
Virtual Domain Speci�c Languages via Embedded
Projectional Editing

Niklas Korz
acm@korz.dev

Alugha
Germany

Artur Andrzejak
artur.andrzejak@uni-heidelberg.de

Heidelberg University
Germany

Abstract

Domain Speci�c Languages (DSLs) can be implemented as
either internal DSL, i.e. essentially a library in a host general-
purpose programming language (GPL), or as external DSL
which is a stand-alone language unconstrained in its syntax.
This choice implies an inherent trade-o� between a limited
syntactic and representational �exibility (internal DSLs), or
an involved integration with GPLs and the need for a full
stack of tools from a parser to a code generator (external
DSLs).
We propose a solution which addresses this problem by

representing a subset of a GPL - from simple code patterns
to complex API calls - as GUI widgets in a hybrid editor. Our
approach relies on matching parametrized patterns against
the GPL program, and displaying the matched parts as dy-
namically rendered widgets. Such widgets can be interpreted
as components of an external DSL. Since the source code is
serialized as GPL text without annotations, there is no DSL
outside the editor - hence the term ‘virtual’ DSL.

This solution has several advantages. The underlying GPL
and the virtual DSL can be mixed in a compositional way,
with zero cost of their integration. The project infrastructure
does not need to be adapted. Furthermore, our approach
works with mainstream GPLs like Python or JavaScript.

To lower the development e�ort of such virtual DSLs,
we also propose an approach to generate patterns and the
corresponding text-only GUI widgets from pairs of examples.

We evaluate our approach and its implementation on use
cases from several domains. A live demo of the system can
be accessed at h�ps://puredit.korz.dev/ and the source code
with examples at h�ps://github.com/niklaskorz/puredit/.

CCS Concepts: • Software and its engineering → Do-

main speci�c languages; Visual languages; Integrated and
visual development environments; Programming by example.

GPCE ’23, October 22–23, 2023, Cascais, Portugal

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0406-2/23/10.
h�ps://doi.org/10.1145/3624007.3624059

Keywords: DSLs, Projectional editing, Programming lan-
guage integration, Programing by example, Assisted editing
and IntelliSense

ACM Reference Format:

Niklas Korz and Artur Andrzejak. 2023. Virtual Domain Speci�c
Languages via Embedded Projectional Editing. In Proceedings of

the 22nd ACM SIGPLAN International Conference on Generative

Programming: Concepts and Experiences (GPCE ’23), October 22–

23, 2023, Cascais, Portugal. ACM, New York, NY, USA, 16 pages.
h�ps://doi.org/10.1145/3624007.3624059

1 Introduction

Domain Speci�c Languages (DSLs) have proven useful in
developing software systems, and are increasingly adopted
by practitioners in a multitude of application domains [16,
25, 43]. They can clearly communicate the intent of a part of
a system, hide irrelevant implementation details, and make
it harder to say "wrong things" in code. These properties
help to improve development productivity and prevent de-
fects. Finally, DSLs can e�ectively facilitate communication
between domain experts and developers.
DSLs can be implemented as either internal DSL, i.e. es-

sentially a library in a host general-purpose programming
language (GPL), or as external DSL which is a stand-alone
language unconstrained in its syntax. Internal DSLs can be
implemented more easily yet and naturally integrate in the
host GPL. However, they o�er only a limited syntactic and
representational �exibility which is tightly coupled with the
syntax of their host language. On the other hand, while not
limited in their syntax, the external DSLs face an issue of
complex and possibly ine�cient interfacing with other lan-
guages in the project. Moreover, they feature a high cost of
implementation due to a need for a full stack of tools from a
parser to code generator or compiler.

Projectional editors [56, 66, 67] solve the problem of in-
tegrating di�erent languages by being able to render each
language independently yet side-by-side. They can be also
enhanced with interactive, graphical elements such as ta-
bles or dynamic diagrams that suit the speci�c needs of a
certain domain. However, projectional editors come with an
increased development and maintenance e�ort for the DSL
developers, and have usability issues [67], such as challenges
of e�cient entering textual code, or code modi�cations. In

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

122

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0009-0006-5432-1389
https://orcid.org/0000-0003-0150-8220
https://puredit.korz.dev/
https://github.com/niklaskorz/puredit/
https://doi.org/10.1145/3624007.3624059
https://doi.org/10.1145/3624007.3624059
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3624007.3624059&domain=pdf&date_stamp=2023-10-22

GPCE ’23, October 22–23, 2023, Cascais, Portugal Niklas Korz and Artur Andrzejak

1 ((table) => {

2 console.log("Replacing ...");

3 table.column("name").replace("Mister", "Mr.");

4 })

5 (db["students"]);

Listing 1. An example code in TypeScript.

1 change table students

2 console.log("Replacing ...");

3 table.column("name").replace("Mister", "Mr.");

4 end change

Listing 2. Hybrid representation of code from Listing 1.
Projections are shown in bold.

addition, code is typically serialized in a proprietary format,
making infrastructure integration di�cult.
To address these issues, we propose an approach which

extends a textual code editor with the ability to represent
parts of code as embedded textual or graphical GUIs. List-
ing 1 and Listing 2 illustrate this solution. Listing 1 shows a
fragment of TypeScript code as rendered in a conventional
editor or IDE. Lines 1 to 5 de�ne an anonymous function
with a parameter table and function body in lines 2 and 3.
Line 5 applies this function to an object db["students"]
representing a database table. Listing 2 displays how the
same program fragment is shown in our hybrid editor. Lines
1 and 4 in the latter listing are part of a projection, an embed-
ded GUI which o�ers a developer-friendly representation of
the source code lines 1, 4, and 5 from Listing 1. Projections
can be interpreted as components of an external DSL. Their
representation can assume any form - from text to tables to
diagrams to equations.

Within the projection shown in Listing 2 users can change
the argument students by typing it or selecting from a list
of recommendations (not shown). They can also edit the
textual code representation in lines 2 and 3 as usual. Users
can enter new (textual) projections in their code by using
the code recommendation feature of the hybrid editor. For
example, after typing ’c’ in an empty line in the live demo
the projection ’change table’ is proposed. It is also possible to
edit the hybrid and the traditional form of GPL source code
side by side, with updates being immediately synchronized.
Grammar errors in the GPL code lead to failure of identifying
the correct projection. As a consequence, the hybrid editor
shows the original (erroneous) GPL code instead.
We illustrate the �exibility of representation in the hy-

brid editor with a more complex example - visual editing
of mathematical expressions. We created a small Python li-
brary mathdsl (a wrapper of few large libraries) to support
conversion of formulas expressed in LaTeX into executable
NumPy code (see Section 5.2). Listing 3 shows code which
implements a rotation of a 2-dimensional vector by angle

1 import mathdsl

2 rotate, args = mathdsl.compile("\\begin{pmatrix}\\cos\\

theta & -\\sin\\theta\\\\ \\sin\\theta & \\cos\\theta

\\end{pmatrix}\\begin{pmatrix}x\\\\ y\\end{pmatrix}")

3 print("rotate(x, y, theta):")

4 print(rotate(x=1, y=2, theta=0.5))

Listing 3. Rotation of a two-dimensional vector using library
mathdsl.

Figure 1. Code from Listing 3 as shown in the hybrid editor.

\ using mathdsl. While this representation relieves users
familiar with LaTeX from coding in NumPy, the code in line
2 it is not easy to write and understand.
Figure 1 shows a representation of the same code in our

hybrid editor. Users can enter each part of mathematical ex-
pression as a LaTeX code and/or via a visual palette/keyboard
(opened by an icon at the end of line 2). Both code compre-
hension and the ease of editing are enhanced. A reader is
encouraged to try out this example in the live demo. Our
prototype also supports integration of such a solution in
JupyterLab.

An essential feature of our approach is that the source code
retains its traditional textual form while persisted, without
any annotations or changes (internally, code is represented
as an equivalent AST). In this way, the hybrid editor achieves
full compatibility with existing infrastructure tools like lin-
ters, compilers, or other editors. Furthermore, developers do
not need to adapt their code to use the system. E�ectively,
there are no traces of a DSL outside the editor - hence the
term ’virtual’ DSL.

Under the hood, the hybrid editor tries to �nd in the source
code fragments which match one of the prede�ned patterns.
In Listing 1, lines 1 and 5 match such a pattern. It is de�ned
together with the corresponding projection template, here
the one responsible for displaying lines 1 and 4 in Listing 2.
Our hybrid editor renders a projection for each matching
pattern (with corresponding parameters, e.g. students). As
outlined in Section 2.3, edits of the textual or projectional
representation update the internal AST model and might
trigger a redraw of the view.

