
Software Compartmentalization Trade-Offs
withHardware Capabilities
John Alistair Kressel, Hugo Lefeuvre, Pierre Olivier

The University of Manchester
Manchester, UK

Abstract
Compartmentalization is a form of defensive software de-

sign in which an application is broken down into isolated but 
communicating components. Retrofitting compartmentaliza-
tion into existing applications is often thought to be expensive 
from the engineering effort and performance overhead points 
of view. Still, recent years have seen proposals of compartmen-
talization methods with promises of low engineering efforts 
and reduced performance impact. ARM Morello combines a 
modern ARM processor with an implementation of Capabil-
ity Hardware Enhanced RISC Instructions (CHERI) aiming 
to provide efficient and secure compartmentalization. Past 
works exploring CHERI-based compartmentalization were 
restricted to emulated/FPGA prototypes.
In this paper, we explore possible compartmentalization 

schemes with CHERI on the Morello chip. We propose two 
approaches representing different trade-offs in terms of engi-
neering effort, security, scalability, and performance impact. 
We describe and implement these approaches on a prototype 
OS running bare metal on the Morello chip, compartmentalize 
two popular applications, and investigate the performance 
overheads. Furthermore, we show that compartmentalization 
can be achieved with an engineering cost that can be quite 
low if one is willing to trade off on scalability and security, and 
that performance overheads are similar to other intra-address 
space isolation mechanisms.

CCS Concepts: • Security and privacy →Security in hard-
ware; Operating systems security; Software and appli-
cation security.

Keywords: Compartmentalization, Hardware Capabilities
ACM Reference Format:
John Alistair Kressel, Hugo Lefeuvre, Pierre Olivier. 2023. Software 
Compartmentalization Trade-Offs with Hardware Capabilities. In 
12th Workshop on Programming Languages and Operating Systems 
(PLOS ’23), October 23, 2023, Koblenz, Germany. ACM, New York, NY, 
USA, 9 pages. https://doi.org/10.1145/3623759.3624550

This work is licensed under a Creative Commons Attribution International 
4.0 License.
PLOS ’23, October 23, 2023, Koblenz, Germany
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0404-8/23/10.
https://doi.org/10.1145/3623759.3624550

1 Introduction
Software compartmentalization is one of the ways to en-

force the principle of least privilege [31]. Compartmentaliza-
tion enforces isolation between components of a software
system, granting compartments only the minimal privileges
they need to function. If a component of a compartmental-
ized system is subverted, the damage the attacker can do is
limited to the privileges granted to the compromised com-
partment [17, 30]. Contrary to many other protection tech-
niques, compartmentalization allows defending against yet
unknown/future vulnerabilities in existing code bases [41].
Many approaches have been proposed in recent years, utiliz-
ing different hardware and software isolation mechanisms to
compartmentalize libraries [5, 6, 15, 22, 25, 28, 32–34, 37, 44] as
well as smaller pieces of code such as functions [3, 14, 36, 38].

Morello [26] is an extension to the ARMv8-A architec-
ture implementing the Capability Hardware Enhanced RISC
Instructions (CHERI), designed specifically to enable high-
performance and scalable compartmentalization [40, 41, 43].
This is achieved by enforcing compartment bounds on most
memory loads and stores in hardware, and letting commu-
nicating compartments securely lend memory to each other
using so-called hardware capabilities, a mechanism similar to
fat pointers [20] implemented in hardware to restrict accesses
to shared memory at a fine (byte-level) granularity.
When retrofitting compartmentalization to existing code

bases, a key challenge is keeping refactoring costs low [4].
This is crucial not only for reducing the cost of deployment,
but also to reduce the number of errors made during the
compartmentalization, which can undermine its efficiency or
security guarantees [21]. Work exploring compartmentaliza-
tion with CHERI is so far limited to solutions with relatively
high porting costs [11, 32, 41], that require a non-negligible
reworking to the code corresponding to inter-compartment
communications. These existing works are further limited to
MIPS/RISC-V emulated or FPGA prototypes, making it hard
to understand the real-world performance onewould observe
onanASICprocessor. In that context, the recent availability of
Morello raises the research questions we tackle in this paper:

1. Which compartmentmodels are possible usingMorello,
using what programming abstractions, at which refac-
toring costs?

2. HowdoesMorello’s compartmentalizationperformance
and security guarantees compare to other intra-address
space compartmentalization mechanisms (e.g., MPK)?

49

https://doi.org/10.1145/3623759.3624550
https://doi.org/10.1145/3623759.3624550
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3623759.3624550&domain=pdf&date_stamp=2023-10-23


For thispurpose,weadaptanexistingcompartmentalization-
oriented library OS (libOS), FlexOS [22], to Morello, and ex-
tend it by developing two compartmentalization program-
ming abstractions relying on hardware capabilities, each rep-
resenting a particular trade-off in terms of porting costs, secu-
rityguarantees, andscalability tomultiple compartments.The
first is based onmanual sandboxing as advocated by CHERI’s
designers [41],withevery sharedbufferprotectedbyacapabil-
ity. Further, we propose a second approach relying on a single
region of shared data between two mutually distrusting com-
partments. These abstractions are used to compartmentalize
popular open source software, SQLite [2] and LibSodium [1],
at different isolation granularities: functions and libraries.We
evaluate the porting costs, degree of security of these solu-
tions, and further evaluate their performancewhen executing
on theMorello chip, comparing these results to that of another
intra-address space isolationmechanism: IntelMPK.We show
thatmanual porting as advocated byCHERI’s designers offers
good performance, a good level of security, and scales well
to high numbers of compartments. However, it can require a
significant engineering effort when applied to large compart-
ments. The second approach trades off security guarantees
and scalability to more than 2 compartments, to achieve low
porting costs, requiring only annotations indicating shared
data at declaration time in the code.

2 CHERIHardware Capabilities
A hardware capability [43] is an architectural data type

used to represent a contiguous region of virtual memorywith
byte-level granularity. CHERI hardware capabilities define
a base address, bounds and permissions information. The ca-
pability can be dereferenced to access the memory it refers
to, with the hardware performing bounds and permissions
checks. Capabilities are made unforgeable by a validity tag,
stored separately, and the restriction that capabilities can only
be used/manipulated via capability-aware instructions.

