
Approximating Type Stability in the Julia JIT
(Work in Progress)

Artem Pelenitsyn
pelenitsyn.a@northeastern.edu

Northeastern University
USA

Abstract
Julia is a dynamic language for scientific computing. For a
dynamic language, Julia is surprisingly typeful. Types are
used not only to structure data but also to guide dynamic dis-
patch – the main design tool in the language. No matter the
dynamism, Julia is performant: flexibility is compiled away
at the run time using a simple but smart type-specialization
based optimization technique called type stability. Based on
a model of a JIT mimicking Julia from previous works, we
present the first algorithm to approximate type stability of
Julia code. Implementation and evaluation of the algorithm
is still a work in progress.

CCS Concepts: • Software and its engineering → Just-
in-time compilers.

Keywords: method dispatch, type inference, compilation,dynamic
languages, Julia language
ACM Reference Format:
Artem Pelenitsyn. 2023. Approximating Type Stability in the Julia
JIT (Work in Progress). In Proceedings of the 15th ACM SIGPLAN
International Workshop on Virtual Machines and Intermediate Lan-
guages (VMIL ’23), October 23, 2023, Cascais, Portugal. ACM, New
York, NY, USA, 5 pages. https://doi.org/10.1145/3623507.3623556

1 Introduction
The scientific computing community has long been of two
minds about the language technology best suited for the
task. On the one hand, the exploratory nature of program-
ming with raw datasets and mathematical models with many
parameters calls for modern convenience features like dy-
namic typing and garbage collection. On the other, crunch-
ing numbers may require to squeeze every CPU cycle avail-
able. Accordingly, the language market in this area is split
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
VMIL ’23, October 23, 2023, Cascais, Portugal
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0401-7/23/10. . . $15.00
https://doi.org/10.1145/3623507.3623556

into productivity languages (Python, MATLAB, R) and high-
performance oriented languages (C, C++, Fortran).
The split nature of the language landscape in the area of

scientific computing calls for a question: can we have the
best of both worlds? Julia attempts to answer in the positive.

On the surface, the Julia language has a lot of pythonistic
feeling to it. Consider the following function that sums an
array of elements but clamps the summands above the given
threshold.� �

function sum(v, t)
res = v[1]
for i = 2:length(v)

elm = v[i] < t ? v[i] : t
res = res + elm

end
res

end� �
Notice the absence of type annotations either on the function
arguments or anywhere locally. Of course, it is possible to
call sumwith a string and a number and get a run-time failure.
On the other hand, and no less of a surprise, when called
with the right arguments the code gets JIT-compiled and
performs on par with equivalent C code.
Julia’s competitive performance is documented both in

the language manual and in academic papers [2]. One of
the key techniques enabling essential optimizations is based
on the code property called type stability [5]. While well-
understood on the IR level, the property has been elusive for
end users: it is mentioned in the manual and on many forum
threads but still does not have a clear source-level model
for it. In this short paper we propose the first algorithm
to approximate this highly dynamic property statically. In
particular, we

• give an informal description of type stability as it
comes up in the practice of Julia programming (Sec. 2;
largely following [5]);

• discuss challenges to model type stability statically
and the relation of the task to the full-fledged type
inference (Sec. 3);

• give an algorithm to approximate type stability stati-
cally (Sec. 4);

• remark on implementation (Sec. 5) and evaluation of
the algorithm (Sec. 6) — both work in progress.

83

https://orcid.org/0000-0001-8334-8106
https://doi.org/10.1145/3623507.3623556
https://doi.org/10.1145/3623507.3623556
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3623507.3623556&domain=pdf&date_stamp=2023-10-19

