
Algorithms
L.D. Fosdick and
A.K. Cline, Editors

Submittal of an algorithm for consideration for publication in
Communications of the ACM implies unrestricted use of the algo-
rithm within a computer is permissible.

Copyright @ 1973, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

Algorithm 455

Analysis of Skew
Representations of the
Symmetric Group [Z]
D.B. Hunter* and Julia M. Wil l iamst [Recd. 5 Feb.
1971]
* Depar tment o f Mathematics , University of Bradford,
Yorkshire, England
t 12 Peel C lose , H e s l i n g t o n , Y o r k , E n g l a n d

Key Words and Phrases: symmetric group, skew representation,
partition, Young diagram, lattice permutation, binary model, outer
product

CR Categories: 5.30
Language: Algol

Description
This algorithm analyzes the skew representation [x]-[~] of the

symmetric group ~r~ corresponding to a pair of partitions

(X) = (X~, X 7 , . . . , X~) and (u) = (~,, ~ 2 , . . . , u~) where

r~_s

m >_u~>_ " '" > u ~ (I)
X~>_ul (l _ < i _ < s)

(see Robinson [4, see. 2.5]). The analysis takes the form

[xl-[u] = ~(,~ c~,~ M, (2)

where the summation is over all partitions (v) of n, the coefficients
e (,) being nonnegative integers.

The method used may be described as follows: construct all
possible diagrams which can be built up in accordance with the
following two rules.
(a) Replace u, of the nodes in the Young diagram corresponding
to (x) by identical symbols a. in such a way that: (i) the unchanged

nodes form a regular Young diagram; and (ii) no two identical
symbols a, lie in the same column. Then replace u,-i further nodes
by identical symbols a~_~ in accordance with the same rules, and
so on, finally replacing Ul nodes by identical symbols a~.
(b) In the final diagram the altered nodes should form a lattice
permutation of al~XCC~z 2 . . . a~ u' (Robinson [4, sec. 2.4]) when
read from right-to-left through successive rows.

Then the pattern of unchanged nodes in each diagram so con-
structed defines a term [u] in the analysis.

This method appears not to have been explicitly stated in the
above form before, but is an immediate consequence of Little-
wood's method for analyzing the outer product IX]. [u] (see Little-
wood [3, sec. 6.3, th. V], Robinson [4, sec. 3.3]), noting that c(~)
is also the coefficient of [X] in the analysis of [u]. [u] (Littlewood
[3, sec. 6.4, th. VIII]).

In the procedure, binary models of those partitions (u) in (2)
for which c(v) ~ 0 are stored, in lexicographic order, in nu[l],
n u [2] , . . . , nu[p], the corresponding values ¢(,) being stored in
c[1], c[2], . . . , c[p]. The binary model used is due to Com6t [1],
a partition (v) = (u~, ~ , . . . , ut) being represented by the number

2 '~ -n + 2 ~ - n - ~ 2 -I- " ' " if- 2 ~ 4- I . (3)

The techniques used are similar to those employed in [2]. In
particular, two two-dimensional arrays lam and sigma are required.
Corresponding to any particular diagram, lain [i, j] specifies the
number of nodes in row j which are still unchanged when all the
symbols c~,, a~_1 , . . . , ai have been inserted (j = i, i -k- 1, . . . , r),
and sigma [i, j] specifies the total number of symbols ai inserted
in rows i, i q- 1, . . . , j. Thus the quantities lam[i,j] are generated
by the equation

lam[i,j] = lam[i-q-l,j] -- sigma[i,j] q- sigma[i,j--1]. (4)

The rules for constructing the diagrams impose the restrictions

sigma[i--l , j--1] >_ sigma[i--l,j] -- lam[i,j] q- lam[i,j+l] (5)

and

sigma[i-- 1,j-- 1] > sigma[i,j]. (6)

Each time array lam is completed, a term

(u) = (lain[l,1], lam[l,2] lam[l,r]) (7)

is added to the analysis.
Note 1. In view of the identity

[x].[u] = [xl+u~, x,+u.., x ,+m, Xl, x~ , x~] - [x~q,

procedure skew may also be used to analyse the outer product
[X].[u]. It is, however, less convenient for this purpose than pro-
cedure outer product of Hunter [2].

Note 2. Value o f p. It is difficult to predict the value of p in
any example. Clearly, p <_ p(n), where p(n) denotes the number of
partitions of n. On the other hand, for any value of n, there are
partitions (X) and (u) for which p = p(n), namely, (X) =
(n ,n -1 1), (u) = (n - l , 1).

References
1. Com6t, S. Notations for partitions. M T A C 9 (1955), 143-146.
2. Hunter, D.B. Outer product of symmetric group representa-
tions. B I T 10 (1970), 106-114.
3. Littlewood, D.E. Theory o f Group Characters, 2nd ed. Oxford
U. Press, England, 1950.
4. Robinson, Gilbert B. Representation Theory o f the Symmetric
Group. U. of Toronto Press, Toronto, Ont., Canada, 1961.

Algorithm
procedure skew (r, s, lambda, mu, p, c, nu);

value r, s; integer r, s, p; integer array lambda, mu, c, nu;
begin
comment Input parameters.

r: the number of parts in partition (X).
s: the number of parts in partition (~).

571 Communications September 1973
of Volume 16
the ACM Number 9

http://crossmark.crossref.org/dialog/?doi=10.1145%2F362342.362371&domain=pdf&date_stamp=1973-09-01

lambda: the part Xl is stored in lambda[i], i = 1, 2 , . . . , r.
mu: the part ui is stored in mu[i], i = 1, 2 , . . . , s.
Output parameters.
p: the number of terms on the right in (2) for which

c(~) ~ O.
ha: Binary models (3) of the partitions (v) in (2) for which

c(,) ~ 0 are placed in lexicographic order in nu[1],
nu[2] , nu[p].