When usingMorello for compartmentalization (commonly
referred to as hybrid mode), all compartments share a single
address space, and the vast majority of the program’s ma-
chine code is unchanged, consisting of traditional ARMv8
instructions. Every memory access made by a core is con-
strained by two global capabilities that delimit the memory
regions the currently executing compartment can access: the
Program Counter Capability (PCC) and theDefault Data Ca-
pability (DDC). There is one PCC and one DDC register per
core holding these, restricting the ARMv8 code’s ability to
perform instruction (PCC) and data (DDC) memory accesses
within the relevant bounds. Additional capabilities can be
used for sharing data between compartments. That way, the
caller is lending access to the smallest region of memory (the
data structure) needed by the callee. This is secure due to
the fine-grained bounds enforcement and efficient as no data
copy happens. Capabilities are also used to control exception-
less security domains (compartment) switches, realized by

a privileged security monitor (referred to as the switcher in
this paper). This is achieved through a special type of ca-
pability referred to as sealed, which is immutable and non-
dereferenceable, and can only be unsealed via a jump to a
pre-determined instruction in the switcher.

3 Design
We propose two design approaches suitable for compart-

ments on Morello, guided by four main considerations: the
engineering effort to retrofit compartmentalization in exist-
ing software, compartmentalization’s performance overhead,
the security of the given approach, and how it scales to many
compartments.

Engineering effort represents the effort to retrofit isolation
into legacy software, or to write new compartmentalized
software, using a given abstraction. It consists of marking
compartment boundaries and shared data [22], e.g. with an-
notations, but also sometimes redesigningpart of the software
with security inmind[21]. If high, it canbea significantbarrier
to the adoption of compartmentalization, as it increases costs
and development complexity [22]. Performance overheads are
another factor hindering the popularity of compartmentaliza-
tion [29, 37] and should beminimized. For example, the recent
DARPA Compartmentalization and Privilege Management
call [4] specifies this overhead to be <5% for application-level
compartmentalization with function granularity compart-
ments. Higher overhead is allowed for proportionally higher
security gains. Security is a spectrum of guarantees over an
uncompartmentalized system. The precise security require-
mentsmust be judged against the other requirements to strike
an acceptable balance. As a minimum, solutions must enforce
strong isolation between compartments and provide access
to only a subset of data which has been selectively shared for
communication. Finally, the scalability of a solution denotes
its capacity to efficiently scale to many compartments.
3.1 Design Overview

In line with Morello/CHERI single address space compart-
mentalization model [41], and with many existing works [15,
22, 32, 33, 36, 37], we assume a libOS-based environment in
which two or more user space and/or kernel components
share a single address space and are isolated from each other.
Compartments are defined statically at build time: each com-
partment is given a pair of memory regions, each contiguous
in the virtual address space, to hold its private 1) code and
2) data. Global compartment capabilities constraining each
compartment’smemory accesses to the corresponding pair of
regions are initialized at boot time. The static memory layout
of the application and the systems software’s dynamic mem-
ory allocation primitives (malloc/mmap/brk) are designed to
allocate data accordingly. All data declared in the scope of a
given compartment is treated as private to that compartment,
unless it is specifically annotated as shared. Shared data is
managed differently in the two abstractions we propose, and
this is presented in detail in the next subsection.

2

50



1 void foo(mystruct *stat, int index) { // Original

2 char *str = stat->str;

3 bar(str);

4 float *element = stat->array[index];

5 float *next = element+1;

6 }

7
8 void foo(mystruct

*__capability stat, int index) { // Ported

9 char *__capability str = stat->str;

10 bar((__cheri_fromcap char*)str);

11 float *__capability element = stat->array[index];

12 float *__capability next = stat->array[index+1];

13 }

Listing1.Example of a function annotated to use capabilities.

Gates are inserted in the code in place of function calls,
where these calls now cross compartment boundaries. They
invoke the switcher, which performs, on the relevant CPU
core, the security domain switch by switching the stack and
global compartment code/data capability registers. Finally,
a trampoline is called to enable fast return to the caller com-
partment from capability-unaware code, with less overhead
than re-invoking the switcher. The switcher is trusted and
privileged, hence its code and data (including the global capa-
bilities for all compartments) cannot be accessed by the com-
partments directly, instead they must use a sealed capability
(§2). The switching mechanism is kept as lightweight as pos-
sible to minimize overhead while preserving strong security.
We define the trusted computing base as the switcher, gates,
trampoline, earlyboot code (includingcapability initialization
code), memory manager, scheduler and interrupt handler.
3.2 TwoApproaches To Sharing Data

Compartments cannot access memory outside the regions
constrained by theirDDC/PCC. This raises the issue of how
to selectively share data between compartments, and how to
do so efficiently (i.e. without data copy). We discuss two ap-
proaches to data sharing, and reason about their performance,
security, and scalability properties.
3.2.1 Approach 1: Replacing Pointers with Capabili-
ties. With CHERI, certain pointers can be transformed into
fine-grained capabilities encompassing only the pointed data
structure(s). This is the standard way to manage shared data
as designed by the CHERI/Morello authors [41]. A compart-
ment C1wishing to share a subset of its dedicated memory
region with another compartment C2 can pass such a fine-
grained capability cap as parameter/return value of a gate.
Morello is designed so that the memory access made by C2
dereferencing capwill not be subject to C2’s global capability:
C2 will thus be able to access C1’s memory region, but only
the few bytes represented by cap.
Engineering Cost. The sandboxing effort of a legacy func-
tionfoo is illustratedonListing1.Asdescribedearlier, pointer

Comp 0 Shared Data Comp 1

Comp 0 DDC Comp 1 DDC

Virtual address space

Figure 1.Compartment boundswith sharedmemory regions.
The compartment bounds overlap to encompass shared data.

