
 Repositorio Institucional de la Universidad Autónoma de Madrid

https://repositorio.uam.es

 Esta es la versión de autor del artículo publicado en:
 This is an author produced version of a paper published in:

16th ACM SIGPLAN International Conference on Software
Language Engineering (SLE). Cascais Portugal, 2023.

DOI: https://doi.org/10.1145/3623476.3623523

Copyright: © 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

 El acceso a la versión del editor puede requerir la suscripción del recurso

Access to the published version may require subscription

"This is the author's version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in SLE 2023: Proceedings
of the 16th ACM SIGPLAN International Conference on Software Language Engineering,
https://doi.org/10.1145/3623476.3623523."

https://repositorio.uam.es/

Reuse and Automated Integration of Recommenders
for Modelling Languages

Lissette Almonte
Universidad Autónoma de Madrid

Madrid, Spain

Antonio Garmendia
Universidad Autónoma de Madrid

Madrid, Spain

Esther Guerra
Universidad Autónoma de Madrid

Madrid, Spain

Juan de Lara
Universidad Autónoma de Madrid

Madrid, Spain

Abstract
Many recommenders for modelling tasks have recently ap-
peared. They use a variety of recommendation methods,
tailored to concrete modelling languages. Typically, recom-
menders are created as independent programs, and subse-
quently need to be integrated within a modelling tool, in-
curring in high development effort. Moreover, it is currently
not possible to reuse a recommender created for a modelling
language with a different notation, even if they are similar.
To attack these problems, we propose a methodology to

reuse and integrate recommenders into modelling tools. It
considers four orthogonal dimensions: the target modelling
language, the tool, the recommendation source, and the rec-
ommended items. To make homogeneous the access to arbi-
trary recommenders, we propose a reference recommenda-
tion service that enables indexing recommenders, investigat-
ing their properties, and obtaining recommendations likely
coming from several sources. Our methodology is supported
by IronMan, an Eclipse plugin that automates the integra-
tion of recommenders within Sirius and tree-based editors,
and can bridge recommenders created for a modelling lan-
guage for their reuse with a different one. We evaluate the
power of the tool by reusing 2 recommenders for 4 different
languages, and integrating them into 6 modelling tools.

CCS Concepts: • Software and its engineering→ Inte-
grated and visual development environments; • Infor-
mation systems→ Recommender systems.

Keywords: Model-driven engineering, recommender sys-
tems, language engineering, modelling tools

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SLE’23, October 22–27, 2023, Cascais, Portugal
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

ACM Reference Format:
Lissette Almonte, Antonio Garmendia, Esther Guerra, and Juan de
Lara. 2023. Reuse and Automated Integration of Recommenders for
Modelling Languages. In Proceedings of International Conference on
Software Language Engineering (SLE’23). ACM, New York, NY, USA,
14 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
Recommender systems (RSs) are increasingly being used
to assist developers in all sorts of software engineering
tasks [51]. Modelling is no exception, as we are recently
witnessing the proposal of numerous recommenders for
modelling languages [3]. Most of them help in creating mod-
els or meta-models by recommending, e.g., new attributes
or references for classes, or new classes related to existing
ones [2, 11, 17, 21, 55, 61]. They use a variety of methods –
each with their own strengths and weaknesses – ranging
from classical recommendation algorithms like collaborative
filtering [2, 17] or content-based recommendations [2], to
knowledge graphs [55], natural language processing [11],
pre-trained language models [61] or graph kernels [21].

Given this growing plethora of modelling recommenders,
the natural question is “Can I reuse these RSs for my mod-
elling notation, and integrate them within my modelling tool?”.
However, the reuse and integration of RSs pose a number
of practical challenges. Firstly, existing RSs may have been
developed for a different (albeit perhaps similar) modelling
language, such as an existing RS for Ecore models that one
may like to reuse for UML class diagrams. Moreover, it can be
useful to combine several RSs because they suggest different
types of items (e.g., attributes, operations) for different tar-
get elements (e.g., classes, interfaces). Further, even if they
suggest the same type of items, combining RSs might be
useful to retain their best recommendations. Finally, from a
technical point of view, RSs may be deployed in numerous
ways (e.g., a stand-alone program, a service, within a mod-
elling tool), and need to be integrated within heterogeneous
modelling tools (e.g., graphical, textual, tree-based).
In this paper, we address the challenges of integrating

and reusing RSs for modelling languages. To accomplish
this goal, we propose deploying the RSs as services, on the
basis of a standard API and a recommender server protocol.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

SLE’23, October 22–27, 2023, Cascais, Portugal

This also facilitates the recommenders’ integration within
arbitrary modelling tools. In addition, we enable the reuse of
RSs tailored to a modelling language for other notations via
a structural mapping. The combination of recommenders of
the same type of item (e.g., attributes) relies on mechanisms
for the aggregation of their recommendation lists [46], and
our approach is flexible to accommodate several aggregation
methods. Technically, we provide support for the automated
integration of the assembled RSs within Eclipse modelling
editors based on Sirius [57], and EMF tree editors [59].

Our approach is realised as an Eclipse plugin called Iron-
Man (Integrating RecOmmeNders forModelling lANguages),
which guides in all steps of the integration task, including
RS discovery and selection, adaptation to the modelling lan-
guage (if needed), configuration of the aggregation method,
and integration of the recommender within the (Sirius- or
tree-based) modelling tool. To evaluate its usefulness, we
assess the reuse and integration of two existing RSs into six
third-party tools of the Eclipse ecosystem.
Paper organisation. Sec. 2 provides background on RSs for
modelling languages and analyses the relevant dimensions
for their reuse and integration. Sec. 3 presents the compo-
nents of our approach: the reference recommendation service
and its protocol, the adaptation of the RSs to the modelling
language, the recommendation aggregation mechanism, and
the integration of the RSs into modelling tools. Sec. 4 de-
scribes our tool and Sec. 5 reports on its evaluation. Sec. 6
compares with related work and Sec. 7 concludes.

2 Background and Integration Dimensions
Next, we overview RSs for modelling languages (Sec. 2.1)
and present the dimensions for their integration (Sec. 2.2).

2.1 Background on Recommender Systems
RSs have become ubiquitous software tools that assist in
decision-making tasks in situations of information overload.
They are key components of a wide range of applications,
including e-commerce sites (e.g., Amazon), social networks
(e.g., Facebook), and music (e.g., Spotify), video (e.g., Netflix)
and streaming platforms (e.g., Twitch) [50].

RSs suggest items that align with the preferences of a par-
ticular user. The term item refers to what is suggested to
the user. RSs usually focus on a particular type of item (e.g.,
videos), using filtering and ranking algorithms to provide
valuable recommendations for that item type. The recom-
mendations are computed based on data about three entities:
target users, items, and user-item interactions (often unary
or numeric ratings) that express personal preferences [50].
When applied to modelling tasks, these entities are some-
times reinterpreted. As an example, in a RS suggesting at-
tributes for classes, the recommended items are the attributes,
the target users are the classes, and the user-item interactions
are given by the inclusion of the attributes in each class and

Professor

name: String
surname: String
birthDate: Date

Professor

isPhD: boolean
name: String

Active Model

University

name: String

professors*

…

surname : String
birthDate: Date …

Ranked
recommendation
list

Dataset of Models

UML class diagrams
Meta-Model

«conforms to» «conforms to»

Modelling
Engineer

RS…

Figure 1. Working scheme of a modelling recommender.

its superclasses. To avoid confusion, we use the term target
to refer to the target users (classes in this example).

RSs can be classified into three main categories based on
how they compute the recommendations: content-based sys-
tems recommend items similar to the ones that the user pre-
ferred in the past; collaborative filtering systems recommend
items preferred by like-minded users; and hybrid systems
combine the previous two techniques to overcome their lim-
itations. The three approaches return a list of recommended
items, which is often ranked. In addition, some recommenda-
tion methods provide a rating for each item, which quantifies
the likelihood of the item to be relevant for the user.
Fig. 1 shows the working scheme of a RS for UML class

diagrams. A RS for a modelling language is typically built on
the basis of a dataset of models conformant to the language
meta-model. Then, when a modelling engineer is working
on a model conformant to the same meta-model, the RS
can provide sensible recommendations. In the figure, the RS
suggests new attributes to incorporate to a given class.

2.2 Dimensions of Integration of Modelling RSs
The integration and reuse of RSs for modelling tasks requires
the consideration of several dimensions, summarised in Fig. 2
as a feature model [31].
Target modelling language. ARS can be integrated inmod-

elling environments developed for the same modelling
language as the RS supports (homogeneous), or alterna-
tively, it can be reused for a different – albeit similar –
modelling language (heterogeneous). For example, a RS for
meta-modelling languages like Ecore [59] may be reused
for UML class diagrams, and vice versa [4]. For this pur-
pose, a mapping between the target modelling language
and the RS is needed. Having the possibility to set this
bridge is useful in cases where there is not enough data
(i.e., models) to train a RS for a (domain-specific) mod-
elling language, but a RS for a similar notation exists. We
describe our approach to adapt recommenders in Sec. 3.3.

