
Mitigating Intermittent Links With Name-Based Networking
Behrooz Farkiani
b.farkiani@wustl.edu

Washington University in St. Louis
St. Louis, MO, USA

John DeHart
jdd@wustl.edu

Washington University in St. Louis
St. Louis, MO, USA

Jyoti Parwatikar
jp@wustl.edu

Washington University in St. Louis
St. Louis, MO, USA

Patrick Crowley
pcrowley@wustl.edu

Washington University in St. Louis
St. Louis, MO, USA

ABSTRACT
We present a name-based sidecar-assisted networking approach
that enables off-the-shelf TCP/IP and HTTP protocols to effectively
handle network disruptions. We compare the performance of our
approach with the Name Data Networking by deploying and testing
them in a hardware networking testbed and show, on average, in
85% of experiments, the sidecar approach manages to transfer data.

CCS CONCEPTS
• Networks→ Network design principles; Application layer
protocols; Routing protocols; Transport protocols; Interme-
diate nodes; Middle boxes / network appliances.

KEYWORDS
Sidecar Architecture, Envoy, HTTP/1.1, TCP, NDN

ACM Reference Format:
Behrooz Farkiani, John DeHart, Jyoti Parwatikar, and Patrick Crowley. 2023.
Mitigating Intermittent Links With Name-Based Networking. In ACM ICN
2023 Posters and Demos (ACM ICN ’23), October 9–10, 2023, Reykjavik, Iceland.
ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/3623565.3623756

1 INTRODUCTION
This work answers the following question: "In the absence of an
end-to-end network path, is it possible to effectively use off-the-
shelf TCP/IP and HTTP/1.1 protocols and tools without utilizing
other special protocols or changing application logic?" We answer
"Yes" to this question and introduce our sidecar-assisted networking
approach, in which we utilize a set of proxies to route application
data in the presence of network disconnections. In this way, the
application logic is not changed since applications are not aware
of proxies, and only the traffic endpoint addresses change. The
significance and importance of the question and our solution lay in
the facts that 1) network application developers could be assured
that their applications work in stable and unstable network condi-
tions with the same application logic, and 2) our solution is easily

This work is licensed under a Creative Commons Attribution-ShareAlike 
International 4.0 License.
ACM ICN ’23, October 9–10, 2023, Reykjavik, Iceland
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0403-1/23/10.
https://doi.org/10.1145/3623565.3623756

deployable in current systems without the need for utilizing special
networking protocols.

We use Envoy proxy to implement our sidecar-assisted approach
[8] [4]. In our approach, we build an overlay network of Envoy
HTTP proxies and route the application traffic through them. Al-
though recent research has been focused on the load balancing
features of the Envoy proxy [3] [12], to the best of our knowledge,
this is the first study that investigates the usage of Envoy proxy
as a general-purpose overlay network. Since we configure Envoy
HTTP proxies to route traffic based on the requested paths (names),
the sidecar-assisted approach has a name-based architecture.

We compare the performance of our approach with Named Data
Networking (NDN) [13]. In NDN, a name is associated with each
piece of data. Data is retrieved by sending interests, and content
is returned following the path of the interests. The NDN Forward-
ing Daemon (NFD) receives, aggregates, and forwards interests. In
the context of lossy networks, research on NDN has mostly been
focused on congestion control techniques or the use of synchro-
nization protocols [1] [5].

The key contribution of this work is as follows: 1) For the first
time, by using a name-based overlay network, we enable traditional
internet protocols to operate efficiently in highly unstable network
conditions. 2) We show our approach is easily implementable since
it doesn’t require modification in application logic or undelaying
protocols.

2 TEST ENVIRONMENT

Figure 1: Testbed Topology

We implemented the sidecar and NDN approaches in the network
shown in Figure 1. The components were executed inside separate
Ubuntu 20.04.6 physical machines connected via 1Gb/s Ethernet.
We restricted the bandwidth of Links 1-3 between software routers
(SWRs) to 10Mb/s using the TC utility [11]. Links 1-3 were initially

121

https://orcid.org/0000-0003-3929-239X
https://orcid.org/0000-0003-3007-197X
https://orcid.org/0009-0002-0327-5889
https://orcid.org/0009-0004-1043-802X
https://doi.org/10.1145/3623565.3623756
https://doi.org/10.1145/3623565.3623756
https://creativecommons.org/licenses/by-sa/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3623565.3623756&domain=pdf&date_stamp=2023-10-08


ACM ICN ’23, October 9–10, 2023, Reykjavik, Iceland Farkiani et al.

