
If we denote the computed So by S~j and let e~j = Sij -- 
Sis, then 

t~ii = ~21,j--1 + ~2i--l,j--1 + r~s, 

where r~j is the round-off introduced in the step which com- 
putes S~j. As before, 

eij : E r6i i , 

where g~i is the set of all index-pairs of the operations 
needed to get S~j, and p denotes the exponents of the inter- 
mediate results. Now, if ]a~[ < a, then clearly 

so that 

or 

S~j _< 2Sa, 

2vii < 2J+la, 

k n / 2 i  

[e I --< • ~ 2"~'k --< 2ha ~ ~ 2 i = 2nakn, 
elk j = l  i= l  

] e I --< 2~laln2n. (7) 
This is better than the error bound (5) by a factor of 
n/(21n2n) and we can expect significantly better results 
from this method. 

4. Numer ica l  Resul ts  and Conclus ions  
As a typical case, we carried out the addition of a se- 

quence of random numbers uniformly distributed in (0, 1 ). 
The results were computed on the CDC 6600 using a simu- 
lated 24-bit addition with truncation, and the comparison 
was done by calculating the sums via the full 48-bit addi- 
tion. With twenty trials, each consisting of adding 2048 
random numbers, the following results were obtained: 

average error for recursive summation = .0419, 

average error for improved method = .0003. 

The observed errors are comparable to the bounds (5) 
and (7) which are about 2 -2 and 11 × 2 -I2, respectively. 
(In this example it is reasonable to expect a better result 
by taking average values for a and 7; thus, with a = .5 
and ~ = ½ × 2 -u, the estimates become .0625 and .0006, 
respectively. ) 

The method described here has of course some disad- 
vantages: it is more difficult to program than the standard 
method, and it is difficult to use unless all numbers are 
available at the start of the summation. However, where 
these factors are not a problem and where high accuracy 
is desired, it appears to be superior to recursive summation. 
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tive quadrature schemes, based on Newton-Cotes (2h/ "-I-" 1) 
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Introduct ion  
High degree Newton-Cotes quadrature rules have seldom 

been used in practice because they occasionally fail to 
converge or they contain weights of different signs. This 
report shows, by numerical experiment only, that there 
are certain quadratures for which the rate of convergence 
increases with the use of higher degree Newton-Cotes 
rules, used adaptively, and demonstrates the advantage 
of adaptive methods over a nonadaptive rule in approxi- 
mating integrals having peaked integrands. 

McKeeman [1-3] and Davis and Rabinowitz [4] de- 
scribe the use of quadrature rules in an adaptive manner 
by means of algorithms. Lyness [5] gives a thorough 
description of the adaptive Simpson rule, together with 
suggested modifications. 

Quadrature Schemes Used 

Five adaptive integration schemes are used. The first 
(ANC3) is the adaptive Simpson rule incorporating modi- 
fications 1, 2, and 3 of [5], and is of overall polynomial 
degree 5. The others have the same structure but are based 
on higher degree Newton-Cotes rules and incorporate the 
appropriate generalization of the same three modifica- 
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tions. These schemes are referred to as ANC5, ANC7, 
ANC9, and A N C l l ,  they are based on the 5, 7, 9, and 11 
point Newton-Cotes rules, and are of polynomial degree 7, 
9, 11, and 13, respectively. In particular, if e is the total 
absolute error allowed and 

2N--F1 

QN[a, a--t-h]f(x) = ~ aft(x1) 
j=l 

C o m p u t a t i o n s  

The set of definite integrals f.~l (xZ'-kP~) -1 dx has been 
evaluated with P ranging from 1 to 10 -4 and e ranging 
from 1 to 10 -s. For small P the integrand has a peak of 
height p-2 at the origin, is approximately 1 at  the end 
points, and the value of the integral is approximately equal 
to ~.p-1, 

is the ( 2 N +  1 ) Newton-Cotes rule, convergence is achieved 
over the interval [a, a--bh] if for 

A= Q~ [a, a+h]f(x) - (QN Ia, a+-h21f(x) 

+ 

where 

[a+ ~,a-t-h] f (x)) ,  
( 2 2N+1 -- i ) e 

IAI_< 2 ,  ' 

h = (B--A)2 -~. 