A pattern and a projection template constitute together a
DSL component which is responsible for an alternative rep-
resentation of a speci�c aspect of the GPL language or its
library. Such components can be developed separately, al-
lowing to incrementally grow a virtual DSL in a modularized

123

Virtual Domain Specific Languages via Embedded Projectional Editing GPCE ’23, October 22–23, 2023, Cascais, Portugal

way. Compared to an external DSL, the development e�ort
for a virtual DSL is a typically smaller.
To lower the development cost even further we propose

an approach to generate patterns and the corresponding text-
only projection templates from multiple examples. A DSL
developer provides pairs of a GPL code to be matched and
desired textual projection. Our algorithm either requests for
more/other examples to resolve ambiguity or inconsistencies
or generates a DSL component (i.e. pattern and correspond-
ing projection template). These artifacts can be either used
directly or can serve as a basis for further re�nements.
In addition to work on projectional editing [9, 15, 37, 49,

52, 65, 67] there is already a substantial body of research on
enriching textual editors with interactive GUI-based compo-
nents for developer-friendly representation of code [1, 19, 54,
55, 59]. As discussed in Section 6, most approaches require
adaptation of the source code, and only few target main-
stream programming languages (and if so, predominantly
Java). Our work focuses on practical usability of such a so-
lution, in particular support for mainstream GPL languages
like Python or JavaScript, compatibility with an existing in-
frastructure, and a moderate development e�ort of virtual
DSLs. To further increase the practical value, our prototype
uses web-based technologies and is implemented in Type-
Script. It works almost out-of-the-box in JupyterLab and can
be easily adapted for Visual Studio Code or other web-based
editors.
The main contributions of this work are:

• Approach for speci�cation of patterns for matching
code fragments in GPL source code.
• Algorithm for matching code fragments and extraction
of arguments from code.
• Approach for e�cient rendering and editing of the
projections associated with patterns, and bidirectional
updating of textual and projectional code representa-
tion.
• Prototypical implementation of a web-based hybrid
editor as a stand-alone tool and a JupyterLab extension.
• Approach and an implementation for synthesizing DSL
components (with text-only projections) from samples
of pairs GPL code/textual projection.
• An evaluation via a proof-of-concept for the domains
spreadsheet processing and formula editing in GPL
languages TypeScript and Python.

This paper has the following structure. Section 2 details
the virtual DSL approach. Section 3 describes the algorithm
for generating DSL components from examples. Section 4
outlines the implementation. Section 5 describes the evalua-
tion. Section 6 discusses related work and Section 7 contains
conclusions.

1 let db = contextVariable("db");

2 let tbl = arg("table", "string");

3 let [changePattern,changeDraft] =

4 statementPattern‘

5 ((table) =>

6 ${ block({tbl:"table"}) })

7 (${ db }}[${ tbl }]);‘

8 ;

Listing 4. A description in the templating language of a
pattern which matches parts of code in Listing 1.

2 Virtual DSL - Concepts and Algorithms

A virtual DSL is a system consisting of a hybrid editor (same
for all projects), and a set of DSL components to be developed
for a speci�c scenario. Recall from Section 1 that each DSL
component is a pair including a pattern (de�ned rigorously
in Section 2.1) and a template projection. A pattern matches
in the edited program a code fragment called a projected

code (fragment). Such fragments can be simple expressions
or statements, calls to APIs or libraries, or even statements
in an internal DSLs. The projection templates are essentially
GUI components (widgets), in our implementation using the
Svelte web framework.
Section 2.1 describes how patterns are de�ned. In Sec-

tion 2.2 we outline the process of compositional matching of
these pattern and the extraction of arguments for projections.
Section 2.3 describes the mechanisms related to rendering
and editing projections.

2.1 Patterns and Templating Language

A pattern is a pair of an AST in a target GPL and an optional
set of data structures called active nodes. An active node con-
sists of a regular AST-node with a unique identi�er and a
separately maintained data structure referenced by this iden-
ti�er. Active nodes play a special role during the matching
process explained in Section 2.2 as they capture speci�c sets
of AST nodes or provide context information.
Since it is di�cult to create and edit a pattern directly,

we use a subset of TypeScript called templating language TL

for generating and representing patterns. A pattern descrip-
tion in TL is just a fragment of code in TypeScript which
contains one tagged template literal [32, sections 13.2.9 and
13.3.11] and optionally declares some objects using func-
tions arg(argName, nodeType), block(contextVars), or
contextVariable(varName). The role of these objects is to
create active nodes in the described pattern.

We illustrate the above concepts on an example. Listing 4
shows a TL description of a pattern matching lines 1, 4, and
5 in Listing 1, i.e. code shown as a projection in lines 1 and 4
of Listing 2. Lines 4 to 7 in Listing 4 contain the tagged tem-
plate literal which consists of a call to our custom function
statementPattern and a template literal, i.e. essentially a
string with parameters to be interpolated (parameters are

124

GPCE ’23, October 22–23, 2023, Cascais, Portugal Niklas Korz and Artur Andrzejak

shown highlighted). In TypeScript, these parameters are any
expressions enclosed in ${..}.
The template literal represents the AST to be matched.

All string parts (i.e. parts outside ${..}) will be turned
to AST nodes matched literally, and each parameter will
give rise to an active node. Consequently, a pattern cre-
ated by Listing 4 will have three active nodes. The latter
are created by the calls: block({tbl:"table"}) (line 6),
contextVariable("db") (lines 1 and 7), and arg("table",
"string") (lines 2 and 7), in this order. The details of these
functions are described in Section 2.1.1. Note that the string
parts of the template literal express the code of a target GPL
language, and could be e.g. Python, not necessarily Type-
Script as in this example.

In essence, the �rst active node captures an inner block of
target GPL statements enclosed by a matched source code
fragment. In in Listing 1 this block is in lines 2-3. The second
active node, db, is a context variable potentially intialized in
a surrounding pattern match. It speci�es a name of a vari-
able giving access to a database speci�ed in the surrounding
code. This access can be used by the hybrid editor to e.g.
dynamically provide a list of valid table names for parameter
recommendations within the current projection. Finally, the
third active node, tbl, has the task of capturing and updating
a value of a source code AST node of type string. It is then
used as a parameter to be shown and edited in the corre-
sponding projection. In this case, the value is "students" (line
5 in Listing 1), and the same value is shown in the projection
in Listing 2 (line 1).
A TL description like above is converted by our function

statementPattern to a pattern. In this process, each param-
eter of a tagged literal template generates an active node.
The corresponding internal data structure is kept for the
matching process (Section 2.2), and the parameter location
(substring ${..}) is replaced by a unique identi�er referenc-
ing this data structure. The literal template is then turned
into a normal string containing a fragment of the target
GPL code. We parse it subsequently into an AST using the
parser generator tree-sitter [62] into TypeScript, Python, or
(in future) other target GPL.

2.1.1 Details of Active Nodes. We describe in the fol-
lowing the three kinds of active nodes of a pattern and the
corresponding functions used in the templating language TL
to generate them.

Argument active node. This kind of node is speci�ed in TL
via the helper function arg(argumentName, nodeType). Its
purpose is capturing the text content of an identi�er or literal
nodes in the GPL source code as an argument for the corre-
sponding projection. Moreover, depending on the value of
nodeType, we can also capture arbitrary subtrees by specify-
ing a �lter function. The type speci�cation nodeType allows
to match AST-nodes by type and not their text content. Possi-
ble node types depend on the target GPL and are speci�ed by

tree-sitter. Furthermore, the captured value is accessible to
context variables under the argumentName. The parameter
argumentName sets the name under which a projection can
access the value captured in the source code.
Block active node. This kind of node is created in TL by

the helper function block(contextVariables). It captures
nested blocks of code, such as the body of a function def-
inition or the branch of an if-clause. Additionally, blocks
themselves are recursively searched for pattern matches,
in order to support compositionality. To this end optional
context variables (explained below) can be passed down to
patterns matching inner code.
Context variable active node. In TL, such nodes are ex-

pressed via the function contextVariable(variableName).
They declare context variables used in the pattern matches
within inner code blocks. For example, the name of the cur-
rently speci�ed table (in outer code block) can be passed
via such variables to patterns matching code within inner
code blocks. This can be helpful for e.g. recommendations
of column names in the inner projections. When a pattern is
initialized for the matching process, each such active node
is replaced by a value speci�ed by the corresponding con-
text variable. The latter are set in a surrounding context by
argument active nodes. Furthermore, context variables can
also be declared and initialized globally for the whole editor,
which is useful for providing the names of global variables
to the projections.

2.2 Pattern Matching on Abstract Syntax Trees

Contrary to pure projectional editors which store programs
in form of serialized trees (e.g. XML or JSON �les), the hybrid
editor serializes the source code in conventional text-based
form, internally maintaining an equivalent AST. Render-
ing requires dynamic detection of projected code fragments
matched by the patterns, extraction of the relevant informa-
tion, and dynamic creation or update of each projection.

Algorithms 1 and 2 show the pseudocode of the approach
for matching patterns in GPL code. We use the following
symbols. (A2 is a syntax tree of the currently edited �le and
%0C is the set of the de�ned patterns. �CG is a mapping from
context variables to their values, initially populated with
globally de�ned context variables.

Algorithm 1 visits each node = of the AST (A2 in a depth-
�rst search fashion (line 3). For each = and each de�ned
pattern ? it checks via MatchPattern whether the subtree
of (A2 starting at = matches the pattern ? . The pseudocode
does not show a small optimization such that for = only
patterns are considered with the same type of root node as
the type of = (see [42] for all details).
If there is match of ? at =, the result set '4B is updated

(line 8). Furthermore, for each inner code block identi�ed
by this match we issue a recursive call of FindPatterns at

125

Virtual Domain Specific Languages via Embedded Projectional Editing GPCE ’23, October 22–23, 2023, Cascais, Portugal

Algorithm 1 Top-level algorithm for matching patterns.

Require: (A2, %0C,�CG ⊲ See text for de�nitions.

1: function FindPatterns((A2,�CG)
2: '4B ← ∅ ⊲ Resulting set of matches

3: for all = ∈ DFS((A2) do

4: for all ? ∈ %0C do

5: �A6B ← ∅ ⊲ Set of captured arguments

6: �;:B ← ∅ ⊲ Set of captured blocks

7: if MatchPattern(?, =,�A6B, �;:B,�CG)
then

8: '4B ← '4B ∪ {(?, =,�A6B, �;:B)}

9: ⊲ Recursively search all inner code blocks ⊳

10: for all (=̂, �̂) ∈ �;:B do

11: (̂ ← GetSubtreeAtNode(=̂, (A2)

12: '4B ← '4B ∪ FindPatterns((̂ ,�CG ∪
�̂)

13: end for

14: break ⊲ At most one match per =

15: end if

16: end for

17: end for

18: return '4B

19: end function

a subtree (̂ , i.e. the root node of the code block, to support
compositionality (lines 11-12).
The algorithm returns a set of matches. Each is a tuple
(?, =,�A6B, �;:B) of a pattern ? , root node = of an ASTmatch-
ing ? , and sets �A6B , �;:B of captured arguments and cap-
tured blocks, respectively.