VMIL ’23, October 23, 2023, Cascais, Portugal Artem Pelenitsyn

2 A Type Stability Primer
2.1 Multiple Dispatch in Julia
The Julia language is designed around multiple dispatch [3].
Programs consist of functions that are implemented by mul-
tiple methods; there is nothing more to a Julia function than
just a name. Each method is identified by a distinct type
signature. At run time, the Julia implementation dispatches
a function call to the most specific method by comparing the
types of the arguments to the types of the parameters of all
methods of that function. For example, the call to the + func-
tion in the example from the introduction can dispatch to
one out of over two hundreds methods for + in the standard
library alone (packages can add more methods to a function).
Julia supports a rich type language for defining method

signatures. Base types consist of either bits types (i.e. types
with a direct binary representation, like integers) or record
types (called structs in Julia). Both bits types and record
types, referred to as concrete types, can have supertypes, but
all supertypes are abstract types. Abstract types are arranged
into a subtyping hierarchy rooted at the built-in Any type.
Every value in the program has a unique type tag that can be
accessed via the typeof function. The type language allows
for further composition of these base types using unions,
tuples, and bounded existential constructors; the result of
composition can be abstract or concrete. Zappa Nardelli et al.
[6] gives a detailed discussion of the type language and of
subtyping.

Any function call in a program, such as res+elm in the ex-
ample above, requires choosing one of the methods of the
target function.Method dispatch is a multi-step process. First,
the implementation obtains the concrete types of arguments.
Second, it retrieves applicable methods by checking for sub-
typing between argument types and type annotations of the
methods. Next, it sorts these methods into subtype order.
Finally, the call is dispatched to the most specific method—a
method such that no other applicable method is its strict
subtype. If no such method exists, an error is produced.
Function calls are pervasive in Julia, and their efficiency

is crucial for performance. However, the multi-step dispatch
mechanism make the process slow. To attain acceptable per-
formance, the compiler attempts to remove as many dispatch
operations as it can. This optimization leverages run-time
type information whenever a method is compiled, i.e., when
it is called for the first time with a novel set of argument
types. These types are used by the compiler to infer types in
the method body. Then, this type information frequently al-
lows the compiler to devirtualize and inline the function calls
within a method [1], thus improving performance. However,
this optimization is not always possible: if type inference can-
not produce a sufficiently specific type, then the call cannot
be devirtualized.

2.2 Type Stability: A Key To Performance?
To illustrate a profound effect that type inference precision
can have on performance, consider the sum function from the
introduction benchmarked in three scenarios differing only
in input types. Assuming a random array of integers called
vint and a random array of floating-point numbers called
vflt (both consisting of 10K elements) compare the median
running time of the following three calls to sum:

• sum(vint, 0) — 1.397 microseconds
• sum(vflt, 0.5) — 11.489 microseconds
• sum(vint, 0.5) — 64.623 microseconds

When a performance regression occurs, it is common for
Julia developers to study the intermediate representation
produced by the compiler. To facilitate this, the language
provides a utilty, code_warntype, that shows Julia’s intermedi-
ate representation of the code along with the inferred types
for a given function invocation. Types that are imprecise, i.e.
abstract, show up in red: they indicate that concrete type of
a run-time value may vary from run to run. In the first two
benchmarks, the Julia compiler is able to deduce a concrete
return type of the method (Int and Float correspondingly),
but the type of the last one reported as Union{Int, Float},
which is an abstract type. Such type imprecision can im-
pact performance in two ways. First, the res variable has
to be boxed, adding a level of indirection to any operation
performed therein. Second, it is harder for the compiler to
devirtualize and inline consecutive calls, thus requiring dy-
namic dispatch.
Julia’s compilation model is designed to accommodate

source programs with flexible types. Yet, to make such pro-
grams efficient, the compiler creates an instance of each
source method for each distinct tuple of argument types.
Thus, even if the programmer does not provide any type
annotations, like in the sum example, the compiler will cre-
ate method instances for concrete input types seen during
an execution. For example, the three benchmarks shown
above will make the compiler create three distinct method
instances. Because method instances have more precise ar-
gument types, the compiler can leverage them to produce
more efficient code and infer more precise return types.