Architecture Success Ratio (%)
45K 500K

Direct HTTP/TCP 0 0

Sidecar No Cache 95 80
Cache 100 90

NDN No Reliability 0 0
Reliability 100 100

Sidecar
 w/o cache 

Sidecar
 w/ cache

NDN w/
 reliability

0

20

40

60

80

Re
tri

ev
al

 T
im

e 
(s

)

75.113

10.382
17.858

0.035 0.029

45K object

Sidecar
 w/o cache 

Sidecar
 w/ cache

NDN w/
 reliability

0

50

100

150

200

250

Re
tri

ev
al

 T
im

e 
(s

)

225.495

90.389

30.843

0.423 0.311

500K object

Figure 2: Three intermittent links results.

set to a 100% loss ratio. Every second, we sequentially reset one
link to 0% loss, then revert it back to 100% before moving to the
next link.

For the sidecar architecture, we utilized the Bitnami Envoy con-
tainer (v1.26.2) [2] on overlay nodes 1-3. The consumer used Curl
(v7.68.0), and the producer used the Nginx container (v1.23.3) [7]
for content delivery. In direct connection, Curl HTTP GET request
passed through the SWRs, and in the sidecar-assisted approach,
requests went to the Envoy HTTP listener on node 3, then to the
producer via overlay nodes. The return path was the same as the
forward path. Curl was configured with a "connect-timeout" of
"720s" and a "max-time" parameter of 900s. For Envoy proxies, we
used HTTP connection manager, HTTP router, and HTTP cache
filters. In addition, we set "0" for both "timeout" and "idle_timeout,"
and set "retry_on" for "5xx, reset, refused-stream, connect-failure,
gateway-error" errors, "num_retries" to "4" and "per_try_timeout"
to "180s" as the Route [9] component configurations. For Nginx, we
set "public, max-age=900" for "cache-control," "sendfile on," "send-
file_max_chunk 1k," "if_modified_since off," and "keepalive_timeout
0" as additional configuration parameters.

We used NDN version 22.02 [10]. An NFD executed on the pro-
ducer, consumer, overlays, and overlay nodes acted as routing nodes.
The request and response path were the same as the sidecar ap-
proach. We used ndnputchunks with a chunk size of 1000 bytes
for the producer and ndncatchunks for the consumer. NFD caches
were valid for 15 minutes, and we used NDNLP [6] over UDP as
the NFD link protocol to provide reliability.

To measure the performance of approaches, we use the success
ratio, defined as the percentage of time the data object is transferred
completely, and retrieval time, defined as the duration between
the moment the consumer requests a data object and when the
consumer receives it. In each experiment, the consumer waited for
a random duration between 5 to 15 seconds and then requested an
object of approximate size 45 KB or 500 KB from the producer. Then,
it waited for completion or failure and requested the content again.
We repeated this process 20 times and averaged the results. We
used the direct HTTP connection to the producer and NDN with
no reliability protocol, both with no intermittent links, as baseline
measurements, and their values are shown on the outside left and
the right side of each graph, respectively. Also, the standard error
of the mean is shown as error bars.

3 RESULTS
Results are shown in Figure 2. The direct HTTP/TCP failed in all
tests, and the average success ratio of sidecar-assisted no-cache and
cache-enabled scenarios are 97.5% and 85% for 45K and 500K data
objects, respectively. The average retrieval time is 41s and 153s for
45K and 500K data objects, respectively. Therefore, although the
direct HTTP/TCP connection fails to transfer data objects, sidecar-
assisted HTTP/TCP still can transfer the data objects with at least
85% success ratio. The reasons for the failure of direct TCP connec-
tion are TCP timeouts and exponential backoff. When the link is
up, only 0.4s are needed to retrieve the 500K object. If TCP begins
exponential backoff when the link is down, many backoff iterations
can occur until retransmission happens with the link up. This can
cause long delays and eventually trigger Curl failures. Since we also
utilized TCP protocol in the sidecar approach, the situation might
still happen, which led to the 15% failure and long 153s retrieval
time. However, since Envoy proxies retry in case of TCP failure, we
still observe an 85% success ratio.

NDN with no reliability feature failed in all tests. On the other
hand, NDN with reliability could transfer 45K and 500K objects
in 17s and 30s, respectively. NDN also shows a success ratio of
100%. However, NDN requires special protocols and tools to achieve
this success ratio, while the sidecar-assisted approach uses the
widely deployed TCP/IP protocols and tools, and the only change
in application is a change in the endpoint from the producer to the
overlay node 3.

4 CONCLUSION AND FUTUREWORK
We showed that although a direct HTTP/TCP fails when we have
three intermittent links, the sidecar architecture enables HTTP/TCP
to perform with a success ratio of 85% without changing the appli-
cation logic or using special protocols. While NDN achieves a 100%
success ratio, it also requires special protocols and tools.

The main reason behind the 15% failures of the sidecar architec-
ture is TCP congestion control and its exponential backoff mecha-
nism. One possible improvement could be using HTTP/3, which
utilizes QUIC/UDP as the transport protocol. Therefore, our next
set of experiments will focus on the effect of utilizing the sidecar-
assisted approach with HTTP/3 to deal with highly unstable net-
work conditions.

