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ABSTRACT
Information-Centric Networking (ICN), with its data-oriented op-
eration and generally more powerful forwarding layer, provides an
attractive platform for distributed computing. This paper provides
a systematic overview and categorization of different distributed
computing approaches in ICN encompassing fundamental design
principles, frameworks and orchestration, protocols, enablers, and
applications. We discuss current pain points in legacy distributed
computing, attractive ICN features, and how different systems use
them. This paper also provides a discussion of potential future work
for distributed computing in ICN.

CCS CONCEPTS
• Networks→ Network protocols; Network architectures; •
Computingmethodologies→Distributed computingmethod-
ologies.

KEYWORDS
ICN, Distributed Computing

1 INTRODUCTION
Distributed computing – a model where distributed components
for computing and storage communicate over a network to form
a larger system – is the basis for all relevant applications on the
Internet. Based on well-established principles [47], different mech-
anisms, implementations, and applications have been developed
that form the foundation of the modern Web.

The Internet with its stateless forwarding service and end-to-end
communication model [70] promotes certain types of communica-
tion for distributed computing. For example, IP addresses and/or
DNS names provide different means for identifying computing
components. Reliable transport protocols (e.g., TCP, QUIC) pro-
mote interconnecting modules. Communication patterns such as
REST [19] and protocol implementations such as HTTP enable
certain types of distributed computing interactions, and security
frameworks such as TLS and the web PKI [55] constrain the use of
public-key cryptography for different security functions.

With currently available Internet technologies, we can observe a
relatively succinct layering of networking and distributed comput-
ing, i.e., distributed computing is typically implemented in overlays
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with Content Distribution Networks (CDNs) being prominent and
ubiquitous example. Recently, there has been growing interest in
revisiting this relationship, for example by the IRTF Computing in
the Network Research Group (COINRG)1 – motivated by advances
in network and server platforms, e.g., through the development of
programmable data plane platforms [66] and the development of
different types of distributed computing frameworks, e.g., stream
processing [35] and microservice frameworks. [15] This is also mo-
tivated by the recent development of new distributed computing
applications such as distributed machine learning (ML) [105] and
emerging new applications such as Metaverse suggest new levels of
scale in terms of data volume for distributed computing and the per-
vasiveness of distributed computing tasks in such systems. There
are two research questions that stem from these developments:

1) How can we build distributed computing systems in the net-
work that can leverage the on-path location of compute functions,
e.g., optimally aligning stream processing topologies with net-
worked computing platform topologies?

2) How can the network support distributed computing in general,
so that the design and operation of such systems can be simplified,
but also so that different optimizations can be achieved to improve
performance and robustness?

ICN (we focus mainly on CCNx/NDN-based ICN in this paper)
with its data-oriented operation and generally more powerful for-
warding layer provides an attractive platform for distributed com-
puting. Several different distributed computing protocols and sys-
tems have been proposed for ICN, with different feature sets and
different technical approaches, including Remote Method Invoca-
tion (RMI) as an interaction model as well as more comprehensive
distributed computing platforms. RMI systems such as RICE [39]
leverage the fundamental named-based forwarding service in ICN
systems [108] and map requests to Interest messages and method
names to content names (although the actual implementation is
more intricate as we will explain below). Method parameters and
results are also represented as content objects, which provides an
elegant platform for such interactions.

This SoK paper provides a comprehensive analysis and under-
standing of distributed computing systems in ICN, based on a survey
of more than 50 papers. Naturally, these different efforts cannot
be directly compared due to their difference in nature. We catego-
rized different ICN distributed computing systems, and individual
approaches and highlighted their specific properties. The scope
of this study is technologies for ICN-enabled distributed com-
puting. Specifically, we divide the different approaches into four
categories, as shown in figure 1: enablers, protocols, orchestration,
and applications. The contributions of this study are as follows:
1https://irtf.org/coinrg

1

ar
X

iv
:2

30
9.

08
97

3v
1 

 [
cs

.N
I]

  1
6 

Se
p 

20
23

https://orcid.org/0000-0001-5970-3550
https://orcid.org/0000-0003-0003-8626
https://orcid.org/0000-0002-9021-9916
https://orcid.org/0000-0002-9021-9916
https://orcid.org/0000-0003-4383-7225
https://orcid.org/0000-0003-4383-7225
https://orcid.org/0000-0003-4220-3650
https://orcid.org/0000-0001-6026-1083
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://irtf.org/coinrg


ACM ICN ’23, October 9–10, 2023, Reykjavik, Iceland Wei Geng, Yulong Zhang, Dirk Kutscher, Abhishek Kumar, Sasu Tarkoma, and Pan Hui

Figure 1: A category of distributed computing systems in
ICN.

(1) A discussion of the benefits and challenges of distributed
computing in ICN.

(2) A categorization of different proposed distributed computing
systems in ICN.

(3) A discussion of lessons learned from these systems.
(4) A discussion of existing challenges and promising directions

for future work.
The rest of this paper is structured as follows section 2 describes rele-
vant general distributed computing concepts and the non-ICN state-
of-the-art for reference; section 3 presents different technologies
that enable distributed computing in ICN; section 4 analyzes various
protocols dedicated to in-network computing; section 5 summa-
rizes scheduling and computing approaches; section 6 presents
ICN-enabled distributed computing applications; and section 7 dis-
cusses lessons learned and suggests future directions for distributed
computing.

2 DISTRIBUTED COMPUTING IN ICN
Distributed computing has different facets, for example, client-
server computing, web services, stream processing, distributed
consensus systems, and Turing-complete distributed computing
platforms. There are also different perspectives on how distributed
computing should be implemented on servers and network plat-
forms, a research area that we refer to as Computing in the Network.
Active Networking [99], one of the earliest works on computing
in the network, intended to inject programmability and customiza-
tion of data packets in the network itself; however, security and
complexity considerations proved to be major limiting factors, pre-
venting its wider deployment [43]. Dataplane programmability [6]
refers to the ability to program behavior, including application
logic, on network elements and SmartNICs, thus enabling some
form in-network computing. Alternatively, different types of server
platforms and light-weight execution environments are enabling
other forms of distributing computation in networked systems,
such as architectural patterns, such as edge computing.

