C1.LE.0.) R E T U R N  

30 C O N T I N U E  
H R W T Z R  = .TRUE.  
R E T U R N  
E N D  
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