Recommendation sources. The recommendationsmay be
produced locally, if the RS is deployed on the computer
where the modelling tool is running [11, 17, 21, 61]. In
addition, recommendations may come from services de-
ployed on a remote server [4, 55]. The latter option is more

Reuse and Automated Integration of Recommenders for Modelling Languages SLE’23, October 22–27, 2023, Cascais, Portugal

Dimensions of
reuse and integration

Target modelling
language

Homogeneous Heterogeneous

alternative
(exactly one)

or
(at least one)

mandatory optional

Modelling
environment

Graphical

Recommendation
sources

Local Remote

Recommended
items

Multiple
targets

Multiple
domains

Rank
aggregation

Supervised Unsupervised

Majoritarian Positional

Reactive Proactive

Interaction

Legend:

Editor

Tree

Textual

Figure 2. Dimensions of reuse and integration of RSs for modelling languages.

flexible, as it permits reusing recommenders within differ-
ent tools, and aggregating recommendations from several
sources. We propose a reference recommendation service
in Sec. 3.2 for this purpose.

Recommended items. Integrating several RSswithin amod-
elling environment enables the recommendation of items
for multiple targets (e.g., for both classes and interfaces
in class diagrams) and for multiple domains (e.g., RSs for
medical, banking or transportation domains). When com-
bining several RSs for the same type of target and item,
their recommendation rankings need to be aggregated.
According to [46], the approaches to recommendation
rank aggregation are broadly classified into unsupervised
and supervised. The former can be further divided into
majoritarian and positional. When calculating a numerical
score for each item in the aggregated recommendation list,
positional methods use the absolute position of the item
in the individual rankings, while majoritarian methods
compare pairwise each item [46]. Unsupervised methods
are generally simple, efficient and flexible. However, if
ground truth data are available, supervised methods may
be more effective. These methods may use a variety of
techniques, like learning to rank [39] or genetic program-
ming [60]. We focus on unsupervised methods, leaving
supervised ones for future work. Sec. 3.4 exemplifies one
unsupervised method recasted for modelling tasks.

Modelling environment. RSs need to be integrated into
concrete modelling tools, typically offering graphical, tree
and/or textual editors. The interaction with the RS may
either be activated explicitly by the user (reactive) or be
proactive, offering suggestions to the user when deemed
appropriate (e.g., as in [40]). Sec. 3.5 explains our approach
to integrate RSs into graphical and tree modelling editors
with a reactive approach.

3 Approach
This section presents our proposal to reuse and integrate
RSs for modelling. First, Sec. 3.1 provides an overview. Then,

select
recommenders

Recommendation
service index

…

Recommendation
services

select
targets & items

Meta-
Model

tool
integration

configuration

Sirius

Tree

deploy

Modelling
tool

Integrated
recommender

adapt to
modelling
language

select
aggregation

method

Figure 3. Overview of our methodology for RS integration.

Sec. 3.2 describes the recommendation service. Sec. 3.3 ex-
plains our approach to bridge RSs to modelling notations.
Sec. 3.4 recasts existing aggregation methods for ranked rec-
ommendations to modelling RSs. Finally, Sec. 3.5 introduces
our support for integrating RSs into modelling environments.

3.1 Overview
Fig. 3 shows the scheme of the methodology we have created
for RS integration and reuse. It covers all dimensions of
integration depicted in Fig. 2.

Our approach relies on deploying the RSs as services con-
formant to the reference REST API described in Sec. 3.2. This
way, the first step in the integration consists in discovering
the available RSs by means of a RS indexer. The indexer can
filter the available services by diverse criteria, like the mod-
elling language for which the RSs provide suggestions. In a
second step, the user selects the recommendation targets and
items (a subset of those provided by the RSs selected in the
previous step). If several RSs of the same kind of items are
chosen, the user will need to select an aggregation method
for the recommendations. Moreover, if the modelling lan-
guage where the RSs are to be integrated differ from the
language supported by the RSs, then the user will have to

SLE’23, October 22–27, 2023, Cascais, Portugal

adapt the RSs via a mapping. As the last step, the user config-
ures the integration with the modelling tool. Currently, we
support the adaptation of EMF-based modelling languages,
and the integration with Sirius graphical editors [57] and
tree editors. However, our extensible architecture facilitates
future integration with other technologies, like Xtext [8, 62].

After performing these steps, our approach automatically
integrates the assembled RSs within the modelling tool. The
result is a plugin that communicates with the selected RS ser-
vices to obtain recommendations, aggregating and adapting
them to the modelling language.

3.2 Recommendation service
We have developed a recommendation service consisting of
two components: the recommendation service indexer API,
and the recommendation service API. On the one hand, the
indexer provides a standardised method to register and update
recommendation services, and to explore the registered ser-
vices, enabling clients to discover and access the recommen-
dation services that best suit their needs. On the other hand,
the recommendation service offers a uniform mechanism for
requesting recommendations and accessing the features of the
RSs registered in the indexer. This approach simplifies the
integration of arbitrary RSs into modelling tools, avoiding
the need to build custom, heterogeneous integrations.

Table 1 shows the REST endpoints of the indexer, which en-
able clients to register, update, explore, and discover services.
The /register endpoint allows registering new recommen-
dation services in the indexer. To register a service, clients
need to provide its URL using the /register?urlName=⟨url⟩
endpoint, where ⟨url⟩ is the URL of the recommendation ser-
vice. Several RSs can be placed within the same URL, and the
registered URLs must define the endpoints defined in Table 2.
In particular, upon registering a recommendation service,
the indexer invokes its /features endpoint (explained below)
to cache the characteristics of the RS.
The /updateRegistration endpoint allows clients to up-

date a previously registered service. Similar to /register,
clients only need to provide the URL of the service to be
updated using the /updateRegistration?urlName=⟨url⟩ end-
point. As before, the indexer will then invoke the /features

endpoint of the recommendation service.
The /services endpoint returns the list of all registered

recommendation services and their metadata in JSON format,
and /discover allows searching for deployed services using
either the name or the nsURI of the RS. The nsURI is a unique
identifier for meta-models, which is standard in modelling
technologies like EMF [59]. This way, the API returns a JSON
list with all recommenders with the given name or defined
over a meta-model with the provided nsURI.
Table 2 shows the endpoints of the recommendation ser-

vice. They allow accessing the features of the registered
services and requesting recommendations.

Table 1. Endpoints of the recommender indexer API.

Endpoint /register?urlName=⟨url⟩
Desc. Registers a new recommendation service.
Method POST
Output Ok/Error
Endpoint /updateRegistration?urlName=⟨url⟩
Desc. Updates a registered recommendation service.
Method POST
Output Ok/Error
Endpoint /services
Desc. Returns all registered recommendation services

and their metadata. The optional query parameter
nsURI=true groups services by nsURI.

Method GET
Output Available recommendation services (JSON).
Endpoint /discover?

(
name=⟨name⟩ | nsURI=⟨uri⟩

)
Desc. Searches for registered recommendation services

with the given RS name or meta-model nsURI.
Method GET
Output Registered recommendation services that match

the search criteria (JSON).

Table 2. Endpoints of the recommendation service API.

Endpoint /features
Desc. Returns the features of all RSs within the recom-

mendation service.
Method GET
Output Features of the recommendation service (JSON).
Endpoint /recommend/⟨name⟩?

(
newMaxRec=⟨maxRec⟩

)
?,(

threshold=⟨threshold⟩
)
?,
(
itemType=⟨type⟩

)
?

Desc. Returns a list of recommendations from RS name,
for a given target (within a context, if required).
All parameters are optional: newMaxRec (integer)
refers to the maximum number of recommenda-
tions to retrieve, threshold (double) to the thresh-
old for the ranking, and itemType ([string]) to the
type of recommended items.

Method POST
Body Target and its context, if required (JSON).
Output List of recommendations (JSON).

The /features endpoint allows clients to retrieve themeta-
data of all RSs within the service. Fig. 4 shows a conceptual
model of the metadata. Class RecommenderSystem defines the
name of the RS, the meta-model nsURI, and a description
of the modelling context that the RS needs to compute the
recommendations. The context can be None (only the target
of the recommendation is needed), Full (requires the whole
model containing the target element), or Targets (requires
all objects with the same type as the target element).
The metadata also defines the target class of the recom-

mendations, and its identifying features. For simplicity, our
approach assumes that a RS only serves recommendations
(e.g., attributes) for a target type (e.g., UML classes). If several

Reuse and Automated Integration of Recommenders for Modelling Languages SLE’23, October 22–27, 2023, Cascais, Portugal

Recommender
System

name: String
nsUri: String

TargetClass

name: String

target

Item

property: String

items*

AttributeObject

writeProperty: String
className: String

features

*
«enum»

DataType
Boolean
String
Double
Integer

type

features*

«enum»
ContextType
None
Targets
Full

context

Figure 4.Conceptualmodel of RSs assumed by our approach.