In this study, we focus on distributed computing and on how
information-centricity in the network and application layer can
support the development and operation of such systems. The rich

set of distributed computing systems in ICN suggests that ICN
provides some benefits for distributed computing that could offer
advantages such as better performance, security, and productivity
when building corresponding applications. We discuss issues in
legacy distributed computing in section 2.1, ICN features to address
some of these issues in section 2.2, and performance metrics that are
frequently used by different ICN distributed computing approaches
in section 2.3.

2.1 Issues in Legacy Distributed Computing
Although there are many distributed computing applications, it is
also worth noting that there are many limitations and performance
issues [101]. Factors such as network latency, data skew, checkpoint
overhead, back pressure, garbage collection overhead, and issues
related to performance, memory management, and serialization and
deserialization overhead can all influence the efficiency. Various
optimization techniques can be implemented to alleviate these
issues, including memory adjustment, refining the checkpointing
process, and adopting efficient data structures and algorithms.

Some performance problems and complexity issues stem from
the overlay nature of current systems and their way of achieving
the above-mentioned mechanisms with temporary solutions based
on TCP/IP and associated protocols such as DNS. For example,
Network Service Mesh has been characterized as architecturally
complex [71] because of the so-called sidecar approaches and their
implementation problems.

In systems that are layered on top of HTTP or TCP (or QUIC),
compute nodes typically cannot assess the network performance
directly – only indirectly through observed throughput and buffer
under-runs. Information-centric data-flow systems, such as Ice-
Flow [42], claim to provide better visibility and thus better joint
optimization potential by more direct access to data-oriented com-
munication resources. Then, some coordination tasks that are based
on exchanging updates of shared application state can be elegantly
mapped to named data publication in a hierarchical namespace, as
the different dataset synchronization (Sync) protocols (discussed in
section 4.3) in NDN demonstrated. [68]

2.2 Information-Centric Distributed Computing
ICN generally attempts to provide a more useful service to data-
oriented applications but can also be leveraged to support dis-
tributed computing specifically.

Names: Accessing named data in the network as a native ser-
vice can remove the need for mapping application logic identi-
fiers such as function names to network and process identifiers
(IP addresses, port numbers), thus simplifying implementation and
run-time operation, as demonstrated by systems such as Named
Function Networking (NFN) [103], RICE [39], and IceFlow [42]. It is
worth noting that, although ICN does not generally require an ex-
plicit mapping of names to other domain identifiers, such networks
require suitable forwarding state, e.g., obtained from configuration,
dynamic learning, or routing.

Data-orientedness: ICN’s notion of immutable datawith strong
name-content binding through cryptographic signatures and hashes
seems to be conducive to many distributed computing scenarios, as
both static data objects and dynamic computation results in those
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systems such as input parameters and result values can be directly
sent as ICN data objects. NFN has first demonstrated this.

Securing distributed computing could be supported better in
so far as ICN does not require additional dependencies on public-
key or pipe securing infrastructure, as keys and certificates are
simply named data objects and centralized trust anchors are not
necessarily needed [2, 21]. Larger data collections can be aggregated
and re-purposed by manifests (FLIC, [102]), enabling “small” and
“big data” computing in one single framework that is congruent to
the packet-level communication in a network. IceFlow uses such an
aggregation approach to share identical stream processing results
objects in multiple consumer contexts.

Data-orientedness eliminates the need for connections; even re-
liable communication in ICN is completely data-oriented. If higher-
layer (distributed computing) transactions can be mapped to the
network layer data retrieval, then server complexity can be reduced
(no need to maintain several connections), and consumers get direct
visibility into network performance. This can enable performance
optimizations, such as linking network and computing flow control
loops (one realization of joint optimization), as showed by IceFlow.

Location independence and data sharing: Embracing the
principle of accessing named and authenticated data also enables
location independence, i.e., corresponding data can be obtained
from any place in the network, such as replication points (repos)
and caches. This fundamentally enables better multi-source/path
capabilities as well as data sharing, i.e., multiple data retrieval op-
erations for one named data object by different consumers can
potentially be completed by a cache, repo, or peer in the network.

Stateful Forwarding: ICN provides stateful, symmetric for-
warding, which enables general performance optimizations such
as in-network retransmissions, more control over multipath for-
warding, and load balancing. This concept could be extended to
support distributed computing specifically, for example, if load bal-
ancing is performed based on RTT observations for idempotent
remote-method invocations.

More Networking, less Management: The combination of
data-oriented, connection-less operation, and stateful (more pow-
erful) forwarding in ICN shifts functionality from management
and orchestration layers (back) to the network layer, which can
enable complexity reduction, which can be especially pronounced
in distributed computing. For example, legacy stream processing
and service mesh platforms typically must manage connectivity
between deployment units (pods in Kubernetes [9]). In Apache
Flink [8], a central orchestrator manages the connections between
task managers (node agents). Systems such as IceFlow have demon-
strated a more self-organized and decentralized stream-processing
approach, and the presented principles are applicable to other forms
of distributed computing.

Summary: In summary, we can observe that ICN’s general
approach of having the network providing a more natural (data
retrieval) platform for applications benefits distributed computing
in similar ways as it benefits other applications. One particularly
promising approach is the elimination of layer barriers, which
enables certain optimizations. In addition to NFN, there are other
approaches that jointly optimize the utilization of network and com-
puting resources to provide network service mesh-like platforms,
such as edge intelligence using federated learning [85], advanced

CDNs where nodes can dynamically adapt to user demands accord-
ing to content popularity [25, 72], and general computing systems
[40, 46, 64].

