Check for
Updates

Triton: Software-Defined Threat Model for Secure Multi-Tenant
ML Inference Accelerators

Sarbartha Banerjee
sarbartha@utexas.edu
University of Texas at Austin
Austin, Texas, USA

Prakash Ramrakhyani
prakash.ramrakhyani@arm.com
ARM Research
Austin, Texas, USA

ABSTRACT

Secure machine-learning inference is essential with the advent of
multi-tenancy in machine learning-as-a-service (MLaaS) acceler-
ators. Model owners demand the confidentiality of both model
weights and architecture, while end users want to protect their
personal data. Moreover, ML models used in mission-critical ap-
plications like autonomous vehicles or disease classification need
integrity protection. While hardware trusted execution environ-
ments (TEE) [4, 41] provide data confidentiality and integrity, they
face two challenges in the adoption for ML inference. First, TEEs
are susceptible to numerous side channels, arising from resource
sharing in multi-tenant systems. Second, the performance overhead
of these TEEs is often proportional to the secret data size, making
them unattractive for data-intensive real-time inference.

The diverse deployment threats further complicate these chal-
lenges. For instance, compared to time-sharing execution, multi-
tenant accelerators must assume a larger attack surface with ad-
versaries monitoring or tampering with on-accelerator resources.
Some inference process sensitive inputs while others compute on
public inputs. As a result, existing TEE designs often adopt a single,
perhaps the most restrictive threat model, which overburdens many
secure ML inference deployments.

To address the challenges in adopting TEEs for secure ML infer-
ence, we introduce the Triton TEE framework. Triton tailors threat
models to each deployment with low overhead while mitigating
side-channel leakages. Triton achieves this by offering an interface
to define fine-grained secrets in an ML model or input, along with
the attacker observation capabilities. Triton framework generates
code for a custom threat model for each application based on its
security requirements. The security policy of each secret is em-
bedded in the instruction to convey the security guarantee to the
hardware. The expressive threat model and secret declaration can
reduce the secure ML inference overhead from 64% to 6% across
different multi-tenant deployments.

This work is licensed under a Creative Commons Attribution International
4.0 License.

HASP °23, October 29, 2023, Toronto, Canada

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1623-2/23/10.
https://doi.org/10.1145/3623652.3623672

Shijia Wei
shijiawei@utexas.edu
University of Texas at Austin
Austin, Texas, USA

Mohit Tiwari
tiwari@austin.utexas.edu
University of Texas at Austin
Austin, Texas, USA

CCS CONCEPTS

« Security and privacy — Hardware security implementation;
Tamper-proof and tamper-resistant designs; « Computer systems
organization — Architectures; Neural networks.

KEYWORDS

Secure hardware, ML accelerator, TEE, Threat model

ACM Reference Format:

Sarbartha Banerjee, Shijia Wei, Prakash Ramrakhyani, and Mohit Tiwari.
2023. Triton: Software-Defined Threat Model for Secure Multi-Tenant ML
Inference Accelerators. In Hardware and Architectural Support for Security
and Privacy 2023 (HASP °23), October 29, 2023, Toronto, Canada. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/3623652.3623672

1 INTRODUCTION

ML inference has entered a new phase with the emergence of chat-
GPT [6] and other attention-based language models [56]. In addition
to speech recognition [25], image classification [27, 39] and rec-
ommendation systems [22], ML inference is being used in content
generation [19], sophisticated chatbots [15], named entity recog-
nition [44] and even labeling data for training new models [53].
The endless opportunities of ML inference have encouraged many
organizations to train their own private models. Platforms like Ama-
zon sagemaker [1] have created an interface to host these trained
models to provide inference service. Multiple tenants share large
ML accelerators, to cater to the quality-of-service (QoS) of multiple
customers as well as, ensure higher resource utilization to amortize
cost. Prior work show how temporal [14] and spatial [20] sharing of
ML inference accelerators improve execution QoS through efficient
resource utilization. Temporal sharing interleaves model layers from
multiple tenants to improve overall QoS. Spatial sharing, on the
other hand, concurrently executes multiple tenants by partitioning
accelerator resource. Several side-channels [10, 31] emerge from
multi-tenant ML inference, as attackers can closely monitor victim
execution through compute port contention, memory bandwidth
variation, and stale private data in the scratchpad. Co-executing
attackers can alter internal control queues or victim scratchpad
data to compromise ML inference integrity.

Researchers have proposed secure ML inference to ensure the
confidentiality and integrity of ML accelerator inference. Crypto-
graphic techniques [21, 28, 32, 47], used for secure ML inference,
incur more than 10X slowdown and is impractical for large models.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3623652.3623672
https://doi.org/10.1145/3623652.3623672
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3623652.3623672&domain=pdf&date_stamp=2023-10-29

HASP 23, October 29, 2023, Toronto, Canada

ML accelerator TEEs [29, 41, 58] can provide these security guar-
antees. However, the execution overhead becomes proportional
to the model size, which has reached 100 billion parameters [12].
Moreover, they are prone to side-channels, that mainly stem from
direct and indirect on-chip shared resources between applications.
Multi-tenant ML inference, needs on-chip micro-architectural iso-
lation, in addition to memory protection. While traditional micro-
architectures have dynamic data paths and buffers invisible to the
software, providing on-chip isolation is a monumental task. Prior
work [17] partitions CPU micro-architecture including LLC caches
and MSHRs to provide secret isolation. Triton framework uses sim-
ilar partitioning during spatial accelerator sharing. However, a
temporal tenant can use all hardware partitions as it does not have
co-executing tenants. Moreover, all the micro-architectural com-
ponents in an ML accelerator can be explicitly controlled by the
compiler, giving absolute control on each secret buffer or scratchpad
storage. The key challenge, however, in providing such a defense,
is the large overhead introduced by these TEEs, due to the large
secret data volume of ML inference workloads.

The first key observation, is that, not all data in a trained ML
model is a secret. Due to the large data corpus needed to train
models, many of the ML models trained today use transfer learn-
ing [55]. A public trained model, designed to perform the same task
is taken from repositories like Huggingface [3]. This model is fine-
tuned [23] by either retraining some of the final layers, or changing
the model topology by replacing some layers. This training method
is cost-effective and requires a smaller dataset. These models have
only a few proprietary layers that needs to be protected. Same is
true for inference input, where some of the image pixels or specific
word tokens in a sentence query is secret information.

The second observation is that, the attacker observations vary
with accelerator deployments. For instance, on-chip resource iso-
lation is essential for spatial sharing but not for temporal sharing.
This is because multiple tenants co-execute in a spatially shared
accelerator. Moreover, several ML accelerators use on-chip high-
bandwidth memory (HBM). These memories may not be susceptible
to physical attacks and might not require data integrity protection.
An attacker might not have access to memory traffic to decipher
the model layer size.