c: c[i] contains the coefficient c(,) of the partition whose
binary model is in nu[i];

integer i , j , k , x , y;
integer array lain[1 : s -k 1,1 : r], sig~na[1 :s--k 1,0: r];
p := O; for i := 1 step 1 until s do lam[iq- l , i] := lambda [il;
for j := s -b l step 1 until rdo
begin

lam[sq- l , j] := lambda[j]; s i g m a [s - l - l , j - - l] := 0
end;
for i : = 1 step 1 until s do sigma[i, r] := mu[i];
k := mu[s] -- lambda[r]; s igma[s, s - - l] := O;
for j : = r - - l step - - l until s do
begin

s igma[s , j] := i f k >__ 0 then k else O;
k .: = sigma[s, j] -- lambda~] q- l a m b d a l j - k I I

end;
i : = s;

build:
f o r i : = i step - - l until l do
begin

f o r j := i step 1 until r do
lain[i, j] := lain[i-l-l , j] -- sigma[i, j] q- sigma[i, j - 1];
if i ~ 1 then
begin

k := m u [i - - l] -- lain[i, r]; s i g m a [i - - l , i - -2] := O;
for j : = r step -- 1 until i do
begin

s igma [i - 1, j -- 1] : = if k > s igma [i, j] then k
else sigma[i, j];
k := s i g m a [i - - l , j - - 1] -- l a m [i , j - - l] -t- lam[i , j]

end
end

end;
x : = j : = 1;
for j := j q- 1 while (i f j > r then false else lam[i , j]>O)

do x := x X 2 T lam[1,j] q- 1;
if (if p = 0 then true else x>nu[p]) then
begin

p := p q- 1; nu[pJ := x; c[p] := 1
end
else
if x = nu[p] then c[p] := c[p] -b 1
else
begin

j : = 1 ; k : = p ;
search:

y := (j + k) + 2 ; i f x = n u [y] t h e n c [y] := c[y] q- 1
else
i f nu[y] < x A x < nu[y-bl] then
begin

for k := p step - - l until y + l d o
begin,

c [k + l] := c[k]; h u l k + l] := nu[k]
end;
c [y+ l] := 1; nu [y+ l] := x; p := p + 1

end
else
begin

i f x < nu[y] then k := y e l s e j := y; go to search
end

end;
for i : = 1 step 1 until s do

for y := i step 1 until r - 1 do
if sigma[i,y] < s igma[i ,yq-1] then
begin

sigma[i ,y] := sigma[i,y] -b 1;
for j : = y step -- 1 until i do
begin

k := sigma[i, j] -- lam[iq - l , j] -b l a m [i q - l , j W l] ;
s i g m a [i , j - 1] := if k > s i g m a [i W l , j] then k
else s igma [i@ 1 ,j];
if sigma[/,j-- 1] = 0 then
begin

for x := j -- 1 step --1 until i d o s i g m a [i , x - - l] := O;
go to build

end
end

end
end s kew

Algorithm 456

Routing Problem [H]
Z d e n ~ k F e n c l [Recd . 16 N o v . 1970, 4 Oc t . 1971, a n d

28 J a n . 1972]

R C A , C o m p u t e r S y s t e m s D i v i s i o n , 200 F o r e s t S t ree t ,

M a r l b o r o u g h , M A 0 1 7 5 2

The algorithm was originally developed as a part of vector
ordering procedures at the Design Automation Center, RCA, Marl-
borough, Massachusetts, and was extended to general use in the
traveling salesman and nonsymmetric routing problem.

Key Words and Phrases: routing problem, shortest path, traveling
salesman problem, Hamiltonian circuit

CR Categories: 5.40
Language: Fortran

Description
The algorithm finds the shortest serial (branchless) connection

between n nodes of a net beginning in the start node sn and termi-
nating in the end node en or terminating in any node. Also given
is the m)< m matrix d of distances (with zero diagonal and not
necessarily symmetric) between all pairs of nodes, and the vector
p containing n node numbers to be connected referring to appro-
priate entries in the matrix d. The algorithm is constructed so that
for one net (given by the matrix d) various connections, not neces-
sarily exhausting all of m nodes, may be created; hence n < m.
The case sn = en is also permitted, which actually yields a Hamil-
tonian circuit--traveling-salesman problem. If, in input, en = O,
the start-to-any connection is assumed. Also as an input is the
number of runs r, which is discussed below. In the output, the
original vector p is replaced by conjectured optimal sequence of
n nodes, and l contains the connection length. The matrix d does
not need to represent a Euclidean net nor be symmetric. Thus
the algorithm may serve as a more general tool to solutions of
related problems.

Since the method is heuristic, which implies it is approximate,
guaranty of an optimal solution is based on empiric probability.
The algorithm uses a tour-building method combined with tour-to-
tour improvements.

In the first phase, the tour, or sequence of nodes, is built up
by successively inserting not-yet-involved nodes into the tour.

572 Communications September 1973
of Volume 16
the ACM Number 9

If, in the middle of tour building, the tour, for instance, consists
of the nodes P l , P2, • • •, pk, the next node among the nodes
pk+l, pk+2,. . •, pn, and the arc (to be split by the chosen inserted
node) among the arcs pip2, p z l~ , . • •, pkPl, are chosen so that
the tour increment will be minimum; i.e. i (1 _< i _< k) and
j (k <] <_ n) are chosen in such a manner that d(p i. pj) -~ d(p~-. ~i + 1)
- d(p~. p~+l) = min. Tour building starts with the are pip1 and ter-
minates when all n nodes have been included. The tour-building
approach of this kind for the traveling-salesman problem was
originated by Karg and Thompson [1] and further developed
by Raymond [2]. This algorithm, however, handles an open con-
nection--start-to-end or start-to-any node. The maintenance of
this property is ensured in the algorithm by assigning to the end-
to-start or each-to-start distance sufficiently large negative values
(- n × max~j[dl;]) which, in some way, firmly attach the end or any
of n nodes to the start node permitting a circuit to form. In fact,
the algorithm works on a net as if it were a closed circuit and
keeps the node configuration by modifying the distance matrix.
In output, the distance matrix is returned to its original form.

A tour thus built is hardly optimal and for larger nets it is
probably far from optimum. The second phase improves the tour
(for n >_ 3) by the so-called 3-opt method proposed by Lin [3].
Improvements consist in exchanging three arcs, or links of the
given connection by three other links. If there are no more 3 links to
exchange for tour improvement, the tour is said to be 3-optimal.
In general, X-optimality can be considered. The implication of the
3-1ink exchange is essentially in reinsertions. Consecutive node
chains of length k (1 < k < n) are successively tried to be rein-
serted (both as are and inverted) into remaining links for tour
improvements, which actually represent 3-1ink exchanges (and
also 2-1ink at the same time). A 3-opt tour shows a certain proba-
bility to be an optimal one in relation to n. Different 3-opt tours
can be achieved if different initial nodes are chosen, which allows
us to increase the probability of obtaining an optimal solution.

