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Evaluating retrieval performance without editorial relevance judgments is challenging, but instead, user in-
teractions can be used as relevance signals. Living labs offer a way for small-scale platforms to validate
information retrieval systems with real users. If enough user interaction data are available, click models can
be parameterized from historical sessions to evaluate systems before exposing users to experimental rank-
ings. However, interaction data are sparse in living labs, and little is studied about how click models can be
validated for reliable user simulations when click data are available in moderate amounts.

This work introduces an evaluation approach for validating synthetic usage data generated by click mod-
els in data-sparse human-in-the-loop environments like living labs. We ground our methodology on the click
model’s estimates about a system ranking compared to a reference ranking for which the relative performance
is known. Our experiments compare different click models and their reliability and robustness as more ses-
sion log data becomes available. In our setup, simple click models can reliably determine the relative system
performance with already 20 logged sessions for 50 queries. In contrast, more complex click models require
more session data for reliable estimates, but they are a better choice in simulated interleaving experiments
when enough session data are available.While it is easier for clickmodels to distinguish betweenmore diverse
systems, it is harder to reproduce the system ranking based on the same retrieval algorithm with different
interpolation weights. Our setup is entirely open, and we share the code to reproduce the experiments.

CCS Concepts: • Information systems→ Information retrieval;Users and interactive retrieval; Evaluation
of retrieval results; Relevance assessment.

Additional Key Words and Phrases: Synthetic usage data, Click signals, System evaluation, Living labs.

1 INTRODUCTION

One of the primary goals in IR evaluation is to find the best-performing system, i.e., to identify
the relative ordering of retrieval systems by the effectiveness referred to as the system ranking

in the following. For many decades, these IR benchmarks have been conducted according to the
Cranfield paradigm [27], for which the data curation of the underlying test collections comes at a
high cost and is usually only feasible as part of larger community efforts like shared tasks at CLEF,
FIRE, NTCIR, or TREC [79].
A completely different approach to curating relevance feedback data for IR systems is made

possible by online experiments [38, 50]. In this case, user interaction feedback is used to estimate
the relevance of the search results. Large-scale web search companies can rely on an abundance of
such data but cannot share it due to privacy concerns and business interests [29]. For this reason,
there are few datasets covering document collection, user interaction data, and the corresponding
search engine result pages (SERPs).
In order to pave the way for experimental evaluations in small- to mid-scale user data environ-

ments, the living lab paradigm [42] was introduced. As part of these efforts, small and domain-
specific search services with different applications like product or academic search opened their
infrastructures for researchers who are able to evaluate their IR systems in online experiments
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2 Timo Breuer, Norbert Fuhr, Philipp Schaer

Fig. 1. Click model evaluations based on system rankings and logged user interaction data from living labs.

with user interaction data. Opposed to A/B experiments, which only deliver meaningful results
with large amounts of user data, previous living labs [33, 81, 83] implemented the experimental
design based on interleavings. The general idea is to combine ranking lists of two or more retrieval
systems, show the interleaved ranking to users, and let them decide on the better-performing sys-
tem by their click decision based on their relative preference.
Earlier works concluded that user interaction data in living labs is sparse [42, 81, 83]. While

there is a need to validate laboratory or system-oriented experiments in the real world, the corre-
sponding experiments come with the risk of harming the user experience. The risk is even higher
for small and domain-specific search services, and it is a desideratum to keep the online time of
experimental systems short while having insights about their usefulness. As a way out, synthetic
usage data can be considered a possibility to account for a user-oriented evaluation without the
risk of exposing real users to bad search results.
User interactions like clicks are alternative relevance signals or proxies that could be used for es-

timating the system performance from a different perspective [22]. If enough user interaction data
are available, it is possible to parameterize click models that can be used for generating synthetic
user interactions. These click models bear the potential to replace real users in living labs when
evaluating highly experimental systems. As user interaction data are low, it is of high interest to
make an estimate of how much data are required for a robust parameterization of the click model
to use it in a reliable way when generating synthetic interactions.
This work is about validating synthetic usage data of click models in data-sparse environments

like living labs. Figure 1 illustrates the evaluation task, where the actor is interested in validating
the retrieval effectiveness and usefulness of an experimental system in the real world. Living labs

offer a gateway to user experiments. Once submitted to the living lab infrastructure, the exper-
imental system can be deployed on the backend of search platforms, which, in turn, can provide
users with results in interleaving experiments. User interaction feedback data like clicks are logged
and sent to a central database of the living lab infrastructure.

ACM J. Data Inform. Quality, Publication date: October 2023.



Validating Synthetic Usage Data in Living Labs 3

The actor usually has the choice of different systems or configurations, and not all of them are
worth being validated in a user experiment. As a solution, the actor could select suitable systems
for online experiments in a pre-assessment step based on user simulations. In this case, a click
simulator is used to separate good-performing systems from the rest. As the user interactions are
continuously logged, it is possible to update the click model’s parameters with new log data. But
how does the actor know when the click model is parameterized well enough such that it can be
used for good user simulations?
We propose an evaluation approach in which the click model has to decide about the relative

system performance, i.e., the system ranking. According to this method, the actor provides the click
models with a reference system ranking, for which the relative system performance is known in
advance with high confidence. Based on its click decisions and the generated click data, the model
itself also produces a click model system ranking, which can be compared to the reference system
ranking. If the click model returns the correct system ranking, it can be considered a suitable user
simulator that generates meaningful synthetic usage data.
Recently, several datasets, for which the ground truth relevance of query document pairs was

inferred from click signals, were released [77, 97, 101]. More specifically, multi-graded relevance
labels were derived from the click-through rate and threshold values [77]. However, we note that
clicks are not a direct substitute for editorial relevance judgments like they are made for IR test
collections, as found in a previous study [46]. In addition, finding reasonable threshold values to
make multi-graded labels from the click-through rate is not well studied and can be critical as the
threshold criteria might differ across queries/topics [82].
Instead, we see user clicks as alternative relevance signals that require a different evaluation ap-

proach. For this reason, the work at hand investigates the problem of evaluating the relative system
performance based on click models in the absence of editorial relevance judgments. More specifi-
cally, we evaluate to which extent click models can determine the relative system performance by
the Log-Likelihood of the click probability and, afterward, in simulated interleaving experiments.
We analyze the reliability and robustness of click models for estimating the relative system per-

formance by evaluating the click models’ system ranking over an increasing amount of queries
and click logs. More specifically, we compare the Document-based Click-Through Rate Model
(DCTR) to the Dependent Click Model (DCM) and the Simplified Dynamic Bayesian Network
Model (SDBN), which embed the continuation probability and the notion of satisfying clicks.
Furthermore, we include two types of system rankings. The first is based on different lexical

retrieval methods (LRM), whereas the second is made from interpolated retrieval methods (IRM).
For both the Log-Likelihood and the interleaving experiments, we determine the correlation with
a reference ranking by Kendall’s g . More precisely, we give answers to the following research
questions:

RQ1 Can click models reproduce system rankings?

RQ2 Do continuation and satisfaction probabilities in click models improve the simulation quality?

RQ3 How does the type of system ranking impact the outcomes of simulated interleaving experi-

ments?

RQ1 addresses the general plausibility of the introduced evaluation approach. The focus of RQ2
is the comparison of DCTR to more complex models. In particular, DCM and SDBN have a less
abstract user model than DCTR. Besides the attractiveness of search results, they account for the
click sequence and whether there are satisfied clicks.RQ3 addresses two different types of system
rankings that could be compared. While the LRM ranking is composed of more distinct systems,
the IRM ranking is based on the same system with different interpolation weights. Besides the
answers to our research questions, the contributions of this work are as follows:

ACM J. Data Inform. Quality, Publication date: October 2023.



4 Timo Breuer, Norbert Fuhr, Philipp Schaer

• We introduce an evaluation approach for validating synthetic usage data generated by
click models in data-sparse human-in-the-loop environments like living labs,

• compare two different system rankings, including lexical-based systems and the same
system with different interpolation weights to evaluate the proposed methodology,

• compare three different click models, including DCTR, DCM, and SDBN,
• validate the proposedmethodology by simulated interleaving experiments with state-of-
the-art Transformer-based rankings,

• provide an open and fully reproducible experimental setup including open-source
code and open data.1

The remainder is structured as follows. Section 2 reviews the related work about living labs,
user simulations, and click models. Section 3 outlines the methodology and the experimental setup,
whereas Section 4 presents the experimental evaluations. Section 5 gives answers to our research
questions. Finally, Section 6 discusses the results and concludes.