Given these observations, we propose Triton, a flexible secure
ML accelerator framework, that enables the developer to define
fine-grained secrets and the security policies for each application.
A developer can define, each layer of a trained model as either
private or public data. The same is true for inference input, where
private data can be defined at a pixel granularity for images or
token granularity for texts. The user can additionally define se-
curity properties (eg. confidentiality, integrity etc.) explicitly for
each secret data. Taint-analysis in compiler propagates private in-
puts to mark intermediate variables with corresponding security
properties. Micro-architectural isolation is guaranteed between be-
tween private and public data, belonging to the same tenant, as well
as, across tenants. The developer can further define deployment
characteristics like single or multi-tenant accelerator sharing. Such
fine-grained accelerator and data declarations tailor security guar-
antees to only the private data reducing the performance penalty
for secure ML inference. The key contributions of Triton framework
are the following:

20

Sarbartha Banerjee, Shijia Wei, Prakash Ramrakhyani, and Mohit Tiwari

e We introduce a secure ML inference accelerator framework
that allows deployment time threat model and secret defini-
tion and generates code based on the protection guarantees
requested by a developer.

o The secure accelerator hardware, not only protect against
off-chip memory confidentiality and integrity attacks, but
also other side-channels including model layer dimensions
in the memory bus and victim execution utilization.

e Security policy is communicated via novel ISA extensions
to the hardware , allowing distinct security guarantees for
each data structures.

o Triton evaluates multiple threat models with different per-
formance and security policies. The performance overhead
ranges from 9% to 64% during temporal and 6% to 62% during
spatial sharing compared to non-secure execution.

e We perform three real-world case studies, where only a por-
tion of inference input or ML model is a secret and demon-
strate how distinct declaration of security policies provide
additional performance benefit.

2 BACKGROUND

We provide a background on model secrets, data secrets, ML accel-
erator architecture, and TEEs.

2.1 ML model secrets

The method with which, the model owner trains a model, deter-
mines model confidentiality. The two secrets associated with a
model are the model weight values and the model topology. All the
layer weights are confidential for a model, when it is trained from
scratch. In addition, the sequence and layer types along with their
size can be compromised by an attacker [10, 31].

Another common method to train a model is through transfer
learning [55]. The last few layers of a public model, trained on
a similar task, are replaced with confidential layers. The model
weights of these confidential layers are trained on a smaller dataset,
targeting a specific task. The secrets, in this case, are the weights
and topology of only the confidential layers. Since the initial layer
shape and weights are frozen during training, they retain their
public value. Another flavor of transfer learning, does not change
the model topology, but only retrain the weights of the last few
layers. In this case, the entire model topology is public, while the last
few weights are confidential. The model, however, can be entirely
integrity protected to prevent tampering with inference.

2.2 Inference data secrets

Inference data can be entirely or partially confidential to the data
owner. An X-ray image, used for disease classification can be en-
tirely confidential to a patient, while, only the face pixels in a group
photo can be private information. Similarly, a few word tokens (like
the credit card number) can be a secret in chatbot conversations.
The query size can be representative of the confidential query in a
language translation model.

Current ML TEEs do not have a framework to protect partial
secrets, which leads to the entire input to be defined as a secret.
Declaration of partial secrets along with the guarantees, lowers the
inference latency for many applications.

Triton: Software-Defined Threat Model for Secure Multi-Tenant ML Inference Accelerators

2.3 ML inference accelerator architecture

ML accelerators are built on decoupled-access execute (DAE) ar-
chitecture [54] with specialized systolic array [46] dataflow. Sev-
eral popular accelerators like Google TPU [7] and others [24, 40,
48] have an array of multiply-accumulate (MAC) units to per-
form matrix-matrix or vector-matrix computation. Double buffered
scratchpads perform memory loads in parallel to computation. Data
dependencies between the load/store and compute units are man-
aged with dependency queues. These accelerators have a dedicated
ISA, with load and store instructions for memory operations and
gemm and alu for computation as in VTA [48]. To improve the re-
source utilization of large compute units, several works [9, 14, 20]
have extended these accelerators to support multi-tenant inference.
Model inferences can be time-shared in a single accelerator hard-
ware (Temporal Sharing), or run multiple inferences concurrently
by splitting the accelerator (Spatial Sharing).

2.4 Security guarantees of TEEs

Hardware TEEs create an isolated execution environment for pro-
cessing confidential data. A device attestation by a root of trust
ensures a benign platform. Authenticated encryption schemes like
AES-GCM [18] provide confidentiality and integrity to secret data
in memory. TEEs are designed for both CPUs [2, 4] and accelera-
tors [29, 42, 58, 60] and provide architectural isolation to secrets.

3 MOTIVATION

3.1 Flexible threat model for ML TEEs

The security guarantees provided by a TEE are fixed at hardware de-
sign time. For instance, Intel SGX has hardware support to provide
data confidentiality and integrity. MI6 [11] uses cache partitioning
and micro-architectural isolation with purge instructions. Simi-
larly, multi-tenant accelerators need hardware support for memory
protection, accelerator partitioning, resource invalidation and mem-
ory bandwidth obfuscation for eliminating side-channels [10, 31].
As discussed in §2.1, the security policy of a private model is
application-specific. TEEs do not distinguish between public and
private data and provide a fixed security guarantee to all secrets.
Moreover, the partial or entire model confidentiality also depend
on the training strategy. ML model trained with transfer learning
can have a small percentage of private data. A TEE with flexible
security policy and secret declaration reduces the performance
overhead of secure ML inference. However, a framework has to
ensure that there is no dataflow from private to public domain.
We introduce taint-tracking security passes to ensure there is no
dataflow across the security domains. Once, all the private data
is isolated, specialized ISA extensions convey the security policy
for each data structure. The hardware enables only the required
defence mechanisms producing a secure yet low latency inference.

3.2 Deployment specific TEE requirements

The attack surface change across ML inference deployments. For
instance, many of the cloud accelerators have HBM [35] memory,
which might not require integrity protection. The memory band-
width utilization by a private model is not accesible to attackers in
cloud service provider deployments. Moreover, on-chip resource iso-
lation is only necessary when the tenants co-execute in a spatially
shared accelerator. Triton framework generates code, taking into

21

HASP 23, October 29, 2023, Toronto, Canada

consideration, these deployment characteristics. Such observations
are critical for low latency real-time ML inference scenarios.

4 THREAT MODEL

Triton has a flexible threat model, chosen by the developer at run-
time. However, to understand the defense capabilities of Triton, this
section discusses the most restrictive threat model: Triton is running
a secret model to process secret inputs in a spatially multi-tenant
accelerator. The attacker has the strongest observation capability
in this threat model. We assume secret data is stored encrypted and
authenticated in the main memory. And attackers cannot read or
tamper with secret data in memory. Moreover, data replay attacks
are prevented with the help of integrity counters.

An attacker cannot obtain secret data value or size information
from snooping the memory bus. Encrypted data traffic flowing
through the read and write bus is shaped by a constant traffic
shaper, hiding bandwidth variations. The attacker’s observation is
limited to a fixed-size data transaction on each data bus throughout
the tenant execution time. The attacker cannot contend for memory
bandwidth due to fixed bandwidth allocation for each tenant.

A spatially co-located attacker cannot read or tamper with victim
secrets in the scratchpad or compute buffers. The compute units
and the associated data and control buffers are partitioned among
tenants to prevent port contention or other timing side channels.