EClass

name: String

EAttribute

name: String

eStructuralFeatures

*

"services": [
{ "name": "EcoreRecommender",

"details": [
{ "nsURI“ : "http://www.eclipse.org/emf/2002/Ecore",

"context": "Targets",
"target": { "name“ : "EClass",

"features": [{"property" : "name", "type" : "String" }]},
"items": [{ "name" : "EAttribute"

"property" : "eAllAttributes",
"writeProperty" : "eStructuralFeatures",
"features" : [{ "property" : "name",

"type" : "String" }] }]
}]

}]

Target

Target
features

Item
features

Item

(b)

(a)

writeProperty

/eAllAttributes

*
property

EStructural
Feature

Figure 5. (a) Excerpt of the Ecore meta-model, annotated
with the role of the elements in the example RS. (b) Encoding
excerpt of the RS returned by the /features endpoint.

target types are supported, then one RS for each target needs
to be deployed. In addition, the metadata describe each item
type to be recommended. For recommended attributes, it
specifies their name and type, and for recommended objects,
it specifies the reference name (connecting the object to the
target class) and the features used to identify the object. We
distinguish between the reference that provides access to
an item (i.e., enabling to read the item, property in the fig-
ure), and the reference where to store an item (i.e., enabling
writing the item, writeProperty in the figure). In EMF, the
latter are containment references. Next, we use an example
to illustrate the difference between both.
Example. Let’s assume a RS for the Ecore meta-modelling
language, which recommends attributes for classes. Fig. 5(a)
shows the relevant parts of the Ecore meta-model for the RS1.
The figure identifies that EClass is the target element, that

1The meta-model is slightly modified to ease understanding.

(a) (b)

Professor

isPhD: boolean
name: String

University

name: String

professors*

{"recommendation": {
"target": { "name": "Professor",

"eAllAttributes": [{ "name": "isPhD"},
{ "name": "name"}]

},
"context": [{"name": "University",

"eAllAttributes": [{ "name": "name"}]
}]

}
}

Figure 6. JSON representation for a /recommend request.

the feature identifying EClasses is their name, that the recom-
mended items are of type EAttribute, and that the feature
provided when recommending an attribute is its name. In ad-
dition, EAttributes are read via the eAllAttributes derived
reference, but written on the eStructuralFeatures compo-
sition reference. The former contains all attributes owned
and inherited by the class, and the latter only the owned
ones (and is a common container for both references and
attributes). The rationale for distinguishing both is that mod-
elling tools need to provide the items that any target object
already has – owned and inherited attributes in our example,
available via eAllAttributes. However, when a recommen-
dation is accepted, the item needs to be created and assigned
to the target – in our example, eStructuralFeatures is used.

Fig. 5(b) shows the metadata (in JSON format) that would
be returned when invoking the /features endpoint on the
RS. In this case, the name of the RS is EcoreRecommender,
and the RS needs to receive all other possible targets in the
model (i.e., all EClasses) as context.

Some well-formedness criteria are required from the roles
that meta-model elements can play in a RS. In particular,
if the recommended items are of type 𝑐𝑖 , then 𝑐𝑖 should be
the destination class of a write property 𝑝𝑤 , or a subclass
of such destination class: 𝑐𝑖 ≤ 𝑑𝑒𝑠𝑡 (𝑝𝑤). For instance, in
Fig. 5(a), EAttribute≤EStructuralFeature, which is the des-
tination of the write property eStructuralFeatures. This
ensures compatibility of the items with the write property,
so that newly created items can be inserted in it. Conversely,
the destination of a read property 𝑝𝑟 should be the type 𝑐𝑖 of
the recommended item, or a subclass: 𝑑𝑒𝑠𝑡 (𝑝𝑟) ≤ 𝑐𝑖 . In the
example, EAttribute≤EAttribute, which is the destination
of the read property eAllAttributes. This ensures that the
content of the read property is compatible with the item.
The last endpoint in Table 2 is /recommend, which allows

clients to request recommendations by specifying the RS
name as a path parameter, and providing a JSON file with
the target of the recommendation, its current items, and its
context (if needed). Clients can customise the recommenda-
tion by means of optional query parameters such as the max-
imum number of recommendations to retrieve (newMaxRec),
the minimum ranking value threshold (threshold), and the
desired item type when several are possible (itemType).

SLE’23, October 22–27, 2023, Cascais, Portugal

Example. Fig. 6 shows a recommendation request exam-
ple for the RS in Fig 5. Part (a) shows an Ecore model be-
ing edited, where recommendation for class Professor is so-
licited. Part (b) shows the encoding of the request, where the
target EClass is named Professor, and has two EAttributes
called isPhD and name. They are encoded in the read feature
eAllAttributes. As specified in Fig. 5, the only feature that
identifies EAttributes is their name. Since the context of the
RS is set to Targets, the request needs to include the name
and attributes of all other EClasses in the model. In this case,
there is just one additional class named University.

3.3 Adaptation of RSs to the modelling notation
Our approach to reuse a RS for a modelling notation involves
establishing a structure-preserving mapping𝑚 : 𝑅𝑆 → 𝑀𝑀

between the classes and features used by the RS, and the
elements of interest in the language meta-model𝑀𝑀 .
Example. Fig. 7 exemplifies a mapping that adapts the RS
for Ecore – which recommends EAttributes for EClasses –
to UML. The adapted RS will then recommend properties for
UML classes. 𝑅𝑆 on the left shows an excerpt of the Ecore
meta-model containing the elements designated as targets,
features and items. The mapping maps the Ecore meta-model
elements playing a role in the RS to corresponding elements
in the UML meta-model𝑀𝑀 to the right.

EClass

name: String

EAttribute

name: String

eStructuralFeatures

*

/eAllAttributes

*

Class

Named
Element

name: String

o
w

n
ed

A
tt

ri
b

u
te

*

Property

… …

/a
llA

tt
ri

b
u

te
s

*

EClass → Class
name → name
eStructuralFeatures[w] → ownedAttribute
eAllAttributes[r] → allAttributes

EAttribute → Property
name → name

mapping

RS meta-model Language meta-model (MM)

EStructural
Feature

«target»

«write»

«feature»

«read»

«feature»

«item»

Figure 7. Adapting the RS to the modelling language.

Not any mapping is valid, but well-formed mappings need
to preserve the structure of the source meta-model. For this
purpose, we build on the notion of binding, which has been
used to express generic model operations [15, 54]. Next, we
use predicates 𝑖𝑡𝑒𝑚(_), 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 (_), 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 (_),𝑤𝑟𝑖𝑡𝑒𝑃𝑟𝑜-
𝑝𝑒𝑟𝑡𝑦 (_), and 𝑡𝑎𝑟𝑔𝑒𝑡 (_) to denote the role of the element
in 𝑅𝑆 ; predicate 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 (𝑒) = 𝑖𝑡𝑒𝑚(𝑒) ∨ 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 (𝑒) ∨
𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 (𝑒) ∨𝑤𝑟𝑖𝑡𝑒𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 (𝑒) ∨ 𝑡𝑎𝑟𝑔𝑒𝑡 (𝑒) to identify the
elements that need to be mapped; 𝑠𝑟𝑐 (𝑟) and 𝑑𝑒𝑠𝑡 (𝑟) for the
source and destination class of reference 𝑟 ; and 𝑐𝑖 ≤ 𝑐 𝑗 to
denote that 𝑐𝑖 is compatible with 𝑐 𝑗 (a subclass, or 𝑐 𝑗 itself).
This way, a mapping𝑚 : 𝑅𝑆 → 𝑀𝑀 is well-formed iff it

fulfils the following conditions:
Definition domain: 𝑚 is defined exactly for each element

𝑒 of 𝑅𝑆 s.t. 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 (𝑒).

Classes: If 𝑐 is a class in 𝑅𝑆 s.t. 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 (𝑐), then 𝑚(𝑐) is
also a class in𝑀𝑀 .

Class subtyping is preserved and reflected: Given classes
𝑐1 and 𝑐2 of 𝑅𝑆 s.t. 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 (𝑐1) ∧ 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 (𝑐2), then 𝑐1 ≤
𝑐2 ⇐⇒ 𝑚(𝑐1) ≤ 𝑚(𝑐2).

Attributes: If 𝑎 is a relevant attribute defined or inherited
by a relevant class 𝑐 in 𝑅𝑆 , then𝑚(𝑎) is also an attribute
inherited or defined in class𝑚(𝑐). The type of the attribute
must be preserved or generalised in themapping: 𝑎.type ≤
𝑚(𝑎).type. For instance, an attribute of type integer can
be mapped to a double.