The pattern candidates are evaluated by function Match-

Pattern. In essence, a node = of (A2 matches a pattern when
it is deeply equivalent to the pattern’s root node, see the
recursive descend at lines 24-29. This function also updates
the sets�A6B and �;:B according to the meaning of the active
nodes (lines 2-9), see Section 2.1, and checks that the context
variables have correct values in the candidate AST subtree
(lines 10-13).

2.3 Rendering and Editing Projections

Given a set of matches<1, . . .,<: (output of Algorithm 1)
and the prede�ned projection templates the hybrid editor
is capable of rendering the edited program (. Essentially,
all statements (or AST subtrees) in (not included in any of
the matchings are identi�ed as non-projected code. These
parts of (are shown in a traditional textual form. On the
other hand, the rendering of each projected code fragment
is delegated to the respective projection.
The process of updating internal model of the hybrid ed-

itor requires more detailed explanation. When the source
code changes due to edits of the textual or the projectional
parts the internal model (i.e. source code state) of the hybrid
editor becomes invalid. Incremental, i.e. local updates of this

Algorithm 2 A function for testing whether an AST tree
matches a pattern and extracting arguments and code blocks.

1: functionMatchPattern(?, =,�A6B, �;:B,�CG)
2: if isArgumentNode(?) ∧ nodeType(=) =

requiredType(?) then

3: �A6B ← �A6B ∪ {(argumentName(?), =)}

4: return true
5: end if

6: if isBlockNode(?) then

7: �;: ← �;: ∪ {(=, blockCxtSet(?))}

8: return true
9: end if

10: if isContextVariable(?) then

11: E ← contextVariableName(?)

12: return isIdenti�er(=) ∧ E ∈ dom(�CG) ∧

�CG (E) = text(=)

13: end if

14: if nodeType(?) ≠ nodeType(=) then

15: return false
16: end if

17: ⊲ Atomi (leaf) nodes must be compared by their texts ⊳

18: if isAtomic(?) then

19: return text(?) = text(=)

20: end if

21: if |children(?) | ≠ |children(=) | then

22: return false
23: end if

24: ⊲ Children of ? and = are assumed to be aligned ⊳

25: for all ?̂ ∈ children(?), =̂ ∈ children(=) do

26: if ¬MatchPattern(?̂, =̂, �A6B, �;:B,�CG) then
27: return false
28: end if

29: end for

30: return true
31: end function

model are di�cult to achieve due to presence of context vari-
ables. Therefore we need to rerun Algorithm 1 in order to
re-match the entire AST against the prede�ned patterns, and
re-render the hybrid representation.
To optimize this process, we reuse the instantiated pro-

jections created by the previous model if possible. To this
end we need to compare source code ranges A ′1, . . . , A

′
:
of the

projected code (obtained from the matchings <′1, . . ., <
′
:
)

from the previous model against the projected code ranges
A1, . . . , A: of the new model. If some A ′9 and A8 overlap for
the same pattern, we can reuse the previously instantiated
projection after updating it with new argument values. In
general, this provides a smooth user experience even for
larger source code �les.

126

GPCE ’23, October 22–23, 2023, Cascais, Portugal Niklas Korz and Artur Andrzejak

1 tbl["name"] = tbl["name"].replace("Mister", "Mr.");

2 replace Mister with Mr. in column name

3

4 tbl["title"] = tbl["title"].replace("PhD", "Dr.");

5 replace PhD with Dr. in column title

6

7 tbl["adr"] = tbl["adr"].replace("Road", "Rd.");

8 replace Road with Rd. in column adr

Listing 5. Samples of projected code and the corresponding
(textual) projection.

3 Generating DSL Components from
Examples

In this section we propose an algorithm for synthesizing
simple patterns and projections from multiple samples of
GPL code and textual projections.
While the development e�ort of a pattern and a corre-

sponding projection template is modest (below 100 LOC of
a typical case, see Section 5), a developer of a virtual DSL
might be faced with a steep learning curve due to multi-
ple frameworks/technologies. In our implementation, de-
veloping a pattern requires knowledge of TypeScript and
Javascript’s tagged template literals (see Section 2.1), and cre-
ating a projection template assumes familiarity with Svelte
and optionally with HTML/CSS.

To this end we propose an approach to synthesize a basic
form of a pattern and a corresponding projection template
from multiple examples of pairs (projected code, projection).
We assume that the projections are of textual form, like in
lines 1 and 4 in Listing 2. Consequently, projection templates
can be understood in context of this section as string tem-
plates where static text is interweaved with parts displaying
variable and editable content called placeholders.

Listing 5 gives an example of 3 pairs of samples, each pair
consisting of projected code and the corresponding expected
textual projection. The code samples must be selected or
created by the DSL-developer such that they di�er in tokens
indicating placeholders. Here the argument to tbl["name"]
and both arguments to replace() indicate the di�erences.
Analogously, di�erences between projection texts indicate
positions of the placeholders. For the �rst pair, these posi-
tions are at the tokens Mister, Mr., and name. By using the
same placeholder values in a code sample and in it’s projec-
tion we indicate how the placeholders should be mapped.
Given this input, our algorithm is able to generate a de-

rived pattern and corresponding derived (projection) template.
Latter is the core part of a GUI widget (in our prototype, a
Svelte component) rendering the projection in the hybrid
editor. Despite of some limitations, this solution covers many
simple cases without a need for any coding. The generated
code can be useful even for more experienced developers as
a skeleton for further extensions.

1 // Pattern prototype (AST unparsed)

2 tbl[<2?1>] = tbl[<2?2>].replace(<2?3>, <2?4>);

3

4 // Projection template prototype (list joined)

5 replace <??1> with <??2> in column <??3>

Listing 6. Pattern and projection template prototypes de-
rived from Listing 5. <> indicate placeholders.

The relevant limitations of the approach are (in addition
to text-only form of projections) lack of context variables
(Section 2.1.1). Moreover, a derived pair pattern/template can
have at most one nested code block. A DSL-developer can
still provide these features, they are not generally precluded.
We opted for this simple form to reduce ambiguity and keep
the number of required examples low.
In the following we detail our approach. Section 3.1 dis-

cusses how we identify constant and variable parts of GPL
code by comparing the AST trees of the samples. In Sec-
tion 3.2 we explain how projection samples are used to gen-
erate a textual template. Section 3.3 outlines mapping of
placeholders found in code to those found in projections.
Finally, Section 3.4 explains how this information is used to
generate the pair pattern/projection template.

3.1 Analyzing Samples of Projected Code

The goal of analyzing samples is to obtain a pattern prototype
de�ned as an AST-tree with some nodes marked as place-
holders. Listing 6 (top) shows the unparsed, i.e. serialized
pattern prototype derived from the code samples in List-
ing 5. Additionally, we compute a list of paths to the found
placeholders in this prototype. This is required for mapping
pattern and projection placeholders.

The algorithmworks iteratively. Each sample code is parsed
to an AST (which are formally also pattern prototypes). The
comparison of two �rst ASTs yields a �rst candidate for pat-
tern prototype, which is then compared against third code
sample AST, yielding second candidate result etc. When all
nodes of - are processed, we return the last candidate as the
pattern prototype, and a list of paths to the placeholders.
A recursive comparison of two ASTs - and . (or tech-

nically, two pattern prototypes) is the core of this routine.
Given a list of AST nodes G1, . . . , G: (e.g. children of a node)
from - and the same-length list ~1, . . . , ~: of nodes from
. , we test which node pairs (G8 , ~8) are identical and which
di�er. A pair is considered identical if both nodes have same
AST-type, same content (e.g. identi�er text), and are leaves.
If G8 are ~8 are same-type non-leaves with equal number of
children, we perform a recursive descend on the set of their
children.
Otherwise, G8 and ~8 are considered di�erent. They are

marked as placeholders, and their tree path is recorded. If
both have the same AST-node type, we inherit this type to

127

Virtual Domain Specific Languages via Embedded Projectional Editing GPCE ’23, October 22–23, 2023, Cascais, Portugal

their placeholders. In other case it is considered a ’wildcard’,
i.e. the placeholder can match any type.

3.2 Analyzing Samples of Projections

Analogously to code samples, strings representing textual
projections are compared for common (equal) and diverging
parts. The goal is to obtain a (projection) template prototype

which is an alternating list 20, E0, 21, E1, . . . of static strings
28 (for common parts) and placeholders E8 (for diverging
parts). We assume here that two subsequent variable parts
are always separated by a static part, e.g. a comma. Listing 6
(bottom) shows the template prototype derived from the
projection samples in Listing 5 (list joined to one string).
First, each sample projection text is turned into a list of

tokens. Note that this list can be considered a special case of
a prototype. We set the �rst sample as the initial solution and
then iteratively re�ne the current version ? of a template
prototype by comparing it against the next sample B .

At each iteration step, we use the Meyer’s Di� algorithm
[51] for detecting the longest common token subsequences
between ? and B . We exploit the fact that each longest com-
mon token subsequence 28 must be followed by a diverging
part E8 (E8 might be optional for the last common subse-
quence). For each 28 found by Meyer’s Di� algorithm we
can thus add to the updated version ?′ of the prototype the
string 28 as the subsequent static part, and the E8 as the next
placeholder.