At execution termination, all secret data is invalidated by writing
zeros to the scratchpad, and the data buffers before a new tenant is
provisioned. Attackers cannot mount use-after-free attacks to read
stale secret data or use timing channels during context switches.

5 TRITON DESIGN OVERVIEW

5.1 Secure ML accelerator primitives

Triton is designed on TVM [13] compiler. The generated code is
evaluated on a scale-sim [51] simulator.

5.1.1 Software primitives. An ML inference application is written
with TVM compiler APIs. The TVM parser is augmented to include
application primitives discussed in §5.2. Existing compiler passes
are used for dataflow graph generation, optimization and code
generation. Additional security passes like taint-tracking, memory
flushing, integrity metadata generation and configuration register
writes are added to the compiler and discussed in §5.3. TVM runtime
is used to generate the model binary to be deployed in hardware.
The addition of security policies to each instruction is described
in §5.3.2.

5.1.2 Hardware primitives. The generated binary is simulated us-
ing a cycle-accurate scalesim simulator, where is it loaded into an
instruction queue. An instruction decoder routes memory instruc-
tions to the memory controller, compute requests to the issue queue
and invalidate instructions to clear micro-architectural resources.
Ramulator [37] is integrated to simulate the memory transactions.
The transactions are sent to the ramulator and the data is ready for
computation after the data arrival time.

5.2 Application APIs:

Triton introduces new pragmas for threat model definition and
arguments for secret policy for data structures. Listing 1 shows

HASP 23, October 29, 2023, Toronto, Canada

the addition of two matrices of size 1024 x 1024. The first matrix
(mod) is defined entirely as a secret while a part of the second vector
(inp) is secret. Lines 1-2 import the numpy and the TVM tensor
expression (te) library. The platform configuration is defined in lines
5-6. Security configurations are specified through sec_pragma(). In
this case, the platform is spatially shared with multiple tenants with
data integrity verification performed at 1024B granularity. Memory
bandwidth limit, scratchpad allocation and number of compute
units reserved is further specified by res_pragmal().

import numpy as np

» from tvm import te

;' n = 1024
#Define the deployment configuration
sec_pragma(exec_mode ="spatial", inte_gran=1024)
; res_pragma(mem_bw=0.25, spad=0.25, comp=0.25)

)

» out =

#Secret model weights and topology

mod = te.placeholder ((n,n), name="mod",
encr=1, inte=1, shap=1)
#Define secret input region
x_range = np.array(start=50, stop=60)
» y_range = np.array(start=20, stop=30)

3 #Partial input secret

inp = te.placeholder((n,n), name="inp",encr=1,
shap=1, x_conf=x_range, y_conf=y_range)
#Performing vector addition
te.compute (mod. shape,

lambda i: mod[i] + inp[il,

inte=1,

name="out")

Listing 1: Sample code for addition of two secret matrices

Line 8 defines a secret vector (mod), which requires data encryp-
tion, integrity verification and memory traffic shaping. We augment
the te.placeholder TVM api to include these security properties
through new arguments (encr, inte, shap). This enables the de-
veloper to define each variable with customized security policies.
The same API is used to define partial input secrets as shown in
line 14. Here, the sub-matrix whose range is defined by x_range
and y_range, is private. The remaining matrix is a public variable.
The compiler guarantees the required security guarantees to the
private variable region. Finally, the matrix addition is carried out
by the te.compute function. Such explicit security declaration for
each variable enables Triton to provide a runtime threat model
customized for each application.

5.3 Compiler Enhancements

TVM compiler is enhanced to (1) Generate hardware configura-
tion register writes for pragma declaration; (2) Compiler passes to
provide private data with the specified security guarantees.

5.3.1 Accelerator configuration: The Triton compiler transforms
the sec_pragma() and res_pragma() declarations into hardware
configuration register writes. These registers are programmed to
partition the micro-architecture and reserve requested resources for
each tenants. Some of the values like inte_gran further customizes
the granularity of integrity protection for every application. Traffic
shaper can also be configured to define a traffic shape for each
application. Currently, we only consider a constant bandwidth
traffic shaper and leave other shapes for future research.

5.3.2 Triton ISA:. New instructions communicate data security
requirements to hardware. Triton ISA is based on VTA [48] in-
structions, that work with the TVM runtime. Basic instructions

22

Sarbartha Banerjee, Shijia Wei, Prakash Ramrakhyani, and Mohit Tiwari

include load and store for memory operations, and gemm and alu
instructions for compute operations. Three flag bits are added to
memory instructions corresponding to data declaration arguments
(encr, inte, shap). The hardware decoder enables the encryption,
integrity and the traffic shaper unit based on these flags. The com-
pute instructions have a constant-time execution flag to avert side-
channels from data-driven optimizations on secret data. We leave
the evaluation of data-driven optimizations to future work. Finally,
anew invalidate instruction flushes buffers and scratchpads hold-
ing secret data.

A=[1234] B=]876,5]
{encr, inte}———> {1,0} {1,1}
~

mmmm Private data
mmmms Public data

c=09999 K

.V

A1=[14] By=[85] iAg=[31 By=[6] i Ag=[2] By=[7]
{1,0 o o 00 i (g 0,0
Cr=10.91 M ca=[e]

o1 K4 : 1,0} K2 : g K3

Figure 1: Secret propagation through taint-tracking of a vec-
tor addition kernel (K). The kernels are split into sub-kernels
(Ki, K2, K3) based on the security properties of the output
sub-vector (Cy, Cy, C3). The {encr, inte} values are for private
(green) data sub-vector. It is {0,0} for the public (red) data.

5.3.3 Secret taint-tracking: TVM compiler transforms an ML model
into a dataflow graph. Triton adds a taint-tracking mechanism to
propagate security properties of computation outputs. Fig. 1 shows
a vector addition between two variables A and B. The green indices
are private with {encr, inte} defined by the developer. The red
indices denote unencrypted public data. Triton compiler splits the
computation based on the security property of the input variables.
C; inherits the union of security properties of A; and Bj. In this
case, Cy is confidential and needs integrity protection. Similarly,
Cy is computed on encrypted Ay and public By. Therefore, Cz only
requires only data confidentiality. C3 is propagated as a public
variable. Taint-tracking makes sure, each private data element is
appropriately safeguarded in micro-architecture and scheduled
separately from its public counterpart.

5.3.4 Backward taint-propagation: After a forward pass of secret
taint-tracking, a single operation is broken into multiple sub op-
erations. While fine-grained taint propagation provides the exact
security property of an intermediate variable (C), this might not
efficiently run in a high-throughput ML accelerator. A backward
taint propagation pass reduces compute fragmentation in certain
cases. Let us assume that Cy in Fig. 1 is consumed in a subsequent
operation with Cj. In this case, the operation output will have the
properties of Cy. In this scenario, the backward pass would merge
K; and K3 kernels to generate an output, that requires both en-
cryption and integrity. This way, the number of kernel splits are
reduced, in favor of better kernel resource utilization.