2.3 System Metrics

Table 1: Metrics Overview

Metrics Related Works Count

End-to-end Latency
R2 [84], NFaaS [41], [95],
[37], ICedge [64], NFN [93],
DICer [3]

7

Fault Tolerance [88], ICedge [64], CFN [40] 3

Transmission Latency C3PO [106],
ICN with edge for 5G [104] 2

Computing Latency Serving at the Edge [17], CFN [40] 2

System Overhead Serving at the Edge [17],
ICedge [64] 2

Load Balance NFaaS [41], C3PO [106] 2
Latency Evolution NFaaS [41] 1
Resource Utilization DICer [3] 1
Satisfication Rate NFaaS [41] 1
Compute Result Reuse [95] 1
Drop Rate C3PO [106] 1

Information-centric distributed computing systems can provide
a range of optimizations, depending on the type of applications they
support and the environment in which they are intended. Systems
built on top of edge environments, such as ICedge [64], focus on low
latency for distributed computing by leveraging knowledge about
spatial proximity in edge computing scenarios, addressing applica-
tions such as IoT, mobile computing, Extended Reality (XR), and
vehicular distributed computing that can benefit from offloading
computation from cloud-based servers to the edge. A brief overview
of these metrics is presented in Table 1. Latency is a key metric
in information-centric distributed-computing systems. The end-to-
end delay is mainly composed of two parts: 1) the time consumed
by data packet transmission in the network, and 2) the execution
time of computing tasks. In addition to studies dedicated to net-
work transmission time [104, 106] or computation completion time
[17, 40], most studies measure the total latency (end-to-end delay)
[3, 37, 41, 64, 84, 93, 95] in their evaluations. It is worth noting that
only a few works [32, 93, 110] have evaluated the network and
computation latency respectively. To better understand systems
and their optimization potential, as well as for run-time optimiza-
tion, it is important to analyze network and computation latency
separately. Fine-granular latency metrics can enable more accurate
resource control and help us understand which resource optimiza-
tion and mechanism (caching, load balancing, etc.) contributes to
performance improvements. Section 3.2 discusses this from the
perspective of programming models.

It is also worth noting that the distributed system should not
only limit the optimization goal of the system to performance (such
as latency, overhead, and balance), but also pay more attention to
other metrics, especially the native security and robustness pro-
vided by ICN. Although latency accounts for a large proportion
of the objective, other metrics are also being explored. For exam-
ple, [17, 64] considered overhead in terms of the number of sent
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packets (Interest and responses) and forwarder state size as impor-
tant indicators for evaluating their systems. Load balancing is a
key technology for improving the performance; NFaaS [41] and
C3PO [106] are concerned with compute load balancing. Moreover,
there are other perspectives, including fault tolerance [40, 64, 88],
satisfaction rate [41], delay evolution [41], drop rate [106], times of
computation result reuse [95], and resource utilization [3].

3 ENABLERS
ICN distributed computing systems are using several approaches
and technologies. In this section, we discuss naming conventions,
computing and performance, security and trust, and availability
and tolerance.

3.1 Naming Conventions

Figure 2: Three Examples of Naming Conventions, including
lambda in NFN [93] hierarchical in Serving at the Edge [17],
flat in ICedge [64].

Naming a computing Interest or process is a key concept in NFN
or general distributed computing systems over ICN. As shown in
figure 2, a straightforward method is to encode a lambda function
into the original data name [93]. However, this simple naming con-
vention cannot cater to complex computing process combinations
and their input parameters. Many systems have proposed their
own naming conventions to support complex or durable computing
Interests. Many distributed systems name their object and computa-
tions in a hierarchical way for easier service discovery and reuse
of computation results. For example, [17] proposes constructing
names by concatenating service identifier, session identifier, and
operating information. This convention is suitable for service In-
terest forwarding because it decouples services from server nodes.
ICedge [64] uses namespaces to perform service discovery. This
can facilitate service mesh implementation and a seamless user
onboarding experience. More details are available in these surveys
on naming conventions: [90, 98].

3.2 Programming Models
Functional programming abstracts computation as the process of
mathematical function evaluation. The idea that functions are first-
class citizens corresponds well with ICN’s data-oriented architec-
ture, in which data is the first-class citizen. Therefore, computation
tasks are offloaded in a modular and declarative manner. Lambda
is a function that can be encoded into ICN names [93, 103]. Al-
though functional programming provides a powerful computing
abstraction, other issues exist, such as simplifying concurrency

management. Distributed computing systems face a similar chal-
lenge: How can multiple nodes be scheduled to work on the same
task at the same time collaboratively? The actor model andmessage-
oriented communication, such as in SmallTalk [27] and Erlang [4],
try to structure systems and their communication processes to sup-
port this. In ICN, IceFlow [46] uses the actor model and dataflow
concepts for parallel processing.

In the actormodel, independent computing entities communicate
with one another through messages. Actors own states and behav-
iors and can create other actors. This model enables high degrees
of concurrency, scalability, and fault tolerance. Dataflow represents
the task as a directed graph where nodes and edges represent com-
putations and data flows, respectively. At the logical layer, dataflow
systems typically provide multi-destination communication, as the
results can be consumed by many downstream actors. This matches
well with ICN’s data-oriented operation and in-network replication
and can be further supported by ICN caching. On the other hand,
ICN’s pull-based communication is not conducive to fundamen-
tally push-based dataflow communication. IceFlow [46] addresses
this by employing Sync approaches based on periodic pulling. We
suggest that some push-based communication mechanisms can be
adopted by dataflow-based distributed computing systems, which
we discuss further in section 4.2.

Computation re-use is important for improving distributed com-
puting systems to reduce computing redundancy. [64] defines a set
of compute-aware naming conventions that cluster the computation
task Interests at compute nodes: Subsequent identical computation
requests can be forwarded to the specific compute nodes where
the results already exist. [95] also aggregates identical service re-
quests and evaluates the number of result reuse. In general, the
ICN network layer can provide general caching, but cannot assist
with computation re-use, which requires some computing system
knowledge. Current ICN systems generally lack the ability to assess
the computation re-use potential, which calls for the development
of naming conventions for expressing this potential explicitly, as
formulated by RICE [39].

