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Figure 1: Overview of the wearable: (a-b) photos of the sleeve; (c) data processing unit; and (d) examples of two arm gestures.

ABSTRACT
Arm gestures play a pivotal role in facilitating natural mid-air in-
teractions. While computer vision techniques aim to detect these
gestures, they encounter obstacles like obfuscation and lighting
conditions. Alternatively, wearable devices have leveraged inter-
active textiles to recognize arm gestures. However, these methods
predominantly emphasize textile deformation-based interactions,
like twisting or grasping the sleeve, rather than tracking the nat-
ural body movement.This study bridges this gap by introducing
an e-textile sleeve system that integrates multiple ultra-sensitive
graphene e-textile strain sensors in an arrangement that captures
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bending and twisting along with an inertia measurement unit into
a sports sleeve. This paper documents a comprehensive overview
of the sensor design, fabrication process, seamless interconnection
method, and detachable hardware implementation that allows for
reconfiguring the processing unit to other body parts. A user study
with ten participants demonstrated that the system could classify
six different fundamental arm gestures with over 90% accuracy.
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1 INTRODUCTION
Over recent years, numerous studies have emerged focusing on em-
bedding sensors into various types of garments for sensing gesture-
related interactive activity [1, 21, 26, 27, 38]. Unlike computer vision
technology, which can be limited by factors such as low-light condi-
tions or obstructions in the camera’s field of view, e-textile sensors
present a more versatile solution as they can be deployed across
various scenarios with minimal environmental constraints, pro-
viding a robust and adaptable alternative for gesture recognition
and interactive applications [19, 34]. Moreover, compared to inertia
measurement units (IMU), a sensor commonly used for commercial
smartphones and watches, textile-embedded sensors could provide
more comprehensive body coverage. Current IMU-related research
usually necessitates the use of multiple IMUs at various wearing
points to achieve an efficient posture-tracking [18]; this usually
results in wearing multiple extra devices and somewhat diverges
from a vision of seamless integration into our daily lives.

Previous work sensing gestures through interactive garments
primarily use pressure-sensing methods such as touch, twisting
and gripping directly on the e-textile as input [7, 22, 23, 27, 39, 41].
These studies endeavour to devise a brand-new suite of custom-
made gestures for the garment. Computer vision methodologies
instead tend to detect natural body or joint movements, such as
elbow bending, hand swiping and scrolling [20, 24, 33, 34]. Some
researchers leveragemultiple IMUs tomonitor arm or hand gestures
[29, 40], but it is evident that e-textiles can be more adequately
leveraged, perhaps in tandem with IMU sensing.

As illustrated in Figure 1, this paper introduces a system-level
design of an e-textile sleeve that can sense arm gestures. It incorpo-
rates a network of three ultra-sensitive graphene strain sensors at
the elbow area of a commercial sport sleeve. In conjunction with a
six-axis internal measurement unit (IMU), the sleeve can recognize
the following arm gestures: 30◦ and 90◦ elbow bending, pronation,
supination, lateral rotation, and medial rotation. These arm gestures
are inspired by previous research [5, 8, 34], as these gestures are
the fundamental features in common interactive scenarios.

The main contributions of this research are:

• A novel e-textile sensing system that seamlessly integrates
highly flexible graphene strain sensors which can detect
rotational and bending gestures.

• The graphene strain sensors offer unique sensing capabilities
when compared to an IMU sensor capturing the same gesture,
demonstrating that the two sensing subsystems are comple-
mentary to each other for mid-air arm gestural recognition
tasks.

After reviewing relevant existing work, this paper presents the
design and fabrication of an arm sleeve that captures arm move-
ments via three graphene-based strain sensors and a six degrees-of-
freedom IMU. A user study is then conducted to evaluate gesture
classification of the signals generated by the arm sleeve. The paper
closes with a discussion of the results, limitations of the arm sleeve,
and how these findings could be applied to future research.