3.3 Mapping Placeholders from Code to Projections

The next goal is to map placeholders found in code sam-
ples (Section 3.1) to those found in projection samples (Sec-
tion 3.2). To make the presentation clearer, we call the earlier
c-placeholders 2? and the latter p-placeholders ?? . In List-
ing 6 we have c-placeholders 2?1, . . . , 2?4 and p-placeholders
??1, . . . , ??3.

Assume that we are given c-placeholders 2?1, . . . , 2?< , p-
placeholders ??1, . . . , ??= , a projection template prototype
C (found as in Section 3.2), a list + of tree paths to the c-
placeholders (found as in Section 3.1), and the pairs of sam-
ples (21, ?1), . . . , (2: , ?:). We want to �nd a relation" which
maps each 2?8 to exactly one ?? 9 , and each ?? 9 appears in
the image of " (in other words, " is surjective). It means
that multiple placeholders in the code can be ’connected’
by the same value, but this group corresponds to only one
placeholder in the projection.
We propose the following algorithm to this end. We iter-

ate over the pairs of samples and build" incrementally. For
(2G , ?G) we compute a list & of strings of ?G which corre-
spond to the placeholders in the template prototype C (the list
is ordered such that 8th element corresponds to ??8). We can
achieve this by using again the Meyer’s Di� algorithm on
?G and C : each divergent sequence of tokens corresponds to
one p-placeholder, since common subsequences are identical
static parts of ?G and C . For example, ?1 in Listing 5 gives

& = ["Mister", "Mr.", "name"] corresponding to ??1, ??2, ??3
in C .
The strings in & create a link between p-placeholders

and c-placeholders since they should also appear in the code
sample 2G . To exploit this, we iterate over+ (the tree paths to
c-placeholders), and for each E8 ∈ + we retrieve the AST node
or AST-subtree in 2G referenced by E8 . The text obtained from
this AST fragment is searched in & . If found at position 9 in
& , we have obtained a mapping of a c-placeholder 2?8 to p-
placeholder ?? 9 :" (2?8) = ?? 9 . For example, after processing
the �rst pair (21, ?1), we obtain the mapping " de�ned by
2?1 → ??3, 2?2 → ??3, 2?3 → ??1, 2?4 → ??2.

If di�erent pairs of samples create incoherent mappings
(i.e. a c-placeholder is mapped to di�erent p-placeholders),
the algorithm terminates with an error. We also check that
all p-placeholders are covered. Finally, " is returned after
all pairs of samples are processed.

3.4 Constructing a Pattern and a Projection

Template

After the three processing steps outlined above a derived
pattern and a corresponding projection template can be con-
structed. We save both artifacts a regular source code �les
which can be used or edited as any manually developed
pattern/template pair.
A derived pattern is obtained from any code sample 28

(formally, a string) by replacing the substrings correspond-
ing to c-placeholders by strings representing calls to helper
functions discussed in Section 2.1.1. To this end we iterate
over the AST paths identifying c-placeholders (found in Sec-
tion 3.1), for each one we retrieve the substring range in 28
corresponding to this AST path, and replace it by the func-
tion call. Information about the source code range of each
AST subtree is provided by default by tree-sitter.

A derived projection template is created from a skeleton
of a GUI widget which displays text only and admits at most
one nested block. The parametrized part is a list of tokens,
where each token is either an HTML string for the static
parts of the projection or a p-placeholder. Each p-placeholder
is displayed as a TextInput component and ’wired’ to the
correct c-placeholder(s) (i.e. helper function calls) in the
derived pattern according to the mapping" (Section 3.3).

4 Implementation Details

4.1 Overall Architecture

We use CodeMirror [8] web-based editor as a basis for our
hybrid editor. In this environment, any components repre-
sentable in HTML and JavaScript (in particular, any Svelte
components) can be used as projection widgets. However,
conceptually other extensible editors or IDEs such as Visual
Studio Code or its basis library Monaco Editor [14] are a
suitable basis for the hybrid editor.

128

GPCE ’23, October 22–23, 2023, Cascais, Portugal Niklas Korz and Artur Andrzejak

Following this choice, the primary programming language
of the project is TypeScript, with some complementary li-
braries like tree-sitter using other languages at their core. In
particular, all algorithms described in Section 2 are imple-
mented in TypeScript.

We make the hybrid editor available in two environments.
The �rst is as a stand-alone browser-based editor with a web
server as a backend (see the live demo). The other environ-
ment is JupyterLab [40], a popular tool data scientists. Since
JupyterLab uses CodeMirror as its cell (code) editor, we can
integrate our hybrid editor as a frontend extension, without
a�ecting the Jupyter backend. This environment is used in
both virtual DSLs discussed in Section 5.

4.2 Projections: Implementation and Editor

Integration

Projections in the hybrid editor could be implemented by
any of the web frond end frameworks based on JavaScript,
like React, Angular, Vue, or Svelte. Using such generic frame-
works for projections o�er �exibility, thus potentially allow-
ing evenmore special projections such as diagrams or editors
for graphical user interfaces. We choose Svelte [11] to its
reactivity, small size of transferred �les, ease of debugging,
and lifecycle events.
A key feature needed in a hybrid editor is the ability to

replace ranges of text with custom display and editing com-
ponents. CodeMirror o�ers this ability via replacement dec-

orations [33] which can render any HTML content instead
of a speci�ed text range. As CodeMirror renders its con-
tents using conventional HTML and CSS, it is possible to
turn these elements into interactive widgets (i.e. projections)
using JavaScript.
When the document undergoes updates, previous deco-

rations are retained if they remain relevant in the updated
positions. Consequently, the Svelte properties update to the
new match, leading to an automatic refresh of the widget’s
contents. This approach ensures continuity and alignment
with user input.

Our system understands that CodeMirror expects widget
classes to adhere to a speci�c element-producing interface.
To streamline this process, we’ve designed a wrapper func-
tion that automatically morphs Svelte components into the
desired widget classes. This wrapper plays a crucial role,
ensuring that all critical data, such as the pattern match,
context, and editor state, is transferred and updated as Svelte
properties whenever changes occur.

4.2.1 Input Management. User input management is piv-
otal in our system. A shared TextInput component handles
user input directly, replacing the source code at the corre-
sponding AST node. This action triggers a syntax tree re-
match, causing the system to update the components with
fresh match data. The underlying principle is maintaining
the textual document as the authentic source for projections

visible to the user, ensuring consistency. Replacing code with
user input is a straightforward process, especially for string
literals, where the requirement is merely replacing any quo-
tation marks with their escaped variants. For more complex
node types, we’ve implemented serialization functions that
guarantee the produced code aligns with the �eld’s pattern
node.
To ensure the projections blend well with the rest of the

document, cursor movement is monitored to provide a �uent
transition between projection and code. We include a focus
manager in every projection instance that is responsible for
keeping track of the focusable inputs inside a projection wid-
get and of the input that is currently focused. On internal
cursor movement, the focus manager ensures the next or
previous input element is focused, depending on whether
the cursor has "left" the �eld on the start or end side. For the
�rst and last input inside the projection, the cursor is moved
to a position in the text editor adjacent to the projection in-
stead. Overall, this improves the user experience by allowing
modi�cations of the whole document without having to use
a mouse.
New projections are inserted into the edited program

through our hybrid editor’s completion mechanism. As the
user types a text sequence resembling a projection’s name,
they can choose a suggested projection to insert into the doc-
ument. The system then generates a code snippet from the
original code pattern template, replaces template placehold-
ers with empty values, and integrates it into the document.

4.3 Simpli�ed De�nitions of Projections

The analysis of the development e�ort via counting non-
comment Lines of Code (LOC) in Section 5 reveals that the
majority of line count can be attributed to the code of a
Svelte component. However, a closer look at the Svelte com-
ponents reveals that these consist mostly of import state-
ments and HTML code instead of logic. Consequently, we
have introduced a wrapper function simpleProjection. It
creates projectional widgets without need to understand
Svelte components or the internals of the CodeMirror editor.

Listing 7, lines 12-15 shows an application of this function.
It receives an array of tokens, where a token is either a string,
a reference to a code placeholder 2? (as de�ned in Section 3),
or an array of such references if multiple source code parts
are to be modi�ed by a projection �eld. The placeholder
reference must be named identically as the special element
produced by the arg helper function for 2? (Section 2.1)
created when de�ning the associated pattern. In this way, we
’wire’ the code placeholders with the projection placeholders
and avoid typos.
Listing 7 shows a pattern de�nition in the TL (top) and

a simpli�ed projection de�nition (bottom) of a component
for spreadsheet analysis DSL. The object references fName,
sName specifying code placeholders (or special elements of
type argument node) in the pattern de�nition are used in

129

Virtual Domain Specific Languages via Embedded Projectional Editing GPCE ’23, October 22–23, 2023, Cascais, Portugal

1 // Pattern definition

2 const dsl = contextVariable("dsl");

3 const fName = arg("fName", "string");

4 const sName = arg("sName", "string");

5

6 export const [pattern, draft] =

7 pythonParser.statementPattern‘

8 with ${dsl}.load_sheet(${fName}, ${sName}) as sheet:

9 ${block({ sheet: "sheet" })}

10 ‘;

11

12 // Simplified definition of a projection

13 export const widget = simpleProjection(

14 ["load sheet", sName, "from", fName, ":"]

15);

Listing 7. De�nitions of a pattern via Templating Language
and its projection in a simpli�ed form.

1 with dsl.load_sheet("Chromatography.xlsx", "raw data")

2 as sheet:

3 K, B = sheet.take("K4:L35", "isinstance(L,int)")

4 A, B = sheet.join("A4:B46704", K, "abs(K - A)",

5 dsl.AggregationMethod["minimal"])

6 dsl.store_sheet("output.xlsx", "output", [K, L, B])

Listing 8. Example Python script for processing Excel data.

the call to simpleProjection. In this way, variable parts of
the source code and the projection are uniquely connected.