parameters (stat line 8) and any pointers created out of a
capability (str line 9, 11, 12) must be transformed into ca-
pabilities with annotations. Capabilities flowing out of the
compartment must be changed back into pointers with a cast
(line 10). Capability monotonicity must also be respected, i.e.
a capability cannot extend the bounds of the capability it is
derived from: element+1 (line 5) is forbidden because it refers
tomemory outside the bounds of next, and that codemust be
redesigned. Other types of changes may be needed depend-
ing on the ported code [42]. In the general case, we hint that
such manual porting may only be amenable to small-scale
scenarios (e.g. sandboxing one or a few functions), because
the engineering cost of rewriting pointers into capabilities
becomes too high as compartments’ sizes increase.
Trust Model. Engineering costs can be kept low with this
approach in scenarioswith 1) small compartment sizes,which
limits the amount of code rewritingwithin the compartments;
and2)nocapabilityflowingoutside thecompartment, toavoid
costly rewriting of the data flow in the rest of the application.
This fits very well function sandboxing scenarios. The iso-
lated function represents a distrusted compartment, and is
isolated from the rest of the system. Pointer arguments enter-
ing the compartment are replaced with capabilities. The rest
of the system is trusted and can access any memory within
the sandbox compartment.
Performance, Security, and Scalability. Data is shared
through capabilities, leading to a low performance impact
(no copy or marshaling). In terms of security, the sandbox
is isolated by the PCC/DDC, constraining all non-capability
operations made by the sandbox, and shared data is tightly
bounded by argument capabilities, resulting in strong isola-
tion. Regarding scalability, this approach scales to an unlim-
ited number of compartments (e.g. function sandboxes) with
a constant porting effort (porting complexity does not grow
with the number of compartments).

3.2.2 Approach 2:Overlapping SharedRegion. This ap-
proach drops the fine-grained capabilities to rely on a single
region of shared data. The DDC bounds of communicating
compartments are extended to cover this region, so both can
access shared data, as illustrated in Figure 1. Since capability
bounds must cover contiguous memory, the shared data re-
gion is located between two compartments in memory. The
linker and dynamicmemory allocation primitives ensure that
shared data is correctly placed in the relevant memory.
Engineering Cost. With this approach shared data needs
to be marked as such with annotations in the source code.

3

51



1 void foo() { // Original

2 int x;

3 bar(&x);

4 }

5

6 void foo() { // Ported

7 int __shared x;

8 __gate(bar, &x,

9 compartment1);

10 }

Listing 2. Example of annotations for shared regions.

The function calls at compartment boundaries are similarly
annotated. This is illustrated on Listing 2, where foo and bar
are placed in different compartments. Code transformations
use these annotations to automatically allocate shared data
in memory which is accessible from all compartments, and to
instantiate gates. The engineering effort of this approach is
relatively low, and significantly lower than replacing pointers
with capabilities, as data must only be annotated at declara-
tion and/or allocation sites.
Trust Model. Mutual distrust is enforced between compart-
ments, with none able to access the others’ private data.
Performance, Security, and Scalability. Unlike Approach
1, shared stack variables must be allocated on a heap in the
shared region, resulting in an additional allocation cost. Tech-
niques to address this problem like data shadow stacks [22]
cannot be applied as-is due to the requirements of theDDC.
Nevertheless, we expect performance to be comparable to the
previous approach. Regarding security, isolation of memory
accesses is also enforced by the compartment PCC andDDC.
Data sharing is however made at a coarser granularity, with
the entire shared memory region accessible to both compart-
ments at all times. This trades off security in two ways: 1)
bounds are not tight to individual objects, thus not offering
CHERI’s spatial safety for shared objects; 2) even assuming no
revocation in Approach 1, the number of objects effectively
accessible by each compartment at any execution timewill re-
main larger, resulting inmorepotential forcompartment inter-
face vulnerabilities [21]. In terms of scalability, this approach
only scales to a small number of compartments: indeed one
can create only a single overlapping region per pair of commu-
nicating compartment, hence a scenario with e.g. 3 compart-
mentswishing to access a shared data structure is not possible.

4 Implementation

We have selected FlexOS [22, 23], a compartmentalization-
focused library operating system, to implement a prototype
system. FlexOSoriginally supported isolationwith IntelMem-
ory Protection Keys and Extended Page Tables. TheOS allows
easy extension to new isolation mechanisms. Further, its de-
sign is based on the Unikraft [19] unikernel, so it inherits its
high performance, small attack surface, and good compat-
ibility with popular applications. We ported FlexOS to the
Morello platform, and implemented on top of it the two com-
partmentalization abstractions described earlier, in a total of

about 2200 lines of code. Belowwe give implementation de-
tails regarding the system’s initialization, the compartments’
structure, and the security domain switching process.
4.1 Compartment Structure

Compartments are defined at build time in a configuration
file provided to the FlexOS build tool. At link time, isolated
dataareplaced into their respective, separate,nonoverlapping
ELF section with the help of a custom linker script automati-
cally generated by the toolchain. Non-isolated data are placed
into a default compartment. The linker script also reserves
space for dynamically-allocated data (stack and heap) in each
compartment’s memory.

The compartment switcher’s code and data is isolated from
all other compartments’ code. This is done to control access to
the switcher,which is a privileged entity. In addition, compart-
ment capability pairs (one DDC and PCC pair per compart-
ment) are stored in memory which is not accessible from any
compartment but that of the switcher. This is done to avoid
a compartment arbitrarily granting itself access to another
compartment’s memory.
4.2 Initialization

Based on the compartment boundaries defined in the linker
script, compartments are initialized at boot time: we trust the
boot code of FlexOS to initialize compartment capabilities cor-
rectly. Compartment’s PCC andDDC bounds are initialized
to cover the statically defined compartment memory region.
Capability bounds canonly cover a contiguous regionofmem-
ory, meaning that all of the code and data of a compartment
must be present in contiguous memory. Once compartment
capabilities have been created, they are stored in the memory
reserved for compartment capability pairs.