2 BACKGROUND
2.1 Facilitating Mid-Air Gesture Input
Mid-air interaction is a unique approach to human-computer in-
teraction (HCI). Users utilise touch-free gestures to engage with
displays or devices outside their immediate reach [35]. There are
many aspects of research and application for mid-air interaction
in recent years; for example, Mathieu et al. [20] suggests mid-air
pointing techniques on ultra-high resolution wall-sized displays;
Arun and Joseph developed a finger-based 3D gesture set for the
menu selection [12]. Contrary to conventional research methods,
Rafael et al. [34] introduce a novel elbow-anchored technique for
mid-air input on smart TVs, focusing specifically on casual postures.
They contend that users’ interactions in relaxed settings are not
accurately depicted in traditional lab environments. This argument
aligns with Dustin et al. [5] who notes that when the user sits
causally, the resulting fixed elbow postures can yield significantly
different results from camera predictions, as forearm gestures may
become tangential to the camera’s viewpoint.

This limitation of arm-related gesture recognition aligns with the
current research on hand gestures, where computer vision-based
methods are still heavily affected by the environment setting and
condition; interference such as lighting and obstacle can still lead
to errors in gesture identification [2]. However, unlike the current
hand gesture research, which has compact wearable sensors or
data glove design that shows promise for accurate, non-intrusive
hand modelling, there is limited research on how hardware or
textile design can support recognising arm gestures. Thus, this
paper aims to address this gap and utilize multiple sensors similar
to the previous hand gesture research [25, 30] to deliver a novel
methodology that facilitates the mid-air arm gesture input.

2.2 Gesture Design
The recognition of arm and hand gestures constitutes a vast field of
research, with its pertinence and application changing considerably
depending on the user context [2]. In these settings, the gestures
used for interaction can vary substantially [8, 20, 34]. One central
aim of this research is to pinpoint the basic arm gestures that
can smoothly interact with the sleeve prototype, thereby enabling
smooth and instinctive communication with the user. This effort is
essential for improving the user experience and guaranteeing the
successful operation of the prototype.

Prior studies focusing on the design of mid-air interactions have
extensively evaluated users’ frequency of arm gestures while inter-
acting with smart displays. The findings from these studies indicate
that medial and lateral rotations of the forearm are among the most
used gestures when movements are annotated in a horizontal di-
rection. On the other hand, for vertical directionality, flexion and
extension at the shoulder or elbow positions are typically invoked.
Interestingly, across a wide array of postures, the flexion and ex-
tension of the elbow are consistently observed, highlighting their
prevalence in user interactions [34]. This outcome is corroborated
by a multitude of studies and applications that are related to mid-
air arm gesture research [6, 7, 17]. Notably, TickTockRay [9] and
Armura [8] provided valuable insights into using extra gestures for
input - wrist pronation and supination. These two inputs can be em-
ployed for decision-making functions, including selecting options

https://doi.org/10.1145/3623509.3633374
https://doi.org/10.1145/3623509.3633374


E-textile Sleeve with Graphene Strain Sensors for Arm Gesture Classification of Mid-Air Interactions TEI ’24, February 11–14, 2024, Cork, Ireland

such as ‘yes’ or ‘no’, grabbing items in a game, or executing a click
action during website browsing. Such decision-making functions
can complement the navigating function (up and down, left and
right) provided by elbow-related movement.

2.3 Enabling a More Diverse Wearable
Interaction

Researchers have explored various methods for embedding sensors
onto forearm sleeves to capture gesture inputs. Parzer et al. [22]
designed the Smart Sleeve, capable of using real-time sleeve surface
and deformation to detect gestures, augmenting interaction with
twirling, Twisting, folding, pushing, and stretching techniques. Ste-
fan and Alexandra [27] developed a forearm gesture sleeve serving
as an extended touchpad for smartwatch input; their results indi-
cate superior performance of touch input on the sleeve compared
to the smartwatch. These instances highlight the feasibility of using
sleeve-based e-textile garments for practical applications, although
they generally concentrate on a specific device and location. Ad-
dressing this gap, Yu et al. [41] proposed a reconfigurable scarf-like
sensor for multipurpose measurement, which, however, appears
less accurate in surface and deformation gesture detection com-
pared to the Smart Sleeve. This might be due to the sensor requiring
slight stretching for optimal readings, resulting in potentially less
clean or responsive results.