2 RELATED WORK AND BACKGROUND

This section reviews the related work about living lab experiments, briefly summarizes relevant
work about user simulations, and finally, provides the fundamentals of click models.

2.1 Living Labs

The principle of the living lab paradigm within the scope of shared tasks can be described as
follows. Participants contribute their experimental systems or sometimes only the pre-computed
outputs to the living lab platform, which connects participants and their experimental systems on
the one side with the connected search services on the other side. Users can then be provided with
the experimental results upon request, and their interactions will be logged in order to evaluate
or improve the experimental systems.
One of the earlier works that mentioned the idea of a “living laboratory” was made by Kelly et

al. [47] and dates back to 2009. The idea was picked up by Azzopardi and Balog [4], who made
the first proposal for a living lab architecture in 2011. In 2013, a workshop dedicated to living labs
discussed several requirements and extensions of the living lab paradigm [6] followed by the first
implementation of the living lab architecture for ad-hoc IR experiments in 2014 [7]. Finally, the first
living lab for ad-hoc retrieval was held at CLEF in 2015 and was continued in a second iteration in
2016 [83]. The same organizers were also involved in the Open Search track at TREC in 2016 and
2017 [42]. NEWSREEL was the first living lab for real-time news recommendations and ran from
2014 until 2017 [15, 41]. More recent living lab implementations are not specifically tailored for
shared tasks but have a domain-specific focus. Some recent examples include APONE [64, 65] and
arXivDigest [33]. APONE is a living lab platform designed for A/B tests focusing on evaluating
user interfaces. As it builds upon the PlanOut language [5], it allows designing the experiments
by scripting them. arXivDigest is a recommendation service for research articles based on per-
sonalized email updates on recent publications from arXiv’s computer science repositories. After
registration, an interest profile helps to find adequate recommendations, and feedback is provided
with the help of clicked URLs in the personalized mail. Besides arXivDigest, Beel et al. [10] also
provide a living lab platform for scholarly recommendations.
More recently, Schaer et al. [14, 81] presented a novel infrastructure design for living labs. The

infrastructure was tailored explicitly for shared task collaborations and was the backbone of the
LiLAS lab at CLEF in 2021. One of the substantial improvements over earlier living lab attempts is

1� https://www.github.com/irgroup/validating-synthetic-usage-data
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Validating Synthetic Usage Data in Living Labs 5

the possibility of submitting the entire experimental system instead of submitting pre-computed
results only, which addresses the shortcoming of pre-computed results in earlier living labs [42].
By using only pre-computed results for selected queries, the experiments are artificially shrunk

to a subset of queries. Even more, they may be outdated quickly, which can become critical in
e-commerce settings. Instead, Schaer et al. [14, 81] envision a dockerized retrieval system that can
dynamically be updated and deliver results for arbitrary queries.
Participants of the shared task provide systems with retrieval and recommendation algorithms

in the form of micro-services that can be deployed on purpose in a reproducible way. The in-
frastructure builds upon Docker and its containerization technology to make this possible. An
additional central component is Git and the integration of the web service GitHub, facilitating the
experimental components’ software versioning, transparency, and reproducibility.
Once the systems are implemented, the experimenters prepare them with Docker containers.

More specifically, they prepare a dockerizable source code repository, and after registration, each
dockerized system can be integrated into a single multi-container application. Multiple systems
from possibly different experimenters are combined, which means that the administrators at the
search platform do not have to set up individual systems but rather can rely on complete replicas
of all submitted systems once the multi-container application is running.
Each search platform deploys an instance of the multi-container application on its backend

servers. Queries from users will then be redirected from the search interfaces to the individual
experimental systems. Upon request, experimental search results are returned, and the search plat-
form is supposed to log user interaction data, which eventually is sent to a central server of the
infrastructure, where it is stored and can be used for further analysis, training, and optimization
of the experimental systems.
While Schaer et al. conclude that their infrastructure design overcomes the bottleneck of pre-

computed queries, there were still moderate amounts of logged user interaction data that only
partially allowed for statistical significance tests [81]. Small- and mid-scale search platforms gen-
erally have moderate user traffic, and relevance feedback is generally sparse [42].
However, it is common practice to reuse historical session logs to evaluate new rankingmethods

before exposing them to real users [53], either to avoid harming the user experience or to reduce
online time in order to increase the rate at which new experiments can be conducted [32, 49].
As an alternative to A/B experiments, which only deliver meaningful results with a large amount

of user data, experimental systems can be deployed in interleaving experiments like it is often done
in living lab environments [33, 42, 81, 83]. The general idea is to combine ranking lists of two or
more retrieval systems and let users decide on the better-performing system by their click deci-
sions based on the relative preference. There exist different interleaving strategies like probabilistic
interleaving [39], multileaving [84], preference-based balanced [36], or temporal interleaving [75],
but the team draft interleaving [76] is more commonly used and also studied in this work.
While interleaving reduces the risk of returning poor search results by combining experimental

rankings with a reasonable baseline ranking, there is still the risk of harming the user experience.
Preferably, promising systems should be identified before deploying them in online experiments.
A viable solution for pre-assessments is user simulation, which will be described next.

2.2 User Simulations

The most prominent user model in system-oriented evaluations implies that the user formulates a
single query for a given information need, scans the entire result list up to a fixed rank, and judges
the relevance of each item independent of any context knowledge, e.g., frompreviously seen results
[8, 66]. However, depending on the IR measure, additional assumptions about the underlying user
model are made as part of the evaluations. For instance, nDCG [45] discounts later items in the

ACM J. Data Inform. Quality, Publication date: October 2023.



6 Timo Breuer, Norbert Fuhr, Philipp Schaer

ranking by log-harmonic weights and, thus, simulates the user’s persistence. Similarly, the RBP
also allows defining the user’s persistence [70].
Carterette [17] introduced a coherent framework for model-based measures. Similarly, Moffat

et al. [69] introduced the C/W/L framework to describe a family of parameterizable evaluation
measures that account for the user browsing behavior by formalizing the conditional continuation
probability of examining items in the ranking list. Both of these frameworks are able to describe
conventional measures like nDCG, AP, or RBP but also allow for the analysis of derived variants.
While all of these measures allow for a principled system-oriented evaluation over different topics
with certain assumptions about the user behavior, they are still a strong abstraction of how the
user interacts with the search system, and the user behavior has a somewhat static notion.
Based on the idea of extending the underlying user model of system-oriented experiments, sim-

ulations make it feasible to evaluate retrieval systems with regards to more dynamic user interac-
tions. For instance, earlier seen retrieval results can be exploited for more diverse query formu-
lations over multiple result pages, situational clicks, relevance decisions, and diverging browsing
depths [18]. Simulated IR experiments date back to the early 1980s [87, 88], but more recently, sev-
eral frameworks and user models were introduced [9, 18, 67, 68, 74, 89, 100]. Inspired by the user
models of Baskaya et al. [9] and Thomas et al. [89], Maxwell and Azzopardi [67, 68] introduced
the Complex Searcher Model. Carterette et al. [18] proposed the idea of Dynamic Test Collections,
and Pääkönen et al. [74] introduced the Common Interaction Model. Zhang et al. [100] recently
introduced another search simulation framework. As a special type of user simulation, the focus
of click models is generating click interactions with the ranking list.
In order to compare the fidelity of user simulation, Labhishetty and Zhai [51, 52] introduced

the Tester-based approach. The key idea is based on the definition of Testers that are composed of
single retrieval systems for which the relative retrieval effectiveness is known. The user simulator
is evaluated by how well it can identify the correct relative retrieval effectiveness.