During boot time, a capability pair for the switcher is also
initialized. This pair grants access to the switcher code, and
the compartment capability pairs. To prevent unauthorized
execution of the switcher, the capability pair granting access
to theswitcher is alsoplaced inmemorywhich isoutofbounds
of any compartment. To access this pair, a sealed capability
is created for each compartment, which is unsealed using a
lpb (load pair and branch) instruction. The sealed capability
is thus the only way for compartments to invoke the switcher.
Each compartment is given one such sealed capability. Finally,
each compartment receives a private allocator, which man-
ages the per-compartment portionof the virtual address space
previously reserved in the linker script. Using this allocator, a
private stack and heap for each compartment are initialized.
At the end of the boot process, the capability pair for the

default compartment is loaded and execution then enters the
default compartment.
4.3 Switching Security Domains
The security domain switch process is illustrated on Fig-

ure 2: the caller compartment invokes the privileged switcher
safely through a sealed capability, which switches the archi-
tectural state representing compartment permissions on the

4

52



 Caller Switcher1 - Call

Callee3 - Call
4 -ReturnTrampoline

5 - Return 2 - Call

Figure 2. Control flow of a compartment switch (call and
return paths). Dashed boxes represent protection domains.
The trampoline is available in the domain of the callee
compartment.

relevant CPU core. Using a trampoline, the switcher then
branches to the callee compartment. On the return path, a
trampoline is used to branch back to the caller.

We implement compartment switchgates asCmacros. This
allows the instructions invoking the switcher to be directly
inlined at the call site, avoiding the need for a function call.
The call gate is in the caller compartment. Unlike in other
implementations of FlexOS call gates, such as MPK [22], the
domain transition is not realized within the security context
of the caller: this is done to prevent compartments from ac-
cessing the capability pairs of other compartments. Instead,
it invokes the switcher after having loaded the parameters
needed for the callee. When initiating a switch, the compart-
ment switch gate takes the caller and callee compartment
IDs, the callee function pointer, a return variable pointer (if
needed) and arguments to be passed.

The compartment switch gates follow the AArch64 calling
convention for argument registers. The procedure used to
invoke the compartment switcher is as follows: caller-saved
registers are pushed to the stack, the current stack and frame
pointers are saved, the switcher parameters are loaded and
finally, the sealed capability granting access to the switcher
capabilities is loaded, unsealed and the switcher is invoked.
By invoking the switcher, the PCC is restricted to only execute
switcher code.
The switcher is an isolated entity which is trusted to per-

form the compartment switches. The switcher PCC is the
only capability able to execute switcher code, which is iso-
lated from all other code. The switcherDDC is the only way
to access compartment capability pairs. Once the switcher is
invoked, the following steps are taken:

1. Upon first entering the switcher, the caller compart-
mentDDC is still in place. This, alongwith the return ca-
pability generated by the call to the switcher are stored
on the caller compartment stack. A sealed capability is
generated which grants access to this stored capability
pair.

2. TheDDC is changed to the switcherDDC.
3. Callee compartment capabilities (PCC, DDC) are load-

ed/set.
4. The stack is switched for the callee.
5. ThecalleecompartmentPCC isused to leave theswitcher

and jump to the trampoline.

The trampoline serves as both the entry and exit point
for a compartment. Return to the caller compartment can
only be performed via the capability pair stored on the caller
stack, accessed via a sealed capability. This avoids the need to
go through the switcher on the return path. At call time, the
trampoline stores the sealed capability createdby the switcher
onto the callee’s stack before calling the target function. Upon
return to the trampoline, the sealed capability is popped, un-
sealed, and a return to the caller compartment is performed.
Theunsealed capability is used to load the caller compartment
capability pair: the PCC is set as part of the return and the
DDC is restored by the call gate in the caller. Upon return from
the callee compartment, the gate restores the stack and any
saved registers. If the function call returned a value, the gate
will store the returned value in a provided variable pointer.

5 Evaluation
In this section we evaluate the impact on performance and

engineering effort of our proposed approaches. We use the
abstractions we developed to compartmentalize two popular
applications, the SQLite [2] database management system
and the libsodium [1] crypto library. For libsodium we use
our first approach to data sharing, function sandboxing with
fine-grained capabilities, and sandbox 5 functions manipulat-
ing external input, listed in Table 1. The library is integrated
with a benchmark we derived from its test suite, running rep-
resentative tests (e.g. encrypting a buffer, generating a key)
200 times in a loop. SQLite’s compartmentalization uses our
second approach, coarse-grain shared data regions with over-
lapping DDCs between communicating compartments. We
create twomutually distrusting compartments: the filesystem
management code, and the rest of the system.This application
is benchmarked with 5000 INSERT operations on an in mem-
ory (ramfs) database. The compartmentalization scenario
and the benchmark are both taken from the FlexOS paper [22]
and represent a system call intensive application.
We run all experiments on our port of FlexOS, bare-metal

on the Morello evaluation board [24, 39] with 16 GB of RAM
and the capability-enabled SoC clocked at 2.5 GHz. For com-
parison, we also gather data for Linux on Morello, running
a capability-unaware AArch64 Debian 11, as well as for the
other isolation mechanisms supported by FlexOS (MPK, EPT)
on an x86-64 Xeon Silver 4114 clocked at 2.2 Ghz with 128 GB
of RAM, running Debian 11. Results are averages of 10 runs;
since they show little variance we omit error bars.
5.1 Engineering Cost
Table 1 shows the porting effort associated with the com-

partmentalization of libsodium and SQLite.
Concerning libsodium, the engineering cost of sandbox-

ing functions with our first approach involves rewriting the
function’s code to be capability-aware, something that can
be a task of non-negligible complexity [42]. Still, because we
deliberately selected functions with relatively small sizes (11
to 141 LoC), that effort was relatively low (1 or 2 hours per

5

53



Table 1. Porting effort required to compartmentalize.