Two opportunities emerge from the current sleeve-based wear-
ables. First, the recognition of more diverse gestures: due to most
research focusing on pressure-related gesture inputs requiring ac-
tive user interaction with textiles, this study explores the potential
of e-textile strain sensors detecting natural arm movements. Sec-
ondly, enhancing the inclusiveness of e-textile sensors, which can
be achieved by integrating e-textile with existing products like
smartwatches [27], assembling the e-textile sensors with another
unit such as a power source or signal processing unit [37] or mak-
ing it reconfigurable to be worn across different part of the body
[10]. This research aims to amalgamate previous research oppor-
tunities by designing a detachable hardware sensor board with
an embedded IMU; it also serves as the processing unit when con-
nected to the e-textile sensors. This allows for configuring wearable
devices across different body parts while simultaneously creating a
scenario for mutual assistance between the e-textile strain sensor
and devices equipped with an IMU. This approach is inspired by
Rushil et al.’s [10] research on designing detachable smartwatches.
They successfully re-engineered the smartwatch attachment mech-
anism, enabling different form morphing and enhancing the overall
interaction experience.

2.4 Existing E-textile Strain Sensors and
Applications

Several studies have explored the use of e-textile strain sensors on
arms for two-dimensional joint angle measurement [4, 16]. Their
accuracy is often compromised by complex fabrication processes
and limited connection methods. For strain sensors, no universally
accepted method exists for connecting textiles to fabrics. Some
approaches involve coating the textile with a conductive material
[28], while others attach a pre-cut commercial textile sensor to the
garment using thermal bonding [14].

Other example applications for e-textile strain sensors include
[15] which combines the bonding method with the commercial
silver-plated fabric to explore the relatedness of sensor placement
to the body’s movement under the dancing scenario. Ryu et al. [25]
introduced a wearable device crafted from dry-spun carbon nan-
otube (CNT) fibres grown on a flexible Ecoflex substrate. Stretching
these CNT fibres decreases their conductive pathways, enabling
them to act as sensitive strain sensors. While there isn’t a strict
protocol for choosing from the array of e-textile sensors, several fun-
damental factors have emerged based on previous studies [14, 42]
that warrant consideration:

Sensing Range: This is the relationship between the change
in electrical resistance and the mechanical strain.

Gauge Factor: A ratio quantifying the relative change in elec-
trical resistance due to mechanical strain.

Cyclic Stability: This gauge how the sensor holds up under
repeated strain.

Linearity: This assesses the relationship between changes in
resistance and factors such as bending angle, twisting angle,
and pressure.

Durability: This is measured through UV ageing and washa-
bility tests to evaluate the sensor’s resilience over time and
under different environmental conditions.

With all these selection specifications in mind, previous research
suggests that a silver-plated yarn sensor outperforms other com-
mercial sensors regarding sensitivity and linearity [13]. It can also
be easily bonded to the garment fabric using TPU and a heat press,
an ideal material for the initial testing. Zhou et al. [42] introduced a
graphene composite sensor that can be embedded onto the garment
through film coating. The research shows the sensor has excellent
sensitivity (GF = 498), a wide sensing range from 0% - 293% and
outstanding reliability (5% deviation after 10000 cycles of stretching
under a 5% strain. This graphene sensor’s excellent performance
matched this research requirement for human elbow-relatedmotion
tracking and was therefore chosen for prototyping the sleeve.

3 SLEEVE DESIGN AND FABRICATION
To address the need for a wearable system to facilitate mid-air ges-
tural control, an e-textile sleeve was designed and fabricated. This
section outlines the gestures selected for the sleeve, the circuit de-
sign, and the fabrication process for the wearable system along with
the graphene-based sensors. It then briefly presents the physical
prototype refinements made after a pilot user study along with the
data pre-processing applied to the signals generated by the signals.

3.1 Gesture Selection
To facilitate mid-air gestures, the first step was to identify the
gestures being captured as that informs the engineering of the
wearable system. Six fundamental gestures were selected for in-
teraction needs under a wide range of usage scenarios based on
the background gesture design research presented in section 2.2.
Figure 2 shows the graphical representation of the gestures: (a) and
(b) refer to elbow extension and flexion, which could contribute to
scrolling up and down in the navigating function; (c) and (d) refers
to the lateral and medial rotation that might serve as the left and
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Figure 2: Six fundamental gestures selected: (a) elbow bend-
ing 30 degrees; (b) elbow bending 90 degrees; (c) lateral rota-
tion; (d) medial rotation; (e) pronation; (f) supination.

right movement in navigation; and lastly, (e) and (f) refer to the
above decision-making functionality described by [8, 9].