References: If 𝑟 is a relevant reference from class 𝑐1 to 𝑐2
in 𝑅𝑆 , then 𝑚(𝑟) is also a reference from class 𝑐′1 to 𝑐′2
in 𝑀𝑀 , with𝑚(𝑐1) ≤ 𝑐′1. In addition, we need a further
constraint for 𝑑𝑒𝑠𝑡 (𝑟), which depends on whether 𝑟 is read
(𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 (𝑟)) or write (𝑤𝑟𝑖𝑡𝑒𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 (𝑟)):
𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 (𝑟): Any relevant superclass of 𝑑𝑒𝑠𝑡 (𝑟) (includ-
ing 𝑑𝑒𝑠𝑡 (𝑟), if it is relevant) is mapped to a superclass
of 𝑐′2, or to 𝑐

′
2:

∀𝑐𝑖 ∈ 𝑅𝑆 · 𝑑𝑒𝑠𝑡 (𝑟) ≤ 𝑐𝑖 ∧ 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 (𝑐𝑖) =⇒ 𝑐′2 ≤ 𝑚(𝑐𝑖)
𝑤𝑟𝑖𝑡𝑒𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 (𝑟): Any relevant class compatible with
𝑑𝑒𝑠𝑡 (𝑟) is mapped to a class compatible with 𝑐′2:
∀𝑐𝑖 ∈ 𝑅𝑆 · 𝑐𝑖 ≤ 𝑑𝑒𝑠𝑡 (𝑟) ∧ 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 (𝑐𝑖) =⇒ 𝑚(𝑐𝑖) ≤ 𝑐′2

Composition is preserved: If 𝑟 is a relevant write composi-
tion in 𝑅𝑆 , then𝑚(𝑟) is also a composition.

The condition for references permits a reference 𝑟 to be
declared exactly on the mapped class, or in a superclass (so
that it is inherited). Similarly, the destination of the reference
𝑟 can be the relevant class, a subclass (when 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 (𝑟)), or
a superclass (when 𝑤𝑟𝑖𝑡𝑒𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 (𝑟)), which then should
be mapped preserving subtyping.
Typically, references that are write (allowing adding an

item to a target) are composition references in 𝑅𝑆 , which
needs to be preserved in the target by the last well-formedness
condition. The mapping does not care about cardinalities, as
they do not need to be preserved.

Example. The mapping of Fig. 7 is well-formed. This is
so as both EClass and EAttribute are mapped to classes
in the UML meta-model (Class and Property), and their at-
tributes (EClass.name and EAttribute.name) are mapped to
attributes of the target classes (actually inherited). Both refer-
ences eStructuralFeatures and eAllAttributes are mapped
according to the conditions, e.g.,:𝑚(eStructuralFeatures)
=ownedAttribute, the source of both references coincide (𝑚(E-
Class) =Class), and for the destination,𝑚(EAttribute) =Pr-
operty, which is exactly 𝑑𝑒𝑠𝑡 (𝑚(eStructuralFeature)), but
could be a subclass. Reference eStructuralFeatures is awrite
feature, and a composition, and so is ownedAttribute.

Ourmapping enables consistent adaptations between struc-
turally similar (but not identical) meta-models. For more
complex mappings, our correspondences could be extended
with an expression language – like OCL [29] – able to calcu-
late derived elements in the target, or adapt attribute values.

Reuse and Automated Integration of Recommenders for Modelling Languages SLE’23, October 22–27, 2023, Cascais, Portugal

3.4 Recommendation aggregation
The RSs community has proposed different ranked item ag-
gregation methods to combine recommendations from dif-
ferent RSs. A rank aggregation method aims to find the best
permutation of recommendation lists based on an evaluation
metric, such as precision. These methods can be used to pro-
vide more accurate and diverse suggestions by taking into
account weaknesses or biases that specific recommenders
may have, and to reduce the impact of items incorrectly
ranked in high positions by an individual recommender [46].
When combining RSs for modelling languages, two sce-

narios can arise. In the first one, the RSs to combine tackle
different targets (e.g., one RS provides recommendations for
classes and another one for packages) or different kinds of
items (e.g., one recommends attributes, and another oper-
ations). In such cases, no aggregation is needed, since the
items are completely disjoint. This way, the composed RS
would just use a different recommender for each kind of item,
returning the lists of ranked items with no modification.

In the second scenario, multiple RSs recommend the same
kind of items for a given target (e.g., two RSs of class at-
tributes that use different algorithms, or different datasets).
This scenario requires rank aggregation methods to obtain a
consensus ranking containing a subset of their items.
Aggregation methods can be either supervised or unsu-

pervised [46]. The former search for the aggregated ranking
that optimises a given metric computed over ground-truth
data. The latter lack ground truth data and rely on metrics
computed using the available rankings of items. We focus on
unsupervised methods, and consider score-based positional
methods, as they are very popular due to their simplicity
and efficiency. These methods sort the items based on their
absolute position in the individual rankings. Positional meth-
ods receive as input a set of individual rankings, and use
an aggregation function 𝑓 : 𝑈 × 𝐼 → 𝑅 and a procedure to
combine the item position-based scores, with 𝑈 and 𝐼 the
sets of users and items in the system, respectively [46].
Unsupervised positional methods, such as Borda Count

(BC) [7] and Median Rank Aggregation (MRA) [26], are pop-
ular for their simplicity and efficiency. Borda Count assigns
points to items based on their rank, while MRA ranks items
by their median position across the individual rankings.

Example. Fig. 8 illustrates the BC method for aggregating
three hypothetical class attribute recommenders. 1 shows
the rankings of attributes that each RS suggests for a class
named Person. 2 depicts the scores assigned to the attributes
in each ranking. Since there are 5 unique (non-duplicate) at-
tributes, the score of the first attribute in each ranking is 5,
and this score is decreased for the subsequent positions of
the ranking. The items that each RS do not recommend (e.g.,
surname in Ranking 1) receive equal portions of the remain-
ing available points from the RS. 3 displays the aggregated
score of each item, calculated as the sum of individual scores

Ranking 1
name 5
age 4
identifier 3
address 2
surname 1/1=1

Ranking 3
name 5
age 4
address 6/3=2
identifier 6/3=2
surname 6/3=2

Ranking 2
name 5
address 4
age 3
surname 2
identifier 1/1=1

Ranking 1
name
age
identifier
address

Ranking 3
name
age

Ranking 2
name
address
age
surname

INPUT recommendation lists

Recommendation BC
name 15
age 11
address 8
identifier 6
surname 5

SCORES

RANK AGGREGATION

return top N

1

2

3

4

Figure 8. Rank aggregation example using Borda Count.

in the case of BC. Step 4 shows the returned top N list of
recommendations. Incidentally, MRA would output the same
aggregated rank, e.g., the rank of name is 1, which is the
median of its positions in the three rankings.

3.5 Integration within modelling environments
The last step of the integration is to embed the RS into a
modelling environment. This embedding will be different
depending on the concrete syntax of the language. We cur-
rently consider two types: graphical syntaxes and tree-based
ones. In both cases, we support a reactive approach by now,
where the user needs to invoke the RS explicitly.

For graphical syntaxes, the integration adds an additional
graphical layer in the modelling editor, which enables the
option to invoke the RS when a shape corresponding to
an instance object of the target class is selected. For tree-
based syntaxes, a menu option becomes available when an
instance object of the target class is right-clicked. In both
cases, recommendations are requested to the recommender
API of the selected RSs. Then, the recommended items can be
applied to the model, assigned to the selected target object.
Sec. 4.2 will provide more details of this integration for

the technologies we support (Sirius and EMF).

4 Architecture and Tool Support
We have realised the previous concepts on an extensible
Eclipse plugin called IronMan. Its source code is available
at: https://github.com/antoniogarmendia/integrate-reco
mmenders-ironman. Next, Sec. 4.1 describes its architecture,
and Sec. 4.2 reports on the tool itself.

4.1 Architecture
Fig. 9 shows the architecture of IronMan. The plugin uses
the /services and /discover endpoints of the recommenda-
tion indexer to obtain the available RSs and filter them by

https://github.com/antoniogarmendia/integrate-recommenders-ironman
https://github.com/antoniogarmendia/integrate-recommenders-ironman

SLE’23, October 22–27, 2023, Cascais, Portugal

IRONMAN

Recommendation
service index

…

Recommendation
services

/discover/services

aggregation
method

Borda
Count

MRA

/features

Tree-based
editor

Sirius-based
editor

DSL Meta-
Model
(Ecore)

Recommender
Client

RS
Layer

Recommender
Client

RS
menu

/reco
m

m
en

d

/reco
m

m
en

d

/register

RS Meta-
Model
(Ecore)

generates

…

Eclipse UI
menu

Out-
ranking

in
tr

eg
ra

ti
o

n

Tree

Sirius

ge
n

er
at

es

Figure 9. Architecture of IronMan.

meta-model name. IronMan supports the adaptation of the
RS to modelling languages by the definition of a structural
mapping between both meta-models, as Sec. 3.3 described.
IronMan provides two extension points. The first one

is to define rank aggregation methods. IronMan currently
supports Borda Count, MRA and Outranking [27], but the
extension point permits adding more. The second one is
to define code generators that can integrate the RSs with
modelling tools. Currently, two implementations can gener-
ate integrations of RSs with Sirius and tree editors. For this
purpose, the generated code makes use of the /recommend

endpoint of the chosen recommendation service, and the
selected aggregation method (if needed). In the case of Sirius
editors, IronMan generates a recommendation layer that
enables requesting the recommendations. In the case of tree
editors, IronMan generates a menu that is activated when
appropriate objects are selected in the tree.