Software Sharing
approach Compartments Porting

cost
Changes
(LoC)

libsodium Function
sandboxing

sodium_hex2bin < 1h 9
sodium_bin2hex < 1h 8

chacha20_encrypt_bytes < 2h 73
store32_le < 1h 5
store64_be < 1h 5

SQLite Overlapping DDCs vfscore + ramfs < 2d < 300

0
0.5

1
1.5

2
2.5

3
3.5

A
vg

. e
xe

cu
tio

n 
tim

e 
(s

)

2.603s 2.607s
2.921s 2.819s 2.82s

Baseline (no 
compartments)

bin2hex
&

hex2bin

chacha20_
encrypt_
bytes

store32_le
&

store64_be

all

Figure 3. Overhead of various compartmentalization
scenario on libsodium (X labels are sandboxed functions).

function for a programmer with good knowledge of capabil-
ity programming), and mostly consisted of annotating the
relevant pointers to be transformed into capabilities.

Regarding SQLite, we achieved the compartmentalization
in a couple of days using the overlapping shared data region
approach. The effort involved can be broken down into two
tasks: 1) gate insertion and 2) shared data identification. Gate
insertion is mostly automated by the FlexOS toolchain, with
the programmer only needing to insert annotations at the de-
sired compartment boundary. Themajority of thework comes
from identifying shared data. It is currently with FlexOS a
manual process, during which the programmer must analyze
the code carefully to pinpoint what needs to be shared with
annotations. Although the engineering cost for this approach
seems higher than for the sandboxing method, the compart-
ment size is also much larger for the overlapping DDC, e.g.
5.8K LoC for the filesystem compartment.
5.2 Performance
Libsodium. We analyze different configurations of the 5
Libsodium functions we sandboxed by replacing pointers
with capabilities. The results are presented on Figure 3. The
overhead is very modest, due to a relatively low amount of
compartment switches; the highest is
chacha20_encrypt_byteswith 0.669 compartment switch-
es/1k instructions.The lowestperformanceoverhead isachieved
when sodium_hex2bin and sodium_bin2hex are isolated,
adding only a 0.144% performance overhead. In contrast,
the highest performance overhead comes from compartmen-
talizing chacha20_encrypt_bytes only, with an overhead
of 12.207%. This is higher than the scenario where all are
isolated, because chacha20_encrypt_bytesmakes calls to
store32_le. When only chacha20_encrypt_bytes is iso-
lated, a compartment switch is required for each call, hence

Linux (PT2) FlexOS (no 
compartments)

FlexOS 
(CHERI2)

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

A
vg

. 
e

xe
cu

tio
n

 t
im

e
 (

s)

0.158s

0.113s

0.051s

Figure 4. Execution times of different configurations of
SQLite running onMorello.

the overhead is higher. Evaluating against theDARPArequire-
ments for function granularity isolation [4], most of these
results are in range of the required 5% overhead.

To further understand this behavior, we enabled hardware
performance counters support in our prototype OS and gath-
ered the data presented in Table 2. The number of instructions
executed,memoryaccessesperformed includingcacheaccess-
es/misses, and branches executed, increase proportionally.
The reduction in instruction cache misses for store32_le
and store64_be is due to the new wrapper function being
no longer inlined as the original functions were, resulting in
more efficient cache utilization. We also note that the branch
predictor struggles with increased use of indirect branches,
a direct consequence of gates as a layer of indirection.
SQLite. Results for SQLite are presented on Figure 4.Here the
overlapping shared data region approach is used for CHERI
configurations.Compared toanuncompartmentalizedFlexOS
baseline, isolating the filesystem adds an overhead of 119.9%.
This is because the isolated code lies on the hot path, meaning
that isolated primitives are frequently called: we measured
a high frequency of domain transitions (2.49/1k instructions).
However, CHERI-based filesystem isolation still outperforms
the same benchmark running on an unmodifiedDebian Linux
installation by a factor of 1.4x. Running on Debian Linux
is equivalent to a relatively costly two-compartments page-
table-based scenario (PT2), due to the page table-based user-
kernel separation.

The data measured from the hardware performance coun-
ters for SQLite is presented in Table 2. Compartmentalization
increases the number of instructions executed by 27.1% and
memory accesses by 48.3%. Correspondingly, the number of
L1 instruction cache and L1 data cache access increase, while
the number of misses for both increase by a smaller propor-
tion. Interestingly, the branch misprediction rate rises by a
far greater amount than the number of branches executed.
This may be attributed to the increased number of indirect
branches used as a result of the switching process, which are
harder for the predictor to predict.
The relative overhead figures for SQLite are presented in

Figure 5.We also include numbers for FlexOS running on x86-
64 with MPK and EPT.We present results for the previously-
mentioned compartmentalization scenario, 2 compartments
(filesystem and rest of the system, CHERI2/PT2/EPT2), and

6

54



Table 2. Performance counters by for each configuration compared to the uncompartmentalized baseline.

Configuration L1I Acc L1I Misses L1D Acc L1DMisses Br Ret Br Mispred MemAcc Inst Ret
sodium_hex2bin &
sodium_bin2hex

+0.15% +3.95% +0.09% +25.11% +0.29% +10.25% +0.13% +1.74%

chacha20_encrypt_bytes +23.58% +209.49% +16.85% +106.00% +23.33% +76.76% +16.69% +4.90%
store32_le& store64_be +16.28% -37.47% +13.98% +12.03% +14.29% +91.72% +13.84% +2.90%
libsodium all +16.36% +178.92% +12.44% +189.79% +15.73% +102.34% +12.15% +4.54%
SQLite +99.6% +46.0% +48.1% +18.4% +6.5% +175.2% +48.3% +27.1%

FlexOS 
(CHERI2)

FlexOS 
(CHERI3)

Linux 
(PT2)

FlexOS 
(MPK3)

FlexOS 
(EPT2)

Linux 
(PT2)

0

50

100

150

200

250

S
lo

w
do

w
n 

C
om

pa
re

d 
T

o 
B

as
el

in
e 

(%
)

119.9% 119.9%

208.2%

96.3%

220.4% 227.8%
x86Morello

Figure 5.Overhead relative to uncompartmentalized FlexOS
for SQLite.