2.3 Click models

In contrast to explicit editorial relevance judgments of test collections, click signals, or user in-
teractions in general, are a more implicit form of relevance feedback [44], which is often used to
improve the quality of search results [1]. Generally, it is controversially discussed how user inter-
actions like clicks can reflect topical relevance. While several studies suggest that improved system
performance does not directly translate into better user performance [37, 46, 90–93], some works
concluded that user and system metrics correlate under certain constraints [22, 43, 44, 80, 102]. It
is beyond the scope of this work to draw any conclusions about how clicks correlate with topical
relevance judgments and we consider clicks as an alternative that can be used as a proxy when it
is not feasible to have editorial relevance judgments.
While earlier clickmodelsmostly differ by the predefined rules that make assumptions about the

underlying user behavior [23, 34], several improved models were introduced, accounting for clicks
onmultiple result pages, and aggregated search [24, 25], embedding time awareness by accounting
for dwell times and timestamps between click sequences [57], or omitting predefined rules by
replacing themwith neural vector states learned from user logs [12], or embedding global and local
click models into a framework for better personalization [99]. Click models can be distinguished
by the parameter estimation, which is either done by maximum likelihood estimation (MLE) or
the expectation-maximization (EM) algorithm, which has been improved for more efficiency [48]
and online retraining [63]. Suppose both clicks and editorial relevance judgments are available. In
that case, it is possible to turn click models into information retrieval metrics [26] or to make new
relevance labels for previously unjudged documents [20, 72].

ACM J. Data Inform. Quality, Publication date: October 2023.
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The quality of click models is often evaluated by the Log-Likelihood and Perplexity [61], but also
other reliability measures exist [62]. In previous work, click models have mainly been evaluated on
semi-public web search datasets, e.g., from Yahoo! [19, 54, 72, 73] or Yandex [24, 34], in which the
SERPs are anonymized and the underlying web corpus is fully or partially private. To the best of
our knowledge, we are the first to evaluate simulated interleaving experiments with a completely
open and transparent experimental setup.

3 METHODOLOGY AND EVALUATION SETUP

As described in the introduction of this work, our overall methodology aims to validate the simula-
tion quality of click models in interaction data-sparse environments like living labs. The key idea
is to validate the click model by its ability to identify the correct system ranking, for which we
know the relative performance of each system with high confidence in advance. To better under-
stand how much user interaction data are required for a reasonable parameterization of the click
model, we parameterize and subsequently evaluate the click model over an increasing amount of
session logs. The performance estimates of the click model are either based on the Log-Likelihood
or on the highest click probability, which is used in simulated interleaving experiments. The click
model system ranking is compared to the reference ranking with the help of Kendall’s g , which
determines the rank correlation.
In the following, we describe the two types of system rankings and the corresponding single

systems that will be used as the reference system rankings to which the performance estimates of
the click models are compared (cf. 3.1). Afterward, we describe and compare the three click models
by their attractiveness and examination probabilities (cf. 3.2). In comparison, the click models
mainly differ by how the examination probability is determined, and we discuss the corresponding
assumptions about the concepts of satisfaction and continuation by an illustrative toy example.
Furthermore, we describe our experimental setup that is based on the TripClick dataset (cf. 3.3) and
introduce the evaluation measures (cf. 3.4). Finally, we provide details about the implementation
and hardware (cf. 3.5).

3.1 Experimental Systems

In our experiments, we include two types of system rankings, and selecting them is motivated by
the Tester-based approach by Labhishetty and Zhai [51, 52]. According to them, a user simulator
(in this study, it is the click model) can be validated by its ability to distinguish the retrieval per-
formance of methods for which we know the relative system effectiveness with high confidence
or based on heuristics. For instance, by experience, we can safely assume that BM25 is more effec-
tive than ranking documents by the term frequency. The first system ranking is based on Lexical
Retrieval Methods (LRM) and is defined by

DFRj2 ≻ BM25 ≻ Tf ≻ Dl ≻ Null.

More specifically, it is composed of the following five methods (in decreasing order of hypoth-
esized effectiveness), including (1) the DFR j2 model [3], which is a (free from parameters) DFR
method based on Pearson’s j2 divergence, (2) the BM25 [78] method, (3) the term frequency (Tf)
of the query terms in the document, (4) the query-agnostic method based on document length (Dl),
and (5) a method that assigns score values of zero (Null).
In contrast, the second system ranking is composed of an Interpolated RetrievalMethod (IRM)

with different interpolations between a reasonable and a less effective retrieval method, which
gives usmore control over the effectiveness byweighting the influence of the less effective retrieval
method. In our experiments, we combine the DFR ranking method with the ranking criterion

ACM J. Data Inform. Quality, Publication date: October 2023.
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Fig. 2. Jaccard similarity between the first 20 documents of the 50 head queries for the LRM (le�) and IRM

(right) system rankings. The Jaccard index is determined based on the document identifiers of both rankings.

based on document length (Dl) and determine the ranking score for a document-query pair (3,@)
as follows:

score(3,@) = d · scoreDl (3,@) + (1 − d) · scoreDFR (3,@). (1)

By increasing d , we deteriorate the ranking results in a systematic but also more subtle way,
which better simulates incremental and less invasive changes to an existing search platform in an
online experiment.2 The resulting IRM ranking is defined by

IRMd1 ≻ IRMd2 ≻ · · · ≻ IRMd=

where IRMd denotes a single system in the ranking, and d1 < d2 < ... < d=, i.e., a lower inter-
polation weight d is supposed to result in a more effective retrieval system. We acknowledge that
the intuition of the relative IRM system ranking is based on a weak heuristic that is only valid for
this particular combination of retrieval methods (as will be evaluated in Subsection 3.4). Generally,
it cannot be guaranteed that a higher interpolation parameter, giving more weight to the inferior
ranking method, will decrease effectiveness. Especially if the difference in effectiveness is moder-
ate, the linear combination of reasonable retrieval methods can improve the results, as exploited
in many data fusion experiments. However, in our settings, we ensure a decrease in effectiveness
by implementing the inferior retrieval method with a query-agnostic ranking criterion that will
likely deteriorate the ranking.
When comparing the LRM and IRM rankings, the LRM ranking has more diverse document

rankings, as shown in Figure 2. The heatmaps compare the first 20 results of the document rankings
for the 50most frequent queries of the dataset described in Section 3.3 between the combinations of
the different systems by the Jaccard similarity. Given the rankings of the two systems, we compare
the corresponding document sets by the Jaccard similarity. The higher the Jaccard index, the more
similar the two document sets. We note that a perfect Jaccard index of 1.0 could be achieved with
the same document sets but different rankings, i.e., the documents in both rankings do not need to
be in the same order. This evaluation focuses diversity in the document rankings. For the evaluation
of rank correlations, Kendall’s g or the Rank-biased Overlap (RBO) [95] should be preferred (cf.

2We exclude interpolations with d < 0.4 to cover a similar score range of the Jaccard similarity for the LRM and IRM
rankings, as shown in Figure 2.
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Subsection 3.4). Except for the comparison of DFR and BM25, most of the LRM combinations
are quite dissimilar. In comparison, the IRM systems with different interpolation weights cover a
similar score range but have a more gradual transition of the Jaccard similarity over the different
combinations of weight pairs. The LRM ranking includes fewer but has more distinct systems.
In contrast, the IRM ranking is based on more similar document rankings but also more systems,
whichmeans that changing the rank position of a single systemwould result in less severe changes
in Kendall’s g as compared to changes in the LRM ranking.

3.2 Click Models

In the following, we review the analyzed click models [23], which are based on probabilistic model-
ing of the underlying user behavior as opposed to other models based on neural networks [12, 98].
All of them can only estimate the click probability of query-document pairs that were available
during the parameter optimization. Given a document ranking, a click model estimates the prob-
ability % (�3 = 1 | C<A ) of a click �3 on the document 3 considering earlier clicks C<A before the
rank A by

% (�3 = 1 | C<A ) = % (�3 = 1 | �A = 1) · % (�A = 1) = U3@YA (2)

where the probability % (�3 = 1 | �A = 1) depends on the probability % (�A ) that the document
is examined. Thus, the click probability of a document3 can be decomposed into the attractiveness
U3@ of the query-document pair (3,@) and the examination probability YA . The attractiveness of all
click models in this study is given by

U3@ =
1

�

�S3@

�

�

∑

B∈S3@

2
(B )

3
(3)

and only differs by the set of sessions S3@ . In this work, a session B covers a single query, a
corresponding SERPwith ranked items, and multiple clicks. Unlike other works, the analyzed click
models do not consider multi-query sessions. We acknowledge the simplified understanding of a
session that contrasts other user-oriented studies that, for instance, consider query reformulations
for the same information need. The DCTR model determines the click probability solely by the
ratio of clicks on a document 3 and how often it has been shown to users for a query @. The
attractiveness is determined over all available sessions where @ and 3 occur. The examination
probability of DCTR for the document at the next rank (A + 1) is defined as

YA+1 = 1 (4)

i.e., the click model does not consider the context of other documents and the notion of sat-
isfaction. In comparison, both click models DCM and SDBN extend the cascade model [30] and
determine the attractiveness by considering sessions with documents before the last-clicked doc-
ument at rank ; in a particular session, assuming that the user continued the search after having
clicked unsatisfying results and documents beyond ; were not observed by the user. The set of
sessions is defined as

S3@ =

{

B@ : 3 ∈ B@, A ≤ ;
}

. (5)

In order to account for the satisfaction of clicks, the DCM introduces the continuation probabil-
ity _A determined by the ratio between the total number of sessions with clicks at rank A that were
not the last click in a session (denoted as I(A ≠ ;)) and the total number of sessions in which rank
A was logged |SA |. The continuation probability _A is defined as
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Table 1. Click models: the examination probability YA+1 of DCM and SDBN depends on 2
(B )
A that denotes

the probability of a click being observed at rank A in a session B .