4.2 Tool support
Next, we describe the parts of our solution: the plugin, the
services and the generated RS clients.

4.2.1 IronMan plugin. Our tool provides a wizard to
adapt RSs to a modelling language, configure the aggregation
of recommendations for the same target (if needed), and inte-
grate RSs into modelling workbenches. Fig. 10 shows 5 pages
of the wizard. The first one permits selecting the available
RSs from a set of recommendation service indexers. New
indexers can be added using the IronMan preference page
within the Eclipse IDE. Users can select any combination of
RSs, as long as all of them are for the same language. In the
figure, the indexers contain several RSs for UML and Ecore.
In page 2 of the wizard, the user can filter the recom-

mended items of each selected RS. For example, in the figure,
the page contains recommenders of attributes and operations
for classes. The user might be interested in obtaining only
attribute recommendations, which can be selected within
this page. It is possible to select several RSs for the same
target and items, or for the same target and different items.

In page 3, the user can adapt the RS to a modelling lan-
guage, in case the RS targets a different language. For this
purpose, the user first selects the meta-model of the mod-
elling language, and then, a tree-table enables mapping the
relevant elements of the RS and the modelling language. In
the figure, the user maps elements from UML to Ecore. For
instance, in UML, the reference to obtain all attributes is
ownedAttribute, but in Ecore is eAllAttributes. Similarly,
the composition reference to add Properties to Classes in
UML is ownedAttribute as well, but in Ecore is eStructural-
Features. The identifier of attributes in both UML and Ecore
is name. Since the API provides the RS metadata, there is no
need to store the RS meta-model locally.

Page 4 is enabled only when the user selects RSs providing
recommendations for the same target and item, which need
to be aggregated. The figure shows the three aggregation
methods implemented using the extension point.

In page 5, the user selects the environments – Sirius and/or
tree editor – where the RS will be integrated. In case of Sirius,
the user needs to select the viewpoint where the recommen-
dation layer is to be inserted. The figure shows the selection
dialog, where the user can select several views. The code gen-
erator produces plugin projects with the RS clients, which
extend the modelling environments externally, without the
need to have available their source code.

4.2.2 Recommendation services. The IronMan service
indexer is implemented as a Java-based REST service using
Jersey [24], a framework for building RESTful web services
and APIs. It is deployed on Tomcat [6], an open-source web
server and Servlet container. Four core classes are respon-
sible for handling requests from clients. ServiceRegistration
handles registration-related requests, such as service regis-
tration, registration updates, deletion, or queries of regis-
tered services. ServiceFeatures handles requests for deployed
and registered services, as well as their metadata. ServiceRe-
commend is responsible for generating recommendations.
Finally, ServiceDiscovery enables service discovery. The re-
sponse time for any request is generally less than a second.

4.2.3 Integration with client modelling tools. Iron-
Man synthesises code that extends externally existing (Sirius
and tree) modelling editors. The generated code considers
the defined mapping. It uses the EMF reflective API to query
the relevant features of the target of the recommendations,
and to create objects corresponding to recommended items
when the user applies a recommendation.

Fig. 11 shows a screenshot of the result of the integration of
a RS within the Eclipse plugin of Obeo’s UML Designer [43].
Once the recommendation layer is active, the RS can be
invoked over objects of the target element type (UML classes
in this case). The recommender dialog shows a ranked list
of recommendations, and the RSs these come from. In this
case, two recommenders provide the recommendations, and
the list is aggregated using the selected rank aggregation

Reuse and Automated Integration of Recommenders for Modelling Languages SLE’23, October 22–27, 2023, Cascais, Portugal

1

5

2

4

3

Figure 10. IronMan wizard: (1) Selecting recommender services, (2) filtering the items to be recommended, (3) mapping the
RS to the modelling language (optional), (4) selecting the aggregation method, (5) configuring integration with modelling tool.

Figure 11. Integration of the RS within a Sirius editor.

method. When the user selects an item, the corresponding
object is created and added to the target.

Fig. 12 shows the integration of a RS within the standard
Ecore tree editor [59]. The RS can be triggered upon selecting
an EClass. When an EAttribute is selected in the recommen-
dation list, the corresponding object is created and assigned
to the selected EClass.

Figure 12. Integration of the RS within a tree editor.

5 Evaluation
Next, we report on an evaluation to assess the usefulness
of our approach in terms of its capacity to reuse RSs and to
integrate them with existing modelling tools. Hence, we aim
to answer the following research questions (RQs):
RQ1. Can IronMan be used to adapt existing RSs to differ-

ent languages?
RQ2. Can IronMan be used to integrate existing RSs into

third-party modelling tools?
Next, Sec. 5.1 describes the experiment set-up, Sec. 5.2

reports the results, Sec. 5.3 answers the RQs, and Sec. 5.4
discusses threats to the validity of the experiment.

SLE’23, October 22–27, 2023, Cascais, Portugal

Table 3. Experiment set-up.

RS Modelling lang. Modelling tool
Ecore meta-models Ecore UML designer (Sirius)
UML class diagrams UML class diagrams UML tree editor

ER diagrams Ecore tools (Sirius)
IFML Ecore tools (tree)

ISD designer (Sirius)
IFML editor (Sirius)

5.1 Experiment set-up
To answer the RQs, we used two RSs for Ecore and UML
reported in [2] and [4]. Both recommend attributes and op-
erations for classes. Since both were already deployed as
services, their adaptation to make them conformant to the
API described in Sec. 3.2 was very light.

The aim of our evaluation is twofold. On the one hand, we
aim to assess if the RSs can be adapted to other modelling
languages. In particular, we check if the RSs can be adapted
to UML, Ecore, Entity relationship (ER) diagrams, and the
Interaction Flow Modelling Language (IFML) [30]. The three
first languages are widely-used structural notations to define
software systems, modelling languages, and databases. IFML
is an OMG standard to define the content, user interaction
and behaviour of the front-end of software applications. On
the other hand, we want to assess the integration of the RSs
into existing tree and Sirius editors built by third parties.
Table 3 summarises the experiment set-up. In the experi-

ment, each RS (e.g., for Ecore) was adapted to the other three
languages (e.g., UML, ER and IFML) and integrated in all
the six tools. This resulted in twelve integrations, covering
environments based both on Sirius and the tree editor.

5.2 Experiment results
Table 4 summarises the results of the integrations, including
the number of mappings needed to adapt the RS to the mod-
elling language, and the synthesised lines of code (LoC) by
the code generator. We did not need any mapping when us-
ing a RS for the same language (e.g., Ecore for Ecore), while
for the other cases, we required from 5 to 9 mappings. Since
the original RSs recommend both attributes and operations,
the number of mappings depended on whether the language
had a notion akin to operations (absent both in ER and IFML).

The generated plugins use the EMF reflective API [59], and
in average, 464 LoC were generated per plugin. This number
does not include the implementation code to communicate
with the recommender services. Additionally, in the case of
Sirius, IronMan generates an odesign model automatically,
which is the file that contains the description of themodelling
environment, including the recommendation layer.

Fig. 13 contains some screenshots of the resulting integra-
tions. Labels 1–3 show the integration of the Ecore RS with
the Sirius editor provided by Ecore tools. Label 1 shows the
menu to activate the recommendation layer, label 2 the menu
contribution of the recommender, and label 3 the dialog from

Table 4. Summary of the experiment results.

Integr. RS Language Editor Maps LoC
1 Ecore Ecore Ecore-tree 0 455
2 Ecore Ecore Ecore-Sirius 0 528
3 Ecore UML UML-tree 9 457
4 Ecore UML UML-Sirius 9 530
5 Ecore ER ISD-Sirius 5 414
6 Ecore IFML IFML-Sirius 5 414
7 UML Ecore Ecore-tree 9 451
8 UML Ecore Ecore-Sirius 9 525
9 UML UML UML-tree 0 452
10 UML UML UML-Sirius 0 525
11 UML ER ISD-Sirius 5 411
12 UML IFML IFML-Sirius 5 411

which to choose the recommendations. Label 4 displays the
integration of the UML RS with the UML tree editor. Finally,
label 5 displays the integration of the UML RS within the In-
formation System Designer (ISD) [42]. The resulting plugins
are available at: https://github.com/antoniogarmendia/in
tegrate-recommenders-ironman/tree/main/integrate.reco
mmenders.ironman.project/generated-projects.