3.2 Circuit Design
The graphene sensing mechanism is similar to many other e-textile
strain sensors in that a change in resistance in response to me-
chanical deformations such as stretching, bending or pressure is
measured [32, 36]. The notable difference in the graphene sens-
ing mechanism when compared to metalized fabrics is that the
stretching of the fabric pulls apart the conductive graphene net-
work causing an increase in resistance under strain, as opposed to
a decrease in resistance as seen in metalized fabrics.

A potential divider circuit was used to connect the graphene
sensors to an Arduino-compatible microcontroller, a Seeeed Studio
XIAO nRF52840 Sense. The voltage values of the potential divider
were captured at a sampling rate of 100 Hz.

3.3 Fabrication Process
Enokibori and Mase [4] explored using one large e-textile strain
sensor to predict the elbow joint angle. However, one sensor could
only provide limited 2-dimensional arm gesture reorganisation. To
explore using multiple e-textile strain sensors placed on the arm to
sense 3-dimensional gestures, this research thus started by using
the commercial sensor to rapidly test the effectiveness of the sensor
location to the arm gestures. Based on literature, the individual
sensor is constructed using 2 cm for the width [15, 43], and the
length is selected to be 6 cm, which is twice the calculated elbow
radius and can well cover the sensing region.

To quickly evaluate sensor placement, three TPU bonded sensors
made from metalized knit fabric (Shieldex Technik-tex P180B) were
fabricated and placed on the arm sleeve. Three rough locations
were selected: one sensor was placed in the middle of the elbow
to sense the bending gestures, and two other sensors were 1.5 cm
on each side to assist with left and right rotational gestures. The
sensor placement was shown to be effective at capturing varying
signals according to the gesture and so the graphene sensors were
fabricated on an identical sleeve at the same location.

Figure 3: Fabrication process: (a-b) Using textile tape and TPU
to framewhere graphenewill be added; (c) Sewing elasticwire
to the top and bottom the sensor location; (d-e)Attaching a
snap onto conductive textile for a more stable signal connec-
tion; (f) The sleeve turned inside-out to show the conductive
elastic isolated in a tubular yarn.

Figure 4: Applying GNPS onto the sleev: (a) Starting from
setting up the sleeve on a flat desk; (b-c) and using a film
applicator to distribute the GNPs evenly; (d) Then, another
piece of laser-cut TPU film was used to cover the top of the
GNPs and apply an even heat press from the top; (e) Wait
until the unit cools down to room temperate and remove the
wax paper from the TPU.

The exact sensor locations were marked using textile tape and a
TPU frame. A commercial silver fibre elastic wire was hand sewn to
form a stable connection between the top and bottom of the sensor
and metallic snaps press fit over conductive woven textile (Shieldex
Kassel) bonded onto the sleeve created the connections between
the sensors and the external processing board. Figure 3 shows each
step of the fabrication process before the graphene is applied.

The graphene nanoplatelets (GNPs) used for high-fidelity proto-
typing are manufactured based on past research work by Zhou et al.
[43]. Figure 4 shows the process of integrating the GNPs onto the
sleeve. The GNPs were first evenly applied into the region marked
by TPU film using a film applicator, and an extra layer of the TPU
was then bonded to the sleeves and GNPs through heat pressing,
forming an encapsulation for the sensor.

All of the non-textile electronic components were integrated
into a small board housed within a 3D-printed case attached via
snaps. Figure 5 shows the finished sleeve.
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Figure 5: Finished sleeve: (a) photo of the sleeve; (b) top and bottom view of the circuit board and snap sockets; (c) photo of
the sleeve with circuit board attached; (d) render of the casing; (e) Final prototype appearance with sensor number label, 1-3
represent the graphene sensors, 4 represent the IMU and processing unit location

Figure 6: Prototype refinement. (a)The initial sensor dimen-
sion is 2 cm x 6 cm. (b)The refined sensor dimension is 1.5 cm
x 6 cm and has a curved arrangement to better fit the elbow
movement.