Click model S3@ of attractiveness U3@ Examination probability YA+1
DCTR [30] S3@ =

{

B@ : 3 ∈ B@
}

YA+1 = 1

DCM [35]
S3@ =

{

B@ : 3 ∈ B@, A ≤ ;
}

; is the rank of the
last-clicked document

YA+1 = 2
(B )
A _A +

(

1 − 2
(B )
A

)

(1−U3@)YA
1−U3@YA

with _A =
1

|SA |

∑

B∈SA
I(A ≠ ;)

SDBN [21]

YA+1 = 2
(B )
A

(

1 − f3@
)

+
(

1 − 2
(B )
A

)

(1−U3@)YA
1−U3@YA

with f3@ =
1

�

�

�S′
3@

�

�

�

∑

B∈S′
3@
I
(

A (B ) = ;
)

where S′
3@

=

{

B@ : 3 ∈ B@, A3 ≤ ;, 2
(B )

3
= 1

}

_A =
1

|SA |

∑

B∈SA

I(A ≠ ;). (6)

The examination probability YA+1 of DCM is then defined as

YA+1 = 2
(B )
A _A +

(

1 − 2
(B )
A

)

(

1 − U3@
)

YA

1 − U3@YA
(7)

where 2 (B )A denotes the probability of a click being observed at rank A in a session B . Similarly,
the SDBN model embeds the satisfaction probability by the parameter f3@ but instead, it accounts

for the total number of sessions with the last clicks (denoted as I
(

A
(B )

3
= ;

)

) in reference to the

total number of sessions S′
3@

in which the document 3 is clicked at a rank before or equal to ; . The

satisfaction probability f3@ is defined as

f3@ =
1

�

�

�S′
3@

�

�

�

∑

B∈S′
3@

I
(

A (B ) = ;
)

(8)

where the corresponding set of sessions S′
3@

is defined by

S′
3@ =

{

B@ : 3 ∈ B@, A ≤ ;, 2
(B )

3
= 1

}

. (9)

The examination probability YA+1 of SDBN is then defined as

YA+1 = 2
(B )
A

(

1 − f3@
)

+
(

1 − 2
(B )
A

)

(

1 − U3@
)

YA

1 − U3@YA
. (10)

For the sake of better comparability, Table 1 provides an overview of how the click models’
attractiveness and examination probabilities are determined. For all three click models, the param-
eters are derived from observable variables, e.g., via the MLE algorithm.
For a better illustration of how the continuation and satisfaction probabilities can be determined,

Table 2 provides a toy example with five sessions, for which we assume that the same ranking was
logged for a single query @, where filled circles represent the clicks. For instance, we can determine
the continuation probability of the second rank _A2 by the sessions B1, B3, and B4 at which the rank
A2 was clicked. For two out of these three sessions, the click at the second rank was followed by
additional clicks at the lower ranks, which indicates that the users continued to browse through
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Table 2. Toy example of the continuation _A and satisfaction f3@ probabilities for five logged sessions for a

single query @. The filled circles correspond to clicks.

A8

B8
B1 B2 B3 B4 B5 _A f3@

A1
1
1 = 1.0 0

1 = 0.0
A2

2
3 = 0.6 1

3 = 0.3
A3

1
3 = 0.3 2

3 = 0.6
A4 - -
A5

0
2 = 0.0 2

2 = 1.0

the ranking after having seen the document at rank A2. Accordingly, the continuation probability
is determined by this ratio, i.e., _A2 =

2
3 .

Similarly, we can determine the satisfaction probability at the second rank f3A2@ . For one out
of the three sessions (B4), it was also the last click in the session. Accordingly, the satisfaction
probability is determined by this ratio, i.e., f3A2@ =

1
3 . Note that the continuation and satisfaction

probabilities are complementarywhen comparing them for a single query, i.e., _A = 1−f3@. The two
click models DCM and SDBN differ if they are compared over multiple queries, as the continuation
probability of DCM depends only on the rank A and is determined over all queries. In contrast, the
satisfaction probability of SDBN is specific to the query-document pair.
Suppose no clicks at a rank have been logged. In this case, it is impossible to determine the

continuation and satisfaction probabilities (cf. A4), and as a workaround, default probabilities can
be used, or it is likewise possible to estimate values from the probability distribution.

3.3 Dataset

For our experiments, it is a fundamental requirement to have open data. Nowadays, several datasets
are available for the general research community, but a large fraction of them is not suitable for
our experiments. As pointed out before, previous work about click models was done in cooper-
ation with large web search companies like Yahoo! [19, 54, 72, 73] or Yandex [24, 34] and used
entirely private or semi-public datasets. A popular dataset for the training of click models was
made publicly available by Yandex as part of the Personalized Web Search Challenge.3 A similar
dataset is publicly provided by Yahoo! as the L18 - Anonymized Yahoo! Search Logs with Relevance

Judgments.4 However, in both datasets, the web search results are anonymized, and no document
collection of the entire corpus is provided. This is critical for our experiments as we want to build
custom index and retrieval pipelines as defined above.
ORCAS [29] is a companion dataset to MSMARCO that provides click-document pairs, and

both the query as well as the document, are available in a clear text version. However, the DCM
and SDBN click models do not only require triples containing the query, the documents, and the
corresponding clicks but also the context of other documents in the SERP that were seen but not
clicked, making ORCAS unusable for our experiments. We note that there exist several datasets
that were curated in cooperation with the Chinese web search engine provider Sogou, like Sogou-
QCL [101] or Sogou-SRR [97], but these are not usable for us as non-Chinese speakers. More
importantly, the dataset covers more general topics as it is based on web search results, but living
labs usually have a domain-specific focus [42, 81].

3https://www.kaggle.com/competitions/yandex-personalized-web-search-challenge/overview
4https://webscope.sandbox.yahoo.com/
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Instead, we use the recently introduced TripClick [77] dataset of the biomedical search engine
Trip in our experiments. It contains documents and user interaction logs covering a period of
seven years, from 2013 to 2020. It was highlighted that the annotation coverage for the top results
is low [40], and recently, topical relevance judgments called TripJudge were introduced [2]. In our
experiments, we can only use data logswith information about the entire SERP, which are available
from 13th August 2016. Furthermore, we restrict the sessions to the 50 most frequent queries in
the dataset to ensure that at least 100 logged sessions are available for each query. We note that
the Trip database has professional and non-professional users alike and that the head queries are
a very particular query type. Even though they are domain-specific, the selected sample of 50
queries is more generic than other queries in the torso or tail of the query distribution. Most of the
query strings are composed of two terms only. As can be seen by the most frequent query in the
logs (“covid-19 and pregnancy”), the COVID-19 pandemic had an influence on the data logs, which
is representational for the dynamic evaluation environment where new queries and information
needs emerge from recent trends.

3.4 Evaluation measures

In the following, we introduce the measures of our experimental evaluations, including the Log-
Likelihood, the outcome of interleaving experiments, and the rank correlation measure Kendall’s g .
Besides, we include a preliminary system-oriented evaluation of the system rankings based on the
TripClick and TripJudge relevance labels to verify the assumptions about the relative effectiveness
of the single systems.