3.3 Security and Trust
Security and trust are important enablers of distributed computing
systems, especially in multiple tenant environments. Inherited from
ICN, data-oriented security in distributed computing offers precise
access control, confidentiality, and integrity protection at the data
level by binding names and contents with digital signatures. This en-
ables secure data sharing and resilience to system changes, thereby
enhancing the overall security and reliability of distributed com-
puting systems. Building on this, some works start from metadata.
[50] proposes the use of signatures and hash codes to guarantee
the security of the results from a functional chaining system. [61]
adopts an access control list (ACL) structure to list all permited
client identities. Through content production chains where results
are produced out of results, a named object will be modified on the
content load part but ACL. That means ACL keeps unchangeble to
remark permited identities. Some studies have started at the proto-
col level. For example, RICE [39] designed a two-stage handshake
protocol to provide consumer authentication and authorization.
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In general, if the results of remote execution tasks are recalcu-
lated locally to verify credibility, this violates the original intention
of sending the request. [62] argues that the validation of data is
about verifying authenticity, while the resolution result is about cor-
rectness. This decouples authenticity from correctness, assuming
that all participants are honest and that the results should be cor-
rect. This concept achieves the first verification mechanism results
without recomputing the task. A decrease in the cost of verification
will promote the use of distributed computing systems.

3.4 Availability and Tolerance
A distributed computing system usually comprises heterogeneous
resources, such as different architectures (ARM, X86, etc.) and func-
tions (routers, servers, etc.). In addition, edge computing environ-
ments are usually physically fragile and unreliable, for example
considering edge network mobility, battery exhaustion, and link
failure. These factors make the availability of distributed comput-
ing systems, for example in edge networks, a key issue. Several
studies have focused on this issue. [88] provides a straightforward
solution to interact with the Process Control Block (PCB) of the
request computing process to achieve fault detection, task cance-
lation, task stopping, and task resuming. However, this solution
only tackles state detection and modification and does not provide
architecture-level support.

To resolve this, CFN [40] has been designed to tolerate comput-
ing node failure and the corresponding loss of Interest response. The
framework can either choose to recompute the request upon failure
detection in a proactive manner or defer the retry until the result
is eventually required. The latter strategy is similar to function
resolution in functional programming languages. This approach in-
creases the complexity and the overhead of the system. Mastorakis
et al.[64] claimed that avoiding a single point of failure requires a
backup mechanism, and this method increases the synchronization
overhead. They moved the fault tolerance function from the overlay
system to the underlay network, which can implement forwarding-
based recovery to avoid node failure. Our analysis indicates that
fault tolerance should consider not only the task level but also both
the node and network levels. Node-level solutions, such as those in
CFN [40], follow the idea of traditional distributed systems. Because
CFN is built on top of ICN, a flexible forwarding plane is a reliable
yet simple solution to achieve this goal.

4 PROTOCOLS
This section describes the protocols for communication between
distributed processes in ICN. Generally, these protocols enable ap-
plications to leverage computing and communication resources
distributed in the network via higher-level APIs. We also consider
the role of metadata and data structure in ICN protocols for dis-
tributed content delivery.

4.1 Remote Method Invocation
RMI is enabling client-server and peer-to-peer distributed com-
puting scenarios, typically with the goal to provide a transparent
funcation invocation service, where the invoking application does
not have to be aware of the distributed nature of the system. In
this section, we introduce several ICN RMI protocols. One demo by

Yamamoto et al. [110] designed a protocol capable of performing
the same function on multiple IoT devices such as finding objects
on multiple smart cameras. Similarly, DNMP [75] defines a Pub/Sub
protocol to send measurement functions to multiple devices for
execution and to retrieve execution results, based on a series of
libraries facilitating distributed measurement in NDN. In Named
Service Calls (NSC) [65] (figure 3-NSC), a client will publish its RMI
interest as data and subscribe to the corresponding result name. An
NDN Sync protocol, syncps, was adopted to update all servers with
information about newly published RMI Interests. Subsequently, all
subscribed servers execute the function and publish the result to the
name to which the client has subscribed. Finally, the client retrieves
the result. Unlike DNMP, RICE [39], as shown in figure 3-RICE,
NSC regards RMI requests as Interests rather than data. A four-way
handshake protocol is used to establish an interactive session-like
connection, and the paired clients and servers perform subsequent
RMIs. RICE inserts a second, reverse, Interest-data interaction (for
parameter transfer) between the first interaction (for authentication
and RMI confirmation). In contrast to RICE, NSC [65], as shown
in figure 3-NSC, adopts NDN’s native security features to authen-
ticate the client and server to provide a drop-in framework for
many scenarios. NSC and RICE have similar parameter input and
result retrieval processes. They both request parameters from the
server and retrieve results using a thunk or result location after
an estimated execution time. As shown by the arrow directions in
figure 3, NSC has bidirectional communication between the client
and server, whereas RICE has unidirectional communication from
the client to the server. This means that NSC requires the client to
own a routable name, whereas RICE does not. RICE maintains the
anonymity of users through pull-based operations. From the per-
spective of parameter input (orange color parts), RICE inserts the
parameter exchange period in the first RMI call which needs to ex-
tend the PIT expiration time. The extra modifications to forwarders
may cause additional system complexity. NSC does not have this
problem because it uses a separate Interest-data interaction for
parameter transmission.

RICE further highlights the inadequacy of the basic Interest/data
exchange model of CCNx/NDN-style ICN, specifically in the con-
text of RESTful communication that adheres to the principles of
the REST architectural style. This inadequacy is particularly pro-
nounced in scenarios involving the transmission of resource repre-
sentations or request parameters from clients to servers. RESTful-
ICN [44] and [29] envision an ICN-based protocol framework that
can leverage key properties of the REST architectural pattern, such
as security, consumer anonymity, and session continuation. We see
the potential of RESTful for ICN in establishing an ICN-native in-
frastructure for applications, encompassing an Information-Centric
web and RMI rather than merely charting existing HTTP mecha-
nisms onto ICN.