In Julia parlance, a method is called type stable if, given a
concrete input type, it is possible to infer a concrete output
type. The sum function is not type stable because for the
input type Tuple{Vector{Int}, Float64}1 the return type can
be either Int or Float64.
Pelenitsyn et al. [5] formalize type stability as it relates

to program execution by building a formal model of a type-
specializing just-in-time compiler that does its main job at
run time. In this work, we set to approximate the property
of type stability for arbitrary Julia code statically, without
running the code in question.

1Tuple types encode several input arguments in Julia.

84

Approximating Type Stability in the Julia JIT (Work in Progress) VMIL ’23, October 23, 2023, Cascais, Portugal

3 Inferring Type Stability Versus Inferring
Types

A natural idea for inferring type stability in Julia would be
to formulate it as a forward static analysis: being an abstract
or concrete type is one bit of information that has a known
value at the input (concrete) and should be propagated to
the output, possibly changing on the way.

To test the static analysis idea, consider a positive example
first: the identity function.� �

function id(x)
x

end� �
It is straightforward to infer that, given any concrete input
type, the return value is also concretely typed: the one bit of
information carries over to the result in one step.

However, another example—the increment function—shows
that the task quickly becomes unwieldy.� �

function inc(x)
x + 1

end� �
Concreteness of the result returned by inc depends on con-
creteness of the result of the call to +. In turn, the property
of the return type of + depends on which + method Julia
will dispatch to at run time. There are about two hundred
method implementations of + in the standard library alone,
and packages add more. Some of those methods are type
stable (e.g. +(::Int64,::Int64)), and some of them are not
(e.g. +(::Rational{Bool},::Rational{Bool}) 2). Therefore, to in-
fer the property of interest, in general, we need to predict
which methods are selected at run time.

The inc example shows that inferring type stability of Julia
code requires reasoning about multiple dynamic dispatch,
which leads to reasoning about the types of intermediate
values rather than only the concreteness bit. But if there was
a tool for computing type information beforehand, a special-
purpose analysis for type stability would not be needed: it
suffices to ask the tool for the type of the return value and
check if that type is concrete. This observation leads to the
following conjecture:

Conjecture 3.1. Inferring type stability of a Julia method
statically is no easier than performing type inference of that
method.

2The reason for the +(::Rational{Bool},::Rational{Bool}) method
to be type unstable is not important, but in a nutshell, Julia has made a
questionable design decision about the return type of +(::Bool,::Bool),
which in the current implementation is Int (see discussion https://github.
com/JuliaLang/julia/issues/19168), and when adding two rational numbers
with boolean components, depending on the values of the summands, you
get back either Rational{Bool} or Rational{Int}.

A complete type inference algorithm would allow for
checking type stability of Julia code. But should type infer-
ence be implemented from scratch? There are two reasons
to not go this way.

1. It is not clear that inferring types for source-level Julia
code without changing anything in the language can
yield a meaningful result (more on this see [4]). For in-
stance, in the inc example, a sound return type cannot
be much better than Any.

2. Julia already has a built-in type inference engine, which
is modeled as a black box in [5]. The engine is used
for code optimizations. Thus, analyzing type stability
based on a custom type inference algorithm can pro-
duce results that diverge from Julia, misleading the
users about potential optimizations. This would be of
limited usage for Julia users.

4 An Algorithm To Approximate Type
Stability

If our predictions for type stability are to align with the Julia
implementation, the analysis should closely model Julia’s
run-time behavior, as described in [5]. The type-specializing
JIT-compiler from [5] makes optimization decisions based
on concrete input types with the help of Julia’s type infer-
ence engine. Therefore, the algorithm for predicting these
decisions statically considers all (or as many as possible)
allowed concrete input types of a method. Fig. 1 describes
this algorithm at a high level.
Let us consider every step of the algorithm described

on Fig. 1 and explain its meaning using an example. The
list below also assigns the numbers to each step in the algo-
rithm.