122



Mitigating Intermittent Links With Name-Based Networking ACM ICN ’23, October 9–10, 2023, Reykjavik, Iceland

ACKNOWLEDGMENTS
This work was supported by NSF CNS Award 2213672.

REFERENCES
[1] Hila Ben Abraham, Jyoti Parwatikar, John DeHart, Adam Drescher, and Patrick

Crowley. 2018. Decoupling information and connectivity via information-centric
transport. In Proceedings of the 5th ACM Conference on Information-Centric Net-
working (ICN ’18). Association for Computing Machinery, New York, NY, USA,
54–66. https://doi.org/10.1145/3267955.3267963

[2] Bitnami. 2023. bitnami/envoy Tags | Docker Hub. https://hub.docker.com/r/
bitnami/envoy/tags Accessed: 2023-06-14.

[3] Boutheina Dab, Ilhem Fajjari, Mathieu Rohon, Cyril Auboin, and Arnaud
Diquelou. 2020. Cloud-native Service Function Chaining for 5G based on Network
Service Mesh. In ICC 2020 - 2020 IEEE International Conference on Communications
(ICC). 1–7. https://doi.org/10.1109/ICC40277.2020.9149045 ISSN: 1938-1883.

[4] Behrooz Farkiani and Raj Jain. 2022. Service Mesh: Architectures, Applications,
and Implementations. Technical Report. Washington University in St. Louis.
https://www.cse.wustl.edu/~jain/cse574-22/ftp/svc_mesh/

[5] Yi Hu, Constantin Serban, Lan Wang, Alex Afanasyev, and Lixia Zhang. 2021.
PLI-Sync: Prefetch Loss-Insensitive Sync for NDN Group Streaming. In ICC 2021
- IEEE International Conference on Communications. 1–6. https://doi.org/10.1109/
ICC42927.2021.9500452 ISSN: 1938-1883.

[6] NDN. 2023. NDNLPv2 - NFD - NDN project issue tracking system. https://redmine.
named-data.net/projects/nfd/wiki/NDNLPv2 Accessed: 2023-06-14.

[7] Nginx. 2023. nginx Tags | Docker Hub. https://hub.docker.com/_/nginx/tags
Accessed: 2023-06-14.

[8] Envoy Proxy. 2023. Envoy Proxy - Home. https://www.envoyproxy.io/ Accessed:
2023-06-14.

[9] Envoy Proxy. 2023. HTTP route components (proto). https://www.envoyproxy.
io/docs/envoy/latest/api-v3/config/route/v3/route_components.proto Accessed:
2023-06-14.

[10] NDN Tools. 2023. Release ndn-tools-22.02: Version 22.02 named-data/ndn-
tools. https://github.com/named-data/ndn-tools/releases/tag/ndn-tools-22.02
Accessed: 2023-06-14.

[11] Ubuntu. 2023. Ubuntu Manpage: tc - show / manipulate traffic control settings.
https://manpages.ubuntu.com/manpages/focal/man8/tc.8.html Accessed: 2023-
06-14.

[12] Xiaojing XIE and Shyam S. Govardhan. 2020. A Service Mesh-Based Load Bal-
ancing and Task Scheduling System for Deep Learning Applications. In 2020 20th
IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing
(CCGRID). 843–849. https://doi.org/10.1109/CCGrid49817.2020.00009

[13] Lixia Zhang, Alexander Afanasyev, Jeffrey Burke, Van Jacobson, kc claffy, Patrick
Crowley, Christos Papadopoulos, Lan Wang, and Beichuan Zhang. 2014. Named
data networking. ACM SIGCOMM Computer Communication Review 44, 3 (2014),
66–73. https://doi.org/10.1145/2656877.2656887

123

https://doi.org/10.1145/3267955.3267963
https://hub.docker.com/r/bitnami/envoy/tags
https://hub.docker.com/r/bitnami/envoy/tags
https://doi.org/10.1109/ICC40277.2020.9149045
https://www.cse.wustl.edu/~jain/cse574-22/ftp/svc_mesh/
https://doi.org/10.1109/ICC42927.2021.9500452
https://doi.org/10.1109/ICC42927.2021.9500452
https://redmine.named-data.net/projects/nfd/wiki/NDNLPv2
https://redmine.named-data.net/projects/nfd/wiki/NDNLPv2
https://hub.docker.com/_/nginx/tags
https://www.envoyproxy.io/
https://www.envoyproxy.io/docs/envoy/latest/api-v3/config/route/v3/route_components.proto
https://www.envoyproxy.io/docs/envoy/latest/api-v3/config/route/v3/route_components.proto
https://github.com/named-data/ndn-tools/releases/tag/ndn-tools-22.02
https://manpages.ubuntu.com/manpages/focal/man8/tc.8.html
https://doi.org/10.1109/CCGrid49817.2020.00009
https://doi.org/10.1145/2656877.2656887

	Abstract
	1 Introduction
	2 Test Environment
	3 Results
	4 Conclusion And Future Work
	Acknowledgments
	References