4.2 Event-Driven Communication
Event-driven protocols facilitate the exchange of information be-
tween different endpoints based on asynchronous events (that could
trigger computation), instead of continuous or periodic communi-
cation as observed in request-reply protocols. ICN has a two-fold
relationship to even-driven communication: On the one hand side,
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Figure 3: A Brief Comparision of NSC [65], RICE [39], and HTTP/TCP RMI

asynchronously generated data could be treated as named data
as well, so the fundamental principle of accessing named data in
the network seems conducive to event-driven communication, es-
pecially when considering that CCNx/NDN-based architectures
feature intrinsic data replication and Interest aggregation (which
might resemble Pub/Sub application-layer systems such as MQTT).
On the other hand, communication in CCNx/NDN-based ICN is
fundamentally pull-based, i.e., based on Interest/data interactions,
which is the opposite of event-driven communication. We can dis-
tinguish three lines of work in ICN:

1) Information-Centric architectures that are itself based
on the Pub/Sub paradigm which could provide more natural sup-
port for using this paradigm for distributed computing: DONA [38]
and PSIRP [97] are examples of such architectures where distributed
computing is leveraged on the infrastructure layer: locating ob-
jects with topology-independent identifiers across heterogeneous
inter-domain settings (i.e. different administrative domains) and
inter-domain rendezvous services that combine policy-based name
routing between adjacent networks with hierarchical interconnec-
tion overlays for locating objects across different domains [86].

2) Pub/Sub extensions to CCNx/NDN-based systems to ame-
liorate the above-mentioned incongruence of pull-based protocols
and push semantics: Content-based Publish/Subscribe Networking
[10] combines pull (on-demand) with pub/sub-based communi-
cation by extending forwarders and ICN protocols, so that pro-
ducers can register prefixes for which they would generate data
asynchronously in the network. COPSS [12] provides a scalable
pub/sub service using multicast concepts. At the ICN forwarding
layer, COPSS uses a multiple-sender, multiple-receiver multicast ca-
pability, similar to PIM-Sparse-Mode, relying on Rendezvous Points
(RP). Users subscribe to content based on so-called Content Descrip-
tors (CDs). COPPS-aware routers provide additional data structures,
i.e., a subscription table for maintaining CD subscriptions. Another
approach that provides support for both push and pull in ICN is
HoPP [28], which adopts a hybrid architecture consisting of bro-
kers and peers. Brokers communicate in a centralized manner to
manage subscriptions, and peers communicate with each other in a

decentralized manner to exchange data, while gateways bridge the
gap between the two types of components. This hybrid architecture
balances scalability and efficiency.

3) ICN Distributed Computing systems leveraging Pub/Sub
NFN [87] provides a mechanism to control long-lasting in-network
computations in ICN by enabling debugging, timeout prevention
(i.e. changing timeout on the fly), fetching intermediate results
and client-side computation steering. NFN uses pub-sub to fetch
intermediate computing results. IceFlow [46] leverages dataset syn-
chronization (Sync) to inform dataflow nodes about newly available
input data, which then triggers new computations.

Unlike CCNx/NDN-based ICN, DONA, and PRIRP, which only
enable either pull-based or push-based interactions, INetCEP [56]
enables both interaction patterns in a single ICN architecture via
an expressive complex event processing (CEP) query language and
a CEP query engine. CEP query language can distinguish between
pull and push-based traffic and supports standard operators such
as windows, joins, filters and aggregators. The CEP query engine
can execute these operators on CEP queries in both a centralized
and distributed fashion.

4.3 Dataset Synchronization
Multiparty communication and coordination are essential for a dis-
tributed system or application, and ICN generally supports this well.
For example, ICN uses data object names for de-multiplexing and en-
ables receivers to fetch data according to their individual needs and
capabilities. However, participants must know the collection of data
item names in advance. Sync is a commonly used transport service
for reliable name synchronization in some distributed computing
approaches. Sync enables dataset synchronization through updates
to a common (shared) namespace, and different variants provide
different mechanisms for efficient pull-based update protocols. For
example, SVS [48], as one vector-based sync protocol, encodes the
dataset state in state vectors where a vector represents a participant.
Participants perform synchronization by event-driven or periodic
dataset state exchange. Sync introduces a trade-off between delay
and overhead. More frequent synchronization operations (pull) can
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reduce latency but also increase the overhead. Furthermore, cur-
rent Sync protocols operate in a decentralized manner, leveraging
Interest multicast forwarding, which can pose implementation and
deployment challenges in non-local networks. A detailed discussion
can be found in [68] and [91].

4.4 Metadata and Data Structures
Well-designed metadata and data structures can help improve the
computational efficiency and reduce latency. For example, the R2
remote function execution mechanism [84] attempts to select the
best executor in a distributed manner. Metadata is used to describe
the input data which consumes network resources. R2 uses a cost
estimation model for jointly optimizing network and compute re-
sources. During the process of pulling metadata, the system can also
“warm up” the execution environment. Therefore, the optimal node
selection and hot runtime provisioning in R2 reduce the end-to-end
computation completion time. CFN [40] adopts a compute graph
to represent the computation process, which helps coordinate dis-
tributed computing nodes to work collaboratively on the same task.
Similarly, Tangle-Centric Networking (TCN) [89] proposes a de-
centralized data structure for coordinating distributed applications.
In essence, these metadata or data structures are abstractions for
information sharing among ICN networks that can help to support
decision making in distributed computing.

5 ORCHESTRATION
In distributed computing systems, orchestration automates and
coordinates various components across nodes to achieve common
objectives. Its primary tasks include resource allocation and provi-
sioning, task scheduling and scaling, configuration management,
service deployment, and state monitoring.

5.1 Scheduling
In distributed computing, resources are partitioned and allocated to
different applications and services. Task scheduling is the process of
allocating resources to tasks to achieve the performance objectives
as described in section 2.3. In this section, we discuss provisioning
and scheduling approaches in ICN-based distributed computing.

5.1.1 Resource Allocation and Provisioning. Fine-grained resource
provisioning approaches are more flexible and responsive than
coarse-grained ones; although they also introduce more challenges
into the system, such as resource management complexity. Lever-
aging ICN’s name-based operation, resource provisioning and allo-
cation can be performed in a more flexible and fine-grained manner.
Here, we present a brief overview of granularity systems built on
ICN. From coarse to fine granular, [95] uses Raspberry Pis, i.e., phys-
ical machines, to provide a runtime environment for NDN’s For-
warding Daemon (NFD). [104] uses a virtual machine (VM) as the
runtime of ndnSim [63]. [17, 37] use Docker containers to provide
services. [41] adopts unikernels [59], a lightweight virtualization
technology compared to containers and VMs [81]. [40, 93] provide
computing resources through worker processes while [40, 46] both
use actors as the basic resource unit. We argue that systems that are
based on ICN and thus have the ability to distribute fine-grained
tasks should adopt resource allocation methods that can match their
granularity. For example, creating a VM for a function request is

not worth the cost, while performing tasks in VMs with a persistent
context in traditional distributed computing will be more efficient.