The algorithm can run r trials (as specified in input) with
different initial nodes (Pl, set automatically), thus obtaining
different solutions while the best is saved and replaced in the vector
p in output. For runs r > n (r _< 2n) there is little chance for
further improvement, because initial nodes repeat and the tour
development can be affected only by previous contents of the
vector p on which the tour is built. Probability that the 3-opt
tour is optimal is somewhat higher in this algorithm, than in the
one Lin suggests. In contrast to finding a 3-opt solution from a
given random sequence of nodes, the fast building of an appropriate
tour in the first phase considerably reduces the number of rein-
sertions in the second phase. The algorithm generalization to the
noncyclic and nonsymmetric problems, in comparison to the
traveling-salesman problem, increases computational time.

A considerable number of test examples have been run by the
algorithm including the three problem types mentioned and the
non-Euclidean and nonsymmetric problems. To outline the capa-
bility and how the "cost-approximation" factor r should be set
for various n's, a survey of tested problems is presented, most of
which problems have been solved and published before. The algo-
rithm in Fortran was run on the RCA's SPECTRA 70/45 (fixed-
point add time equals 8.88 usec), and is recommended for a high
probability (over 95 percent) of obtaining an optimum if r = 2
to 5 for n < 10 and r = 5 to 15 for n < 30. For higher n's, unless
cost is out of consideration and r can be set up to 2n, the checking
of successive results is advisable to see how improvements are
developing (p and 11 should be checked after the tour-length calcu-
lation). These checks can also serve for getting suboptimal solutions.

In the program, the distance matrix d is in fixed-point mode,
which makes computation faster and does not seem to be a serious
restriction. Decimal order range of distances is expected to be
small enough to be represented in fixed point, and calculations
(additions and subtractions) will, most likely, not face overflow
problem.

The arrays ID and Q should have the maximum subscript set
at least to n.

Survey o f tested problems

Conjec tu red tl
Ref. n s n e n o p t i m u m r o p t [see]

K a r g a n d T h o m p - 1 2 118 1
son [1] 5 1 0 e n = 5 108 1 < 1

1 1 148 I

R a y m o n d [2] 1 5 165 1
7 1 0 en = 4 140 I < 1

1 1 179 1

Barache t [41 1 2 350 1
10 1 0 e n = 7 298 1

1 1 378 2 1 . 4
1 2 308 1

10" 1 0 e n = 7 257 2
I 1 336 2

A u t h o r 1 2 102 1
12 1 0 e n = 12 95 1 3 . 0

1 1 114 1

A u t h o r I 6 117 1
13 1 0 e n = 1 2 102 ! 3 . 0

1 1 130 1

He ld and K a r p [5] I 25 ** 1517 10 2 1 . 8

25 I 0 ~ = 2 5 1517 2 2 2 . 3
I 1 ** 1711 1 2 9 . 7

K a r g and T h o m p - 1 33 ** 10655 2 5 3 . 6
**

s o n [l] 33 1 0 e n = 1 4 10585 10 5 3 . 4
1 1 ** 10861 6 5 3 . 7

* N o n s y m m e t r i c p r o b l e m (two dis tances changed : (6, 5) = 1, a n d (8, 3) = 1).
** Resu l t s ob t a ined f r o m 10 runs .

The algorithm is believed to be applicable also to problems
in which all connections do not necessarily exist. In terms of graph
theory a graph representing the net to be routed need not be com-
plete; i.e. every pair of vertices may be connected only in one of
the two possible directions. The graph, however, must be strongly
connected; i.e. there must be a path joining any pair of arbitrary
distinct vertices. Nonexisting arcs might be expressed by assigning
to the appropriate distances dk~ sufficiently large positive values,
for instance n X maxi~- [dii].

Symbol summary
n number of nodes to be connected (2 < n < m).
p vector containing n node numbers (in output, it contains

node number sequence of conjectured shortest path).
sn start node number (1 < sn < m; no check is provided whether

sn is contained in p).
en end node number (1 _< en <_ m; if en = 0, start-to-any con-

nection is assumed; en = sn is allowed, which is traveling-
salesman problem; no check is provided whether sn is con-
tained in p)

m order of distance matrix d (m >_ n _> 2).
d m × m matrix of distances of all node pairs (zero diagonal,

not necessarily symmetric).
1 length of conjectured shortest path (output).
r number of runs (trials; r < 2n).
ropt serial run number during which optimum has been achieved.
tl average computational time of one run in seconds.

R e f e r e n c e s

1. Karg, R.L., and Thompson, G.L. A heuristic approach to
solving traveling salesman problem. Mgmt. Sci. 10, 2 (1964),
225-248.
2. Raymond, T.C. Heuristic algorithm for the traveling-salesman
problem. I B M J. Res. Develop. 13, 4 (1969), 400-407.

5 7 3 Communications September 1973
of Volume 16
the ACM Number 9

3. Lin, S. Computer solutions of the traveling salesman problem.
Bell Syst. Tech. J. 44 (Dec. 1965), 2245-2269.
4. Barachet, L.L. Graphic solution of the traveling salesman
problem. Oper. Res. 5 (1957), 841-845.
5. Held, M., and Karp, R.M. A dynamic programming approach
to sequencing problems. J. Soc. Incrust. Appl. Math. 10,] (1962),
196-210.
6. Saksena, J.P., and Kumar S. The routing problem with 'k'
specified nodes. Oper. Res. 14 (1969), 909-913.
7. Bellmore, M., and Nemhauser, G.L. The traveling salesman
problem: A survey. Oper. Res. 16 (1968), 538-558.
8. Berge, C. The Theory of Graphs and Its Applications. Wiley,
New York, 1962.
9. Berge, C., and Ghouila-Houri, A. Programming, Games and
Transportation Networks. Wiley, New York, 1965.