Cold

Hot (>99.9% 
of observed)

0 100 200 300 400 500 600 700 800 900 1000

First half of switch gate
Unseal and branch to switcher
Switcher and trampoline
Trampoline to function
Trampoline and return to gate
Second half of switch gate

Cycles

Figure 6.Hot and cold compartment switch latencies, broken
down into component parts.

an additional scenario with 3 compartments (filesystem, time
manager, rest of the system, CHERI3/MPK3). Morello’s num-
bers are in linewith the relative overheads of these other isola-
tionmechanisms. Compared to the overhead ofMPK3, CHERI
is slightlymoreexpensive.This canbeattributed to the switch-
ing mechanism that with CHERI requires additional book-
keeping and jumps (e.g. to the switcher) compared to MPK.
Security Domain Switch Latency Breakdown. Weobserve
that the majority of the overhead comes from security do-
main switches [35], hencewe usemicrobenchmarks to obtain
abreakdownof thecost inCPUcyclesassociatedwithaswitch.
Results are presented in Figure 6. Compartment switches can
be broken down into hot and cold switches. This is a result
of cache utilization. The vast majority of switches (>99.9%)
observed in all configurations fall into the category of hot
switches. The cold switches, therefore, represent a worst-
case cycle latency for compartment switches. These can be
expected in compartmentalization scenarios where compart-
ment switches rarely occur, and cache utilization is worse.
This results in a best switching latency of <400 cycles, and a
worst case of 900-1000 cycles.

6 RelatedWork
Compartmentalization. In recent years, many works have
looked at implementing various forms of compartmentaliza-
tion [5–10, 12–16, 18, 22, 25, 27, 28, 32–34, 36–38, 44]. Many
of these approaches have focused on library isolation [5, 6, 15,
22, 25, 28, 32–34, 37, 44], while others approach isolation in
a much more fine-grained way, including function level iso-
lation [13, 14, 36, 38]. Isolation in single-address-space OSes
such as Library OSes has also been explored [22, 33, 36], al-
though using other mechanisms such as memory protection
keys.
CHERI. While compartmentalizationusingCHERIhardware
capabilities has been explored in thepast [5, 13, 45], littlework
has been done to explore compartmentalization on ASICs,
instead using FPGA prototypes. Cap-VMs [32] provides capa-
bility awareVM-like abstractionswhich can be used to isolate
capability-unaware components of a system using CHERI
RISC-V. CHERI JNI [11] uses capabilities to provide memory
safety for the JavaVM.Finally,CheriBSD[41]uses capabilities
to enable (manual) application compartmentalization.

7 Conclusion
We have proposed two solutions to implement compart-

mentalization on top of a real-world hardware capability-
enabled SoC, ARMMorello. Each solution represents a spe-
cific point in the compartmentalization design space, and we
have explored the trade-offs they represent in terms of engi-
neering effort for retrofitting legacy software, performance
overheads, security, and scalability. We show that hardware
capability-based compartmentalization can be achieved with
a variable engineering cost, which can be quite low if one
is willing to trade-off on scalability and security, and that
performance overheads are similar to other intra-address
space isolation mechanisms (e.g. memory protection keys),
and lower than more heavyweight (page table/extended page
table) solutions.

8 Acknowledgments
We thank the anonymous reviewers for their insights. This

work was partly funded by the EPSRC/Innovate UK grant
EP/X015610/1 (FlexCap), theUK’sEPSRCgrantsEP/V012134/1
(UniFaaS), EP/V000225/1 (SCorCH), a studentship from NEC
Labs Europe and a Microsoft Research PhD Fellowship.

7

55



References
[1] Libsodiumwebsite, 2023. https://doc.libsodium.org/.
[2] Sqlite website, 2023. https://www.sqlite.org/index.html.
[3] Ioannis Agadakos, Manuel Egele, and William K. Robertson. Poly-

tope: Practical memory access control for C++ applications. CoRR,
abs/2201.08461, 2022.

[4] Defence Advanced Research Projects Agency. Broad agency announce-
ment compartmentalization and privilege management (cpm).

[5] HeshamAlmatary, Michael Dodson, Jessica Clarke, Peter Rugg, Ivan
Gomes, Michal Podhradsky, Peter G. Neumann, SimonW. Moore, and
Robert N. M. Watson. Compartos: CHERI compartmentalization for
embedded systems. CoRR, abs/2206.02852, 2022.

[6] Markus Bauer and Christian Rossow. Cali: Compiler-assisted library
isolation. In Jiannong Cao, Man Ho Au, Zhiqiang Lin, and Moti
Yung, editors, ASIA CCS ’21: ACM Asia Conference on Computer and
Communications Security, Virtual Event, Hong Kong, June 7-11, 2021,
pages 550–564. ACM, 2021.

[7] Andrea Bittau, Petr Marchenko, Mark Handley, and Brad Karp. Wedge:
Splitting applications into Reduced-Privilege compartments. In 5th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 08), San Francisco, CA, April 2008. USENIX Association.

[8] David Brumley and Dawn Song. Privtrans: Automatically partitioning
programs for privilege separation. In 13th USENIX Security Symposium
(USENIX Security 04), San Diego, CA, August 2004. USENIXAssociation.

[9] ScottA.CarrandMathiasPayer. Datashield:Configurabledataconfiden-
tiality and integrity. In Proceedings of the 2017 ACM on Asia Conference
onComputer andCommunications Security, ASIACCS ’17, page 193–204,
New York, NY, USA, 2017. Association for Computing Machinery.

[10] Yaohui Chen, Sebassujeen Reymondjohnson, Zhichuang Sun, and
Long Lu. Shreds: Fine-grained execution units with private memory.
In IEEE Symposium on Security and Privacy, SP 2016, San Jose, CA, USA,
May 22-26, 2016, pages 56–71. IEEE Computer Society, 2016.