1. The input of the algorithm is a Julia method. Methods
in Julia are represented by run-time objects of type
Method and can be manipulated as all other objects (e.g.
stored in collections, responding to field accesses, etc.).
For example, consider the length method from Julia’s
standard library. We can get the corresponding Method

object using the standard @which macro applied to an
application of the length method. This can be done in
the Julia REPL (signified by the julia> prefix).� �

julia> @which length([1,2,3])
length(a::Array) in Base at array.jl:215� �

The output shows that the given length-call will dis-
patch to the method defined in the Basemodule (Julia-
speak for the standard library). The output also shows
the location of the method in the standard library and,
most importantly for us, the signature of the method.
In fact, what we see here is a pretty-printed representa-
tion of the Method object representing a particular Julia
method.

85

https://github.com/JuliaLang/julia/issues/19168
https://github.com/JuliaLang/julia/issues/19168

VMIL ’23, October 23, 2023, Cascais, Portugal Artem Pelenitsyn

Input type
Possibly
abstract

Exists concrete subtype
of the input type?

No Method type stable

Julia method

Yes

Run type inference
for the given
concrete type

Inferred type of result concrete? No Method not
type stable

Yes

Figure 1. Inferring type stability of a Julia method

2. The first task of the algorithm is to get the input type
of the given method. This is possible through querying
the sig field of the method object.
Building on the example above, we can get the signa-
ture of the length method as follows:� �

julia> m = @which length([1,2,3]);

julia> m.sig
Tuple{typeof(length), Array}� �

A signature of a method contains the special single-
ton function type (typeof(...)) as the first component,
and the rest is (easy to convert to) the type of the
input — an 𝑛-tuple. In this example, the type of the
input is 1-tuple, consisting of the existential array
type Array{T, N} where T where N abbreviated simply as
Array3.

3. The input type can be either concrete, which, in Julia,
means that there can be no proper subtypes of that
type, or abstract. In either case, the choice on the cur-
rent step will enter the loop at least once, because for
concrete input type, the check holds once trivially (e.g.
there is exactly one concrete subtype of the concrete
type Int — it is Int itself).

3A user can always look under the abbreviation using the dump function.

� �
julia> code_typed(m.sig.parameters[1].instance,

(Array{Float64, 1},),
optimize=false)

1-element Vector{Any}:
CodeInfo(
1 - %1 = Base.arraylen(a)::Int64
+-- return %1
) => Int64� �

Figure 2. Running Julia’s built-in type inferencer

If the input type is abstract, we need a procedure enu-
merating all concrete subtypes of it. An implementa-
tion for this procedure is discussed in the next section,
but it suffices to treat is as a black box for now.
In the case of the length method, the input type, Array,
is an existential type and hence abstract. Therefore, the
enumeration procedure should have yielded a concrete
subtype of Array. Assume that the concrete type is
Array{Float64, 1}.

4. Running Julia’s type inference for a given method and
a given concrete input type is done by calling Julia’s
standard code_typed function. The only issue with the
function is that it expects a function object as a part
of the input, not a method object. But getting from
a method to the corresponding function is possible
using the signature field discussed above, and, in par-
ticular, the singleton function type contained in the
first component of the sig field: accessing the single
function object using the function type is possible via
the instance field.
Running type inference for the length method and the
concrete input type Array{Float64, 1} could be done as
shown on Fig. 2. The return value is an array of CodeInfo
objects that represent the type-annotated method bod-
ies of all methods that a call with the given input type
could dispatch to (for a concrete input type and no
ambiguities in method definitions, the resulting array
always contains exactly one element). Method bodies
are transformed into a lower-level intermediate repre-
sentation. In the running example, the method body
contains a single call to an intrinsic Julia function that
is known to return a value of type Int64.

5. Concreteness of the inferred return type is checked
with the standard Julia isconcretetype predicate. In the
running example, the return type of length is inferred
to be Int64 for the concrete input type Array{Float64, 1}.
Since Int64 is a concrete type, following the second de-
cision element on Fig. 1 brings us back to the start of
the loop. After that, we try another concrete subtype
of the input type, if there is any.