5.3 Answering the RQs
Overall, we can answer both RQs positively.

For RQ1, we could reuse RSs defined for Ecore or UML, and
adapt them to other three languages (Ecore, UML, ER, IFML).
The only requirement for this reuse was to map (subsets of)
the meta-model of the RS and the meta-model of the target
language, by defining between 0 and 9 declarative mappings.
For RQ2, we could automatically integrate each RS into

six existing modelling tools based on Sirius and EMF tree
editors. Remarkably, all the tools were built by third parties,
and we did not need their source code.

5.4 Discussion and threats to validity
Our experiment shows evidence that IronMan is able to
reuse existing RSs for other modelling languages, and inte-
grate them automatically into existing tools.
However, regarding external validity threats, the number

of RSs reused was limited, as the experiment only consid-
ered RSs for Ecore and UML. Similarly, we reused these RSs
just for four other modelling languages. A stronger evalua-
tion would be obtained by considering more RSs and more
languages. In particular, the languages in the experiment
were somewhat similar, and we are aware that considering
more structurally different notations would require from a
more powerful mapping mechanism (e.g., based on OCL or
Java), able to bridge the structural dissimilarities between
the meta-models. This is future work. However, to mitigate
this threat, we reused the RSs for well-known modelling lan-
guages developed by third parties, which are representative
of structural modelling. Moreover, we also considered IFML,
which is related to interaction modelling.

https://github.com/antoniogarmendia/integrate-recommenders-ironman/tree/main/integrate.recommenders.ironman.project/generated-projects
https://github.com/antoniogarmendia/integrate-recommenders-ironman/tree/main/integrate.recommenders.ironman.project/generated-projects
https://github.com/antoniogarmendia/integrate-recommenders-ironman/tree/main/integrate.recommenders.ironman.project/generated-projects

Reuse and Automated Integration of Recommenders for Modelling Languages SLE’23, October 22–27, 2023, Cascais, Portugal

1

2

3

4

5

Figure 13. Screenshots of the integration results. (1–3) Ecore tools (Sirius), (4) UML tree editor, (5) ISD-Designer.

Regarding the integration with tools, we chose existing
tools built by third parties to avoid any bias. Still, integration
with further tools would result in a stronger evaluation.

6 Related Work
Next, we review three lines of works related to our pro-
posal: RSs for modelling tasks (Sec. 6.1), servitisation of RSs
(Sec. 6.2), and aggregation of recommendations (Sec. 6.3).

6.1 RSs for modelling
As reported in [3], the modelling community is showing
a growing interest in RSs for modelling tasks. According
to [3], the most common purposes of RSs in model-driven
engineering (MDE) are the completion, finding, repair, reuse
and, to a lesser extent, creation of modelling artefacts.
RSs for modelling have been normally developed ad-hoc

for a specific modelling language, most frequently UML
(e.g., class diagrams [10, 25, 28, 37, 40, 55] and sequence dia-
grams [13]), process modelling notations [16, 32, 33, 36, 38],
or meta-models [1, 17]. Only a few language-independent
approaches [1, 2, 23, 34, 47, 58] enable the definition of RSs
for any language defined by a meta-model. Among them,
Almonte et al. [2] propose the DSL Droid to facilitate the con-
struction and subsequent evaluation of RSs for anymodelling
language. This DSL supports the selection and configuration
of the recommendation algorithm. In this paper, we have
evaluated our proposal using some RSs created with Droid.

Given that RSs are typically fixed for a particular language,
a tool like IronMan, which can adapt a RS for different
notations, becomes useful in practice.
Outside the MDE community, tools have been proposed

that, like Droid, simplify the creation and evaluation of RSs.
For instance, LEV4REC [20] relies on MDE to configure the
parts of a RS and generate the RS code; and the framework
Elliot [5] executes a complete experimental pipeline for RSs
by processing a simple configuration file. However, the RSs
produced by these tools are neither specific for modelling
nor automatically integrated into existing editors/tools.
Regarding the techniques to generate recommendations

in MDE, the most popular ones stem from classical recom-
mendation methods, most prominently knowledge-based
techniques (i.e., systems that exploit the domain knowledge
to produce recommendations, such as AMOR [10], Baya [14],
IPSE [28], RapMOD [37], Refacola [58], ReVision [44] and
Savary-Leblanc’s recommender [55]), followed by content-
based (e.g., DoMoRe [1] and Refactory [49]), hybrid (e.g.,
SBPR [32] and the approaches by Kögel et al. [34] and Kosch-
mider et al. [36]), and based on collaborative filtering (e.g.,
MemoRec [17] and ModBud [53]). Some recent approaches
apply machine learning to build the RSs. For example, Bur-
gueño et al. [11] propose a RS for class diagrams based on
natural language processing; Weyssow et al. [61] apply a
deep learning model to recommend meta-model concepts;
Di Rocco et al. [19] use an encoder-decoder network to

SLE’23, October 22–27, 2023, Cascais, Portugal

aid modellers in executing model editing operations, and
graph neural networks (GNNs) to assist in the specification
of (meta-)models [18]; and Shilov et al. [56] use GNNs to
assist in enterprise modelling processes.

Altogether, there is a wide variety of RSs for diverse mod-
elling notations and methods. Our contribution in this line of
works is a proposal to homogenise the access to all existing
approaches behind a common API. This enables the combi-
nation of approaches by aggregating their results, and facili-
tates the access from arbitrary clients. Finally, our mappings
permit adapting existing RSs to other modelling notations.

6.2 Deployment of RSs via web services
The idea of deploying RSs as web services is not new, but it
has been adopted by both researchers and companies due to
its benefits. A recommendation API is a (REST) service with
recommendation functionalities akin to those of recommen-
dation software libraries, but hosting the data in the cloud.
The RSs community has coined the term Recommendations-
As-a-Service (RaaS) [52] to refer to cloud platforms that en-
able the creation of RSs using a few clicks or LoC, by au-
tomating the steps of the recommendation generation pro-
cess, from data indexing to recommendation generation and
display. As an example, the engine Recombee [48] allows
building recommendation services for any domain that has a
catalogue of items and is interacted by users. The engine only
supports content-based recommendation, but its recommen-
dation model is customisable and permits defining business
rules to filter or boost items based on their properties. The
engine provides API endpoints to manage the (JSON-based)
items, users and their interactions, and to get recommen-
dations. While Recombee is generic, some RaaS are domain-
specific, like bX [12], BibTip [9] and Mr. DLib [41] for digital
libraries. All these approaches expose recommendation APIs
as web services; however, the APIs are notmodelling-specific,
so their fine-tuning for modelling tasks is cumbersome.

Regarding RSs for modelling, most proposals are deployed
locally and integrated ad-hoc in a specific modelling tool
or IDE. One of the few exceptions are Droid [2] and Savary-
Leblanc’s recommender for UML [55]. The latter is a rec-
ommender for UML class diagrams, deployed as a service,
and integrated within Papyrus. Droid permits the creation of
RSs for modelling languages and their deployment as REST
services. In [4], the authors illustrate the integration of this
service in both EMF tree editors and a modelling chatbot. In-
stead, our approach aims to be more general by unifying any
modelling recommendation service under a common API.
This will facilitate the reuse and aggregation of existing RSs
by the community, hence contributing to better modelling
tools augmented with recommendation capabilities.

6.3 Aggregation of RSs
Rank aggregation has been used in a wide number of fields,
such as meta-search engines [22], biology [35], criticality

analysis [45], or spam detection [63], to name a few. A few
proposals exist in the RSs literature as well. For example,
based on the observation that many top-N recommenders
disagree in their returned rankings, Oliveira et al. [46] stud-
ied 19 rank aggregation methods and identified the recom-
mendation scenarios where they performed best or worst.
They concluded that rank aggregation achieves the biggest
improvements in scenarios with high-quality input rankings
and high diversity; unsupervised methods should be avoided
in case of poor-quality input rankings; and the results of
both supervised and unsupervised methods is similar in case
of input rankings with high-quality but low diversity.
To our knowledge, our proposal is the first one enabling

the aggregation of recommendations for modelling. We cur-
rently support unsupervised methods, and leave supervised
ones as future work.

7 Conclusions and Future Work
The increasing number of RSs for modelling calls for mecha-
nisms to facilitate their reuse, combination and integration
into modelling tools. We have proposed an approach towards
this goal, based on a common recommendation API, map-
pings bridging the RSs and the modelling notations, and rank
aggregation algorithms. The approach has been realised in
IronMan, which is able to adapt and integrate RSs within
Eclipse modelling tools based on Sirius and tree editors.
In the future, we would like to integrate other existing

RSs, and investigate the scenarios where aggregating RSs –
providing recommendations for the same target and item
– are beneficial. While we currently support unsupervised
rank aggregation methods, we plan to extend our proposal
with supervised ones [46]. These methods require a precon-
figuration step to optimise the recommendation aggregation
function with respect to a given metric, typically precision.
We would also like to include more flexible means for adapt-
ing the RSs to the modelling language (e.g., using OCL or
Java snippets).