Triton: Software-Defined Threat Model for Secure Multi-Tenant ML Inference Accelerators

5.3.5 Compute scheduling: Compute scheduling includes breaking
large matrices into smaller tiles to fit in the accelerator. Each layer
is profiled for different tile sizes, given the resource declaration
and the lowest latency ones are chosen. Certain layers are split
into a number of parallel data graphs by the taint propagation step.
Private kernels requiring integrity protection need additional meta-
data transactions. So, the public kernels are executed first, during
which the counters and MAC are prefetched for private kernels.
This kernel re-ordering reduces pressure of loading private data.
Moreover, the scheduler strives to minimize the secret data move-
ment and harness maximum data locality inside the accelerator.
This reduces the overhead associated with decryption, integrity
check and secret invalidation during context switch.

5.3.6 Memory traffic scheduling: Memory requests are shaped to
protect input or model size if a variable has shap = 1. As we will
discuss in §5.4.3, traffic shaper hardware sends fake transactions at
times of low demand. An attacker should not be able to distinguish
between real and fake transactions based on data size or memory
response delay. The compiler splits each data load or store into
equal sized fixed transactions and places them into adjacent banks
to ensure no leaks from bank access pattern.

5.3.7 Code generation: The Triton compiler generates the applica-
tion binary with instructions in §5.3.2. The flag bits in each load
and store instructions are populated to reflect the variable security
property. Moreover, for data operation needing integrity verifica-
tion (inte = 1), additional load instructions perform counter and
MAC loads from memory. The taint-tracking provides a list of se-
cret variables, which are invalidated from scratchpad and compute
buffers with invalidate instructions. Finally, the resource alloca-
tion and the threat model is sent as a part of binary and is written
to accelerator configuration registers during bootstrapping.

5.4 Hardware Implementation:

In this section, we discuss the hardware defense mechanisms re-
quired in an accelerator to enforce the security properties.

5.4.1 Accelerator interface: A secure co-processor initiates a TLS
session with the remote tenant and sends a device attestation re-
port. Upon device authenticity verification, the tenant sends the
ML model binary through a secure channel. The model instructions
are loaded in main memory, while the resource and security config-
urations are written to registers. A unique tenant ID is generated
to map resource partitions. Encryption and integrity keys, received
from the binary is stored in key storage, tagged to the tenant ID.

This secure co-processor, serving as the accelerator interface,
has a trusted firmware, which is verified by secure boot. We assume
the firmware to have a limited API, including the capability of
running a TLS session and generate an attestation report to the
user. The secure co-processor, should have a TPM module [338]
to sign the attestation report. Our simulator leverages shef [58],
which implements a similar accelerator interface for bootstrapping
tenants. Side-channels associated with the secure co-processor and
verification of the trusted firmware is out-of-scope and is a topic
for future work.

5.4.2 Encryption and Integrity unit: Triton hardware uses AES-
GCM [18] to perform authenticated encryption on user-defined

23

HASP 23, October 29, 2023, Toronto, Canada

private data. The encr and inte flags of each decoded load and
store instruction decides the operation of this unit. The integrity
unit has separate buffers for integrity counters and MAC. The
size of these buffers are listed in Table 1. The integrity metadata
(counters and MAC) is loaded to respective buffers with explicit
load instructions. For spatially shared tenants, these buffers are
partitioned among tenants through configuration registers. The
encryption and the integrity unit can be individually bypassed for
instructions when the encr and inte flags are zero respectively. The
AES encryption/decryption and MAC computation are simulated
with timing delays mentioned in [8]. The integrity unit waits for the
load transactions of MAC and counter values to be loaded before
adding the MAC computation delay. The data is ready in scratchpad,
only after the integrity verification is complete.

5.4.3 Memory traffic shaper: To protect the model topology or
secret input size, a constant memory traffic shaper is deployed
at the accelerator memory interface for each read and write bus.
Demand requests with from each tenant is queued in a request
buffer. The requests are sent out to the memory at regular intervals,
based on the requested memory bandwidth. The traffic shaper sends
memory transactions to memory banks in a round-robin manner. If
a transaction corresponding to the next bank is unavailable, it sends
a fake transaction to that bank. The memory controller follows a
closed row strategy which enforces a uniform transaction response
time. The traffic shaper is only activated if a transaction in the
request queue has shap = 1.If there is a bank conflict across tenants,
only one real transaction is sent and the other tenants send a fake
transaction. The fake transactions do not access the memory banks
and the response is ignored by the traffic shaper.

5.4.4 Scratchpad invalidation: The accelerator scratchpad is split
into 4kB regions. A table tracks the occupation status of each
scratchpad regions. Each entry has several fields: a tenant ID, a valid
bit, a read-write bit and a secret bit. When a tenant is bootstrapped,
it reserves scratchpad regions and the ID entry is populated. As-
signment of tenant ID ensures access-control of scratchpad regions
during multi-tenant execution. For temporal sharing, all the table
entries are owned by the active tenant. During context switch, the
scratchpad regions having the secret bit set is invalidated to prevent
side-channels. Such scratchpad entries are written with zeros after
secret data invalidation.

5.4.5 Partitioning logic: Triton hardware contains several buffers
for holding instruction, integrity metadata, control dependencies,
pending memory requests etc. All these buffers are statically par-
titioned to support multiple tenants. A tenant, requiring more re-
source can reserve more than one such partitions. The number of
executing tenants, at any instant, is kept secret from the attacker.
The accelerator interface never over-subscribes an accelerator, pre-
venting micro-architectural contentions.

6 EVALUATION
6.1 Platform

Triton compiler is implemented using TVM [13] while the acceler-
ator hardware is simulated using a cycle-accurate scale-sim [51]
integrated with ramulator [37] as the memory interface. The spatial
and temporal configurations for ML inference accelerator are listed

HASP 23, October 29, 2023, Toronto, Canada

Parameter Temporal Mode | Spatial Mode
Tenants 1 4
Memory type High-Bandwidth Memory (HBM)
Memory Bandwidth 128 GB/s 32 GB/s
Compute units 256 X 256 64 X 64
Input Scratchpad 6144 KB 1536 KB
Weight Scratchpad 6144 KB 1536 KB
Output Scratchpad 2048 KB 512 KB
Counter Buffer 128 entries 32 entries
MAC Buffer 64 entries 16 entries

Table 1: Triton simulator parameters for temporal and spatial
modes. The spatial mode is simulated with four concurrent
tenants sharing equal sized partitions.

in Table 1. The models are context-switched at layer boundary dur-
ing temporal sharing, while four instances of the same benchmark
is run during spatial sharing. The accelerator configuration for the
temporal mode simulates a Google TPU [34] pod. The ramulator is
configured only as a HBM for simplicity.

The system is evaluated with a divese set of benchmarks in-
cluding image classification models — Alexnet [39] and Resnet-
50 [27]; image segmentation models used for object detection —
FasterRCNN [50], a recommendation and personalization system
— DLRM [49], a gaming bot — AlphaGoZero [52], the encoding
layer of a LSTM based language translation — Translate [5], a basic
transformer with text embeddings, the encoder and decoder for
language translation — Transformer [56].