3.4 Sensor Refinement
For a pilot study, two right-handed participants were recruited
to perform the six identified gestures. The sensors’ preliminary
performance was assessed by observing the deformation of the
sensor visually and comparing such deformation to signal variation
during each gesture. A sensor design defect became apparent after
observing the user performing medial and lateral arm rotations. As
illustrated in Figure 6, the initial sensor dimension and arrange-
ment led to folding of the two side sensors when the arm was bent,
which could generate noise in the signal and potentially reduce the
sensor’s durability. The prototype was initially designed according
to dimensions from previous research [15], which focused on sens-
ing body movement rather than arm movement, thus leading to a
relatively larger initial sensor dimension for this study. This insight
prompted a redesign of the sensor dimension and arrangement.
The sensor width was reduced from 2 cm to 1.5 cm and placed in a
curved arrangement.

3.5 Data Pre-Processing
Using the data collected from the two participants of the pilot user
study, a signal processing tool chain was established to pre-process
the data generated by the three strain sensors and IMU. First the
graphene sensor signals were converted from the sample voltage to
a resistance value and then normalised against the resistance value
of the sensor under no strain.

Then all nine sensor signals (the IMU and strain sensors) were
low pass filtered to remove high-frequency noise that could origi-
nate from the sensor, processing unit, or the user’s movement.

Spectral analysis of the captured signals showed that noise was
introduced around 2 Hz. A first order Butterworth filter with a
cutoff frequency of 2.5 Hz was chosen. It was found to strike an
effective balance between noise reduction and preserving crucial
signal information, as shown in Figure 7.

4 EVALUATION OF ARM GESTURE
RECOGNITION

In order to evaluate the performance of the arm sleeve a gesture
classification study was designed to examine the sleeve system’s
ability to recognise the six gestures shown in Figure 2. Users were
invited to wear the sleeve and repeatedly perform the different
gestures as shown in a video demonstration. The core questions
being asked by this study are:

• Does the sensing system produce sufficiently differentiated
signals for each gesture that they could be algorithmically
classified?

• What are the classification performance differences between
the strain sensors, IMU, and combination of both sensor
types?
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Figure 7: Sensor signals of two arm bending activities before (a - b) and after (c - d) applying low-pass filter.

4.1 Procedure
Before the commencement of the study, participants gave their
informed consent1 for the use of their data in the gesture classifi-
cation analysis. Ten right-handed participants took part. After a
short briefing and demonstration, the participant put on the sleeve
prototype and performed the six gestures following video guidance
displayed on the monitor. They repeated each gesture ten times; the
time duration for each gesture being 4.5 seconds with a five-second
rest interval to facilitate data segmentation.

The collected data was segmented and labelled with the corre-
sponding gesture. The data set consisted of 100 samples for each
gesture and 600 labelled samples in total. The final data set was
stratified and randomly split into a training data-set (80%) and a
test data set (20%). Each sample contained nine channels: three
from the graphene sensors, each representing one sensor’s change
in resistance; and six from the IMU, representing the linear and
angular acceleration measurements.

A deep learning model integrating both a convolution neural
network (CNN) and LSTM (Long Short - Term Memory) was se-
lected for the classification. The model’s architecture was originally
developed for classifying time-series data for hand gesture recogni-
tion [3]. The CNN layers are used to automatically and adaptively
learn spatial hierarchies of features from the time series data, and
the LSTM layers are used to learn temporal dependencies from the
features obtained by the CNN. The architecture initially includes a
TimeDistributed wrapper that allows for CNN application at each

1University ethics approval for this study was granted by [redacted for review]

time step of the input sequences. The CNN component comprises
two Conv1D layers, each accompanied by a BatchNormalization
layer and a MaxPooling1D layer. Activation functions, ’tanh’ and
’relu’, are utilized for enhanced non-linearity after certain layers.
A Dropout layer, set at a rate of approximately 21%, is employed
to mitigate overfitting. The CNN output is flattened to feed into
two LSTM layers designed to capture temporal dependencies. Each
LSTM layer is complemented with a Dropout layer for overfitting
prevention. Subsequent to the LSTM layers, a fully connected (FC)
layer with ’tanh’ activation is employed. Model training is per-
formed using the Adam optimizer with a learning rate of 1e-4, and
a categorical cross-entropy loss function. Model performance is
monitored based on validation accuracy throughout training. The
model is trained for 200 - 600 epochs (depending on the convergence
of training accuracy), with a batch size of 64.