Implementation-wise, the wizard requires that all selected
RSs are defined for the same modelling language, and then
adapted if needed. In the short term, we will support the se-
lection of RSs for different languages, and provide assistants
to adapt them to the modelling language (once the first map-
ping is defined). We also plan to support integration with
textual notations, e.g., defined using Xtext [8, 62]. Finally,
we are interested in exploring other types of integration of
the RSs within modelling tools, e.g., a proactive approach
where the RS monitors the modelling session and triggers
recommendations when an opportunity is found.

Acknowledgments
Work supported by the SpanishMICINN (PID2021-122270OB-
I00, TED2021-129381B-C21).

Reuse and Automated Integration of Recommenders for Modelling Languages SLE’23, October 22–27, 2023, Cascais, Portugal

References
[1] Henning Agt-Rickauer, Ralf-Detlef Kutsche, and Harald Sack. 2018.

DoMoRe - A Recommender System for Domain Modeling. In 6th In-
ternational Conference on Model-Driven Engineering and Software De-
velopment (MODELSWARD). SciTePress, 71–82.

[2] Lissette Almonte, Esther Guerra, Iván Cantador, and Juan de Lara. 2022.
Building recommenders for modelling languages with Droid. In 37th
IEEE/ACM International Conference on Automated Software Engineering
(ASE). ACM, 1–4.

[3] Lissette Almonte, Esther Guerra, Iván Cantador, and Juan de Lara.
2022. Recommender systems in model-driven engineering. Softw. Syst.
Model. 21, 1 (2022), 249–280.

[4] Lissette Almonte, Sara Pérez-Soler, Esther Guerra, Iván Cantador, and
Juan de Lara. 2021. Automating the Synthesis of Recommender Sys-
tems for Modelling Languages. In 14th ACM SIGPLAN International
Conference on Software Language Engineering (SLE). ACM, 22–35.

[5] Vito Walter Anelli, Alejandro Bellogín, Antonio Ferrara, Daniele
Malitesta, Felice Antonio Merra, Claudio Pomo, Francesco Maria
Donini, and Tommaso Di Noia. 2021. Elliot: A Comprehensive and
Rigorous Framework for Reproducible Recommender Systems Eval-
uation. In 44th International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR). ACM, 2405–2414.

[6] Apache. (last accessed in July 2023). Tomcat. http://tomcat.apache.or
g/.

[7] Javed A. Aslam and Mark H. Montague. 2001. Models for Metasearch.
In International Conference on Research and Development in Information
Retrieval (SIGIR). ACM, 275–284.

[8] Lorenzo Bettini. 2016. Implementing domain-specific languages with
Xtext and Xtend. Packt Publishing Ltd.

[9] BibTip. (last accessed in July 2023). http://www.bibtip.com/en.
[10] Petra Brosch, Martina Seidl, and Gerti Kappel. 2010. A recommender

for conflict resolution support in optimistic model versioning. In 25th
Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA. ACM, 43–50.

[11] Loli Burgueño, Robert Clarisó, Sébastien Gérard, Shuai Li, and Jordi
Cabot. 2021. An NLP-Based Architecture for the Autocompletion of
Partial Domain Models. In 33rd International Conference on Advanced
Information Systems Engineering (CAiSE) (LNCS, Vol. 12751). Springer,
91–106.

[12] bX. (last accessed in July 2023). https://www.exlibrisgroup.com/prod
ucts/bx-recommender/.

[13] Thaciana Cerqueira, Franklin Ramalho, and Leandro Balby Marinho.
2016. A Content-Based Approach for Recommending UML Sequence
Diagrams. In 28th International Conference on Software Engineering
and Knowledge Engineering (SEKE). KSI Research Inc. and Knowledge
Systems Institute Graduate School, 644–649.

[14] Soudip Roy Chowdhury, Florian Daniel, and Fabio Casati. 2014. Rec-
ommendation and Weaving of Reusable Mashup Model Patterns for
Assisted Development. ACM Transactions on Internet Technology 14,
2-3 (2014), 21:1–21:23.

[15] Juan de Lara, Esther Guerra, and Jesús Sánchez Cuadrado. 2013.
Reusable abstractions for modeling languages. Inf. Syst. 38, 8 (2013),
1128–1149.

[16] ShuiGuang Deng, DongjingWang, Ying Li, Bin Cao, Jianwei Yin, Zhao-
hui Wu, and Mengchu Zhou. 2017. A Recommendation System to
Facilitate Business Process Modeling. IEEE Trans. Cybern. 47, 6 (2017),
1380–1394.

[17] Juri Di Rocco, Davide Di Ruscio, Claudio Di Sipio, Phuong T. Nguyen,
and Alfonso Pierantonio. 2023. MemoRec: A recommender system for
assisting modelers in specifying metamodels. Softw. Syst. Model. to
appear (2023).

[18] Juri Di Rocco, Claudio Di Sipio, Davide Di Ruscio, and Phuong T.
Nguyen. 2021. A GNN-based Recommender System to Assist the Spec-
ification of Metamodels and Models. In 24th International Conference

on Model Driven Engineering Languages and Systems (MoDELS). IEEE,
70–81. https://doi.org/10.1109/MODELS50736.2021.00016

[19] Juri Di Rocco, Claudio Di Sipio, Phuong T. Nguyen, Davide Di Ruscio,
and Alfonso Pierantonio. 2022. Finding with NEMO: A Recommender
System to Forecast the next Modeling Operations. In 25th Interna-
tional Conference on Model Driven Engineering Languages and Systems
(MoDELS). ACM, 154–164.

[20] Claudio Di Sipio, Juri Di Rocco, Davide Di Ruscio, and Phuong Thanh
Nguyen. 2021. A Low-Code Tool Supporting the Development of
Recommender Systems. In 15th Conference on Recommender Systems
(RecSys). ACM, 741–744.

[21] Claudio Di Sipio, Juri Di Rocco, Davide Di Ruscio, and Phuong T.
Nguyen. 2023. MORGAN: a modeling recommender system based on
graph kernel. Softw. Syst. Model. to appear (2023), 70–81.

[22] Cynthia Dwork, Ravi Kumar, Moni Naor, and D. Sivakumar. 2001. Rank
aggregation methods for the Web. In International World Wide Web
Conference, WWW. ACM, 613–622.

[23] Andrej Dyck, Andreas Ganser, and Horst Lichter. 2014. A framework
formodel recommenders - Requirements, architecture and tool support.
In MODELSWARD. IEEE, 282–290.

[24] Eclipse. (last accessed in July 2023). Jersey. https://eclipse-ee4j.github.
io/jersey/.

[25] Akil Elkamel, MariemGzara, andHanêne Ben-Abdallah. 2016. An UML
class recommender system for software design. In 13th IEEE/ACS In-
ternational Conference of Computer Systems and Applications (AICCSA).
IEEE Computer Society, 1–8.

[26] Ronald Fagin, Ravi Kumar, and D. Sivakumar. 2003. Efficient simi-
larity search and classification via rank aggregation. In International
Conference on Management of Data (). ACM, 301–312.

[27] Mohamed Farah and Daniel Vanderpooten. 2007. An outranking
approach for rank aggregation in information retrieval. In SIGIR 2007:
Proceedings of the 30th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval. ACM, 591–598.

[28] Hilke Garbe. 2012. Intelligent Assistance in a Problem Solving Envi-
ronment for UML Class Diagrams by Combining a Generative System
with Constraints. In eLearning. IADIS.

[29] Object Management Group. 2014. OCL Specification. http://www.om
g.org/spec/OCL/.

[30] Object Management Group. 2015. IFML Specification. https://www.if
ml.org/.

[31] Kyo Kang, Sholom Cohen, James Hess, William Novak, and A. Peter-
son. 1990. Feature-Oriented Domain Analysis (FODA) Feasibility Study.
Technical Report CMU/SEI-90-TR-021. Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA.

[32] Hadjer Khider, Slimane Hammoudi, and Abdelkrim Meziane. 2020.
Business Process Model Recommendation as a Transformation Process
in MDE: Conceptualization and First Experiments. In 8th International
Conference on Model-Driven Engineering and Software Development,
MODELSWARD. SCITEPRESS, 65–75.

[33] Krzysztof Kluza, Mateusz Baran, Szymon Bobek, and Grzegorz J.
Nalepa. 2013. Overview of Recommendation Techniques in Busi-
ness Process Modeling. In 9th Workshop on Knowledge Engineering and
Software Engineering, KESE (CEUR Workshop Proceedings, Vol. 1070).
CEUR-WS.org.