5 Evaluation

5.1 DSL for Spreadsheet Analysis

We implemented a virtual DSL for analysis of Excel spread-
sheets. The use case is motivated by a cooperation with
researchers from a biomedical �eld. Their lab uses chro-
matography methods for genome analysis of viruses. The
device performing the analysis exports its results as Excel
�les which need further analysis to extract relevant data.
Due to data variations and lack of programming skills these
�les are processed manually, which is a repetitive and error-
prone task. With the virtual DSL these researchers should be
able to use and adapt scripts for automated processing yet
retain the �exibility of a host GPL for a future automated
processing pipeline.

The implementation uses as the environment JupyterLab
and Python as the host GPL. We developed a simple package
(library) in Python based on the module openpyxl [27] which
performs several tasks like loading a spreadsheet, conditional
cell selection, joining of cell ranges, and storing the results
in a new spreadsheet. Listing 8 shows a typical Python script
used in this scenario. Here dsl is a quali�er to our package.
For this virtual DSL we implemented four pattern/pro-

jection pairs, for the library calls load, take, join, and store.
Figure 2 illustrates how the code from Listing 8 is actually
shown in the JupyterLab hybrid editor.

Figure 2. Code from Listing 8 as shown in the hybrid editor.

5.1.1 Discussion. Implementation of this virtual DSL has
shown qualitatively that the proposed concept of a virtual
DSL is useful. Moreover, the presented algorithms and the
implementation have been veri�ed as correct. The hybrid
editor is responsive and due to the special care of input man-
agement (Section 4.2.1) o�ers a smooth editing experience.
However, we did not conduct a rigorous user study. We

relied on feedback from one tester as well as our own experi-
ences with the system to conclude high responsiveness and
correctness of the implementation. The intended customers
have not yet introduced the system (changes in the process
require time investment on both sides) but are interested. A
more thorough evaluation with a user study remains a part
of the future work.

Note that the hybrid editor presentation in Figure 2 is not
radically more user friendly than the textual representation
of code in Listing 8. However, for researchers from non-CS
�elds the threshold for considering a software solution as
’too complex’ is rather low. Consequently, even a moder-
ate improvement of readability and editing experience (also
due to parameter recommendations within projections) was
relevant in this case.

5.2 DSL for Formula Editing

The next virtual DSL o�ers graphical formula (or equation)
editing using mathematical notations. It demonstrates that
our approach can also tackle non-textual projections, see
Figure 3. Instead of implementing the desired projections
from scratch, we leverage the fact that our hybrid editor
can use any HTML/JavaScript components, and build upon
Mathlive [28], a web-based graphical editor for mathemati-
cal equations. We choose LaTeX as its output format. This
enables to use latex2sympy2 [46], a library to transform La-
TeX equations into SymPy [12] objects at runtime. SymPy
can perform on these objects tasks such as simpli�cation
and solving of equations, but it can also generate executable
Python functions.

We �rst implement a small Python library/module mathdsl
that transforms LaTeX equations into performant (due to
internal use of NumPy), executable Python functions. The
module provides two functions: compile and evaluate. Ear-
lier function transforms LaTeX equations into an executable
form but does not evaluate them, while the other immedi-
ately performs the evaluation.
Both functions assume as their �rst argument a string

containing the LaTeX code. The compile function returns

130

GPCE ’23, October 22–23, 2023, Cascais, Portugal Niklas Korz and Artur Andrzejak

1 // Pattern for the compile function

2 expressionPattern‘

3 ${contextVariable("mathdsl")}

4 .compile(${arg("latex", "string")})

5 ‘;

6 // Pattern for the evaluate function

7 expressionPattern‘

8 ${contextVariable("mathdsl")}

9 .evaluate(${arg("latex", "string")}, locals())

10 ‘;

Listing 9. Two patterns for the graphical formula editor
expressed in the Templating Language.

Figure 3. A hybrid editor view during editing a function to
compute an inverse of a 2G2-matrix with mathdsl.

the generated function as well as a tuple of free symbols
in the equation. For the evaluation function, an additional
parameter must be provided next to the code that describes
the variable scope to evaluate the term in. The patterns used
to match these operations are de�ned in Listing 9 using
the Templating Language. Unlike in previous examples, we
declare these patterns to be expressions instead of statements.
This makes it possible to embed the equation editor in normal
code statements.
The corresponding hybrid editor has been integrated in

JupyterLab [40] (see sources of our project) and in the live
demo (tab ’Python’). Figure 1 in the introduction shows how
the hybrid editor represents a function for rotating a vector.
The corresponding Python source code is given in Listing 3.
Another example is shown in Figure 3 with the correspond-
ing source code in Listing 10. While editing the formula in
the hybrid editor, interactive GUI elements support matrix
editing and transformations. Also, visual keyboard is avail-
able for entering symbols and operators without knowledge
of LaTeX (not shown; available in live demo).
Overall, we conclude that the choice HTML/JavaScript-

based projectionwidgets, allows for awide range of scenarios
and types of projectional forms. Especially this enables access
to a large ecosystem of open source libraries and components
for web-based GUIs.

1 invert, args = mathdsl.compile("\\frac{1}{ad-bc}

2 {\\begin{pmatrix}d & -b \\\\ -c & a \\end{pmatrix}}")

3 print(invert(a=1, b=2, c=3, d=4))

4 # output:

5 # [[-2. 1.]

6 # [1.5 -0.5]]

Listing 10. Python source code corresponding to Figure 3.

Table 1. Implementation sizes in non-blank LOC of four
operations for the spreadsheed DSL. The total LOC for sim-
pli�ed de�nition of projections is shown in bold.

Operation Pattern Svelte Svelte (simple) Total
load 21 49 3 70/24
take 22 56 3 78/25
join 24 77 3 101/27
store 21 55 3 76/24

5.3 Analysis of the Development E�ort

We analyze and discuss here the implementation size of the
virtual DSL from Section 5.1 as a proxy for the development
e�ort of such a DSL. Due to a limited scope of this project
we could not yet conducted a controlled developer study on
the coding e�ort. However, such a study can be pursued as
a part of the future work.

Table 1 shows the number of non-comment Lines of Code
(LOC) the four DSL components. Our original implementa-
tion of Svelte components produced a rather verbose code
with large LOC values, see column "Svelte" in this table.
These large LOC numbers can be signi�cantly reduced by
using the simpli�ed de�nition of projections introduced in
Section 4.3. While the simpli�ed de�nitions slightly limit
the �exibility of projections, it is possible to use them for
the four DSL components constituting the virtual DSL for
analysis of Excel spreadsheets. Listing 7 shows that even the
most complex of the 4 projections can be de�ned in this way.
The LOC count becomes for each projection only 3.

On average, the LOC for pattern code is 22 LOC. Using
the simpli�ed projection de�nitions we reach an average of
25 LOC as the implementation length of a DSL component,
or 100 LOC for the whole spreadsheet DSL. This is already
comparable to the size to the Python library code (69 LOC).
The original ’naive’ implementation of Svelte components
gives an average of 59.25 LOC per projection and average
of 81.25 LOC per DSL component. We conclude that the
simpli�ed de�nition of projection templates can signi�cantly
reduce the implementation e�ort and improve maintability.

5.4 Generating Patterns and Projections from

Samples: Advantages and Limitations

The approach for generating DSL components from exam-
ples introduced in Section 3 might even further reduce the
development e�ort and make virtual DSL accessible for users

131

Virtual Domain Specific Languages via Embedded Projectional Editing GPCE ’23, October 22–23, 2023, Cascais, Portugal

1 # Code sample 1

2 with dsl.load_sheet("chroma.xlsx", "raw data") as sheet:

3 sheet.do_something()

4 # Projection sample 1

5 load sheet raw data from chroma.xlsx :

6

7 # Code sample 2

8 with excel_dsl.load_sheet("cost.xlsx", "April") as sheet:

9 sheet.do_some_other_thing()

10 # Projection sample 2

11 load sheet April from cost.xlsx :

Listing 11. Samples for the load operation.

with limited programming skills. The majority of the code
required for de�ning patterns and projections can be pro-
vided by the generator, thus decreasing the initial hurdle
for developers to create a projectional editor for their DSL.
The key question is whether the generator can create correct
patterns and projection templates for realistic scenarios. To
this end, we attempted to generate these components for all
DSL components of the spreadsheet DSL from Section 5.1.
Due to space limits, we describe here only the results for
the load and take operations (results for join and store were
similar).
Running the samples from Listing 11 through our gen-

erator algorithm yields a pattern and projection template
whose placeholders are correctly connected. Note the space
character before the colon in the projection samples, which
is required to satisfy the tokenizer used in the generator.
This evaluation reveals some shortcomings of the ap-

proach from Section 3.1. In the chosen samples, the nested
statements included in the respective with statements’ blocks
only di�er by the method identi�er after the dot in�x. Thus,
the algorithm generates a pattern that includes two variable
identi�er nodes at these positions instead of a block. If we
replace these two nested statements by code without any
AST overlap, such as x = 42 and print("Hello"), then a
wildcard placeholder is generated which would match an ar-
bitrary statement, but not a block with multiple statements.
To express the intent of including multiple statements in
the block, one more statement must be added to one of the
samples. Now, the algorithm correctly detects a block at this
position in the AST.