Algorithm
SUBROUTINE ROUTNG(N, P, ON, EN, M, D , L, H)
INTEGER P (N) , D(M,M), ID (6O) , 0 (6 0) , ON, EN, R

C N - NUMBER OF NODES TO BE CONNECTED
C P - NODE NUMBER VECTOR (I N O U T P U T , O P T I M A L C O N N E C T I O N)
C ON- START N O D E NUMBER
C EN- END NODE NUMBER
C M - DISTANCE MATRIX O R D E R
C D - D I S T A N C E MATRIX
C L - S H O R T E S T C O N N E C T I O N L E N G T H (O U T P U T)
C R - NUMBER OF RUNS
C GET LARGE NUMBER (= N X MAX D (I J J))

LARGE = 0
DO 2 0 I = I , M

DO I0 J = I , M
I F (D (I , J) .GT .LARGE) LARGE = D (I , J)

1 0 C O N T I N U E
O0 C O N T I N U E

LARGE = L A R G E * N
C DEFINE NON-EXISTING ARCS BY ASSIGNING
C T H E I R D I S T A N C E S LARGE N E G A T I V E V A L U E S

I F (EN.NE*O) GO TO 40
DO 3 0 I = I , M

I O (I) = D (I , S N)
D (I , S N I = - L A R G E
D (S N n S N) = 0

3 0 C O N T I N U E
40 I F (S N * E Q * E N . 0 R * E N . E Q . O) GO TO 50

I D (1) = D (E N , S N)
D (E N , S N) = - L A R G E

C RUN R T R I A L S
5 0 L = L A R G E

DO 2 8 0 I R S = I , R
C BUILD TOUR BY SUCCESSIVE I N S E R T I N G
C NOT-YET-INVOLVED NODES
C INITIATE TOUR IS CONSIDERED AS
C ARC P (I) TO P (I)

DO 90 J S = f i , N
MIN INC= LARGE

C T R A C E A L L NOT-YET-INVOLVED NODES
C TO CHOOSE THE ONE WITH MINIMUM INCREMENT

DO 7 0 J=JS, N
d p = p (J)
J E = J S - !

C FeR EACH N O T - Y E T - I N V O L V E D NODE TRACE A L R E A D Y
C B U I L T - U P TOUR TO CHOOSE THE MINIMUM I N C R E M E N T ARC

DO 6 0 I = I , J E

I P = P (1)
IPI = P (I + I)
I F (I . E Q . J E) I P I = P (1)
I N C = D (I P , J P) ÷ D (J P * I P 1) - D (I P , I P I)
I F (INC.GE.MINING) 60 TO 60
J l = J
I t = I
MININC = I N C

60 C O N T I N U E
7 0 C O N T I N U E

C STRETCH TOUR BY INSERTING THE CHOSEN NODE P(JI)
C BETWEEN THE NODES P (I I) AND P (I I + I)

SO J l = J l - 1
I F (J I . E Q . I I) GO TO 9 0
IP = P (J I)
P (J I) = P (J I + I)
P I J | + I) = I P
GO TO 8 0

9 0 CONTINUE
C CORRECT TOUR BY 3-OPT METHOD
C VARY C O N S E C U T I V E CHAIN L E N G T H K

NI : N - I

IF (N . L T . 3) GO TO 2 1 0
DO ODD K f b N I

I C O U N T = 0
C SHIFT C O N S E C U T I V E C H A I N
C THROUGHOUT SEQUENCE OF N NODES

1 0 0 I C O R = 0
DO 190 J = I , N

C C A L C U L A T E C H A I N L E N G T H I N FORWARD
C AND BACKWARD DIRECTION

L I = 0
LR = 0
I F (K,EO.I) GO T0 1 ~ 0
I=J
Kl = l

110 IF (I *GT°N) I = I - N
IP = P(1)
I P I = I ÷ I
I F (I P I . G T . N) I P I = I
I P I = P(IPI)

L1 = LI ÷ D(IP , I P I)
LR = LR + D (I P I , I P)
I = I + I
Hl = El + I

I F (H I . L T . K) GO TO I l O
C FOR EACH POSITIONED CHAIN (AS IS AND INVERTED)
C CHECK ALL ARCS IF INSERTIDN IMPROVES TOUR

120 MINING = LARGE
J l = d + H - 1
IF (J I . G T . N) J l = d l - N

DO ISO I : b N
IF (J . L E . J I .AND. (I . G E . J .AND. I . L E , J I)) GO TO

* 1 5 0
IF (J . G T . J I .AND. (I . L E . J I .OR, I . G E , J)) GO TO 150
IP = P(1)
Jp = p (J)
J P I = P (J I)
IPI = I + I
IF (I P I . G T . N) IPI = I
J E = I P I
I F (IPI*EO.J) I P I = J l ÷ I
IF (I P I . G T * N) IPI = I
I P I = P (I P I)
LN = LI
IR = O

130 INC = D (I P , J P) + LN + D (J P I , I P I) - D(IP , I P I)
I F (INC.GT.MININC .OR. (ING-EQ.MINING .AND.

* (JE -NE.J .OR. JE.EQ-J .AND. I R . E Q . I))) GO TO 140
I 1 = I
I R I = I R
M I N I N C = I N C

1 4 0 I F (I R . E Q . I) GO TO 1 5 0
I R = 1
LN L R
J S = J P
J P = J P I
J P I = J S
GO TO 1 3 0

1 SO C O N T I N U E
I = I I + 1
IF (I,GT.N) I = I
I F (I * E Q . J *AND. I R I . E 0 o 0) GO TO 190

C R E I N S E R T CHAIN OF LENGTH K STARTING IN J
C BETWEEN NODES P (I I) AND P (I I + I)

ICOR = 1
J S = J
J E = 0
I F (IR I *EQ.OI GO TO 1 6 0
JS = J l
J E = -I

1 6 0 K l = 0
I T O KI = R l + 1

IF (KI .GToK) GO TO 190
I = d S
J S = J S + J E
I F (J S ° L T , I) J S = N

I O O I P = I + 1
IF (I P . D T . N) IP = I
JP = P (I)
P (I) : P (I P)
P (I P) = JP
I = I + 1
I F (I * G T . N) I = 1
I F { I P - I I) 1 8 0 ~ 1 7 0 , 1 8 0

1 9 0 C O N T I N U E
IF (ICOH.EO.O) GO TO 2 0 0
ICOUNT = ICOUNT + l
IF (ICOUNT.LT.N) G~ TO I00

200 CONTINUE
C ORIENT TOUR I ; I T H SN IN P(1)

2 1 0 DO 2 3 0 I = I , N
I F (P (I) . E Q . S N) GO T ~ 2 4 0
J S = PC1)
DO 2RO J = l , N l

P (J) = P (J + I)
2 2 0 CONTINUE

PCN) = J S
2 3 0 C O N T I N U E

C CALCULATE TOUR LENGTH
2 4 0 L I = O

DO 250 I = I , N I
I P = P (I)
I P I = P (I + I)
LI = LI + D (I P , I P I)

0 5 0 C O N T I N U E
I P = P(1)
IF (S N . E Q . E N) LI = LI + D (I P I J I P)