6.2 Threat model based latency

Different security properties like data confidentiality, integrity and
data structure can be independently defined in Triton framework
with the incr, inte and shap arguments. Fig. 2 shows the ML in-
ference latency for nine threat models for each application run in
temporal and spatial sharing modes. The first three bars (green) run
a private ML model with private inputs; The next three bars (cyan)
run a private ML model with public inputs; The last three bars (ma-
genta) run a public ML model with private inputs. The first of the
three bars in each category has all incr, inte and shap as 1 for pri-
vate data. The second bar represents a case, when the private data
does not require data integrity (incr = 1, inte = 0, shap = 1). The
third bar only protects data confidentiality (incr = 1), while inte
and shap are 0. Precise security definition can drastically improve
the latency overhead associated with ML inference. Without the
Triton framework, all of these nine cases would have the overhead
associated with the first green bar, which is, on average, 62% dur-
ing temporal sharing and 64% for spatial sharing over non-secure
execution. However, if the user is only concerned with private in-
put confidentiality, the geometric mean of performance overhead
is only 9% for temporal and 6% for spatial sharing (last bar). The
performance overhead of other scenarios also decrease, compared
to the first bar and represent threat models, that are relevant in
different real-world deployments.

The three bars of same color provides insight on overhead associ-
ated with different security guarantees. The performance difference
between the first and the second bar is the integrity overhead, while
the difference between the second and the third bar arise from the
traffic shaper. Transformer, DLRM have a large number of small
kernels, each getting delayed by integrity checks. The overhead

24

Sarbartha Banerjee, Shijia Wei, Prakash Ramrakhyani, and Mohit Tiwari

decreases considerably when they are executed in a platform, not
needing integrity guarantees. Alexnet is compute-intensive and is
least affected by integrity check and the traffic shaper. Traffic shaper
overhead is high for application with strided and non-uniform data
access as is evident in Resnet50, FasterRCNN and Translate. Addi-
tional fake transaction is inserted to request data from contiguous
banks delaying real transactions.

The latency overhead depends on the security policy programmed
by the developer. The performance overhead for the most stringent
threat model (incr = 1, inte = 1, shap = 1) is still high. The tem-
poral overhead of 62% comes from micro-architectural cleanup at
each context switch. The evaluation assumes tenant context switch
at each layer boundary. In reality, tenants get context-switched at
a much lower rate, especially for small layers. Some of the large
workloads do not fit well in the smaller spatial partitions. The devel-
oper may choose to allocate multiple spatial partitions to reduce the
performance overhead of such applications. Choosing the appro-
priate resource allocation with res,ragmal() is necessary to meet
the latency QoS and can be configured during compilation.

6.3 Case Studies

The following three case studies showcase the usefulness of partial
secret declaration for ML models and inference input.

[C1] ML inference with a transformer model, whose last few
layers are confidential.

[C2] A FasterRCNN model which performs multiple tasks, among
which, a subset of task is performed by a private model.

[C3] A Resnet50 image classification of a partially secret input.

6.3.1 [C1] Partially secret transformer. Transformer networks are
large and require a large data corpus to train from scratch. Hence,
a public transformer network, trained on the same task is imported
by the model owner from Huggingface [3] or other repositories.
The model owner modifies the last few layers and re-trains them on
a smaller target dataset. The weights of initial layers are kept same
as the base model and is public data. This method is widely used
to train new transformer models, where the last few trained layers
constitute the private layers. A transformer network consists of
an encoder and a decoder block, followed by a linear and softmax
layer to generate output probabilities. The decoder of the Trans-
former [56] consists of two multi-head attention layers followed by
a feed forward network. In this case study, the decoder feed forward
network, the linear and the softmax layers are fine-tuned by the
model owner. The encoder and the multi-head attention layers of
the decoder is public and its weights are used as-is from the base
model. We infer a public sentence with this private model.

Without the Triton framework, the model has to be defined en-
tirely as secret to protect model weights and structure. The latency
overhead is 83% for temporal and 38% for spatial sharing as shown
in the first bar of Fig. 3. The remaining bars define the model with
only the last feed-forward, the linear and the softmax layers as se-
cret with different security policies. The temporal overhead ranges
from 7 — 21% while the spatial overhead ranges from 8 — 15%. This
large reduction is due to the public declaration of initial layers,
which includes the large embedding layer.

Triton: Software-Defined Threat Model for Secure Multi-Tenant ML Inference Accelerators

HASP 23, October 29, 2023, Toronto, Canada

>
g
]
=
e
o
g
5
g
5]
Z
X ° 7650 \(met 2t
P,\e'ﬁﬂe g\es’&‘“”t ?aste‘?‘c D\j‘m‘l m\f@GO "{f"‘“s\a 'gta“s@t el Ls
(a) Temporal Sharing
- | |
[*]
=
z
=
=
s
Z .
L 50 L 150 xe et a0
PA@(&\E ?\esﬁet Qas\etgc D\E\N\ B\?“aGO <t aﬁs\ﬁ 1’&“550‘ 0 N

(b) Spatial Sharing

Figure 2: Latency of different threat models normalized to non-secure execution. The first three (green) bars show private
input inference with a private model. The next three (cyan) bars public input inference with a private model. The last
three (magenta) bars show private input inference with a public model. The private data of the first bars in each group has
{encr = 1,inte = 1,shap = 1}. The second and third bars have {encr = 1, inte = 0, shap = 1} and {encr = 1, inte = 0, shap = 0}.

Temporal Sharing Spatial Sharing
g g
B 1.75] 1.75
©]
2 1.50 3 1.50
N N
T 125 T 125
£ £
o o
Z 1.00 = 1.00

@O 18 gt ok ot O gue® e ke garte
Figure 3: The Full bar shows the inference latency without
the partial secret declaration of a Transformer model trained
with transfer learning. The Part bars show overhead with
partial model secret declaration. The suffixes e,i,s represent
encr, inte and shap values are set.

6.3.2 [C2] Multi-stage model inference. Models like FasterRCNN
performs object classification in multiple stages. The first stage ex-
tracts feature regions in an image, while a next stage classifies them.
The model owner uses a public feature extractor and a private clas-
sifier for a FasterRCNN model in this case study. Fig. 4 shows the
overhead reduction, when the model owner specifies only the se-
cret classifier. The partial secret model declaration is key in making
secure ML inference real-time in object detection and image seg-
mentation models. Many of these models use a single initial stage
for finding interesting regions, which are fed to multiple classifiers.

6.3.3 [C3] Partial secrets in ML inference inputs. In this case study,
the user performs an image classification with a public Resnet50
on a passport photo. The pixels containing the face data is defined

25

Temporal Sharing Spatial Sharing

16 16
> >
o 3
2 2
) 2
o 1.4 & 1.4
o o
I &
T 12 T 12
E E
2 2

1.0 1.0

\ N\ i
N 93‘“‘5 oa™ ¢ A oot N ?a(ws oo™ 0 A paite

Figure 4: Latency reduction of FasterRCNN with a public ini-
tial feature extractor and a private classifier. Triton frame-
work enables partial model private declaration with cus-
tomized security policies (e,i,s) for multi-stage models.

private, while the background and the torso is public. In this exper-
iment, 40% of the pixels, containing the face information is marked
secret. Since, the size of a passport photo is public, using the traffic
shaper is irrelevant. The user is only interested in the confidentiality
and integrity of the image. Hence, the incr and the inte bits of the
face pixels are set for the input image. The temporal overhead for
Resnet50 is 18%. However, with the input private region definition
capability, the overhead reduces to 8%. The spatial overhead reduces
from 20% to 12% This reduction is in part due to less decryption
and integrity verification cycles and in part, due to less average
occupancy of metadata buffers. The majority of overhead comes
from the later layers were the private data is scattered across a
large number of feature vectors.