Furthermore, the generator does not perform any kind of
context analysis. Thus, the variable nodes dsl and excel_dsl
are not identi�ed as context variables but simply as place-
holder nodes of type identi�er. Similarly, the generated pat-
tern does not provide any context variables to the nested
block. These two parts must be edited by hand in the gener-
ated pattern.
Finally, it is advisable to change the generated variable

names to more meaningful names to help with later main-
tenance. We call the two variables that map to parts of the
projection fileName and sheetName. The context variable

1 # Pattern

2 with ${contextVariable("dsl")}.load_sheet(

3 ${arg("fileName", "string")},

4 ${arg("sheetName", "string")}

5) as sheet:

6 ${block({ sheet: "sheet" })}

7

8 # Projection

9 load sheet sheetName from fileName :

Listing 12. Final pattern and projection for the load opera-
tion.

1 # Code sample 1

2 K, L = sheet.take("K4:L35", "isinstance(L, int)")

3 # Projection sample 1

4 take K, L from K4:L35 where isinstance(L, int)

5

6 # Code sample 2

7 A, B, C = the_sheet.take("A1:C100", "A + B == C")

8 # Projection sample 2

9 take A, B, C from A1:C100 where A + B == C

Listing 13. Samples for the take operation.

for the DSL module name is simply called dsl and the sheet
context variable passed to the nested block becomes sheet.
The �nal pattern and projection are shown in Listing 12.

For sake of brevity, we show only a textual form of the projec-
tion instead of the code of the generated Svelte component.
Listing 13 shows samples for the operation take. Similar

problems with load occur here at the attempt to generate a
pattern and a projection template. Instead of a problem with
detection of a block, the code samples must have a di�erent
amount of identi�ers before the assignment to express that
the pattern should not match the identi�ers themselves as
placeholders but the whole list of identi�ers. Also here con-
text variables are incorrectly detected and must be replaced
by the context variable sheet in the generated pattern. As
before, we rename the variables to be more meaningful.

This case study revealed how our generator can be further
improved. Context variables in particular are not covered by
the generator and require manual editing of the generated
code. Currently, the code samples provided to the generator
are isolated per DSL operation, preventing a connection of
placeholders that appear in multiple operations. Comparing
the code samples of di�erent operations should allow the
generator to identify placeholder nodes as context variables
if they appear in multiple operations but not in any of the
projections. Furthermore, the declarations of nested blocks
could automatically be �lled with the context variables by
analyzing the identi�er or parameter nodes a�ecting the vari-
able scope inside the block. This however requires knowledge
about the host language’s scope resolution behavior.

132

GPCE ’23, October 22–23, 2023, Cascais, Portugal Niklas Korz and Artur Andrzejak

6 Related Work

Research areas relevant to our work are hybrid textual editors,
projectional editors, Domain Speci�c Languages, and language
workbenches. Furthermore, work in programming by example

is connected to our code generation approach.
Hybrid textual editors relate directly to our work. We use

this term to bracket contributions which extend textual code
editors with the ability to express parts of the code in an
alternative form, typically as visual GUI elements. Contrary
to our work, the approaches described below do not address
generation of such GUI components from examples.

Eisenberg andKiczales [18–20] propose ETMOP, an Eclipse-
based editor which renders selected parts of Java code as
interactive graphical elements. Using Java 5 annotations, a
developer speci�es which methods and classes should be
shown in a graphical way. Similarly to our work, ETMOP
uses pattern matchers to recognize these annotations. How-
ever, our approach matches directly the code parts to be
shown as projections and does not require annotations or
other developer intervention. Our technique also works for
host GPL languages which do not support annotations.
Later works [1, 54, 59] share the same concept of speci-

fying which parts of code are represented in an alternative
form via annotations or syntax extension of the edited code.

Work of Renggli et al. propose language boxes [59], a mod-
ular mechanism to encapsulate language extensions such
as DSLs. The key idea is to extend the grammar of the host
language (here: Smalltalk) using the concept of executable
grammars [5]. The approach can combine di�erent textual
notations using delimiters inserted explicitly using a special-
purpose editor. It assumes that the grammar, compiler and
editor of the host language can be extended, which incurs a
considerable e�ort for mainstream languages like Python.

Andersen et al. propose syntactic extensions for the Racket
language [24] in terms of interactive syntax [1]. Such (textual)
syntax extensions are rendered as interactive GUIs by an
appropriate editor, here DrRacket. The authors posit that the
approach is compatible with other languages with a macro
system, such as Closure, Julia, Rust, or even C++. Contrary to
this, our method does not require a macro system and works
with languages like Python or JavaScript. Our approach also
supports compositionality, i.e projections can be nested.

Omar et al. introduce live literals, or livelits which embed
user-de�ned GUIs into textual code [54]. The implementa-
tion in Hazel/OCaml extends the above-cited work [1] with
compositionality, type safety, and liveness. The latter means
that the evaluation of livelits occur in the runtime environ-
ment of the program being written. As [1], livelits require a
host language with a macro system and a pure (functional)
host language, di�erently to our work. However, the authors
note that imperative languages can be also covered, with
more e�ort.

A slightly di�erent �avor of a hybrid textual editor is
described in [55]. Upon triggering the code completion func-
tionality of the editor, the developer is presented with a
context-sensitive palette, i.e. a GUI which allows for an in-
teractive speci�cation of expressions, statements or API pa-
rameters. A prototype called Graphite provides palettes for
regular expressions and for color selection in Java. Di�er-
ently to our approach, palettes must be associated with a
target class via annotations or explicitly via menus. Also,
Graphite shows the enriched code representation only lo-
cally and during editing, which limits code comprehension.

Barista [41] is an implementation framework designed for
creating projectional editors with a strong support for textual
input. Editors constructed with Barista represent code as a
proprietary data structure (a model), but they deploy parsing
techniques that treat the structure as if it were textual. For
example, equations are displayed visually as math, but when
a caret is placed on them, a textual view is shown.
French et al. [26] propose a similar system which can

embed interactive graphical objects in Java or Python textual
code. The internal representation takes form of a modi�ed
AST. Contrary to our work, the last two approaches must be
aware of all syntactic structures of a target language, leading
to a considerably larger development e�ort.

Further systems add visual programming to textual code.
Examples include Boxer [17], Scratch [60], or Smalltalk with
its live programming capability [48]. Mathematica [35] sup-
ports expressions which include visual elements such as im-
ages or diagrams. These can copied and pasted into textual
expressions but also manipulated in a GUI-fashion. Jupyter
and JupyterLab [40] allow inserting widgets like sliders that
modify parameters of code. The Jupyter API extension mage

[39] enables creation of tools that can represent themselves
as both code and GUI as needed.

Our previouswork [2] enhances text editing by embedding
user-de�ned DSLs as code comments. During editing, a code
completion action on these comments expands a DSL ex-
pression into regular Python or R code. Our tool NLDSL [10]
is implemented as an extension for Visual Studio Code and
can be easily ported to all IDEs which support Microsoft’s
Language Server Protocol [13]. Contrary to work presented
here, NLDSL requires developers to edit DSL expressions
and manually trigger code generation. Moreover, NLDSL
supports only textual DSLs.

Projectional editors were pioneered in the 1970s and 1980s
by projects like Cornell Program Synthesizer [65], Incremen-

tal Programming Environment [49], and GANDALF [52]. A
key feature of such systems is the ability for provide dif-
ferent ways of viewing and editing program components.
For example, embedded data can be shows as a spreadsheet,
state machine as a diagram, and other parts of code as text.
In particular, they can express code fragments in a simpli-
�ed form resembling a DSL. Projectional editors store and
manipulate programs directly as an abstract syntax tree, so

133

Virtual Domain Specific Languages via Embedded Projectional Editing GPCE ’23, October 22–23, 2023, Cascais, Portugal

parsing is not necessary [9, 15, 37]. Consequently, they can
mix arbitrary programming languages (multiple GPLs and
DSLs) in a single view without ambiguity.

While text-based languages can be edited in any text editor,
projectional editing ties the language to a specialized editor
that is aware of the language’s syntax and possibly semantics
[66, Chap. 7.3]. Voelter et al. [67] conducts an analysis of
user-friendliness of projectional editing based on JetBrains
MPS. Their conclusion is that projectional editors do not lead
to code being written faster than in conventional text editors.
The authors identify usability challenges in the areas of (i)
e�ciently entering textual code, (ii) selecting and modifying
code, and (iii) infrastructure integration.
Approaches such as grammar cells [68] address the chal-

lenges (i) and (ii) and attempt to improve editing experience
in such editors. The key idea is a formalism for textual nota-
tions via declarative speci�cation of the projectional editor’s
behavior. In our work we use a sophisticated input man-
agement via focus managers (Section 4.2.1) to improve the
editing experience in the projections.

Domain Speci�c Languages (DSLs) [16, 25, 38, 43, 66] focus
on a limited domain but allow its modeling in a concise and
readable way. By ’making it hard to do something wrong’
[25], they can also reduce the amount of defects and improve
maintainability.

Research activities related to DSLs include extensible lan-
guages like Racket [23, 24], language-oriented programming
and language workbenches [31, 44], analysis of the usage and
properties of DSLs [25, 43, 50], syntactic macros [4, 24, 34],
or enhancing libraries by "syntactic sugar" [22].
Modern DSL engineering frameworks like textX [16] or

Spoofax [38] signi�cantly lower the cost of developing a
DSLs. An even higher level of productivity and toolchain
integration can be achieved by language workbenches dis-
cussed below.
Language workbenches such as Jetbrains’ MPS [7], Mon-

tiCore [44, 61], or Xtext [3] complement and extend DSL
development frameworks by providing editors with syntax
checking and code completion for created DSL or GPL lan-
guages. They also facilitate code parsing and generation.
JetBrain’s Meta-Programming System (MPS) [7, 36, 56] is

probably the most popular publicly available language work-
bench. Since it uses projectional editing, users can switch
between di�erent notations or visualizations of the same pro-
gram. The AST manipulated by the editor is stored in form
of an XML �le. It is then translated into a target language
such as Java or C by the MPS code generator.
Lafontant et al. propose Gentleman, a lightweight Web-

based language workbench [45]. It o�ers commonly used
interface layouts, such as tables, or horizontal and vertical
stacks to design custom visual representations of code. It is
similar to our approach by using web-based components as
projections and their styling through CSS.