If this convergence criterion is not satisfied and if r < 30, 
the interval is bisected, r is replaced by r "4- 1, and, after 
function evaluations at  the new mesh points, the above 
test is repeated. If  the convergence criterion is satisfied or if 

r =  30, Q~Ia, a+2h-lf(x) -4- Q~Ia-b~,a-bhlf(x) 

• 4- ~/(22~+~- 1 ) 

is accepted as an approximation for the integral over 
[a, a-t-hi, this approximation being of degree 2N -Jr 3. 
Finally, these component approximations and error esti- 
mates are summed to obtain a final or total approximation 
over [A, B]. 

In addition, an integration scheme called ROMBERG 
is used, to put  into quantitative perspective the advantage 
of adaptive techniques for peaked integrands. The ROM- 
BERG scheme is described by Bauer, Rutishauser, and 
Stiefel in [7]. 

I n v e s t i g a t i o n s  C o n d u c t e d  

Numerical integrations were carried out using the five 
different adaptive Newton-Cotes rules and the ROM- 
BERG technique in approximating several sets of definite 
integrals. In each case, an input parameter e prescribes 
the error. A routine is termed the most efficient if its result 
satisfies the error criterion e while requiring the least num- 
ber of function evaluations. The actual error in each result 
is usually much smaller than e. 

The results of one set of numerical integrations are 
described here and displayed in Figures 1, 2, and in Table 
I. Information concerning the computations and results of 
approximating an additional two sets of definite integrals 
can be obtained from [6]. 

tSs I0 

~5 8 
i ¢  4 

,C3 6 

t~' rd a t~ 3 ~4 
} 

P 
- 5  

Io  

FIG. I. Results using the adaptive Newton-Cotes rules for the 
quadrature I = J'-I (x~.-bP2) -1 dx 
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FIo. 2. Error curves of the adaptive Newton-Cotes (2N-hi)- 
point rules in approximating / = f-~ (x2+P~) -~ dz, (P= 10-=). A 
point (M,~) located in region (2N+l )  indicates that the (2N~l )°  
point adaptive Newton-Cotes routine obtained the accuracy d 
with the least number M of function evaluations of the routines 
tested. 
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T A B L E  I 

Number 
Routine or function Convergence Accuracy 

evaluations criterion obtained 

P = 10-2 

R o m b e r g  1025 
ANC3 65 
ANC5 113 e = 10 ° d ~ 10 -8 
ANC7 145 
ANC9 193 
ANCiI 201 

Romberg 4097 
ANC3 289 
ANC5 129 e = 10 -1'8 d ~ 10 -0 
ANC7 169 
ANC9 225 
A N C l l  241 

R o m b e r g  8193 
ANC3 601 
ANC5 353 e = 10 -8.0 d ~ 10 -8 
ANC7 193 
ANC9 257 
A N C l l  281 

R o m b e r g  16385 
ANC3 2305 
ANC5 1073 • -- 1O - ' ' °  d ~ 1O -ix 
ANC7 529 
ANC9 449 
A N C l l  321 

P : 10-8 

Romberg 4097 
ANC3 209 
ANC5 193 , : 100 d ~ 10 -8 
ANC7 265 
ANC9 321 
ANC11 401 

R o m b e r g  8193 
ANC3 993 
ANC5 497 • = I0 -''8 d ~ 10 -8 

ANC7 289 
ANC9 353 
A N C l l  441 

R o m b e r g  16385 
ANC3 2441 
ANC5 1009 e = 10 -4"s d ~ '  10 -x° 
ANC7 721 
ANC9 385 
A N C l l  481 

R o m b e r g  32769 
ANC3 6161 
ANC5 2097 e ---- I0 -7"8 eI ~ 10 -'2 
ANC7 1153 
ANC9 865 
ANCll 641 

P = I0-~ 

Romberg 8193 
ANC3 617 
ANC5 353 e = 100 
ANC7 361 
ANC9 449 
ANCI1 561 

d ~ I0 -6 

T A B L E  I - - C o n t i n u e d  

Number 
Routine o f function Convergence Accuracy 

evaluations criterion obtained 

R o m b e r g  16385 
ANC3 3209 
ANC5 673 , -- 10 -' .2 d ~ 10 -8 
ANC7 385 
ANC9 481 
A N C l l  601 

R o m b e r g  32679 
ANC3 6417 
ANC5 1873 e -- 10 -8.2 d ~ 10 -1° 
ANC7 913 
ANC9 513 
A N C l l  641 

R o m b e r g  65356 
ANC3 12817 
ANC5 3585 e -- 10 -~.° d ~ 10 -12 
ANC7 1825 
ANC9 1217 
A N C l l  801 

Results 

Results using the adaptive Newton-Cotes rules for the 
quadrature I = f ~l ( x~ + P 2 )-1 dx are displayed in Figure 1 
and are to the required accuracy EI.  If the point (P, e) 
lies in the zone numbered 2N + 1, the adaptive Newton- 
Cotes (2N+l)-point  rule is the most efficient of those 
tested. 