3.4.1 Log-Likelihood. This is a standard evaluation measure of click models, and it was found that
better scores correlate with a higher fidelity of simulated clicks [61]. We determine it over a run '
with |Q| queries and ranking length = as follows:

LL(') =
∑

@∈Q

=
∑

A=1

log % (�3 = 23 | C<A ) (11)

where % (�3 = 23 | C<A ) denotes the click probability of a particular click model for a document
3 at rank A given the ranking of a retrieval method for a query @ and the list of previous clicks C<A

before rank A of the examined document. In our experiments, we use the TripClick data logs that
contain SERPs with 20 entries (= = 20) and |Q| ∈ [1, 50]. Unlike previous work, we do not use
Log-Likelihood to evaluate the click model itself but to distinguish between the ranking quality of
retrieval systems. Assuming that a well-performing retrieval method delivers attractive rankings
that result in clicks, the system maximizes the click probabilities, and thus the Log-Likelihood,
over every result in a ranking list.

3.4.2 Outcome of interleaving experiments. Our interleavings are based on the Team Draft Inter-
leaving algorithm [76]. The corresponding interleaved ranking lists can be decomposed into two
sets containing the documents �exp contributed by the experimental system and the documents
�base of the competing baseline. An experimental system wins if it contributes the document with
the highest click probability to the interleaved ranking, i.e., we determine the rank of the document
with the highest click probability by

A = argmax
:∈{1,...,=}

% (�: | C<: ) (12)

whereas we assign a win if 3A ∈ �exp. Otherwise, the experimental system looses, i.e., 3A ∈ �base,
and a loss is assigned. Suppose the click probabilities of the interleaving are indifferent from those
of a ranking with unknown documents. In that case, the click model cannot decide on a better
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system, and a tie is assigned. Finally, the outcome is determined over multiple queries Q and is
defined as

Outcome =
WinsQ

WinsQ + LossesQ
(13)

A clear winner achieves an outcome of 1.0, whereas 0.5 means that the experimental system is
on par with the baseline, and any outcome below 0.5 indicates an inferior experimental system.

3.4.3 Relative system performance. As it is common practice when comparing relative system
rankings, we use Kendall’s g to compare the reference system ranking R with the click model
system ranking R′ as follows:

g (R,R′) =
% −&

√

(

% +& +*
) (

% +& ++
)

(14)

whereas % is the total number of concordant pairs (system pairs that are ranked in the same
order in both rankings), & is the total number of discordant pairs (system pairs that are ranked in
the opposite order in the two rankings),* and+ are the number of ties, in R and R′, respectively.
As a rule of thumb, Voorhees considers correlations with g > 0.9 as acceptable [94]. We evaluate
the system rankings resulting from the click model-based evaluations in reference to the LRM and
IRM rankings, for which the relative orderings are motivated by the Tester-based approach (cf.
3.1).
We note that there exist other measures to determine the correlation between the two rankings.

For instance, the Rank-biased Overlap (RBO) [95] can be used to quantify the overlap between
two lists of ranked items. Opposed to Kendall’s g , RBO does not require identical sets of ranked
items to be compared, i.e., it can be used with rankings with infinite lengths and dissimilar sets of
documents that may only overlap to some extent. Additionally, RBO models the user’s browsing
behavior by the transition probability ? to the next ranked item, which allows giving more weight
to overlap in higher rank positions. The lower the transition probability ? , themore emphasis is put
on overlaps in higher-rankedpositions, modeling an impatient user.While it is generally preferable
to compare RBO alongside Kendall’s g when evaluating document rankings (where Kendall’s g is
known as the stricter measure [13, 60]), we evaluate the relative system performance by Kendall’s
g only for two reasons. First, we compare the ranking of systems, not documents, and there is no
need to include a user model in the evaluation of relative system performance, as the user would
not be exposed to the system but to their corresponding outputs — the rankings. Second, we deal
with a fixed set of systems, and Kendall’s g can be used for more rigorous evaluations.

In order to strengthen the reasoning behind the hypothesized system rankings, we evaluate
them with the help of editorial relevance judgments. For this purpose, we use the previously men-
tioned TripJudge relevance labels [2]. The results in Figure 3 show that the system-oriented ex-
periment gives evidence to the hypothesized relative orderings of the system performance. We
can control the retrieval performance for both types of system constellations by choosing an en-
tirely different rankingmethod or increasing the interpolation weight towards the inferior ranking
criterion.
Regarding the IRM ranking, we see that an interpolation parameter of d ≤ 0.4 does not sub-

stantially change the retrieval effectiveness. In our experiments, we set d = {0.4, 0.45, ..., 1.0}, and
we exclude all of the systems with d ≤ 0.4, as the experimental setup requires differences in ef-
fectiveness. Very likely, interpolations with d ≤ 0.4 do not impact effectiveness, as we determine
the document’s length by the abstracts. Naturally, abstracts are shorter than the corresponding
full-texts, and abstracts do not differ in length as much as publications do. In the interpolations,
the ranking method requires a certain weight to impact retrieval effectiveness. We consider the
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Fig. 3. LRM (le�) & IRM (right) system rankings evaluated by editorial relevance judgments. The dashed

lines correspond to the baseline system IRMd=0.7 (cf. 3.4).

IRM system with d = 0.7 as an adequate baseline, ranked in the middle of the IRM ordering with
six systems performing better (d < 0.7) and six systems performing worse (d > 0.7). Similarly,
IRMd=0.7 is almost on par with the Tf-based method that is in the middle of the LRM ranking.
In addition, we include Table 3 in the appendix, which compares the system-oriented measures

P@20, nDCG@20, and AP based on the click-based relevance labels of TripClick to that based
on the editorial relevance labels of TripJudge. As these results demonstrate, we can confirm that
the coverage of relevant documents at the top ranks is higher when using the editorial TripJudge
labels. However, in our case, both types of relevance labels agree about the relative system per-
formance for both the LRM and IRM rankings. These system-oriented experiments are another
perspective of the system performance, strengthening our methodology’s reasoning as a form of
external validation.

3.5 Implementation details

We implement the experiments with the help of the Pyterrier retrieval toolkit [59] (the Python
interface to the Java-based retrieval toolkit Terrier [71]) and the dataset library ir_datasets [58],
which features bindings to the TripClick dataset. We filter and select the session logs with the help
of the NoSQL database MongoDB. We rely on the PyClick5 [23] library when implementing the
click models. In addition, we provide the required parsers to ingest the session logs from our data-
base into the PyClick framework. All of the experiments are run on a Dell workstation with an Intel
Xeon Gold 6144 CPU and 64 GB of RAM on Ubuntu 18.04 LTS. The entire code to rerun the experi-
ments is available on GitHub at https://www.github.com/irgroup/validating-synthetic-usage-data.

4 EXPERIMENTAL EVALUATIONS

In the following, we present the experimental evaluations based on the analysis of the Log-Likelihood
and the simulated interleaving experiments. In order to determine the performance of click models
over an increasing amount of click data and queries, we randomly sample an increasing number
of logged sessions, which are used to parameterize the click model. For each query @ ∈ Q, we

5https://github.com/markovi/PyClick
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randomly sample B sessions ten times, i.e., we let the click model adapt to the given data sample
(with B sessions for |Q| queries) and evaluate the system rankings over ten trials.

In the first experiment in 4.1, the system rankings are determined by Log-Likelihood based on
the click probabilities, whereas in the second experiment in 4.2, the living labs are simulated, and
the system rankings are based on the outcomes (cf. Equation 13) of the corresponding interleaving
experiments. Each system ranking that results from either the Log-Likelihood or the outcome
measure is compared to the reference system rankings, which were introduced in 3.1, with the
help of Kendall’s g (cf. Equation 14).

4.1 Log-Likelihood Evaluations

We determine the Log-Likelihood for all combinations resulting from the two system rankings
and the three click models and evaluate them over an increasing amount of click log data that
is used for parameterizing the click models. Figure 4 shows the Log-Likelihood over the number
of sessions with either 5, 10, 20, or 50 queries. Unsurprisingly, the Log-Likelihood increases as
more sessions are used to parameterize the click models. As more click logs are available, the click
models becomes familiar with relevant, i.e., previously clicked documents, and consequently, there
is a higher click probability.
There are apparent differences between DCTR and the other two click models when comparing

them. In the case of the DCTR-based Log-Likelihood, the ranking order of documents is irrelevant
as the click model does not account for the ranking position. Consequently, there is no rank-biased
discount of the documents’ attractiveness, leading to an overall higher Log-Likelihood of theDCTR
model. In contrast, the document order affects the click probabilities of the DCM and SDBN click
models, leading to an overall lower Log-Likelihood, which can be explained by the examination
probabilities of these click models that are a rank-biased discount of the documents’ attractiveness.
As it can be seen from the LRM ranking (in the upper half of Figure 4), the Null system has a

constant Log-Likelihood and is an estimate for lower bound performance. For the other systems,
the Log-Likelihood increases asmore sessions are considered, whereas theDFR and BM25methods
are quite distinct from the simple ranking criteria based on the term frequency (Tf) and document
length (Dl). In the lower half of Figure 4, the IRM system rankings based on the Log-Likelihood
aligns with the earlier system-oriented evaluations in 3.4.3, i.e., the overall Log-Likelihood is lower
(the retrieval system performs worse) when the interpolation parameter d gives more weight to
the inferior ranking criterion.
By evaluating the Log-Likelihoodwith 50 queries, we see a steeper increase in the Log-Likelihood

as more (possibly earlier clicked) documents are retrieved. Once enough click data are available,
there are consistent click probabilities, as can be seen by the plateau-like shape of the Log-Likelihood
plots with 50 queries. Any additional sessions with new click data only provide redundant rele-
vance information and only affect the click probabilities to a negligible extent.