Contrary to our approach, these systems persist source
code in a proprietary format. This makes it harder to use
other editors and complicates integration with existing tools.

Programming by example (PBE) is a form of program syn-
thesis which uses input and/or output examples to specify
the desired code, typically a DSL expression [6, 21, 30, 63, 64].
In the past decade, many sophisticated approaches have been
developed, including FlashMeta [57], a framework for design-
ing and implementing program synthesis engines for custom
DSLs. PBE has been commercially exploited in e.g. Excel,
PowerShell and other products to automate string manipu-
lation, data preprocessing, and other tasks [29, 30, 47, 58].
Recently introduced Large Language Models have also been
applied in the �eld of program synthesis, typically in the
context of input speci�cation by natural language [53].
Our method for generating patterns and projection tem-

plates from examples (Section 3) is a form of highly special-
ized PBE. However, instead of a DSL we generate domain-
speci�c GPL code. For patterns, the algorithm described
in Section 3 creates an AST-based data structure which is
then converted into a Template Language, i.e. annotated
JavaScript code. For projections, we use code skeletons which
are populated with the corresponding placeholders (see Sec-
tion 3.4). Compared to work referenced above, our approach
is more narrow and less �exible but has lower complexity
and implementation e�ort.

7 Conclusions and Future Work

We proposed an approach and a tool for hybrid editing of
code by mixing a textual representation and projectional
views. Latter can assume virtually any form - from textual,
DSL-like formats to tables to equations. The editor directly
manipulates the source code of the host GPL. This enables
seamless integration of the virtual DSL and the GPL, and
facilitates integration in the development toolchain. Our eval-
uation shows that the approach provides a good developer’s
experience and requires an acceptable e�ort of developing
DSL components. To reduce this e�ort, we have proposed an
approach to generate virtual DSL components from samples
of code and corresponding textual projection.

Our future work will include an implementation of a larger
use scenario in order to re�ne the approach and the eval-
uation. Another task is to o�er our hybrid editor as an ex-
tension for Visual Studio Code. We will also improve the
approach for generating DSL components from samples by
cross-component analysis as discussed in Section 5.3. An
interesting but rather challenging problem is generation of
non-textual projections from examples. Furthermore, a more
rigorous analysis of the soundness and completeness of the
proposed algorithms is needed. Finally, adding type checking
for projectional editing could improve user experience.

134

GPCE ’23, October 22–23, 2023, Cascais, Portugal Niklas Korz and Artur Andrzejak

References
[1] Leif Andersen, Michael Ballantyne, and Matthias Felleisen. 2020.

Adding Interactive Visual Syntax to Textual Code. Proc. ACM Pro-

gram. Lang. 4, OOPSLA, Article 222 (nov 2020), 28 pages. h�ps:

//doi.org/10.1145/3428290

[2] Artur Andrzejak, Kevin Kiefer, Diego Elias Costa, and Oliver Wenz.
2019. Agile Construction of Data Science DSLs (Tool Demo). In Proceed-
ings of the 18th ACM SIGPLAN International Conference on Generative

Programming: Concepts and Experiences (Athens Greece). ACM, 27–33.
h�ps://doi.org/10.1145/3357765.3359516

[3] Lorenzo Bettini. 2016. Implementing Domain Speci�c Languages with

Xtext and Xtend - Second Edition (2nd ed.). Packt Publishing.
[4] Je�rey Werner Bezanson. 2015. Abstraction in technical computing

[Julia language]. Thesis. Massachusetts Institute of Technology. h�p:

//dspace.mit.edu/handle/1721.1/99811

[5] Gilad Bracha. 2007. Executable Grammars in Newspeak. Electronic
Notes in Theoretical Computer Science 193 (2007), 3–18. h�ps://doi.

org/10.1016/j.entcs.2007.10.004

[6] José Cambronero, Sumit Gulwani, Vu Le, Daniel Perelman, Arjun
Radhakrishna, Clint Simon, and Ashish Tiwari. 2023. FlashFill++:
Scaling Programming by Example by Cutting to the Chase. Proc.

ACM Program. Lang. 7, POPL, Article 33 (jan 2023), 30 pages. h�ps:

//doi.org/10.1145/3571226

[7] Fabien Campagne. 2016. The MPS Language Workbench Volume I:

The Meta Programming System (Volume 1) (3rd ed.). CreateSpace
Independent Publishing Platform, USA.

[8] Sergei Chestakov. 2022. Betting on CodeMirror. Retrieved September
10, 2023 from h�ps://blog.replit.com/codemirror

[9] Tony Clark. 2015. A General Architecture for Heterogeneous
Language Engineering and Projectional Editor Support. (2015).
arXiv:1506.03398 [cs]

[10] NLDSL contributors. 2023. NLDSL Overview. h�ps://aip.ifi.uni-

heidelberg.de/so�ware/nldsl Accessed on September 10, 2023.
[11] Svelte contributors. 2023. Svelte - Cybernetically enhanced web apps.

h�ps://svelte.dev/ Accessed on September 10, 2023.
[12] SymPy contributors. 2023. SymPy - a Python library for symbolic

mathematics. h�ps://www.sympy.org Accessed on September 10,
2023.

[13] Microsoft Corp. 2023. Language Server Protocol Speci�cation. Re-
trieved September 10, 2023 from h�ps://microso�.github.io/language-

server-protocol/specifications/lsp/3.17/specification/

[14] Microsoft Corp. 2023. Monaco - The Editor of the Web. h�ps:

//microso�.github.io/monaco-editor/ Accessed on September 10, 2023.
[15] Riwan Cuinat, Ciprian Teodorov, and Joel Champeau. 2020. SpecEdit:

Projectional Editing for TLA+ Speci�cations. In 2020 IEEE Workshop

on Formal Requirements (FORMREQ). 1–7. h�ps://doi.org/10.1109/

FORMREQ51202.2020.00008

[16] I. Dejanović, R. Vaderna, G. Milosavljević, and Ž. Vuković. 2017.
TextX: A Python tool for Domain-Speci�c Languages implementa-
tion. Knowledge-Based Systems 115 (Jan. 2017), 1–4. h�ps://doi.org/

10.1016/j.knosys.2016.10.023

[17] A. A diSessa and H. Abelson. 1986. Boxer: A Reconstructible Com-
putational Medium. Commun. ACM 29, 9 (sep 1986), 859–868. h�ps:

//doi.org/10.1145/6592.6595

[18] Andrew David Eisenberg. 2008. Presentation techniques for more ex-

pressive programs. Ph. D. Dissertation. University of British Columbia.
h�ps://doi.org/10.14288/1.0051292

[19] Andrew D. Eisenberg and Gregor Kiczales. 2006. A Simple Edit-Time
Metaobject Protocol: Controlling the Display of Metadata in Programs.
In Companion to the 21st ACM SIGPLAN Symposium on Object-Oriented

Programming Systems, Languages, and Applications (Portland, Oregon,
USA) (OOPSLA ’06). Association for Computing Machinery, New York,
NY, USA, 696–697. h�ps://doi.org/10.1145/1176617.1176679

[20] Andrew D. Eisenberg and Gregor Kiczales. 2007. Expressive Programs
through Presentation Extension. In Proceedings of the 6th Interna-

tional Conference on Aspect-Oriented Software Development (Vancouver,
British Columbia, Canada) (AOSD ’07). Association for Computing Ma-
chinery, New York, NY, USA, 73–84. h�ps://doi.org/10.1145/1218563.

1218573

[21] Kevin Ellis, Catherine Wong, Maxwell Nye, Mathias Sablé-Meyer, Lu-
cas Morales, Luke Hewitt, Luc Cary, Armando Solar-Lezama, and
Joshua B. Tenenbaum. 2021. DreamCoder: Bootstrapping Inductive
Program Synthesis with Wake-Sleep Library Learning. In Proceedings

of the 42nd ACM SIGPLAN International Conference on Programming

Language Design and Implementation (Virtual, Canada) (PLDI 2021).
Association for Computing Machinery, New York, NY, USA, 835–850.
h�ps://doi.org/10.1145/3453483.3454080

[22] Sebastian Erdweg, Tillmann Rendel, Christian Kästner, and Klaus Os-
termann. 2011. SugarJ: Library-based Syntactic Language Extensibility.
In Proceedings of the 2011 ACM International Conference on Object Ori-

ented Programming Systems Languages and Applications (OOPSLA ’11).
ACM, New York, NY, USA, 391–406. h�ps://doi.org/10.1145/2048066.

2048099

[23] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Kr-
ishnamurthi, Eli Barzilay, Jay McCarthy, and Sam Tobin-Hochstadt.
2015. The Racket Manifesto. In 1st Summit on Advances in Program-

ming Languages (SNAPL 2015) (Leibniz International Proceedings in

Informatics (LIPIcs), Vol. 32), Thomas Ball, Rastislav Bodik, Shriram
Krishnamurthi, Benjamin S. Lerner, and Greg Morrisett (Eds.). Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 113–
128. h�ps://doi.org/10.4230/LIPIcs.SNAPL.2015.113

[24] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Kr-
ishnamurthi, Eli Barzilay, Jay McCarthy, and Sam Tobin-Hochstadt.
2018. A Programmable Programming Language. Commun. ACM 61, 3
(feb 2018), 62–71. h�ps://doi.org/10.1145/3127323

[25] Martin Fowler. 2010. Domain Speci�c Languages (1st ed.). Addison-
Wesley Professional.