HASP 23, October 29, 2023, Toronto, Canada

7 SECURITY ANALYSIS

The security of Triton framework depends on (1) Trusted tenant
bootstrapping; (2) The isolation provided by hardware defenses; (3)
The propagation of security policies from application to hardware.

Trusted tenant bootstrapping is ensured through secure booting
the co-processor, device authenticity through remote attestation,
transfer of data over a secure channel and accelerator configuration
and data load by a trusted firmware as mentioned in §5.4.1.

7.1 Execution isolation guarantees

The confidentiality of private data is preserved through encryption
in main memory and on the memory bus. However, it is stored
as plaintext in scratchpad and compute buffers. These on-chip mi-
croarchitectural resources are inaccessible in temporal mode by
other tenants and partitioned in spatial mode. Before context switch,
the private data is invalidated and zeros are written in place. This
protects both secret value and occupancy in scratchpad and buffers.

Data integrity is ensured by storing additional counters and
MAC for data with inte = 1. The integrity is verified before start-
ing computation, hence cannot be tampered in main memory or
the memory bus. Access control in scratchpad prevents tenants to
access/modify data beyond its allocation. The resource partitioning
is done by the trusted firmware, which ensures no overlap among
tenants during resource allocation.

Side-channels arising from resource contention is prevented
through on-chip buffer, compute resource and scratchpad partition-
ing. The entire datapath from memory to accelerator and back is
partitioned among tenants in spatial sharing. This includes memory
request queue, integrity metadata buffers, scratchpads, compute
buffers, and even the compute units. The control units including
the instruction queue, the buffers holding decoded instructions
and the dependency queues are also partitioned. This eliminates
any contention between the attacker and the victim tenant. The
closed-row policy in memory prevents timing channels due to bank
conflicts. Memory traffic utilization information is obfuscated by
the traffic shaper in both read and write buses. The shaper requests
data from consecutive banks hiding the access. The traffic shaper
sends a fake transaction on behalf of one of the tenants, when there
is a bank conflict between tenants. Resource utilization is prevented
in temporal sharing mode by invalidating the entire accelerator
during context switch.

7.2 Compiler isolation guarantees

The compiler passes need to ensure that the private data is isolated
from public data. Triton ISA ensures propagation of security policy
of each variable to the hardware. The secret taint tracking pass
labels any data either directly defined by the user or generated
from an operation with at least one private input as private. This
condition is sufficient in private data declaration. Moreover, the
security policy of any output variable is the union of the input
policies. Execution isolation between private and public data is
performed through compute and memory scheduling. Decoupling
the private data memory and compute scheduling from the public
data isolates attacker visibility on the private section of execution.
We assume Triton compiler is a part of our trusted computing base
(TCB) and will not perform any malicious operations.

26

Sarbartha Banerjee, Shijia Wei, Prakash Ramrakhyani, and Mohit Tiwari

8 RELATED WORKS

While protections of DNN models have been explored on Intel
SGX [36, 45], GPUs [33, 57, 60], or combination of both [26], recent
work pioneered building accelerator-based TEEs [29, 30, 42, 43, 58].
Most are focused on memory protection for DNN workloads. TNPU,
GuardNN, and MGX [29, 30, 42, 43] proposed tree-free integrity
verification exploiting DNN-specific data access patterns. However,
Triton identifies several use cases, where the secret space can be
reduced with precise definition of security properties. This enables
Triton to provide additional side-channel protections like partition-
ing, traffic shaping and secret invalidation, while still providing
low performance overhead. ShEF [58] explored a framework on
secure boot, remote attestation, and isolated execution for FPGA-
TEEs, while we focus on ML inference accelerator ASIC providing
configurable defence mechanisms based on deployment time threat
model and secret policy declaration of model layers and inference
inputs.

Several works [9, 14, 20] explored the performance impact and
the overall QoS improvement of multi-tenant accelerators. Triton,
on the other hand, discuss the security implications of ML accel-
erator multi-tenancy. Micro-architectural isolation is studied for
CPUs, where prior work uses hardware partitioning [11, 17] and
traffic shaping [16, 59]. Triton explores partitioning and shaping
techniques for ML accelerators and provide runtime configuration
to these isolation mechanisms.

9 CONCLUSION

In this paper, we present Triton, a hardware-software design that
supports configurable threat models for multi-tenant ML inference
accelerators. Triton flexibly provides security policies like data con-
fidentiality, integrity, traffic shaping on demand basis to each data
structure. By tailoring hardware security primitives to user-desired
threat models, Triton brings down the inference latency within 10%
for both spatial and temporal sharing modes. The ability to declare
a subset of model layers or inference input as private provides
additional performance benefits. Deployment time threat model
declaration makes Triton framework adaptable to the diverge secure
ML inference deployments.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their helpful feedback. This

work is funded by SRC ACE JUMP 2.0 program and Intel RARE
program.

REFERENCES

(1]
[2]

B3
[4]
[5]

[n.d.]. Amazon sagemaker. https://aws.amazon.com/sagemaker/.

[n.d.]. ARM Trustzone. https://www.arm.com/technologies/trustzone-for-
cortex-a.

[n. d.]. HuggingFace. https://huggingface.co.

[n.d.]. Intel Software Guard Extensions. https://software.intel.com/en-us/sgx.
[n.d]. LSTM in keras. https://blog.keras.io/a-ten-minute-introduction-to-
sequence-to-sequence-learning-in-keras.html.

[n.d.]. openAlI chatgpt. https://chat.openai.com.

[n. d.]. System Architecture of TPUv4. https://cloud.google.com/tpu/docs/system-
architecture-tpu-vm.

Roberto Avanzi, Subhadeep Banik, Orr Dunkelman, Hector Montaner, Prakash
Ramrakhyani, Francesco Regazzoni, and Andreas Sandberg. 2020. Protecting
Memory Contents on ARM Cores. In Ninth Real World Crypto Symposium (RWC
"20). https://rwec.iacr.org/2020/slides/Avanzi.pdf

https://aws.amazon.com/sagemaker/
https://www.arm.com/technologies/trustzone-for-cortex-a
https://www.arm.com/technologies/trustzone-for-cortex-a
https://huggingface.co
https://software.intel.com/en-us/sgx
https://blog.keras.io/a-ten-minute-introduction-to-sequence-to-sequence-learning-in-keras.html
https://blog.keras.io/a-ten-minute-introduction-to-sequence-to-sequence-learning-in-keras.html
https://chat.openai.com
https://cloud.google.com/tpu/docs/system-architecture-tpu-vm
https://cloud.google.com/tpu/docs/system-architecture-tpu-vm
https://rwc.iacr.org/2020/slides/Avanzi.pdf

Triton: Software-Defined Threat Model for Secure Multi-Tenant ML Inference Accelerators

=

[10

[11]

[12]

[13

[14

==
SN

Eunjin Baek, Dongup Kwon, and Jangwoo Kim. 2020. A Multi-Neural Network Ac-
celeration Architecture. In 2020 ACM/IEEE 47th Annual International Symposium
on Computer Architecture (ISCA). https://doi.org/10.1109/ISCA45697.2020.00081
Sarbartha Banerjee, Shijia Wei, Prakash Ramrakhyani, and Mohit Tiwari. 2021.
Bandwidth Utilization Side-Channel on ML Inference Accelerators (2021).
arXiv:2110.07157

Thomas Bourgeat, Ilia Lebedev, Andrew Wright, Sizhuo Zhang, Arvind, and
Srinivas Devadas. 2019. Mi6: Secure enclaves in a speculative out-of-order
processor. In Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners (2020).

Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen
Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin,
and Arvind Krishnamurthy. 2018. TVM: An Automated End-to-End Optimizing
Compiler for Deep Learning. In 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18). Carlsbad, CA. https://www.usenix.org/
conference/osdi18/presentation/chen

Yujeong Choi and Minsoo Rhu. 2020. Prema: A predictive multi-task scheduling
algorithm for preemptible neural processing units. In 2020 IEEE International
Symposium on High Performance Computer Architecture (HPCA). IEEE.

Robert Dale. 2016. The return of the chatbots (2016).

Peter W Deutsch, Yuheng Yang, Thomas Bourgeat, Jules Drean, Joel S Emer,
and Mengjia Yan. 2022. DAGguise: mitigating memory timing side channels. In
Proceedings of the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems.

[17] Jules Drean, Miguel Gomez-Garcia, Thomas Bourgeat, and Srinivas Devadas.

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[31]

2023. Citadel: Side-Channel-Resistant Enclaves with Secure Shared Memory on
a Speculative Out-of-Order Processor (2023).

Morris] Dworkin. 2007. Sp 800-38d. recommendation for block cipher modes of
operation: Galois/counter mode (gcm) and gmac. National Institute of Standards &
Technology.

William Fedus, Ian Goodfellow, and Andrew M Dai. 2018. Maskgan: better text
generation via filling in the_ (2018).

Soroush Ghodrati, Byung Hoon Ahn, Joon Kyung Kim, Sean Kinzer, Brahmen-
dra Reddy Yatham, Navateja Alla, Hardik Sharma, Mohammad Alian, Eiman
Ebrahimi, Nam Sung Kim, et al. 2020. Planaria: Dynamic architecture fission for
spatial multi-tenant acceleration of deep neural networks. In 2020 53rd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE.

Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig,
and John Wernsing. 2016. Cryptonets: Applying neural networks to encrypted
data with high throughput and accuracy. In International Conference on Machine
Learning.

Carlos A Gomez-Uribe and Neil Hunt. 2015. The netflix recommender system:
Algorithms, business value, and innovation. ACM Transactions on Management
Information Systems (TMIS) 6, 4 (2015).

Yunhui Guo, Honghui Shi, Abhishek Kumar, Kristen Grauman, Tajana Rosing, and
Rogerio Feris. 2019. Spottune: transfer learning through adaptive fine-tuning. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.
Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz,
and William J Dally. 2016. EIE: efficient inference engine on compressed deep
neural network. ACM SIGARCH Computer Architecture News 44, 3 (2016).

Awni Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich
Elsen, Ryan Prenger, Sanjeev Satheesh, Shubho Sengupta, Adam Coates, et al.
2014. Deep speech: Scaling up end-to-end speech recognition (2014).

Hanieh Hashemi, Yongqin Wang, and Murali Annavaram. 2021. DarKnight: An
accelerated framework for privacy and integrity preserving deep learning using
trusted hardware. In MICRO-54: 54th Annual IEEE/ACM International Symposium
on Microarchitecture.

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2016. Identity mappings
in deep residual networks. In European conference on computer vision. Springer.
Jiahui Hou, Huiqi Liu, Yunxin Liu, Yu Wang, Peng-Jun Wan, and Xiang-Yang Li.
2021. Model Protection: Real-time privacy-preserving inference service for model
privacy at the edge. IEEE Transactions on Dependable and Secure Computing 19, 6
(2021).

Weizhe Hua, Muhammad Umar, Zhiru Zhang, and G. Edward Suh. 2022. GuardNN:
Secure Accelerator Architecture for Privacy-Preserving Deep Learning. In Pro-
ceedings of the 59th ACM/IEEE Design Automation Conference (San Francisco, Cal-
ifornia) (DAC °22). New York, NY, USA. https://doi.org/10.1145/3489517.3530439
Weizhe Hua, Muhammad Umar, Zhiru Zhang, and G. Edward Suh. 2022. MGX:
Near-Zero Overhead Memory Protection for Data-Intensive Accelerators. In
Proceedings of the 49th Annual International Symposium on Computer Architecture
(New York, New York) (ISCA "22). New York, NY, USA. https://doi.org/10.1145/
3470496.3527418

Weizhe Hua, Zhiru Zhang, and G. Edward Suh. 2018. Reverse Engineering
Convolutional Neural Networks Through Side-channel Information Leaks. In
Proceedings of the 55th Annual Design Automation Conference (San Francisco,

27

[32

[33

[34

[35

[36

[37

[38

@
29,

[40

(41

[42

(43]

[45

[46

[47

[48

[49]

[50

[51]

[52

(53]

(54]

HASP 23, October 29, 2023, Toronto, Canada

California) (DAC ’18). ACM, New York, NY, USA, Article 4, 6 pages.
//doi.org/10.1145/3195970.3196105

Zhicong Huang, Wen-jie Lu, Cheng Hong, and Jiansheng Ding. 2022. Cheetah:
Lean and fast secure {two-party} deep neural network inference. In 31st USENIX
Security Symposium (USENIX Security 22).

Tyler Hunt, Zhipeng Jia, Vance Miller, Ariel Szekely, Yige Hu, Christopher J Ross-
bach, and Emmett Witchel. 2020. Telekine: Secure Computing with Cloud GPUs.
In 17th { USENIX} Symposium on Networked Systems Design and Implementation
({NSDI} 20).

Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. 2017.
In-datacenter performance analysis of a tensor processing unit. In 2017 ACM/IEEE
44th Annual International Symposium on Computer Architecture (ISCA). IEEE.
Hongshin Jun, Jinhee Cho, Kangseol Lee, Ho-Young Son, Kwiwook Kim, Hanho
Jin, and Keith Kim. 2017. Hbm (high bandwidth memory) dram technology and
architecture. In 2017 IEEE International Memory Workshop (IMW). IEEE.
Kyungtae Kim, Chung Hwan Kim, Junghwan" John" Rhee, Xiao Yu, Haifeng
Chen, Dave Tian, and Byoungyoung Lee. 2020. Vessels: Efficient and scalable
deep learning prediction on trusted processors. In Proceedings of the 11th ACM
Symposium on Cloud Computing.