5.1.2 Service Deployment. Using resource-provisioning technolo-
gies, schedulers (centralized or decentralized) can optimize where
and when to place services or executors. For example, [104] al-
locates resources and prefetch caches in radio network stations
according to the popularity of content and services. [32] proposes
an optimal placement algorithm for Hadoop over ICN to minimize
net data transfer and computation costs. CFN [40] divides resources
into several pools of compute nodes. A scoped flooding resource
advertisements protocol was designed for dynamic computation
serving each node. [17] modeled the popularity of edge computing
services and designed a service dynamic pull strategy. This mecha-
nism instantiates services to minimize the request completion time.
Similarly, NFaaS [41] uses a pull strategy to pull service unikernels
to nodes where this service is popular. These methods consider the
dynamicity of service popularity and adapt to changes, which leads
to a responsive system.

5.2 Configuration
IP-based systems must design complicated configuration and scala-
bility components to address and service resolution as well as scala-
bility issues. ICN-based methods without locators can avoid some of
these problems. IceFlow [46] uses Sync for managing dataflow com-
ponents in a decentralized manner. Unlike conventional dataflow
systems, this approach operates without complex configuration,
leveraging distributed data structures and synchronization proto-
cols, as described in section 4.4. Configuration is often considered
an engineering problem, and is thus neglected in research. However,
the ease of use of a system determines the utility of a technology
to a large extent, and its ease of use is clearly dependent on flexible
and simple configuration mechanisms.

5.3 Compute Mesh
Service mesh is a dedicated service composition approach that is
based on service-to-service communications, including service dis-
covery and dispatching. Given the similarity between service and
compute functions in the context of distributed computing sys-
tems, we define Compute Mesh as a more general concept of service
mesh. With respect to computing discovery, requesters in ICedge
[64] send Interests under namespace /𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑦, and then compute
nodes send a response back to the requesters with metadata describ-
ing how to call the services. We observe that most systems adopt
a namespace approach to perform service discovery. This match
with ICN can reduce the reliance on more complex middleware in
conventional systems.

Regarding computation offloading and best executor selection
as a multi-objective problem, approaches such as [3, 17, 64] all
model their objective as cost and design different strategies, such
as proactive and passive [64], to forward the computing request to
an optimal node executor. For example, [3] designed a distributed
coordination mechanism to achieve computation resolution with
respect to resource utilization rate and computation completion
time. Another important observation is that most approaches adopt
a synchronization data structure to update information among
nodes, such as SVS [48] in DICer [3], compute graphs, and PSync
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[112] in [40]. However, flooding in scoped resource pools has also
been adopted for resource advertisement and update [40]. We can
observe that ICN can support compute mesh well because both
naming conventions, as described in section 3.1, and name-based
routing can be leveraged to elegantly support specific objectives.

6 APPLICATIONS
Various ICN distributed computing applications have been devel-
oped. We categorize them and describe their properties with respect
to how they leverage information-centricity.

6.1 Distributed Microservices Communication
Microservices offer a paradigm for constructing complex software
applications by dividing them into small, independent, and loosely
coupled units. However, as applications scale and the number of
microservices multiply, intricate inter-service communication be-
comes a challenge. Traditional centralized service-oriented network
architectures often fail to handle the complexities of extensive dis-
tributed microservices deployments. This inadequacy manifests in
multiple dimensions: performance bottlenecks, owing to increased
latency when routing traffic through a central controller; scalability
issues, as expanding a centralized control point becomes increas-
ingly complex and requires substantial resources and meticulous
management; and reliability constraints, where any downtime or
malfunction in the central control component can disrupt the entire
inter-service communication flow [49].

Some approaches have made attempts at simplifying microser-
vice systems by leveraging ICN’s name-based, locator-less opera-
tion. µNDN [60] implements a management plane to monitor and
orchestrate microservices according to pre-defined rules. This sys-
tem disaggregates the key functions of an NDN forwarder into
specialized Virtualized Network Functions (VNFs) and utilizes the
VNF manager for adaptive deployment. Although effective, this
approach adds a layer of management complexity, necessitating
increased orchestration and chaining tasks to maintain the net-
work. DAMC [49] proposes leveraging name-based operation with
unique service prefixes to enhance microservice communication. It
introduces multiple architectural entities, such as Service Gateway
(SG), Service Router (SR), Service Prefixes Authentication (SPA),
and Service Mesh Communication Scheduling Center (SCSC), and
coordinates communication through well-defined control signal-
ing messages and functions, providing a powerful framework for
managing the complex communication requirements of distributed
microservices. However, challenges remain [33, 53, 60]. For instance,
scalability issues might arise in scenarios with uneven service pop-
ularity or applications burgeoning in size.

6.2 Decentralized Blockchain Transactions
Blockchain’s core data dissemination mechanism—gossip protocol
over P2P—often leads to efficiency deficits [100]: 1) redundant data
transmission over multiple TCP connections, leading to unneces-
sary network traffic; and 2) suboptimal routing due to nodes’ lack
of awareness of the physical network topology. While the first issue
is manageable for small transactions, it becomes problematic for
larger-block deliveries. Modifying the block propagation protocol
can mitigate this, but at a cost: certain block deliveries may require

1.5 round-trip message exchanges. Additionally, because receiving
peers are unaware of the nearest block source, they default to re-
quest the block from the first announcer, resulting in suboptimal
delivery latency.