4.1.1 Extended Single User Dataset. Previous studies discovered
classification results tested within the same user have a consistent
10% increase in accuracy than across users [41]. To see if this was
repeated with the arm sleeve, a small extension to this study was
conducted. The same procedure was used as above, but with only
a single participant. They were asked to perform each gesture 20
times with the data fed into the same classification algorithm under
the same settings as above.
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4.2 Results
To evaluate if the sensors were generating recognisably different
signals for each gesture, the signals were plotted and visually in-
spected. Figures 8 and 9 are only four of the gestures, but all gestures
generated visual patterns that were highly correlated with the ges-
ture and repeated across users. Figures 8 and 9 demonstrate the
robust directional awareness of Sensor 1 and Sensor 3, which are
positioned on the sides of the elbow. When the user executes a re-
versed gesture, the signal’s peak correspondingly reverses, with the
degree of reversal relating to the magnitude of the movement. No-
tably, medial and lateral rotations show more pronounced reversals
in resistance change compared to pronation and supination.

Five-fold cross validation was used to evaluate the performance
of the machine learning model. When using data from graphene
sensors only, the system can achieve an accuracy of 90.7% (SD:
0.028). When using IMU data alone the system can achieve a higher
accuracy of 94.1% (SD: 0.013). However, the highest accuracy is
achieved with when using both sensor types are included the model
with an accuracy of 96.1% (SD: 0.0085).

The confusion matrices for each model are shown in Figure 10.
The graphene sensors excel at the bending gestures, which the IMU
is relatively weaker at correctly classifying. The graphene sensors
struggled more at correctly classifying the lateral and pronation
gestures, which the IMU could classify without any error. Both
sensor types misclassified the medial gesture the most.

When combining both sensor types the accuracy of the deeper
bend, lateral, supination, and pronation gestures all were either
equal or improved upon the individual performance of a single
gesture type. The more shallow bend gesture was best classified
with the graphene sensors only and the medial gesture performed
best with the IMU only.

4.2.1 Extended Single User Dataset. The classification results shows
the graphene sensors’ accuracy of a single user with more sample
gestures increased greatly over the model of 10 users with half
the number of gestures per user. It achieved an 98.4% accuracy
(SD = 0.022). The IMU results remain at an accuracy of 94.2% (SD:
0.035). When using both sensor’s data the system can achieve 97.9%
accuracy (SD: 0.026).

The confusion matrix result are shown in Figure 11. There was
some consistency with the larger, mixed user data set. The graphene
sensors alone were the best at classifying the more shallow bending
and were worse at distinguishing lateral and pronation gestures.
Both individual sensors were relatively poor at classifying medial
gestures. When combined, only the more shallow bending was
misclassified.

5 DISCUSSION
Through simple inspection of the data and also more rigorous
analysis using machine learning, the wearable sensing system can
clearly produce sufficiently differentiated signals for each gesture
whether considering only a single sensor type on the wearable or
combining the output of both the three graphene strain sensors and
the IMU. However, a more nuanced discussion is needed to examine
the performance of each sensor type and their combination.

The graphene strain sensors showed excellent performance in
predicting bending activities achieving high or perfect accuracy

for bending 30◦ and 90◦. It has relatively lower accuracy regarding
wrist movement (pronation and supination). The IMU showed a
reversed performance result, with perfect accuracy in rotational
activities ( lateral rotation and pronation), and a lower accuracy
in predicting the level of bending. When merged, the accuracy is
more balanced in predicting across all gestures as well as increased
overall accuracy, with the exception of the 30◦ bend which performs
equal or worse with combined sensors than with either individual
type.

There are two potential factors that may be influencing these
results. The first one is that each user’s gesture amplitude differs,
making it challenging to achieve consistency during the data col-
lection process. The second, and more crucial factor, is that the size
of the user’s arm and the subsequent fit of the sleeve significantly
influences the scale of the signal shape, since the user who pro-
vided the training data for the model also supplied the test data.
When looking at the signals produced by users with very different
arm circumferences, the signals have similar shapes but different
scales as the sensors are under different initial state (the user with
a larger arm will pre-stretch the sensor), which could potentially
lead to less accurate classification result. The graphene sensors are
not linear across their entire working range [43], so shifting the
sensing range used could greatly impact the generated signal. The
extended user dataset supports the theory that arm size variance
will affect classification accuracy.