[11] David Chisnall, Brooks Davis, Khilan Gudka, David Brazdil, Alexandre
Joannou, JonathanWoodruff, A. Theodore Markettos, J. Edward Maste,
Robert M. Norton, Stacey D. Son, Michael Roe, Simon W. Moore,
Peter G. Neumann, Ben Laurie, and Robert N. M. Watson. CHERI
JNI: sinking the java security model into the C. In Yunji Chen, Olivier
Temam, and John Carter, editors, Proceedings of the Twenty-Second
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2017, Xi’an, China, April
8-12, 2017, pages 569–583. ACM, 2017.

[12] Nathan Dautenhahn, Theodoros Kasampalis, Will Dietz, John Criswell,
and Vikram Adve. Nested kernel: An operating system architecture
for intra-kernel privilege separation. In Proceedings of the Twentieth
International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 191–206, 2015.

[13] LawrenceG. Esswood. CheriOS: designing an untrusted single-address-
space capability operating system utilising capability hardware and
a minimal hypervisor. Technical Report UCAM-CL-TR-961, University
of Cambridge, Computer Laboratory, September 2021.

[14] Khilan Gudka, Robert N. M. Watson, Jonathan Anderson, David
Chisnall, Brooks Davis, Ben Laurie, Ilias Marinos, Peter G. Neumann,
and Alex Richardson. Clean application compartmentalization with
SOAAP. In Indrajit Ray, Ninghui Li, and Christopher Kruegel, editors,
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, Denver, CO, USA, October 12-16, 2015, pages
1016–1031. ACM, 2015.

[15] Mohammad Hedayati, Spyridoula Gravani, Ethan Johnson, John
Criswell, Michael L. Scott, Kai Shen, and Mike Marty. Hodor:
Intra-process isolation for high-throughput data plane libraries. In
Proceedings of the 2019 USENIX Annual Technical Conference, ATC’19.
USENIX Association, 2019.

[16] Yongzhe Huang, Vikram Narayanan, David Detweiler, Kaiming Huang,
Gang Tan, Trent Jaeger, and Anton Burtsev. KSplit: Automating device

driver isolation. In 16th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 22), pages 613–631, Carlsbad, CA,
July 2022. USENIX Association.

[17] Paul A. Karger. Limiting the damage potential of discretionary trojan
horses. In Proceedings of the 1987 IEEE Symposium on Security and
Privacy, Oakland, California, USA, April 27-29, 1987, pages 32–37. IEEE
Computer Society, 1987.

[18] Douglas Kilpatrick. Privman: A library for partitioning applications.
In 2003 USENIX Annual Technical Conference (USENIX ATC 03), San
Antonio, TX, June 2003. USENIX Association.

[19] Simon Kuenzer, Vlad-Andrei Bădoiu, Hugo Lefeuvre, Sharan San-
thanam, Alexander Jung, Gaulthier Gain, Cyril Soldani, Costin Lupu,
Ştefan Teodorescu, Costi Răducanu, Cristian Banu, Laurent Mathy,
Răzvan Deaconescu, Costin Raiciu, and Felipe Huici. Unikraft: Fast,
specialized unikernels the easy way. In Proceedings of the Sixteenth
European Conference on Computer Systems, EuroSys ’21, page 376–394,
New York, NY, USA, 2021. Association for Computing Machinery.

[20] Albert Kwon, Udit Dhawan, Jonathan M. Smith, Thomas F. Knight,
and Andre DeHon. Low-fat pointers: Compact encoding and efficient
gate-level implementation of fat pointers for spatial safety and
capability-based security. CCS ’13, page 721–732, New York, NY, USA,
2013. Association for Computing Machinery.

[21] Hugo Lefeuvre, Vlad-Andrei Badoiu, Yi Chen, Felipe Huici, Nathan
Dautenhahn, and Pierre Olivier. Assessing the impact of interface
vulnerabilities in compartmentalized software. In 30th Annual Network
and Distributed System Security Symposium, NDSS 2023, San Diego,
California, USA, February 27 - March 3, 2023. The Internet Society, 2023.

[22] Hugo Lefeuvre, Vlad-Andrei Badoiu, Alexander Jung, Stefan Lucian
Teodorescu, Sebastian Rauch, Felipe Huici, Costin Raiciu, and Pierre
Olivier. Flexos: towards flexible OS isolation. In Babak Falsafi, Michael
Ferdman, Shan Lu, and Thomas F. Wenisch, editors,ASPLOS ’22: 27th
ACM International Conference onArchitectural Support for Programming
Languages and Operating Systems, Lausanne, Switzerland, 28 February
2022 - 4 March 2022, pages 467–482. ACM, 2022.

[23] Hugo Lefeuvre, Vlad-Andrei Badoiu, Stefan Teodorescu, Pierre Olivier,
Tiberiu Mosnoi, Razvan Deaconescu, Felipe Huici, and Costin Raiciu.
Flexos: making OS isolation flexible. In Sebastian Angel, Baris Kasikci,
and Eddie Kohler, editors, HotOS ’21: Workshop on Hot Topics in
Operating Systems, Ann Arbor, Michigan, USA, June, 1-3, 2021, pages
79–87. ACM, 2021.

[24] ARM Limited. Arm Morello System Development Platform (SDP)
Technical Reference Manual, 2022.

[25] Shen Liu, Gang Tan, and Trent Jaeger. Ptrsplit: Supporting general
pointers in automatic program partitioning. In Proceedings of the 24th
ACM SIGSAC Conference on Computer and Communications Security,
CCS’17. Association for Computing Machinery, 2017.

[26] Arm Ltd. Arm® architecture reference manual supplement morello
for a-profile architecture. Technical report, 2022.

[27] Derrick Paul McKee, Yianni Giannaris, Carolina Ortega, Howard E.
Shrobe,Mathias Payer, HamedOkhravi, andNathanBurow. Preventing
kernel hacks with hakcs. In 29th Annual Network and Distributed
System Security Symposium, NDSS 2022, San Diego, California, USA,
April 24-28, 2022. The Internet Society, 2022.

[28] Shravan Narayan, Craig Disselkoen, Tal Garfinkel, Nathan Froyd, Eric
Rahm, SorinLerner,HovavShacham, andDeianStefan. Retrofittingfine
grain isolation in the firefox renderer. In Proceedings of the 29th USENIX
Security Symposium, USENIX Security’20. USENIX Association, 2020.