In comparison, the Log-Likelihood averaged over fewer queries is noisier, as also can be seen by
the larger confidence intervals, but it also increases over the sessions. By the example of the DCTR
model, we see that the Log-Likelihood also increases as more queries are considered. However,
comparing the results based on 10 or 20 queries to those based on 50 queries, there is a slightly
higher Log-Likelihood when fewer queries are used. As the results are averaged over the queries,
this can be explained by the higher click-through rates of the more frequent queries (top-10 or
top-20), while less frequent queries also have lower click-through rates.
Overall, these preliminary evaluations suggest that either more queries or more sessions are

required to distinguish between the single ranking systems. To this end, we conduct a more ex-
tensive analysis with an increasing number of queries and sessions. Figure 5 compares Kendall’s
g scores over different combinations of queries and log sessions for all three click models and the
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two system rankings. The heatmaps show the rank correlation in terms of Kendall’s g for the dif-
ferent combinations of queries (ranging from 3 to 50) and sessions (ranging from 1 to 20). The
greener the corresponding patch, the higher the correlation between the reference and the click
model system ranking.
The first heatmap based on DCTR and the LRM ranking shows a diagonal transition from the

upper left corner to the lower right corner - the heatmap gets more greenish as more queries and
sessions are used to evaluate the click model. In comparison, the IRM heatmap of the DCTR model
has an overall darker appearance, which means that in comparison to the LRM ranking, less log
data and queries are required in order to determine the correct system ranking.
Evaluating 50 queries with a DCTR model based on 20 session logs for each query is already

enough to reproduce the LRM system ranking with a perfect correlation of g = 1.0. In contrast, the
DCM and SDBN click models require more session logs to reliably reproduce the correct system
orderings, resulting in lower correlation scores of gDCM = 0.4267 and gSDBN = 0.5867 on average
with the same amount of queries and corresponding sessions. This can also be seen by the overall
lighter heatmaps, which indicate low correlations between the system rankings.
In general, the IRM system ranking also results in higher Kendall’s g scores with fewer queries

and sessions for DCM and SDBN, which suggests that it is easier for the click models to distin-
guish between systems that rely on the same retrieval method by the Log-Likelihood. We assume
that the smaller document pool can explain this (cf. Figure 2), i.e., there are fewer document can-
didates by which the method can be compared, and less click data are required for meaningful
parameterization.
We conclude that evaluating the relative system performance by the Log-Likelihood is a viable

solution under the assumption that good-performing systems maximize the click-through rate
only by the attractiveness of the ranking list. In comparison, DCTR is more robust and results in
more reliable estimations when less log data are available. For instance, the LRM system rankings
result in Kendall’s g scores of 1.0 with 50 queries and click data from 20 sessions for each query,
while the Log-Likelihood based on DCM and SDBN scores is below 0.6 when evaluated with the
same amount of queries and click data. Overall, Log-Likelihood is lower when evaluated with the
DCM and SDBN click models due to the examination probability discounting the attractiveness.
While the Log-Likelihood is an adequate indicator of system effectiveness in these evaluations,

it is still an open question how it is related to user satisfaction or how it is related to editorial
relevance. Additionally, the cognitive biases of the user should be considered in more user-oriented
evaluations. Liu et al. [56] found that user satisfaction is affected by the rank positions of relevant
items. A large number of relevant items at the end of a session results in higher satisfaction than
rankings of relevant items at higher positions earlier in the session. In this regard, DCTR attributes
the same importance to documents irrespective of their position in the ranking. In comparison, the
other click models rely on the cascade model that gives more weight to higher rank positions.

4.2 Simulated Interleaving Experiments

In the interleaving experiments, we determine the system ordering by the outcome measure (cf.
Eq. 13) for which the highest click probability is used as the winning criterion (cf. Eq. 12). For
each interleaving, the experimental ranking is interleaved with the baseline, which is consistent
for both types of system rankings for the sake of better comparability and is set to IRMU=0.7.
Figure 6 compares the outcomes for 50 queries with 100 session logs over ten trials for each

experiment. Most strikingly, all of the click models can reproduce the correct orderings of the LRM
system ranking, whereas, for the IRM system rankings, the relative ordering cannot be reproduced,
but all of the clickmodels can differentiate between systems that out- or underperform the baseline.
In our analysis, often the winning queries, i.e., those queries for which the experimental system
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Fig. 4. Log-Likelihood of the LRM and IRM system rankings based on the three click models DCTR, DCM,

SDBN and compared by 5, 10, 20, and 50 queries.
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logs. The dashed line corresponds to the baseline (IRMd=0.7) that is consistent for system rankings.

wins, directly turn into losing queries as soon as the bad ranking criterion is assigned a higher
weight than that of the baseline system.

For better illustration, an in-depth analysis of the winning and losing queries is given in Figure
7. More specifically, the Jaccard similarity is shown for the winning (lower triangle) and for the
losing (upper) queries over different interpolation weights, whereas winning and losing queries
are those for which the experimental system is either assigned a win or a loss, respectively.
It can be seen that there are higher query similarities between those systems with an interpo-

lation weight, which is either below or above that of the baseline system. However, there is a low
overall similarity when comparing the winning/losing queries of system combinations with lower
and higher interpolation weights (cf. to the light green areas in the lower left and upper right of
the heatmap). This is independent of the click model, as the three heatmaps show similar results.
It means that for the IRM system ranking, the winning queries, i.e., those queries for which the

experimental system wins, turn into losing queries as soon as the bad ranking criterion is assigned
a higher weight than that of the baseline system. Queries resulting in ties barely change, i.e., no or
an equal number of clicks are made for both interleaved systems, as the click models cannot decide
on a better system with unseen documents. These experimental results demonstrate that it can be
problematic to compare systems with a small document pool with fewer document candidates and
low click-through rates.
Finally, Figure 8 shows Kendall’s g of the system rankings derived from the interleaving exper-

iments resulting from click models parameterized over an increasing number of sessions. As can
be seen by the light stripes in the heatmap, it is not possible to reproduce the correct ordering of
IRM systems for any of the click models. Most of the rank correlations of the IRM rankings stay
below 0.6, which aligns with our earlier observations.
When comparing the LRM system rankings of the click models, we see that the DCTR model

results in comparably higher correlations when less log data are available. For instance, the patches
in the heatmap have a darker green when using 10 or fewer session logs per query for the DCTR
model. However, the DCTR experiments demonstrate that the correlation scores do not stabilize
even if more sessions are used for the parameterization. Once a certain amount of log data are
used to parameterize the click models, DCM and SDBN deliver more robust correlation scores. For
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Fig. 7. Jaccard similarity between the winning (lower triangle) and losing queries (upper triangle) of the

simulated interleaving experiments with DCTR, DCM, SDBN click models.

a better understanding and analysis, we determine the relative error between the cumulated and
the ideal Kendall’s g score as

Xg =
Δg

g8340;
=
g8340; − gBD<

g8340;
= 1 −

gBD<

g8340;
= 1 −

∑ |S |
B=1 gB

∑ |S |
B=1 1

= 1 −

∑ |S |
B=1 gB

|S|
(15)

where g8340; is considered as the sum of the ideal rank correlation up to the amount of consid-
ered sessions |S|, and ideal refers to a perfect rank correlation of 1. Accordingly, Δg describes the
difference between the actual sum of rank correlations and the ideal sum. A good performing user
simulator or click model gives a low Xg score or minimizes it as it gets more session data for an
adequate parameterization.
Figure 9 shows Xg for the click models in combination with both types of system rankings over

an increasing amount of session logs. These results confirm that once enough session data are
available, the DCM and SDBN click models can better distinguish between the relative system
performance in these particular simulated interleaving experiments.
Regarding the LRM system ranking, there are higher errors for DCM and SDBN when only a

few sessions are available, and the DCTR is a better choice when considering the lower error rates.
However, it can be that with an increasing amount of click data, the error for both DCM and SDBN
decreases while the error of the DCTR model evens out and does not decrease as more sessions
are used for the parameterization.
In comparison, it is generally harder for the click models to distinguish between the IRM system

ranking based on interpolations. The experiments with 100 sessions result in considerably higher
errors (higherXg scores), but still, the DCM and SDBN give slightly better estimates than the DCTR.
In this case, the Xg scores even out, while the scores of the DCTR still increase as more session
logs become available. Similar to the earlier results, it is better to use DCTR when less log data are
available. However, once enough logged clicks are available for the parameterization, the DCM
and SDBN are less error-prone and more reliable.