86

Approximating Type Stability in the Julia JIT (Work in Progress) VMIL ’23, October 23, 2023, Cascais, Portugal

5 Implementation
The first practical consideration of the algorithm as shown is
termination. It is clear that the algorithm does not terminate
for some inputs. Consider the length example: its input type is
the existential Array type, whichmeans that possible concrete
input types may be:

• Array{1, Int}

• Array{1, Array{1, Int}}

• Array{1, Array{1, Array{1, Int}}}

• etc.
The issue of termination is close to another one: a search

space blow up. In the standard library alone, there are over
five hundreds immediate subtypes of Any and every concrete
subtype of those can be use to instantiate the Array type
when inferring stability of length. Although finite, this space
can be simply too large to exhaust in a reasonable time.

Our intention is to develop certain heuristics to perform an
early termination of the algorithm. The simplest heuristic of
this sort is to employ a fuel parameter that gives an arbitrary
upper bound for the number of steps we are allowed to
perform before we give up.

Another implementation concern is step 3 where we need
to generate a concrete subtype of the input type. Although
there is no built-in facility for this task, Julia allows get-
ting immediate subtypes of a given type using the subtypes

method. As our current implementation shows, with enough
care, it is not hard to enumerate concrete subtypes by apply-
ing the subtypes method iteratively.

6 Evaluation
Pelenitsyn et al. [5] analyzed the type stability of a corpus of
open-source Julia packages dynamically via executing test

suites of the packages and inspecting the resulting method
instances collected from the internal state of the virtual ma-
chine. We propose to run our algorithm for statically infer-
ring type stability over the same packages and match the
results.

Acknowledgements
Jan Vitek showed me how exciting Julia is and suggested
the topic of type stability in general and its approximation
in particular later on. Jan Jecmen joined in building the pro-
totype and brought several deep insights (backed by pull
requests) in how to improve it. Julia Belyakova and VMIL
’23 anonymous reviewers helped to improve the text.

References
[1] Gerald Aigner and Urs Hölzle. 1996. Eliminating Virtual Function Calls

in C++ Programs. In European Conference on Object-Oriented Program-
ming (ECOOP). https://doi.org/10.1.1.7.7766

[2] Jeff Bezanson, Jiahao Chen, Benjamin Chung, Stefan Karpinski, Viral
B. Shah, Jan Vitek, and Lionel Zoubritzky. 2018. Julia: Dynamism
and Performance Reconciled by Design. Proc. ACM Program. Lang. 2,
OOPSLA (2018). https://doi.org/10.1145/3276490

[3] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B. Shah. 2017.
Julia: A Fresh Approach to Numerical Computing. SIAM Rev. 59, 1
(2017). https://doi.org/10.1137/141000671

[4] Benjamin Chung. 2023. A Type System for Julia. Ph.D. Dissertation.
Northeastern University.

[5] Artem Pelenitsyn, Julia Belyakova, Benjamin Chung, Ross Tate, and Jan
Vitek. 2021. Type Stability in Julia: Avoiding Performance Pathologies
in JIT Compilation. Proc. ACM Program. Lang. 5, OOPSLA, Article 150
(2021), 26 pages. https://doi.org/10.1145/3485527

[6] Francesco Zappa Nardelli, Julia Belyakova, Artem Pelenitsyn, Benjamin
Chung, Jeff Bezanson, and Jan Vitek. 2018. Julia Subtyping: A Rational
Reconstruction. Proc. ACM Program. Lang. 2, OOPSLA (2018). https:
//doi.org/10.1145/3276483

Received 2023-07-23; accepted 2023-08-28

87

https://doi.org/10.1.1.7.7766
https://doi.org/10.1145/3276490
https://doi.org/10.1137/141000671
https://doi.org/10.1145/3485527
https://doi.org/10.1145/3276483
https://doi.org/10.1145/3276483

	Abstract
	1 Introduction
	2 A Type Stability Primer
	2.1 Multiple Dispatch in Julia
	2.2 Type Stability: A Key To Performance?

	3 Inferring Type Stability Versus Inferring Types
	4 An Algorithm To Approximate Type Stability
	5 Implementation
	6 Evaluation
	References