The actual demarkation lines between zones are not 
regular. These irregularities are due, in part, to the fact 
that the number of points used by the adaptive Newton- 
Cotes rule of degree 2N + 1 in approximating an integral 
over (a, a-t-h) is restricted to numbers of the form 
8KN + 1 (K = 1, 2, 3, • .. ). If the integrand function is 
altered slightly, the demarkation line is different in detail 
but has the same general configuration. In Figure 1 the 
"buffer zones" between distinct zones indicate the general 
width of these irregularities. 

Also, an important feature of the numerical results is 
the considerable difference in the number of function 
values required by the various schemes in a particular 
problem of this type. In order to show this, error curves of 
the adaptive Newton-Cotes rules for the quadrature I and 
a particular value of P are displayed in Figure 2. The error 
curves of the adaptive Newton-Cotes (2N+l)-point  rules 
are labeled E ( 2 N + i ) ;  the projections of the intersection 
points onto the e-axis define, for fixed P, the log e interval 
over which the (2N+l)-point  rule is most efficient, in 
terms of points M required; and the lines $3, $5, $7, $9, 
and S l l  with slopes 6, 8, 10, 12, and 14, respectively, 
indicate the rate of convergence of these rules. 

Finally, tables comparing the results of approximating 
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f_11 (x2-l-P2) -1 dx, ( P - -  10 -2, 10 -3, 10 4) using t he  R O M -  

BERG technique and the five adaptive schemes are 
presented (Table I) in order to illustrate the advantage of 
adaptive techniques over a nonadaptive technique for 
this type of integrand. 

These results are of interest because they indicate that 
if the integrand has a high, sharp peak, or if great accuracy 
is required, an adaptive high degree rule is most efficient. 
This is in contradiction to the more familiar state of affairs 
in which sharp peaks are associated with inefficient poly- 
nomial approximations and the use of low degree rules. 
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Incorporating Origin Shifts into 
the QR Algorithm for 
Symmetric Tridiagonal Matrices 
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The QR iteration for the eigenvalues of a symmetric tridiagonal 
matrix can be accelerated by incorporating a sequence of 
origin shifts. The origin shift may be either subtracted directly 
from the diagonal elements of the matrix or incorporated by 
means of an implicit algorithm. Both methods have drawbacks: 
the direct method can unnecessarily degrade small eigen- 
values, while the implicit method can effectively loose the shift 
and thereby retard the convergence. This paper presents a 
new method which has neither drawback. 
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This paper gives the theoretical background of Algorithm 384 
"Eigenvalues and eigenvectors of a real symmetric matrix," by 
the same author, which appears on pages 369-371 of this issue. 

1. In troduct ion  

The QR iteration for the eigenvalues of a matrix A 
starts with A0 = A and defines a sequence of matrices At 
by the formulas 

Az = QsRs , 
(1.1) 

As+l = RzQ, , 

where Qs is unitary and Rs is upper trriangular. When A is 
real symmetric with distinct eigenvalues, As converges to 
a diagonal matrix whose nonzero elements arc the eigen- 
values of A, and under mild restrictions the eigenvalues 
appear in descending order of magnitude. 

The basic QR algorithm can be modified to include an 
origin shift ks, namely, 

A~ -- k~I = QsRs, 
(1.2) 

As+l = RsQs + k~I. 

If ks is suitably chosen, the rate of convergence of the 
element in the lower right-hand corner of As to an eigen- 
value of A is increased remarkably. A discussion of the two 
most important shifting strategies is found in [5]. This 
problem will not concern us here. Rather, the object of 
this paper is to propose a scheme for carrying out (1.2) 
for symmetric tridiagonal A when ks is given. The scheme 
avoids on the one hand the dangers of subtracting k~/ 
from As directly, thereby overwhelming small diagonal 
elements of As, and on the other hand the dangers of an 
indirect scheme in which the effect of a small shift is over- 
whelmed by a few large elements of As. 

Volume 13 / Number  6 / J u n e ,  1970 C o m m u n i c a t i o n s  of  t h e  ACAM 365 