4.3 Interleaving Experiments with Transformer-based Rankings

In addition to the former experiments that confirmed the general plausibility of the introduced
evaluation method, we demonstrate its application when evaluating state-of-the-art Transformer-
based rankings. To have enough click logs available, our click models were parameterized with
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TripClick logs that are part of the data collection’s training dataset. For this reason, it is not pos-
sible to fine-tune any Transformer-based method, as this would inevitably lead to leakage when
using the same click logs during training and evaluation. As an alternative, we ground our ex-
periments on the SPECTER language model [28, 85] that we use as a zero-shot ranker without
task-specific fine-tuning. More specifically, SPECTER generates dense vector representations of
scientific documents. The language model is pretrained with the help of the documents’ citation
signals building upon SciBERT [11], which, in turn, is a variant of the renowned BERT model [31].
Cohan et al. [28] demonstrated that the model outperformed many baselines on different NLP
tasks without fine-tuning. Likewise, the model performed well for zero-shot ad-hoc retrieval [85].
We implement a typical two-stage ranking pipeline that includes a first-stage ranking based

on BM25, reranked by SPECTER. Earlier experiments found that the reranking depth, i.e., the
rank cutoff of the first-stage ranking, impacts the effectiveness of the final ranking [55]. As the
length of the first-stage ranking increases, the Transformer-based method can potentially find
more relevant documents and push them to higher positions in the ranking. Conversely, more
candidate documents result in higher computational costs, which can become critical in industrial
applications, where system efficiency impacts user satisfaction. To this end, keeping the reranking
depth low without sacrificing effectiveness is a desideratum.
In the simulated interleaving experiments, we let the final SPECTER rerankings with different

cutoff levels compete against the BM25 baseline. In practice, this approach could be used to make
estimates of an adequate reranking depth, considering effectiveness and efficiency tradeoffs. Fig-
ure 10 (left) shows the results of the simulated interleaving experiments. In addition, Figure 10
(right) shows Bpref [16], which is a measure that solely considers judged documents, and the
RBO [95] between the first 20 documents of BM25 and SPECTER, which corresponds to the total
number of documents shown to the click model. As we evaluate Bpref on the TripClick relevance
judgments, it is a proxy measure of how well the system finds previously clicked documents. Sim-
ilar to the evaluations of the previous subsection, we parameterize each click model with 100
sessions and simulate interleaving experiments with 50 head queries.
For the cutoffs at 30 to 60, the click models do not agree on the better-performing system. Based

on the outcomes of the DCTR model, the reranking is indistinguishable from the BM25 baseline.
As the cutoffs increase, the click models agree on SPECTER as the better-performing system; i.e.,
above a cutoff level of 70, SPECTER is considered more effective. In general, different click models
make it feasible to evaluate the benefits for different kinds of user behaviors. If the click models
disagree on the relative system performance, there is a higher risk of harming the users’ search
experience than in the case of agreement between the models.
With special regard to the cutoff level at 20, we see that the click models agree on SPECTER

as the more effective system, which can be explained by the fact that, in this case, the SPECTER
ranking is a purely (improved) reranking of the top 20 documents by BM25. For higher cutoffs, the
reranker could bring up other documents — unfamiliar to the click model — among the first 20
ranking positions that are less likely to be clicked, which is the case for cutoff levels between 30
and 60. As the cutoff further increases above 60, SPECTER can rely on more relevant candidates
in the BM25 ranking that are brought to the top 20 positions.
This circumstance is further underlined by the fact that the Bpref scores increase, and the RBO

scores decrease over the cutoffs. The increasing Bpref scores show that the SPECTER rerankings
indeed benefit from an increase in the first-stage ranking’s depth. Similarly, the RBO shows that
increasing first-stage cutoffs leads to different document orderings in the top 20 positions. Even
though the click models correctly identify SPECTER as the better system, a relative order is not
evident from the outcome scores, i.e., there is no clear preference for any cutoff from 70 and above.
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By these results, we conclude that it is generally possible to identify better-performing Trans-
former rankings, e.g., in this particular case, having a reranking depth of at least 70 documents
retrieved with BM25 is recommended. However, this experiment also demonstrates the limitations
of the evaluation approach. It has to be considered that these Transformer-based rankings could
bring up many documents that were not seen by the click models, which limits the estimates of
the relative system effectiveness, especially for higher cutoff levels.

5 ANSWERS TO THE RESEARCH QUESTIONS

In the following, we recapture our main findings of the experimental evaluations in the previous
Section 4 by giving answers to our three research questions.

5.1 RQ1: Can click models reproduce system rankings?

In our experimental evaluations, all clickmodels can reproduce the system rankings if enough click
logs are available, which is fundamental to our proposed methodology. We defined the simulation
quality by how well the click model’s click probabilities can reproduce the correct system ranking
that is known in advance. The simulation quality improves depending on how much session data
are available to parameterize the click model. In environments where user interaction data are
sparse, keeping the required amount of user interaction data low becomes critical. In this regard,
the DCTR model is able to distinguish reliably between the LRM systems by the Log-Likelihood
with already 20 logged sessions if 50 queries are used in our experimental setup. In direct compar-
ison, the IRM ranking can be reproduced with fewer data, which can be explained by a smaller
pool of documents for which interaction data has to be logged.

5.2 RQ2: Do continuation and satisfaction probabilities in click models improve the

simulation quality?

In our experimental setup, it is not recommended to use theDCMand SDBN for the Log-Likelihood
in an interactive data-sparse setting. In the corresponding evaluations, DCM and SDBN result in
overall lower scores in comparison to the DCTRmodel, which can be explained by the rank-biased
discount of the attractiveness due to the examination probability. This is not critical when large
amounts of session logs are available. For instance, if we can use 100 sessions per query, it is
enough for adequate parameterization. However, compared to the DCTR, 20 sessions per query
are not enough to let the DCM and SDBN reproduce the correct system ranking. On the other
hand, the DCM and SDBN system rankings are a better choice when simulating the interleaving
like they are implemented in living labs. In this case, the estimates of the LRM system ranking
are much more robust, and the continuation and satisfaction probabilities of DCM and SDBN can
indeed improve the simulation quality in our experimental setting.

5.3 RQ3: How does the type of system ranking impact the outcomes of simulated

interleaving experiments?

While all of the models can determine the correct ordering of the LRM system ranking reasonably
well in the simulated interleaving experiments, it is impossible to reproduce the correct IRM rank-
ing. However, one can still distinguish between better and worse-performing IRM systems and
separate them from the baseline. In our experimental setting, it is generally harder to reproduce
the IRM ranking as there are deciding queries that either let the IRM systemwin or lose against the
baseline system, depending on the interpolation weight. Once the interpolation parameter gives
a higher weight to the bad ranking criterion, most of the queries, which formerly let the system
win against the baseline, are the deciding queries that let the system lose against the baseline. This
finding is critical for search platform operators, as different parameterizations of the same retrieval
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method may result in measurable differences in system-oriented experiments, while they are not
reproducible in click model-based simulations.