These results highlight some successful features introduced by
this design. The first is through the design of sensor placement,
the graphene strain sensors can be harnessed to capture more nu-
anced three dimensionalmovements beyond the large-scale rotation
generated by body joints. Secondly, mixed sensing modalities can
complement each other to provide more accurate classification of
richer gestures. Further research would be needed to verify if the
high-sensitivity of the graphene sensors is necessary to capture
these movements or if sensors constructed from commercially avail-
able conductive textiles could perform similarly, as well as whether
the advantage of mixed sensing modalities can be enhanced.

The study here is limited to a fix set of gestures performed in a lab
setting. Its performance in a more ecologically valid context needs
to be addressed in future work to more fully assess its potential.

5.1 Fabrication Durability
The sleeve prototype with strain sensor was tested rigorously
throughout the two studies above. The testing period is approxi-
mately three weeks, involving over 1200 stretching and rotation
practices, yet no significant change in sensor signal occurred. The
interconnection within the sleeve prototype remained stable af-
ter all the tests. Such a result demonstrates the system’s excellent
durability.

5.2 Wearing Experience
All of the connections are fully embedded inside the sleeve, and the
electronic hardware is placed on the outside of the sleeve (similar
to the position of wearing a smartwatch), it was observed in the
experiment that the users’ freedom of motion was not affected.
Users generally commented that the comfort of wearing it felt the
same as wearing a sports sleeve. Although more detailed tests, such
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Figure 8: Time series of sensor data for pronation and supination.

Figure 9: Time series of sensor data for medial and lateral rotation.

Figure 10: Confusion matrices of the classification of six guestures performed by 10 users: (a) graphene textile sensors only, (b)
IMU data only, (c) combination of both sensor types.

as wear time, were not conducted, preliminary experimental results
have proven that the design can offer a comfortable wearing experi-
ence. This is significant as the wearability of prototype systems can
hinder data capture whether due to wearer discomfort or breakage
of the device when donning and doffing [31]. There were no issues
encountered in our user study, demonstrating the success of our
sensor integration.

5.3 System Design
This paper assesses the potential of integrating data from an IMU
with graphene strain sensors, yielding a enhancement in gesture
recognition capabilities. Nonetheless, the present system lacks feed-
back mechanisms for the user. In view of future product-level de-
velopment, further refinements could include the incorporation of
actuators such as a haptic motor and a speaker to enrich the user
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Figure 11: Confusion matrices of single participant classification result performing six gestures: (a) graphene textile sensors
only, (b) IMU data only, (c) combination of both sensor types.

interaction journey, making it more tangible and interactive. For
example, OmniFiber, an fibre based actuator [11] when combined
with the printed graphene strain sensor fabrication presented here
could be one method for integrating haptic feedback with gesture
recognition.

5.4 Customizing Hardware and
Interconnections

Existing research posits that e-textile sensors generally exhibit
superior performance when they conform to the body and are
slightly stretched [15, 22, 41, 42]. Consequently, unlike traditional
hardware products that can adopt a one-size-fits-all approach, e-
textile hardware should follow the paradigm of common apparel
products, offering either different sizes to accommodate varying
body dimensions or customisation options for individual users. The
current prototype lacks such features, but future research should
explore a broader range of fitting garment options for different
arm sizes and investigate strategies to modularise the components,
allowing users to select the level of configuration that best suits
their needs.

6 CONCLUSION
This paper presented an e-textile sleeve designed for arm gesture
recognition of mid-air interactions, with graphene strain sensors
seamlessly integrated into a commercial sports sleeve. The design
also incorporates a detachable processing unit, enabling the e-textile
sensor to deliver at optimal performance while allowing for recon-
figuration of the hardware to other body parts, accommodating
a broader range of user scenarios. The sensing system is able to
clearly classify between six gestures, highlighting the potential of
mixing multiple strain sensors and IMUs into e-textile garments.
This research aims to contribute to future interactive systems in
which the human body is a natural extension of the system. In such
a system, one’s forearm and the related gestures can serve as tools
to interact with the surrounding devices and environment, free
from the constraints of specific spaces or fields of view.
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