[29] Robert M Norton. Hardware support for compartmentalisation.
Technical report, Cambridge, UK, 2016.

[30] Niels Provos,Markus Friedl, and PeterHoneyman. Preventing privilege
escalation. In 12th USENIX Security Symposium (USENIX Security 03),
Washington, D.C., August 2003. USENIX Association.

[31] J.H. "Saltzer and M.D." Schroeder. The protection of information in
computer systems. Proceedings of the IEEE, 63(9):1278–1308, 1975.

8

56

https://doc.libsodium.org/
https://www.sqlite.org/index.html


[32] Vasily A. Sartakov, Lluís Vilanova, David Eyers, Takahiro Shinagawa,
and Peter Pietzuch. CAP-VMs: Capability-Based isolation and sharing
in the cloud. In 16th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 22), pages 597–612, Carlsbad, CA, July 2022.
USENIX Association.

[33] Vasily A. Sartakov, Lluís Vilanova, and Peter R. Pietzuch. Cubicleos:
a library OS with software componentisation for practical isolation.
In Tim Sherwood, Emery D. Berger, and Christos Kozyrakis, editors,
ASPLOS ’21: 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Virtual Event, USA,
April 19-23, 2021, pages 546–558. ACM, 2021.

[34] David Schrammel, Samuel Weiser, Stefan Steinegger, Martin Schwarzl,
Michael Schwarz, Stefan Mangard, and Daniel Gruss. Donky: Domain
keys – efficient in-process isolation for RISC-V and x86. In Proceedings
of the 29th USENIX Security Symposium, USENIX Security’20. USENIX
Association, 2020.

[35] Livio Soares andMichael Stumm. Flexsc: Flexible systemcall scheduling
with exception-less system calls. In Osdi, volume 10, pages 33–46, 2010.

[36] Mincheol Sung, Pierre Olivier, Stefan Lankes, and Binoy Ravindran.
Intra-unikernel isolation with intel memory protection keys. In
Proceedings of the 16th ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments, VEE ’20, page 143–156, New York,
NY, USA, 2020. Association for Computing Machinery.

[37] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O. Duarte, Michael
Sammler, Peter Druschel, and Deepak Garg. ERIM: Secure, efficient
in-process isolation with protection keys (MPK). In Proceedings of
the 28th USENIX Security Symposium, USENIX Security’19. USENIX
Association, 2019.

[38] Nicholas C. Wanninger, Joshua J. Bowden, Kirtankumar Shetty, Ayush
Garg, and Kyle C. Hale. Isolating functions at the hardware limit with
virtines. In Proceedings of the Seventeenth European Conference on
Computer Systems, EuroSys ’22, page 644–662, New York, NY, USA,
2022. Association for Computing Machinery.

[39] RobertWatson. The armmorello board, 2022. https://www.cl.cam.ac.
uk/research/security/ctsrd/cheri/cheri-morello.html.

[40] Robert N. M.Watson, Robert M. Norton, JonathanWoodruff, SimonW.
Moore, Peter G. Neumann, Jonathan Anderson, David Chisnall,
Brooks Davis, Ben Laurie, Michael Roe, Nirav H. Dave, Khilan
Gudka, Alexandre Joannou, A. Theodore Markettos, Ed Maste,
Steven J. Murdoch, Colin Rothwell, Stacey D. Son, and Munraj Vadera.
Fast protection-domain crossing in the CHERI capability-system
architecture. IEEE Micro, 36(5):38–49, 2016.

[41] Robert N. M.Watson, JonathanWoodruff, Peter G. Neumann, SimonW.
Moore, Jonathan Anderson, David Chisnall, Nirav H. Dave, Brooks
Davis, Khilan Gudka, Ben Laurie, Steven J. Murdoch, Robert M. Norton,
Michael Roe, Stacey D. Son, and Munraj Vadera. CHERI: A hybrid
capability-system architecture for scalable software compartmentaliza-
tion. In 2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose,
CA, USA, May 17-21, 2015, pages 20–37. IEEE Computer Society, 2015.

[42] Robert NM Watson, Alexander Richardson, Brooks Davis, John
Baldwin, David Chisnall, Jessica Clarke, Nathaniel Filardo, SimonW
Moore, EdwardNapierala, Peter Sewell, et al. Cheri c/c++ programming
guide. Technical report, Cambridge, UK, 2020.

[43] Jonathan Woodruff, Robert NM Watson, David Chisnall, Simon W
Moore, Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G
Neumann, Robert Norton, andMichael Roe. The cheri capabilitymodel:
Revisiting risc in an age of risk. ACM SIGARCH Computer Architecture
News, 42(3):457–468, 2014.

[44] Yongzheng Wu, Sai Sathyanarayan, Roland H. C. Yap, and Zhenkai
Liang. Codejail: Application-transparent isolationof librarieswith tight
program interactions. In Sara Foresti, Moti Yung, and Fabio Martinelli,
editors, Proceedings of the 17th European Symposium on Research in
Computer Security, pages 859–876. Springer Berlin Heidelberg, 2012.

[45] Hongyan Xia, JonathanWoodruff, Hadrien Barral, Lawrence Esswood,
Alexandre Joannou, Robert Kovacsics, David Chisnall, Michael Roe,
Brooks Davis, Edward Napierala, et al. Cherirtos: A capability model
for embedded devices. In 2018 IEEE 36th International Conference on
Computer Design (ICCD), pages 92–99. IEEE, 2018.

9

57

https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheri-morello.html
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheri-morello.html

	Abstract
	1 Introduction
	2 CHERI Hardware Capabilities
	3 Design
	3.1 Design Overview
	3.2 Two Approaches To Sharing Data

	4 Implementation
	4.1 Compartment Structure
	4.2 Initialization
	4.3 Switching Security Domains

	5 Evaluation
	5.1 Engineering Cost
	5.2 Performance

	6 Related Work
	7 Conclusion
	8 Acknowledgments
	References