C SAVE SOLUTION, IF BETTER, AND SET NEV. INITIATE NODE
IF (L I . G E . L) GO TG 270
L = LI
DO 260 I = I , N

O(1) = P (I)
2 ~ 0 CC~TINUE
2 7 0 J = I R E + I

I F (J o G T , N) J = J - N
J b = ~ (I)
P(1) = P (J)
P(.I) = J S

2 3 0 C C ~ I I I~!E
C ;~ES] ' (i . ,F ,~ ANO b J i 4 Y :) [L T A N C E S

OL. > - 9 0 I = l ,
P (I) = :'(I)

2 9 0 C O N T I N U E
IF (E'J.'J:£,O) UC I 0 3 1 , 3
DO 3 0 .) I = 1 , ~

O (I , ~ N) = ll)Cl)
3 0 0 C C , ~ i I H U E
3 1 0 I F (S N . E ' O . E N .Ol ' . . E N . E u * O) GO TO 3 2 0

D (E N , L N) = I O (l)
3 0 0 t . E f O < N

ENo

574 Communications September 1973
of Volume 16
the ACM Number 9

Algorithm 457

Finding All Cliques of an
Undirected Graph [H]
C o e n B r o n * a n d J o e p K e r b o s c h t [Recd . 27 A p r i l

1971 a n d 23 A u g u s t 1971]

* D e p a r t m e n t o f M a t h e m a t i c s t D e p a r t m e n t o f In -

d u s t r i a l E n g i n e e r i n g , T e c h n o l o g i c a l U n i v e r s i t y E i n d -

h o v e n , P .O . B o x 513, E i n d h o v e n , T h e N e t h e r l a n d s

Present address of C. Bron: Department of Electrical Engineering,
Twente University of Technology, P.O. Box 217, Enschade, The
Netherlands.

Key Words and Phrases: cliques, maximal complete subgraphs,
clusters, backtracking algorithm, branch and bound technique,
recursion

CR Categories: 3.71, 5.32
Language: Algol

Description
bttroductian. A maximal complete subgraph (clique) is a

complete subgraph that is not contained in any other complete
subgraph.

A recent paper [1] describes a number of techniques to find
maximal complete subgraphs of a given undirected graph. In this
paper, we present two backtracking algorithms, using a branch-
and-bound technique [4] to cut off branches that cannot lead to a
clique.

The first version is a straightforward implementation of the
basic algorithm. It is mainly presented to illustrate the method used.
This version generates cliques in alphabetic (lexicographic) order.

The second version is derived from the first and generates
cliques in a rather unpredictable order in an attempt to minimize
the number of branches to be traversed. This version tends to pro-
duce the larger cliques first and to generate sequentially cliques
having a large common intersection. The detailed algorithm for
version 2 is presented here.

Description o f the algorithm--Version 1. Three sets play an
important role in the algorithm. (1) The set compsub is the set
to be extended by a new point or shrunk by one point on traveling
along a branch of the backtracking tree. The points that are eligible
to extend compsub, i.e. that are connected to all points in compsub,
are collected recursively in the remaining two sets. (2) The set
candidates is the set of all points that will in due time serve as an
extension to the present configuration of compsub. (3) The set
not is the set of all points that have at an earlier stage already
served as an extension of the present configuration of compsub and
are now explicitly excluded. The reason for maintaining this set
trot will soon be made clear.

The core of the algorithm consists of a recursively defined
extension operator that will be applied to the three sets Just de-
scribed. It has the duty to generate all extensions of the given
configuration of compsub that it can make with the given set of
candidates and that do not contain any of the points in not. To
put it differently: all extensions of compsub containing any point
in not have already been generated. The basic mechanism now
consists of the following five steps:

Step 1. Selection of a candidate.
Step 2. Adding the selected candidate to compsub.
Step 3. Creating new sets candidates and not from the old sets by

removing all points not connected to the selected candidate
(to remain consistent with the definition), keeping the old sets
in tact.

Step 4. Calling the extension operator to operate on the sets just
formed.

Step 5. Upon return, removal of the selected candidate from
compsub and its addition to the old set not.

We will now motivate the extra labor involved in maintaining
the sets not. A necessary condition for having created a clique is
that the set candidates be empty; otherwise compsub could still be
extended. This condition, however, is not sufficient, because if
now not is nonempty, we know from the definition of not that the
present configuration of compsub has already been contained in
another configuration and is therefore not maximal. We may now
state that compsub is a clique as soon as both not and candidates are
empty.

If at some stage trot contains a point connected to all points in
candidates, we can predict that further extensions (further selec-
tion of candidates) will never lead to the removal (in Step 3) of that
particular point from subsequent configurations of not and, there-
fore, not to a clique. This is the branch and bound method which
enables us to detect in an early stage branches of the backtracking
tree that do not lead to successful endpoints.

A few more remarks about the implementation of the algo-
rithm seem in place. The set compsub behaves like a stack and can
be maintained and updated in the form of a global array. The sets
candidates and not are handed to the extensions operator as a
parameter. The operator then declares a local array, in which the
new sets are built up, that will be handed to the inner call. Both
sets are stored in a single one-dimensional array with the following
layout:

]not [candidates

index values: l ne ce

The following properties obviously hold:

1. ne < ce
2. ne = ce:empty (candidates)
3. ne = 0 :empty (trot)
4. ce = 0 :empty (not) and empty (candidates)

= clique found

If the selected candidate is in array position ne q- 1, then the second
part of Step 5 is implemented as ne : = ne + 1.

In version 1 we use element ne + 1 as selected candidate. This
strategy never gives rise to internal shuffling, and thus all cliques
are generated in a lexicographic ordering according to the initial
ordering of the candidates (all points) in the outer call.

For an implementation of version 1 we refer to [3].
Description o f the algori thm--Version 2. This version does not

select the candidate in position ne + 1, but a well-chosen candidate
from position, say s. In order to be able to complete Step 5 as
simply as described above, elements s and ne + 1 will be inter-
changed as soon as selection has taken place. This interchange
does not affect the set candidates since there is not implicit ordering.
The selection does affect, however, the order in which the cliques
are eventually generated.

Now what do we mean by "well chosen"? The object we have
in mind is to minimize the number of repetitions of Steps 1-5 in-
side the extension operator. The repetitions terminate as soon as
the bound condition is reached. We recall that this condition is
formulated as: there exists a point in not connected to all points in
candidates. We would like the existence of such a point to come
about at the earliest possible stage.