Yoongu Kim, Weikun Yang, and Onur Mutlu. 2016. Ramulator: A Fast and
Extensible DRAM Simulator. IEEE Comput. Archit. Lett. 15, 1 (jan 2016). https:
//doi.org/10.1109/LCA.2015.2414456

Steven L Kinney. 2006. Trusted platform module basics: using TPM in embedded
systems. Elsevier.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2017. ImageNet Classi-
fication with Deep Convolutional Neural Networks. Commun. ACM 60, 6 (may
2017). https://doi.org/10.1145/3065386

Hyoukjun Kwon, Prasanth Chatarasi, Vivek Sarkar, Tushar Krishna, Michael
Pellauer, and Angshuman Parashar. 2020. MAESTRO: A Data-Centric Approach
to Understand Reuse, Performance, and Hardware Cost of DNN Mappings. IEEE
Micro 40, 3 (2020).

Dayeol Lee, David Kohlbrenner, Shweta Shinde, Dawn Song, and Krste Asanovic.
2019. Keystone: A framework for architecting tees (2019).

Sunho Lee, Jungwoo Kim, Seonjin Na, Jongse Park, and Jachyuk Huh. 2022. TNPU:
Supporting Trusted Execution with Tree-less Integrity Protection for Neural
Processing Unit. In 2022 IEEE International Symposium on High-Performance
Computer Architecture (HPCA). https://doi.org/10.1109/HPCA53966.2022.00025
Sunho Lee, Seonjin Na, Jungwoo Kim, Jongse Park, and Jaechyuk Huh. 2022.
Tunable Memory Protection for Secure Neural Processing Units. In The 40th
International Conference on Computer Design (ICCD) 2022.

Jing Li, Aixin Sun, Jianglei Han, and Chenliang Li. 2020. A survey on deep
learning for named entity recognition. IEEE Transactions on Knowledge and Data
Engineering 34, 1 (2020).

Yuepeng Li, Deze Zeng, Lin Gu, Quan Chen, Song Guo, Albert Zomaya, and
Minyi Guo. 2021. Lasagna: Accelerating Secure Deep Learning Inference in SGX-
Enabled Edge Cloud. In Proceedings of the ACM Symposium on Cloud Computing
(Seattle, WA, USA) (SoCC ’21). New York, NY, USA. https://doi.org/10.1145/
3472883.3486988

Richard J Lipton and Daniel Lopresti. 1985. A systolic array for rapid string
comparison. In Proceedings of the Chapel Hill Conference on VLSL

Payman Mohassel and Yupeng Zhang. 2017. Secureml: A system for scalable
privacy-preserving machine learning. In 2017 IEEE symposium on security and
privacy (SP). IEEE.

Thierry Moreau, Tiangi Chen, Ziheng Jiang, Luis Ceze, Carlos Guestrin, and
Arvind Krishnamurthy. 2018. VTA: An Open Hardware-Software Stack for Deep
Learning (2018).

Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang,
Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole-
Jean Wu, Alisson G Azzolini, et al. 2019. Deep learning recommendation model
for personalization and recommendation systems (2019).

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster r-cnn:
Towards real-time object detection with region proposal networks (2015).
Ananda Samajdar, Jan Moritz Joseph, Yuhao Zhu, Paul Whatmough, Matthew
Mattina, and Tushar Krishna. 2020. A Systematic Methodology for Characterizing
Scalability of DNN Accelerators using SCALE-Sim. In 2020 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS). https:
//doi.org/10.1109/ISPASS48437.2020.00016

David Silver, Aja Huang, Chris] Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. 2016. Mastering the game of Go with deep neural
networks and tree search. nature 529, 7587 (2016).

Oriane Siméoni, Gilles Puy, Huy V Vo, Simon Roburin, Spyros Gidaris, Andrei
Bursuc, Patrick Pérez, Renaud Marlet, and Jean Ponce. 2021. Localizing objects
with self-supervised transformers and no labels (2021).

James E Smith. 1982. Decoupled access/execute computer architectures. In ACM
SIGARCH Computer Architecture News, Vol. 10. IEEE Computer Society Press.

https:

https://doi.org/10.1109/ISCA45697.2020.00081
https://arxiv.org/abs/2110.07157
https://www.usenix.org/conference/osdi18/presentation/chen
https://www.usenix.org/conference/osdi18/presentation/chen
https://doi.org/10.1145/3489517.3530439
https://doi.org/10.1145/3470496.3527418
https://doi.org/10.1145/3470496.3527418
https://doi.org/10.1145/3195970.3196105
https://doi.org/10.1145/3195970.3196105
https://doi.org/10.1109/LCA.2015.2414456
https://doi.org/10.1109/LCA.2015.2414456
https://doi.org/10.1145/3065386
https://doi.org/10.1109/HPCA53966.2022.00025
https://doi.org/10.1145/3472883.3486988
https://doi.org/10.1145/3472883.3486988
https://doi.org/10.1109/ISPASS48437.2020.00016
https://doi.org/10.1109/ISPASS48437.2020.00016

HASP 23, October 29, 2023, Toronto, Canada

[55]

[56]

[57]

Lisa Torrey and Jude Shavlik. 2010. Transfer learning. In Handbook of research
on machine learning applications and trends: algorithms, methods, and techniques.
IGI global.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need (2017).

Stavros Volos, Kapil Vaswani, and Rodrigo Bruno. 2018. Graviton: trusted execu-
tion environments on GPUs. In 13th { USENIX} Symposium on Operating Systems
Design and Implementation ({ OSDI} 18).

28

Sarbartha Banerjee, Shijia Wei, Prakash Ramrakhyani, and Mohit Tiwari

[58] Mark Zhao, Mingyu Gao, and Christos Kozyrakis. 2022. Shef: Shielded enclaves

for cloud fpgas. In Proceedings of the 27th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems.

[59] Yangi Zhou, Sameer Wagh, Prateek Mittal, and David Wentzlaff. 2017. Camou-

flage: Memory traffic shaping to mitigate timing attacks. In 2017 IEEE International
Symposium on High Performance Computer Architecture (HPCA). IEEE.

[60] Jianping Zhu, Rui Hou, XiaoFeng Wang, Wenhao Wang, Jiangfeng Cao, Boyan

Zhao, Zhongpu Wang, Yuhui Zhang, Jiameng Ying, Lixin Zhang, and Dan Meng.
2020. Enabling Rack-scale Confidential Computing using Heterogeneous Trusted
Execution Environment. In 2020 IEEE Symposium on Security and Privacy (SP).
https://doi.org/10.1109/SP40000.2020.00054

https://doi.org/10.1109/SP40000.2020.00054

	Abstract
	1 Introduction
	2 Background
	2.1 ML model secrets
	2.2 Inference data secrets
	2.3 ML inference accelerator architecture
	2.4 Security guarantees of TEEs

	3 Motivation
	3.1 Flexible threat model for ML TEEs
	3.2 Deployment specific TEE requirements

	4 Threat Model
	5 Triton Design Overview
	5.1 Secure ML accelerator primitives
	5.2 Application APIs:
	5.3 Compiler Enhancements
	5.4 Hardware Implementation:

	6 Evaluation
	6.1 Platform
	6.2 Threat model based latency
	6.3 Case Studies

	7 Security Analysis
	7.1 Execution isolation guarantees
	7.2 Compiler isolation guarantees

	8 Related works
	9 conclusion
	Acknowledgments
	References