[34] Stefan Kögel. 2017. Recommender system for model driven software
development. In 11th Joint Meeting on Foundations of Software Engi-
neering, ESEC/FSE, Eric Bodden, Wilhelm Schäfer, Arie van Deursen,
and Andrea Zisman (Eds.). ACM, 1026–1029.

[35] Raivo Kolde, Sven Laur, Priit Adler, and Jaak Vilo. 2012. Robust rank
aggregation for gene list integration and meta-analysis. Bioinform. 28,
4 (2012), 573–580.

[36] Agnes Koschmider, Thomas Hornung, and Andreas Oberweis. 2011.
Recommendation-based editor for business process modeling. Data
Knowl. Eng. 70, 6 (2011), 483–503.

http://tomcat.apache.org/
http://tomcat.apache.org/
http://www.bibtip.com/en
https://www.exlibrisgroup.com/products/bx-recommender/
https://www.exlibrisgroup.com/products/bx-recommender/
https://doi.org/10.1109/MODELS50736.2021.00016
https://eclipse-ee4j.github.io/jersey/
https://eclipse-ee4j.github.io/jersey/
http://www.omg.org/spec/OCL/
http://www.omg.org/spec/OCL/
https://www.ifml.org/
https://www.ifml.org/

SLE’23, October 22–27, 2023, Cascais, Portugal

[37] Tobias Kuschke, Patrick Mäder, and Patrick Rempel. 2013. Recom-
mending Auto-completions for Software Modeling Activities. In 16th
International Conference on Model-Driven Engineering Languages and
Systems (MoDELS) (LNCS, Vol. 8107). Springer, 170–186.

[38] Ying Li, Bin Cao, Lida Xu, Jianwei Yin, ShuiGuang Deng, Yuyu Yin,
and Zhaohui Wu. 2014. An Efficient Recommendation Method for
Improving Business Process Modeling. IEEE Trans. Ind. Informatics 10,
1 (2014), 502–513.

[39] Tie-Yan Liu. 2011. Learning to Rank for Information Retrieval. Springer.
[40] Patrick Mäder, Tobias Kuschke, and Mario Janke. 2021. Reactive Auto-

Completion of Modeling Activities. IEEE Trans. Software Eng. 47, 7
(2021), 1431–1451.

[41] Mr-DLib. (last accessed in July 2023). http://mr-dlib.org/.
[42] Obeo. (last accessed in July 2023). IS-designer. https://www.obeosoft.

com/en/products/is-designer.
[43] Obeo. (last accessed in July 2023). UML Designer. https://marketplac

e.eclipse.org/content/uml-designer.
[44] Manuel Ohrndorf, Christopher Pietsch, Udo Kelter, Lars Grunske, and

Timo Kehrer. 2021. History-Based Model Repair Recommendations.
ACM Trans. Softw. Eng. Methodol. 30, 2, Article 15 (2021), 46 pages.
https://doi.org/10.1145/3419017

[45] Gabriele Oliva, Annunziata Esposito Amideo, Stefano Starita, Roberto
Setola, and Maria Paola Scaparra. 2019. Aggregating Centrality Rank-
ings: A Novel Approach to Detect Critical Infrastructure Vulnerabili-
ties. In International Conference on Critical Information Infrastructures
Security, CRITIS (LNCS, Vol. 11777). Springer, 57–68.

[46] Samuel E. L. Oliveira, Victor Diniz, Anísio Lacerda, Luiz H. C. Mer-
schmann, and Gisele L. Pappa. 2020. Is rank aggregation effective in
recommender systems? An experimental analysis. ACM Trans. Intell.
Syst. Technol. 11, 2 (2020), 16:1–16:26.

[47] Tanumoy Pati, Sowmya Kolli, and James H. Hill. 2017. Proactive
modeling: a new model intelligence technique. Softw. Syst. Model. 16,
2 (2017), 499–521.

[48] Recombee. (last accessed in July 2023). https://docs.recombee.com/.
[49] Jan Reimann, Mirko Seifert, and Uwe Aßmann. 2013. On the reuse

and recommendation of model refactoring specifications. Softw. Syst.
Model. 12, 3 (2013), 579–596.

[50] Francesco Ricci, Lior Rokach, and Bracha Shapira. 2022. Recommender
Systems Handbook (3 ed.). Springer US.

[51] Martin P. Robillard and Robert J. Walker. 2014. An Introduction to Rec-
ommendation Systems in Software Engineering. In Recommendation

Systems in Software Engineering, Martin P. Robillard, Walid Maalej,
Robert J. Walker, and Thomas Zimmermann (Eds.). Springer, 1–11.

[52] RS_c. (last accessed in July 2023). Recommendation-as-a-service. https:
//recommender-systems.com/resources/recommendations-as-a-
service-raas/.

[53] Rijul Saini, Gunter Mussbacher, Jin L. C. Guo, and Jörg Kienzle. 2019.
Teaching Modelling Literacy: An Artificial Intelligence Approach. In
22nd ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems Companion, MODELS. IEEE, 714–719.

[54] Jesús Sánchez Cuadrado, Esther Guerra, and Juan de Lara. 2012. Flex-
ible Model-to-Model Transformation Templates: An Application to
ATL. J. Object Technol. 11, 2 (2012), 4: 1–28.

[55] Maxime Savary-Leblanc, Xavier Le-Pallec, and Sébastien Gérard. 2021.
A modeling assistant for cognifying MBSE tools. In 2021 ACM/IEEE
International Conference on Model Driven Engineering Languages and
Systems Companion (MODELS-C). IEEE, 630–634. https://doi.org/10.1
109/MODELS-C53483.2021.00097

[56] Nikolay Shilov, Walaa Othman, Michael Fellmann, and Kurt Sandkuhl.
2023. Machine learning for enterprise modeling assistance: An inves-
tigation of the potential and proof of concept. Softw. Syst. Model. to
appear (2023), 1619–1374. https://doi.org/10.1007/s10270-022-01077-y

[57] Sirius. (last accessed in April 2023). https://www.eclipse.org/sirius/.
[58] Friedrich Steimann and Bastian Ulke. 2013. Generic Model Assist. In

16th International Conference on Model-Driven Engineering Languages
and Systems, MODELS (LNCS, Vol. 8107). Springer, 18–34.

[59] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks.
2008. EMF: Eclipse Modeling Framework, 2𝑛𝑑 Edition. Addison-Wesley
Professional. See also http://www.eclipse.org/modeling/emf/.

[60] Javier Alvaro Vargas Muñoz, Ricardo da Silva Torres, and Marcos An-
dré Gonçalves. 2015. A Soft Computing Approach for Learning to
Aggregate Rankings. In Proceedings of the 24th ACM International
Conference on Information and Knowledge Management, CIKM. ACM,
83–92.

[61] Martin Weyssow, Houari Sahraoui, and Eugene Syriani. 2022. Rec-
ommending Metamodel Concepts during Modeling Activities with
Pre-Trained Language Models. Softw. Syst. Model. 21, 3 (2022), 1071–
1089.

[62] Xtext. (last accessed in July 2023). http://www.eclipse.org/Xtext/.
[63] Zheng Zhang, Ming-Yang Zhou, JunWan, Kezhong Lu, Guoliang Chen,

and Hao Liao. 2023. Spammer detection via ranking aggregation of
group behavior. Expert Syst. Appl. 216 (2023), 119454.

http://mr-dlib.org/
https://www.obeosoft.com/en/products/is-designer
https://www.obeosoft.com/en/products/is-designer
https://marketplace.eclipse.org/content/uml-designer
https://marketplace.eclipse.org/content/uml-designer
https://doi.org/10.1145/3419017
https://docs.recombee.com/
https://recommender-systems.com/resources/recommendations-as-a-service-raas/
https://recommender-systems.com/resources/recommendations-as-a-service-raas/
https://recommender-systems.com/resources/recommendations-as-a-service-raas/
https://doi.org/10.1109/MODELS-C53483.2021.00097
https://doi.org/10.1109/MODELS-C53483.2021.00097
https://doi.org/10.1007/s10270-022-01077-y
https://www.eclipse.org/sirius/
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/Xtext/

	plantilla_actualizada_ps_CONGRESO1.pdf
	9338623
	Abstract
	1 Introduction
	2 Background and Integration Dimensions
	2.1 Background on Recommender Systems
	2.2 Dimensions of Integration of Modelling RSs

	3 Approach
	3.1 Overview
	3.2 Recommendation service
	3.3 Adaptation of RSs to the modelling notation
	3.4 Recommendation aggregation
	3.5 Integration within modelling environments

	4 Architecture and Tool Support
	4.1 Architecture
	4.2 Tool support

	5 Evaluation
	5.1 Experiment set-up
	5.2 Experiment results
	5.3 Answering the RQs
	5.4 Discussion and threats to validity

	6 Related Work
	6.1 RSs for modelling
	6.2 Deployment of RSs via web services
	6.3 Aggregation of RSs

	7 Conclusions and Future Work
	Acknowledgments
	References