Let us assume that with every point in not is associated a
counter, counting the number of candidates that this point is not
connected to (number of disconnections). Moving a selected
candidate into not (this occurs after extension) decreases by one
all counters of the points in not to which it is disconnected and
introduces a new counter of its own. Note that no counter is ever

575 Communications September 1973
of Volume 16
the ACM Number 9

Fig. l. Random graphs show the computing time per clique (in
ms) versus dimension of the graph (in brackets: total number of
elk aes in the test sample).

16(no da ta
av " lab ia

14f

no data
ava i l ab l e

12G

I 0 0 o = B i a r s t o n e

• = Version 1

8 0 + = r s ' n 2

60

40

2O

50) (127) (330) (579) (2163) (3784) (8816) (43223) (12856)

0 0 115 20

Fig. 2. Moon-Moser graphs show the computing time (in ms) ver-
sus k. Dimension of the graph = 3k. Plotted on logarithmic scale.

10 5

t04

103

102

o

o

decreased by more than one at any one instant. Whenever a counter
goes to zero the bound condition has been reached.

Now let us fix one particular point in not. If we keep selecting
candidates disconnected to this fixed point, the counter of the
fixed point will be decreased by one at every repetition. No other
counter can go down more rapidly. If, to begin with, the fixed point
has the lowest counter, no other counter can reach zero sooner,
as long as the counters for points newly added to not cannot be
smaller. We see to this requirement upon entry into the extension
operator, where the fixed point is taken either from not or from
the original candidates, whichever point yields the lowest counter
value after the first addition to not. From that moment on we only
keep track of this one counter, decreasing it for every next selec-
tion, since we will only select disconnected points.

The Algol 60 implementation of this version is given below.
Discussion of comparative tests. Augustson and Minker [1]

have evaluated a number of clique finding techniques and report
an algorithm by Bierstone [2] as being the most efficient one.

In order to evaluate the performance of the new algorithms,
we implemented the Bierstone algorithm x and ran the three algo-
rithms on two rather different testcases under the Algol system
for the EL-X8.

For our first testcase we considered random graphs ranging
in dimension from 10 to 50 nodes. For each dimension we gen-
erated a collection of graphs where the percentage of edges took
on the following values: 10, 30, 50, 70, 90, 95. The cpu time per
clique for each dimension was averaged over such a collection. The
results are graphically represented in Figure 1.

The detailed figures [3] showed the Bierstone algorithm to be
of slight advantage in the case of small graphs containing a small
number of relatively large cliques. The most striking feature, how-
ever, appears to be that the time/clique for version 2 is hardly
dependent on the size of the graph.

Bierstone's algorithm as reported in [1] contained an error.
In our implementation the error was corrected. The error was
independently found by Mulligan and Corneil at the University
of Toronto, and reported in [6].

576

The difference between version 1 and "Bierstone" is not so
striking and may be due to the particular Algol implementation.
It should be borne in mind that the sets of nodes as they appear in
the Bierstone algorithm were coded as one-word binary vectors,
and that a sudden increase in processing time will take place when
the input graph is too large for "one-word representation" of its
subgraphs.

The second testcase was suggested by the referee and consisted of
regular graphs of dimensions 3 X k. These graphs are constructed
as the complement of k disjoint 3-cliques. Such graphs contain
3 k cliques and are proved by Moon and Moser [5] to contain the
largest number of cliques per node.

In Figure 2 a logarithmic plot of computing time versus k is
presented. We see that both version 1 and version 2 perform sig-
nificantly better than Bierstone's algorithm. The processing time
for version 1 is proportional to 4 ~, and for version 2 it is propor-
tional to (3.14)~ where 3 k is the theoretical limit.

Another aspect to be taken into account when comparing
algorithms is their storage requirements. The new algorithms
presented in this paper will need at most ½M(M+3) storage loca-
tions to contain arrays of (small) integers where M is the size of
largest connected component in the input graph. In practice this
limit will only be approached if the input graph is an almost com-
plete graph. The Bierstone algorithm requires a rather unpredict-
able amount of store, dependent on the number of cliques that
will be generated. This number may be quite large, even for mod-
erate dimensions, as the Moon-Moser graphs show.

Finally it should be pointed out that Bierstone's algorithm
does not report isolated points as cliques, whereas the new al-
gorithm does. Either algorithm can, however, be modified to pro-
duce results equivalent to the other. Suppression of l-cliques in
the new algorithm is the simplest adaption.

Acknowledgments. The authors are indebted to H.J. Schell
for preparation of the test programs and collection of performance
statistics. Acknowledgments are also due to the referees for their
valuable suggestions.

Communications September 1973
of Volume 16
the ACM Number 9

References
1. Augustson, J.G., and Minker, J. An analysis of some graph
theoretical cluster techniques, J. A C M 17 (1970), 571-588.
2. Bierstone, E. Unpublished report. U of Toronto.
3. Bron, C., Kerbosch, J.A.G.M., and Schell, H.J. Finding
cliques in an undirected graph. Tech. Rep. Technological U. of
Eindhoven, The Netherlands.
4. Little, John D.C., et al. An algorithm for the traveling sales-
man problem. Oper. Res. 11 (1963), 972-989.
5. Moon, J.W., and Moser, L. On cliques in graphs. Israel J.
Math. 3 (1965), 23-28.
6. Mulligan, G.D., and Corneil, D.G. Corrections to Bier-
stone's algorithm for generating cliques. J. A C M 19 (Apr.
1972), 244-247.

Algorithm
procedure output maximal complete subgraphs 2(connected, N);

value N; integer N;
Boolean array connected;

comment The input graph is expected in the form of a symmetrical
Boolean matrix connected. N is the number of nodes in the
graph. The values of the diagonal elements should be true;

begin
integer array ALL, compsub[l : N];
integer c;
procedure extend version 2(old, ne, ce) ;

value he, ce; integer r/e, ce;
integer array old;

begin
integer array new]l : ce];
integer nod, fixp;
integer newne, newce, i, j , count, pos, p, s, sel, minnod;
comment The latter set of integers is local in scope but need

not be declared recursively;
minnod := ce; i := n o d : = 0;

D E T E R M I N E E A C H COUNTER V A L U E A N D L O O K FOR
M I N I M U M :

f o r i : = i + 1 whilei <_ c e / ~ m i n n o d ~ Odo
begin

p := old]i]; cowtt := 0; j := he;
C O U N T D I S C O N N E C T I O N S :

f o r j := j + 1 whilej < ce /~ count < minnod do
if 7 connected[p, old[j]] then
begin

count := count + 1;
SA VE P O S I T I O N OF P O T E N T I A L C A N D I D A T E :

pos := j
end;