6 DISCUSSION AND CONCLUSION

Living labs are a special type of human-in-the-loop environment that facilitates the evaluation of IR
systems in real-world experiments. However, previous work has highlighted that user interaction
data in living labs is usually sparse, and it is desirable not to damage a search platform’s reputation
with bad search results. These circumstances lead to the two requirements of 1) inferring relevance
information from as little interaction data as possible and 2) keeping the online time of highly
experimental systems short.
As a solution, it is possible to evaluate experimental systems with synthetic usage data based

on simulations instead of risking the exposure of possibly poor results to real users. However, it
remains unclear when a user simulator can be reliably used to simulate real user behavior by gener-
ating meaningful synthetic data. To this end, we introduced an evaluation approach for validating
a click model’s simulation quality in human-in-the-loop environments like living labs.
Earlier living labs primarily logged user interaction data in the form of clicks that were used to

evaluate the systems directly in interleaving experiments, but likewise, the clicks could be used
to parameterize click models. However, it is often unclear if the click model received enough click
logs for adequate parameterization. Our evaluation methodology aims at letting the click model
decide about the relative system performance that is knownwith high confidence or based on some
reasonable heuristics. In the literature, this approach was recently introduced as the Tester-based
approach [51, 52]. The click model’s system ranking is compared to the reference system ranking,
and the rank correlation, determined by Kendall’s g , is an indicator of the simulation quality.
In our experiments, we compared two different types of system rankings to validate the plau-

sibility of the proposed evaluation method. The first ranking was composed of different lexical
retrieval methods. In contrast, the second ranking was composed of a single ranking approach
with different interpolations between a reasonable and less effective retrieval method.While these
retrieval methods are rather simple compared to other state-of-the-art approaches, they are better
candidates to validate the general plausibility of our approach. More specifically, the two types of
system rankings cover the decision scenarios of platform operators. While the first system rank-
ing corresponds to a scenario in which it is unclear what retrieval method to use in general, and a
diverse set of methods should be evaluated, the second system ranking corresponds to a scenario
in which a previously chosen retrieval method should be fine-tuned.
Our experiments have shown how the DCTR, DCM, and SDBN click models can be used in

combination with the Log-Likelihood and the outcomes of simulated interleaving experiments
for the assessments of retrieval methods and how much session data are required for reliable
performance estimates. Overall, it is possible to reproduce the system rankings in simulations
based on click models, confirming our methodology’s general plausibility.
Regarding the evaluations based on the Log-Likelihood, the DCTR click model is a better choice

if only a few sessions are logged. Our experiments showed that the DCTR could perfectly repro-
duce the system ranking with 20 logged sessions for 50 queries, while the DCM and SDBN could
not. However, as more session logs become available, the DCM and SDBN click models are equally
well-suited for this type of evaluation. While these outcomes are promising, it must be pointed out
that the evaluation’s focus is only on the attractiveness of the search results, which results in a
simplified assumption about the users, making them more abstract. The rank-biased discount that
better approximates real user behavior is not beneficial in this evaluation setting.
This leaves the question of how the interpretation of the examination probabilities of the DCM

and SDBN models is of benefit for the user simulations. For a better understanding, we simulated
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living lab experiments and let the click models decide about the preference for one of two com-
peting systems in interleavings. The corresponding system rankings were based on the outcome
measure and showed that, once again, DCTR is a better choice when only a small amount of ses-
sion data are available. However, as more session logs became available, the DCM and SDBN gave
better, i.e., more robust, estimates about the system rankings.
When comparing the DCM to the SDBN model, there were no substantial differences in our

experiments. The rank-biased discount of the DCMmodel is determined by a rank-dependent con-
tinuation probability, which is determined over all available sessions, while the SDBN introduces
an additional satisfaction probability specific to the query-document pair. We conclude that for the
underlying TripClick dataset, the consideration of the satisfaction probability did not make that
much of a difference in comparison to the continuation probability.
We note that the decisions behind clicking on a snippet and annotating a document with a pos-

itive editorial label are fundamentally different. However, we think that click signal-based evalua-
tions are a promising alternative when a curated test collection is not available, and click models
can be used to evaluate the relative system performance when editorial relevance judgments are
missing. For instance, click models could be used in a pre-assessment, similar to the idea of pseudo-
relevance judgments [86], to identify more promising systems for online experiments. Especially
for small- and mid-scale search platforms that often partnered with living labs in the past, it would
be a viable solution to use click signals instead of curating a costly test collection.
Finally, the simulated interleaving experiments with Transformer-based rankings revealed some

limitations of the proposed methodology. More specifically, we compared rerankings based on
SPECTER with different cutoff levels to the BM25 baseline ranking. While click models identi-
fied SPECTER as the more effective ranking method, it was impossible to derive a relative system
ordering from the interleaving experiments. In principle, a higher cutoff level of the first-stage
ranking should result in better retrieval performance, as the Transformer-based method can rely
on more relevant items that are possibly reranked to higher positions in the list. However, our ex-
periments showed that there is no preference for any cutoff level once the baseline ranking returns
ranking lists with adequate depth. This circumstance can very likely be explained by the fact that
SPECTER-based rerankings brought up many previously unclicked items, which are consequently
unknown to the click model, still keeping an adequate amount of clicked items in higher positions
to outperform the baseline. Generally, it is recommended to deploy different types of retrieval sys-
tems when collecting click feedback data, similar to relying on system diversity in the pooling
when constructing a test collection. Nonetheless, the experiments could demonstrate how click
models can at least be used to determine the required cutoff level. In practice, this method could
help platform operators who aim for better estimates of the required cutoff level for balancing
effectiveness and efficiency.
Lastly, click data are biased [96]. To a certain extent, the click models address the bias that

would emerge from using single clicks as relevance indicators, i.e., the probabilistic models grasp
the behavior and preferences of the average user. However, there are other biases related to the
click signals. For instance, a position or system bias was introduced by the unknown production
system of the Trip database that we could not remove from the session logs. As part of future work,
it should be analyzed to which extent these kinds of evaluations are insightful pre-assessments of
the real system performance by deploying them in living labs [33, 81, 83]. In this way, the fidelity
of the click models can be further investigated with real users.
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APPENDIX

Table 3. System-oriented evaluations based on TripClick (click-based) and TripJudge (editorial) relevance

labels for the LRM and the IRM system rankings.

LRM
TripClick TripJudge

System P@20 nDCG@20 AP P@20 nDCG@20 AP

DFR 0.1439 0.1555 0.1404 0.1927 0.5557 0.4185
BM25 0.1337 0.1462 0.1363 0.1900 0.5429 0.3984
Tf 0.0551 0.0542 0.0317 0.0989 0.2319 0.1420
Dl 0.0470 0.0470 0.0265 0.0300 0.0675 0.0355
Null 0.0010 0.0020 0.0005 0.0006 0.0015 0.0012

IRM
TripClick TripJudge

d P@20 nDCG@20 AP P@20 nDCG@20 AP

0.00 0.1800 0.2363 0.1722 0.1912 0.5504 0.4075
0.05 0.1790 0.2354 0.1721 0.1915 0.5514 0.4089
0.1 0.1790 0.2352 0.1717 0.1919 0.5523 0.4102
0.15 0.1790 0.2351 0.1715 0.1921 0.5520 0.4100
0.2 0.1780 0.2341 0.1707 0.1926 0.5520 0.4098
0.25 0.1810 0.2370 0.1702 0.1932 0.5524 0.4100
0.3 0.1810 0.2365 0.1690 0.1936 0.5521 0.4093
0.35 0.1790 0.2324 0.1675 0.1942 0.5502 0.4070
0.4 0.1770 0.2307 0.1653 0.1944 0.5468 0.4026
0.45 0.1710 0.2279 0.1612 0.1946 0.5352 0.3867
0.5 0.1720 0.2045 0.1390 0.1926 0.4672 0.3144
0.55 0.1720 0.1965 0.1285 0.1884 0.3976 0.2542
0.6 0.1710 0.1862 0.1169 0.1795 0.3511 0.2142
0.65 0.1570 0.1677 0.1056 0.1640 0.2999 0.1791
0.7 0.1330 0.1435 0.0952 0.1380 0.2434 0.1486
0.75 0.1080 0.1208 0.0834 0.1027 0.1808 0.1214
0.8 0.0850 0.0952 0.0715 0.0704 0.1298 0.1006
0.85 0.0730 0.0840 0.0626 0.0463 0.0932 0.0840
0.9 0.0670 0.0784 0.0559 0.0342 0.0755 0.0712
0.95 0.0620 0.0737 0.0503 0.0314 0.0707 0.0613
1.0 0.0600 0.0717 0.0442 0.0300 0.0675 0.0489
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