Implementing blockchain with ICN can leverage its in-network
caching and implicit multi-destination delivery, leading to a more
efficient blockchain system with enhanced data dissemination. Re-
searchers have proposed solutions in various domains, including
public key infrastructure [54], data security and access control [57],
and vehicle networks [77]. Thai et al. [100] proposed a protocol
that utilizes a P2P overlay for data announcements and then lever-
ages NDN’s pull mechanism for retrieval, based on unique naming
conventions inferred from the announcement. This unique naming
of data enables request aggregation, allowing the returning data
packet to be cached and replicated by forwarders in the network
for efficient delivery to all requesters. Feng et al. [18] addressed
the scalability of blockchain storage by proposing an ICN-based
approach that includes a resolution system for community divi-
sion, fostering efficient blockchain node partitioning. It provides a
virtual chain for faster blockchain indexing, coupled with collabo-
rative block replica deletion, optimized for neighboring partitions.
However, challenges such as specific transaction retrieval [100]
persist. If a piece of data is absent, the retrieval process becomes
incredibly burdensome, leading to escalated transmission costs and
deteriorating user experience (refer to [5] for more details).

6.3 Distributed Data Management
Distributed Data Management (DDM) in NDN applies information-
centric concepts and a collection of strategies to enable the manip-
ulation, distribution, and protection of extensive geographically
dispersed data [109]. These strategies are employed in a variety
of applications, including federated catalog systems [16], scalable
data dissemination [113], version control [58], and federated data
repositories [83], enabling the effective management of large-scale,
dispersed data. For example, [16] provides a federated catalog by
storing and managing NDN names to accelerate the discovery of
desired data across multiple domains. DLedger [113] ensures effec-
tive data dissemination over NDN by offering content multicast
and a gating function called Proof-of-Authentication (PoA), which
digitally signs records, addressing security concerns and enabling
participation of constrained devices. GitSync [58] enables effective
distributed version control through direct peer-to-peer Git syn-
chronization. It maintains a local repository copy and runs a sync
protocol, similar to SVS, in the background. This protocol broad-
casts synchronization Interests, carrying the local storage root hash,
which allows connected peers to detect changes and synchronize as
needed. Hydra [83] is an NDN-based federated file storage system
that enables effective federated data repositories. In Hydra, multi-
ple file servers process and store file segments while computing a
synchronously updated ’global view’ of the metadata.

However, contrary to centralized TCP/IP models, some NDN-
based DDM systems might incur higher synchronization costs ow-
ing to the gap between inefficient data dissemination in heteroge-
neous networks [79, 113], the high data throughput necessitated
by P2P networks [51], and the ICN-based pull data transmission
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mode (section 4.3). Despite these challenges, NDN-based DDM sys-
tems tend to be more resilient. For instance, in Hydra [83], even
if individual nodes are compromised, signed and encrypted files
maintain their integrity and confidentiality.

6.4 Distributed Object Stores
In large-scale data management, Distributed Object Stores (DOS),
such as Amazon S3[78], Google Cloud Storage [23], and Azure
Storage[94], are used to manage and manipulate massive data
chunks across distributed infrastructure. These DOSs organize data
as unique objects that are identifiable by individual keys and spread
across numerous storage servers or nodes. However, these DOSs
have some limitations, primarily owing to the IP-centric locator-
based communication model. A notable concern is the scaling chal-
lenge [80], resulting from the potential need for an excessive num-
ber of TCP connections (in the worst case, N×N connections, where
N is the number of storage nodes, as in the case of Redis Cluster [1],
a distributed implementation of Redis). In addition, there is a lack
of universal IP multicast services for efficient data replication, per-
formant transport protocols, and usable security implementations.

Chipmunk [92] and Kua [80] are examples of NDN-based DOS
systems. Chipmunk is an object store service over NDN that lever-
ages effective naming schemes and unique identifiers for object-
to-metadata mapping. In Chipmunk [92], nodes carry a common
prefix, differentiated by a node ID, eliminating the need for users to
know the node prefix. Moreover, Chipmunk provides two types of
storage within each node: file storage for data, and a metadata store
for its metadata. Data segments are stored in the file system of the
designated node, whereas metadata is stored in a node determined
by the data identifier. Kua [80] approaches storage and location dif-
ferently. Kua defines the smallest storage unit as anApplication Data
Unit that carries semantic meaning for the application. This allows
applications to use semantically meaningful identifiers for object
storage and retrieval in Kua clusters. For data location, Kua simply
calculates the appropriate bucket for the data using a Forwarding
Hint containing the bucket identifier. This potentially allows for
better performance compared to Chipmunk owing to its simpler
protocol and the absence of metadata fetching requirements.

6.5 Content Distribution
CDNs are overlay networks to efficiently distribute content globally
by caching it near consumers for enhanced retrieval performance
[24] and server offloading. They employ a relatively complex set of
mechanisms, including request redirection and routing, which track
network changes and content availability. ICN could simplify this by
leveraging some of its inherent features (e.g., in-network caching
capabilities and implicit multicast) [26, 34, 36, 73]. For example,
Inaba et al. [34], employed ICN in cooperation with CDNs to enable
consumers to cache contents and serve future requests for the same
contents. OpenCDN [73] implements a distributed actor-model
programming approach and fosters an architecture independent of
namespaces. It enables any ISP or third-party entity to collaborate
in content distribution, allowing complete control over content
storage and routing elements. However, these solutions rely on
routing protocols to disseminate content availability information
across network nodes, which poses two noteworthy issues [20].

First, these protocols broadcast content availability updates to all
nodes, regardless of their relevance or necessity. This can lead to
potential FIB overload as the network’s content volume continues
to expand. Second, these protocols only calculate routes from each
node to the content origins, neglecting both on-path caches, which
becomes purely opportunistic, and off-path caches, whose effective
utilization becomes impractical.

6.6 Decentralized Data Sharing
Decentralized Data Sharing (DDS) refers to the collection of ap-
plications and systems leveraging NDN to enable the distributed,
peer-to-peer exchange of data. This can be applied across a range
of contexts, including multimedia sharing [14, 22, 111], augmented
reality (AR) [7, 31], and multiserver online games [11, 67, 69, 107].