T E S T N E W M I N I M U M :
if count < minnod then
begin

f ixp := p; minnod := count;
if i < r/e then s := pos
else
begin s := i; PREINCR: nod := l end

end N E W M I N I M U M ;
end i;
comment If fixed point initially chosen from candidates then

number of disconnections will be preincreased by one;
B A C K T R A CKC Y C L E :

for n o d : = minr/od + nod step -- 1 until 1 do
begin

I N T E R C H A N G E :
p := old]s]; old[sJ := old[ne + lJ;
sel := old[he + 1] := p;

FILL N E W S E T not:
r / e w r / e : = i : = 0 ;

for i := i + 1 while i <_ r/e do
if eonnected[sel, old[i]] then

begin newne := newne + 1; new[newne] := old[il end;
FILL N E W S E T cand:

r/ewee := newne; i := ne + 1;
f o r i : = i + l w h i l e i < _ cedo

if connected[sel, old[ill then
begin newce := newce 'k 1; r/ew[newce] := old[i] end;

A D D TO compsub:
c := c --]- 1; compsub[c] := sel;
if r/ewce = 0 then
begin

integer loc;
outstrir/g(1, ' clique = ') ;
for loc := 1 step 1 until c do

outinteger(1, compsub[loc])
end output o f clique
else
if newne < newce then extend version 2(r/ew, newne, newee) ;

R E M O V E F R O M compsub:
c := e - - l;

A D D TO not:
r/e := ne + 1;
if nod > 1 then
begin

S E L E C T A C A N D I D A T E D I S C O N N E C T E D TO T H E FIXED
POINT:

S : = r/e;

LOOK: FOR C A N D I D A T E :
s : = s + l ;
if conneeted[fixp, old[s]] then go to L O O K

end selection
end B A C K T R A C K C Y C L E

end extend version 2;
for c := 1 step 1 until N do ALL[c] := e;
c := 0; extend version 2(ALL, O, N)

end output maximal complete subgraphs 2;

R e m a r k on A l g o r i t h m 3 2 3 [G6]
G e n e r a t i o n o f P e r m u t a t i o n s in L e x i c o g r a p h i c O r d e r

[R.J . O r d - S m i t h , C o m m . A C M 11 (F e b . 1968), 117]

M o h i t K u m a r R o y [Recd . 15 M a y 1972]

C o m p u t e r C e n t r e , J a d a v p u r U n i v e r s i t y ,

I n d i a

C a l c u t t a 32,

In presenting Algorithm 323, BESTLEX, for generating per-
mutations in lexicographic order, the author has mentioned the
number of transpositions. It may be remarked here that equal
numbers of transpositions are required by both B E S T L E X and
the previously fastest algorithm, Algorithm 202 [1]. The exact
number of transpositions (T,) necessary to generate the complete
set of n I permutations is given by

Tn = nI (~ 1) -- (n + l) / 2 , i f n is odd, and
7", = r/! (~-2) - r//2, if r/is even,

1 1 1
where ~2~ = 1 + ~-! + ~.. + . . . + ~ -- 1.543 for n >_ 3.

The above expressions do not include the few extra transpositions
(equal to the integral part of n/2) required by B E S T L E X to gener-
ate the initial arrangement from the final one, as this portion has

577 Communications September 1973
of Volume 16
the ACM Number 9

not been included in Algorithm 202. Therefore, the number of
transpositions has no importance in the context of the claim that
BESTLEX is more than twice as fast as Algorithm 202.

The main factor contributing to the speed of BESTLEX is
the substantial reduction in the number of comparisons required,
by the introduction of the own integer array q. Taking into account
only those comparisons which involve array elements, the number
of comparisons (C,) required to generate all the n! permutations
can be shown to be equal to

n[
C, (Algorithm 202) = ~- [1 + 3,~,_~] + n,

C,, (BESTLEX) = n! [½q-~,,-l],

1 1 1
where ~,, = 1 + ~ q -~- -k " " -k~. -- 1.718 forn > 6.

This shows that the number of comparisons required by BESTLEX
is lower by .859(n!) (approximately) in the case of the generation
of all the n ! arrangements.

Finally, a modification of the BESTLEX algorithm is sug-
gested which will reduce the number of comparisons again by
(n!)/2. The modification involves replacement of lines 2-14 of
Algorithm 323 by the following.

begin own integer array q[3:n]; integer k, m;
real t; own Boolean flag;

comment Own dynamic arrays are not often implemented. The
upper bound will have to be given explicitly;

if first then
begin first := false; flag := true
for m : = 3 step 1 until n do q[m] := 1
end of initialization process;
if flag then
beginflag := false;

t := x[l]; x[1] := xt2h x121 := t;
go to finish

end;
flag := true;
for k := 3 step 1 until n do

The following deficiencies in the algorithm were noted
1. The dimensional parameters of ACSPMX, ADSPMX, and
MUSPMX are incomplete. As an illustration of this consider the
two matrices [100
A = 2 0 L00,

0 0

[000
B = 0 3 L0 0

0 0

Ool oj
oq o]

each of which has four nonzero elements.
Then the sum matrix has eight such elements, and in general,

for two matrices with n~ and n2 nonzero elements, the number of
nonzero elements, n3, in the sum matrix is in the range 0 < n3 <
n l -~ n2 •

However in .4DSPMX the condition used is i11 = n~ = n3.
Similar arguments apply t o / ICSPMX and MUSPMX.
To correct this requires extensions to the parameter lists and

dimension statements, and also it changes the conditional state-
ments within the subroutines concerned.

This shows up with the CALL/360-0S system since the com-
piler performs subscript checking. It would not be evident on most
compilers including the IBM Fortran IV G compiler. It is, how-
ever, bad practice to rely on default effects of compilers.
2. There are three, probably copying, errors in MUSPMX (page
270).

(i) Line 33 should be:
IF(NCA.EQ.NCB) GO TO 3

(ii) Line 55 should be:
DO 14J = 1, NRB

(iii) Line I02 should be:
CALL IPK(NRB,MC,2,NM)

References
1. Shen, Mok-Kong. Algorithm 202, generation of permuta-
tions in lexicographical order. Comm. ACM 6 (Sept. 1963), 517.