For example, NDNFit [111], a distributed mobile health platform
for DDS, showcases an exemplary approach to naming convention
design. It utilizes consistent data naming with timestamps, facili-
tating easy Interest construction to retrieve data for specific time
intervals. With additional authentication and access control mea-
sures, this diminishes the dependence on perimeter-based security
and simplifies service chaining. AR Web [7] is an architecture that
forwards signed data packets based on application-defined names.
It employs media-specific coding such as layered coding [74] for
efficient 360-degree video transmission, and "perceptual pruning"
[82] with content options represented in an NDN namespace. By
offering web semantics with packet granularity, the AR web can
deliver low-latency, high-granularity, and context-dependent me-
dia. Matryoshka [107] employs a bespoke naming scheme to fetch
information about objects near a player and uses content caching
and multicast by partitioning the virtual environment into octants.
G-COPSS [11] employs COPPS (section 4.2) to enable efficient de-
centralized information dissemination in MMORPGs.

In the context of DDS, hierarchical names offer usability but can
be limiting when it comes to representing attribute-based classi-
fication schemes typically used for organizing content. Efficient
synchronization techniques (as discussed in sections 4 and 5) for
namespace subsets would open up significant possibilities to sup-
port continuous nearest-neighbor retrieval patterns [96] required
by, for instance, AR content prefetching.

7 CONCLUSIONS
ICN provides an attractive platform for distributed computing. From
the analyzed approaches, we can identify the following factors:
1) accessing named data can be applied to both access to static
data and dynamic computation results so that general ICN fea-
tures such as name-based forwarding, locator-less operation, ob-
ject security, and in-network caching can be leveraged directly. 2)
ICN-empowered forwarding planes can provide additional improve-
ments, e.g., through forwarding strategies with computing-aware
algorithms and by enabling concepts such as joint resource opti-
mization. 3) Multiparty communication, e.g., for group coordination,
can be achieved without centralized servers. 4) ICN, by its security
model and the other features mentioned above, is more conducive
to self-managing, decentralized systems, which is also beneficial
concerning complexity reduction in distributed computing.
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After surveying more than 50 papers on this topic, we can con-
clude that the above-mentioned features often play a role inmotivat-
ing different approaches. We observed the following potential for
improvement in this work: 1) Most proposed algorithms and sys-
tems are not compared with state-of-the-art systems in the non-ICN
world. Admittedly, this is not always easy to do correctly (consider-
ing different software maturity levels), but we suggest more efforts
be made to better understand the qualitative and quantitative po-
tential for improvement. 2) The Interest-Data vehicle is often used
too naively for triggering computation and transmitting results (as
discussed in [39]). 3) Not enough real-world experiments are done,
and technologies are not developed to a maturity level that would
allow initial deployment and real-world experimentation.

Suggested Next Steps for ICN Research
We can also derive some missing features in ICN that can better
support distributed computing.

Asynchronous Data: Distributed computing systems often
have to deal with asynchronous events and their transmission over
networks (push), an interaction model that ICN does not natu-
rally provide. Different systems such as Sync, publish-subscribe,
dataflow, and IoT phoning-home scenarios [76] provide different
workarounds, often involving some form of active polling (unless
larger changes to the forwarding plane are proposed). In our view,
distributed computing and other applications could benefit from a
well-defined push service that works in “point-to-point” as well as
in group communication scenarios in Internet-scale scenarios.

Reflexive Forwarding: RICE [39] and RESTful ICN [45] pro-
vide an ICN-idiomatic method for client-server communication for
both static data access and RMI, i.e., these systems enable longer-
lasting computation and the transmission of request parameters of
arbitrary size and complexity without giving up flow balance and
consumer anonymity. It is achieved by a proposed ICN extension
called reflexive forwarding, which involves installing temporary for-
warding states on the reverse path from the producer to consumers
so that the producer can request NDO from the consumer.

There is discussion on how such interactions should be done best
in ICN and how ICN-based protocols should be extended in this
direction. While it is possible to construct RMI scenarios in testbed
without reflexive forwarding, ICN researchers should consider the
real-world deployability concerns raised in these two papers.

Information-Centric Web: RESTFul ICN [45] laid the foun-
dation for an information-centric web by enabling client/server
communication with a series of request/response interactions in
a session context, leveraging reflexive forwarding for both REST-
ful parameter transmission and key exchange. This enables secure
RESTful communication using standard ICN mechanisms such as
Content Object encryption and signatures, without forcing all in-
teractions into TLS-like tunnels; and overall the system is supposed
to provide QUIC-like efficiency (without the connection overhead).

What is missing is the definition of, and further experimentation
with, HTTP-like protocol features, i.e., a complete RESTful protocol
that could provide a similar feature set as HTTP. Of course, an
information-centric web can go beyond HTTP’s limitations. For
example, it should be explored how result parameters can be shared
(for idempotent requests) as demonstrated by RICE [39] before.

Scalable Dataset Synchronization: Sync in NDN [68] is an
attractive “transport protocol service” that can enable new ways to
build distributed computing, consensus protocols, etc. in a decen-
tralized manner. Current Sync systems, however, rely on Interest
multicast which has scalability and deployability issues in the In-
ternet. In addition, the efficiency can be low because of the update
overhead, especially in larger groups with frequent namespace
updates. This could be an area for future research, potentially on
hybrid decentralized systems that employ relays at strategic points.

Distributed Machine Learning as a New
Application
Distributed ML systems could be a potential research direction
owing to the data-oriented security and communication efficiency
features offered by ICN. For example, ICN supports caching and
replication of data within the network in a decentralized manner.
This reduces not only the reliance on centralized repositories that
are vulnerable to attacks but also the centralized provider’s dom-
inant control over the data. Furthermore, as pre-trained models
become basic building blocks for training new models or various
applications, integrity threats [30] can be alleviated to an extent
by name-data signature binding security mechanisms. Regarding
network transmission efficiency, ICN can improve the efficiency
of ML systems that rely heavily on data by caching frequently ac-
cessed datasets throughout the network. This becomes particularly
beneficial for training models that utilize common datasets, as they
can be readily available in the network once they are cached.

Moreover, the future generation of communication system is
expected to move from Shannon’s information theory-based com-
munication paradigm to a semantic communication paradigm that
can maximize effective information transmission across wireless
networks [52]. One major proposal towards this objective is the
transmission of a parameterized data model that describes the data
instead of the transmission of raw data [13]. Thus, revisiting how
ML is distributed and managed is crucial for the next generation of
networks and wireless systems. We envision that ICN can play a
crucial role in the distribution of ML models for a given application
in communication networks.
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