Added in proof: An improved version of BESTLEX, viz. Al-
gorithm 323A, Generation of Permutation Sequences: Part 2, by
R.J. Ord-Smith [Comp. J. 14, 2 (May 1971), 136-139], which also
incorporates the modification suggested here, has come to the au-
thor's attention.

R e m a r k on A l g o r i t h m 408 [F4]

A Sparse M a t r i x P a c k a g e (Par t I)

[John M i c h a e l M c N a m e e , Comm. A C M 14 (Apr . 1971),

265-273]

E .E . L a w r e n c e [Recd . 1 F e b r u a r y 1972, 12 M a r c h 1973]

C e n t r a l A p p l i c a t i o n L a b o r a t o r y , M u l l a r d L i m i t e d ,

N e w R o a d , M i t c h a m , Su r r ey C R 4 4 X Y , E n g l a n d

The subroutines constituting Algorithm 408 were, with the
exception of MFSPMX and WRSPMX, tested on an IBM 360/65
using CALL/360-0S. The author's alteration (iii) was introduced,
i.e. declaration of the M-array to be half length. Other changes
were introduced in order: (a) to make the algorithm more con-
versational in a time shared environment; and (b) to improve the
speed of the sorting procedure in PERCOL.

R e m a r k on A l g o r i t h m 4 2 0 [J6]

H i d d e n - L i n e P l o t t i n g P r o g r a m

[H u g h W i l l i a m s o n , Comm. A C M

100-103]
15 (Feb . 1972),

H u g h W i l l i a m s o n [Recd . 9 Oct . 1972]

N a t i o n a l C o n - S e r v , I n c o r p o r a t e d , A u s t i n , T e x a s

The input quantities to subroutine HIDE referred to in the
following paragraphs (e.g. N1, NFNS, "input curve to be plotted")
are described in the block of comment statements at the beginning
of HIDE as originally published.

If N1 < 0, DO loop 71 is not executed properly, since the
upper limit, N1, is less than the lower limit, 2. This affects only
checking for monotonicity in the input abscissa array; otherwise,
if the inputs are correct, the performance of the program is not
affected.

The error is corrected if the first 11 executable statements are
replaced by the following (the first executable statement of the
original program, which is not changed, is listed for clarity):

IF(MAXDIM.LE.0) R E T U R N
IFPLOT = I
IF(N1.GT.0) GO TO 76
N1 = --N1
IFPLOT = 0

578 Communications September 1973
of Volume 16
the ACM Number 9

Fig. 1. Wi thout verticals.

8

" >

Fig. 2. With verticals to aid visualization.

8

R

76 DO 71 l = 2,NI
IF(X(I - -1) .LT.X(I)) GO TO 71
M A X D I M = 0
G O TO 75

7l C O N T I N U E
IF(NG.GT.0) GO T O 5000

On computers in which all variables are not automatical ly
set to zero before execution, F N S M I is not properly initialized
if N F N S <_ O. To correct this, s imply insert the s ta tement

FNSM1 = 0.

before the s ta tement

IF(NFNS.LE.0) G O T O 46

The latter is the sixth s ta tement after For t ran s ta tement n u m -
ber 74.

F N S M 1 will still be improper ly defined if N F N S = 1. If
only one curve is to be plotted, however, t ranslat ing to s imulate
stepping in the depth d imens ion will no t be done, so set N F N S =
-- 1 for only one curve to be plotted.

In some cases, the three-dimensional surface is easier to visual-
ize if (nearly) vertical lines are drawn at the left edge of each curve;
this effect is illustrated by Figures l and 2. The verticals are
added by inserting (X M I N % Y M I N) as the first point in each
input curve to be plotted, where ~ is a small positive n u m b e r
(IO- -4)<DELTAX would be appropriate) .

The au thor appreciates very much the c o m m e n t s received
form readers o f Communica t ions regarding implementa t ion of
H I D E on different computers .

Remark on Algorithm 429 [C2]

Localization of the Roots of a Polynomial [C2]
[W. Squire, Comm. A C M 15 (Aug. 1972), 776-777]

H.B. Driessen and E.W. LeM. Hunt [Recd. 13 Oct.
1972, 29 Jan. 1973]

Supreme Headquarters Allied Powers of Europe,
Technical Center, P.O. Box 174, The Hague, The
Netherlands

There seems to be an error in this a lgori thm. If we take the
polynomial :

z 4 -}- ao.z 2 d- a3z 3 q- a,z .q- a~ = O,

then after the second pass through the K-loop of the logical func-
tion H R W T Z R (C , N) , the te rm (aza3--a4)a4 -- asa2 is tested for a
minus sign. However, the te rm which should be tested according
to the Rou th -Hurwi t z criterion is (a2a3--a,)a4 -- asa2 ~. If this
term is negative then there are no roots with positive real parts.

As an example, if the polynomial

z 4 q- 5.6562 z 3 + 5.8854z 2 d- 7.3646 z + 6.1354 = 0

is s tudied with the help of Algor i thm 429 one will find as output :

Roots are in an annu lus o f inner radius .454 E -k- 00 and
outer radius .836 E q- 01;

There are no real positive roots;
The negative roots (if any) are between -- .454 E q- 00 an d

-- .836 E + 01;
There are no roots with positive real parts.

However, if one calculates the roots of this equation, one will
find approximately:

zl = --1.0001
z~ = --4.7741
z3.~ = +0 .0089 -I- 1.1457 i

S ta tement 20 + 1 in the logical funct ion H R W T Z R (C , N) ,
which was originally "C1 = C(1)", should be amen d ed to read
"C1 = C (1) / C 1 " .

As a by-product of our investigation, it turns out that the
structure of the logical funct ion H R W T Z R can be simplified by
abandon ing the logically redundant steps C (K) = C (K + I) .

The following listing incorporates both the correction and
the simplifications. The funct ion has been parameter tested on a
CDC-6400.

L O G I C A L F U N C T I O N H R W T Z R (C,N)
D I M E N S I O N C(N)
H R W T Z R = .FALSE.
IF (C(1) .LE.0. .OR.C(N).LE.0.) R E T U R N
C1 = C(1)
M = N - - 1
D O 30 I = 2,M
DO 20 K = I ,M,2

20 C(K) = C(K) -- C (K + I) / C I
ct = c(t)/c1
IF (C1.LE.0.) R E T U R N

30 C O N T I N U E
H R W T Z R = .TRUE.
R E T U R N
E N D

579 Communica t ions September 1973
of Volume 16
the A C M N u m b e r 9