[26] G.W. French, J.R. Kennaway, and A.M. Day. 2014. Programs as Visual,
Interactive Documents. Softw. Pract. Exper. 44, 8 (aug 2014), 911–930.
h�ps://doi.org/10.1002/spe.2182

[27] Eric Gazoni and Charlie Clark. 2023. openpyxl - A Python library to
read/write Excel 2010 xlsx/xlsm �les. h�ps://openpyxl.readthedocs.

io/en/stable/ Accessed on September 10, 2023.
[28] Arno Gourdol. 2023. Mathlive - Equations served with a side of in-

teraction. h�ps://cortexjs.io/mathlive/ Accessed on September 10,
2023.

[29] Sumit Gulwani. 2011. Automating String Processing in Spreadsheets
Using Input-Output Examples. SIGPLAN Not. 46, 1, 317–330. h�ps:

//doi.org/10.1145/1925844.1926423

[30] Sumit Gulwani. 2016. Programming by Examples (and its Applications
in Data Wrangling). In Veri�cation and Synthesis of Correct and Se-

cure Systems. IOS Press. h�ps://www.microso�.com/en-us/research/

publication/programming-examples-applications-data-wrangling/

[31] Gopal Gupta. 2015. Language-based Software Engineering. Sci. Com-

put. Program. 97, P1 (Jan. 2015), 37–40. h�ps://doi.org/10.1016/j.scico.

2014.02.010

[32] Jordan Harband, Shu-yu Guo, Michael Ficarra, and Kevin Gibbons
(Eds.). 2020. ECMAScript® 2021 Language Speci�cation (12 ed.). Ecma
International.

[33] Marijn Haverbeke. 2022. CodeMirror Decoration Example. Retrieved
September 10, 2023 from h�ps://codemirror.net/examples/decoration/

[34] David Herman andMitchell Wand. 2008. A Theory of Hygienic Macros.
In Programming Languages and Systems, Sophia Drossopoulou (Ed.).
Lecture Notes in Computer Science, Vol. 4960. Springer Berlin Heidel-
berg, 48–62. h�ps://doi.org/10.1007/978-3-540-78739-6_4

[35] Wolfram Research Inc. 2008. Dynamic Interactivity – Wolfram Math-

ematica Tutorial Collection. Wolfram Research Inc. h�ps://library.

135

https://doi.org/10.1145/3428290
https://doi.org/10.1145/3428290
https://doi.org/10.1145/3357765.3359516
http://dspace.mit.edu/handle/1721.1/99811
http://dspace.mit.edu/handle/1721.1/99811
https://doi.org/10.1016/j.entcs.2007.10.004
https://doi.org/10.1016/j.entcs.2007.10.004
https://doi.org/10.1145/3571226
https://doi.org/10.1145/3571226
https://blog.replit.com/codemirror
https://arxiv.org/abs/1506.03398
https://aip.ifi.uni-heidelberg.de/software/nldsl
https://aip.ifi.uni-heidelberg.de/software/nldsl
https://svelte.dev/
https://www.sympy.org
https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/specification/
https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/specification/
https://microsoft.github.io/monaco-editor/
https://microsoft.github.io/monaco-editor/
https://doi.org/10.1109/FORMREQ51202.2020.00008
https://doi.org/10.1109/FORMREQ51202.2020.00008
https://doi.org/10.1016/j.knosys.2016.10.023
https://doi.org/10.1016/j.knosys.2016.10.023
https://doi.org/10.1145/6592.6595
https://doi.org/10.1145/6592.6595
https://doi.org/10.14288/1.0051292
https://doi.org/10.1145/1176617.1176679
https://doi.org/10.1145/1218563.1218573
https://doi.org/10.1145/1218563.1218573
https://doi.org/10.1145/3453483.3454080
https://doi.org/10.1145/2048066.2048099
https://doi.org/10.1145/2048066.2048099
https://doi.org/10.4230/LIPIcs.SNAPL.2015.113
https://doi.org/10.1145/3127323
https://doi.org/10.1002/spe.2182
https://openpyxl.readthedocs.io/en/stable/
https://openpyxl.readthedocs.io/en/stable/
https://cortexjs.io/mathlive/
https://doi.org/10.1145/1925844.1926423
https://doi.org/10.1145/1925844.1926423
https://www.microsoft.com/en-us/research/publication/programming-examples-applications-data-wrangling/
https://www.microsoft.com/en-us/research/publication/programming-examples-applications-data-wrangling/
https://doi.org/10.1016/j.scico.2014.02.010
https://doi.org/10.1016/j.scico.2014.02.010
https://codemirror.net/examples/decoration/
https://doi.org/10.1007/978-3-540-78739-6_4
https://library.wolfram.com/infocenter/Books/8513/
https://library.wolfram.com/infocenter/Books/8513/

Virtual Domain Specific Languages via Embedded Projectional Editing GPCE ’23, October 22–23, 2023, Cascais, Portugal

wolfram.com/infocenter/Books/8513/

[36] JetBrainsTV. 2017. Why JetBrains MPS. Retrieved September 10, 2023
from h�ps://www.youtube.com/watch?v=XGm_khXZl44

[37] Ján Juhár and Liberios Vokorokos. 2015. A Review of Source Code Pro-
jections in Integrated Development Environments. In 2015 Federated

Conference on Computer Science and Information Systems (FedCSIS).
923–927. h�ps://doi.org/10.15439/2015F289

[38] Lennart C.L. Kats and Eelco Visser. 2010. The Spoofax Language
Workbench: Rules for Declarative Speci�cation of Languages and IDEs.
In Proceedings of the ACM International Conference on Object Oriented

Programming Systems Languages and Applications (OOPSLA ’10). ACM,
New York, NY, USA, 444–463. h�ps://doi.org/10.1145/1869459.1869497

[39] Mary Beth Kery, Donghao Ren, Fred Hohman, Dominik Moritz, Kanit
Wongsuphasawat, and Kayur Patel. 2020. Mage: Fluid Moves Between
Code and Graphical Work in Computational Notebooks. In Proceedings

of the 33rd Annual ACM Symposium on User Interface Software and

Technology (Virtual Event, USA) (UIST ’20). Association for Computing
Machinery, New York, NY, USA, 140–151. h�ps://doi.org/10.1145/

3379337.3415842

[40] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian
Granger, Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica
Hamrick, Jason Grout, Sylvain Corlay, Paul Ivanov, Damián Avila, Sa�a
Abdalla, and Carol Willing. 2016. Jupyter Notebooks – a publishing
format for reproducible computational work�ows. In Positioning and

Power in Academic Publishing: Players, Agents and Agendas, F. Loizides
and B. Schmidt (Eds.). IOS Press, 87 – 90.

[41] Amy J. Ko and Brad A. Myers. 2006. Barista: An Implementation
Framework for Enabling New Tools, Interaction Techniques and Views
in Code Editors. In Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems (Montréal, Québec, Canada) (CHI ’06).
Association for Computing Machinery, New York, NY, USA, 387–396.
h�ps://doi.org/10.1145/1124772.1124831

[42] Niklas Korz. 2022. Projectional Editing of Internal Domain-Speci�c

Languages. Master’s thesis. Heidelberg University.
[43] Tomaž Kosar, Sudev Bohra, and Marjan Mernik. 2016. Domain-Speci�c

Languages: A Systematic Mapping Study. Information and Software

Technology 71 (March 2016), 77–91. h�ps://doi.org/10.1016/j.infsof.

2015.11.001

[44] Holger Krahn, Bernhard Rumpe, and Steven Völkel. 2010. MontiCore:
A Framework for Compositional Development of Domain Speci�c
Languages. Int. J. Softw. Tools Technol. Transf. 12, 5 (sep 2010), 353–372.
h�ps://doi.org/10.1007/s10009-010-0142-1

[45] Louis-Edouard Lafontant and Eugene Syriani. 2020. Gentleman: A
Light-Weight Web-Based Projectional Editor Generator. In Proceedings

of the 23rd ACM/IEEE International Conference on Model Driven Engi-

neering Languages and Systems: Companion Proceedings (New York,
NY, USA) (MODELS ’20). Association for Computing Machinery, 1–5.
h�ps://doi.org/10.1145/3417990.3421998

[46] latex2sympy2 contributors. 2023. latex2sympy2 - Parse LaTeX math
expressions. h�ps://github.com/OrangeX4/latex2sympy Accessed on
September 10, 2023.

[47] Vu Le and Sumit Gulwani. 2014. FlashExtract: A Framework for Data
Extraction by Examples. In Proceedings of the 35th ACM SIGPLAN Con-

ference on Programming Language Design and Implementation (PLDI

’14). ACM, New York, NY, USA, 542–553. h�ps://doi.org/10.1145/

2594291.2594333

[48] John Maloney, Kimberly M. Rose, and Walt Disney Imagineering. 2001.
An Introduction to Morphic: The Squeak User Interface Framework.
In Squeak: Open Personal Computing and Multimedia, Mark Guzdial
and Kimberly Rose (Eds.). Prentice Hall, 39–77.

[49] R. Medina-Mora and P.H. Feiler. 1981. An Incremental Programming
Environment. IEEE Transactions on Software Engineering SE-7, 5 (1981),
472–482. h�ps://doi.org/10.1109/TSE.1981.231109

[50] Marjan Mernik, Jan Heering, and Anthony M. Sloane. 2005. When
and how to develop domain-speci�c languages. Comput. Surveys 37, 4
(dec 2005), 316–344. h�ps://doi.org/10.1145/1118890.1118892

[51] Eugene W. Myers. 1986. AnO(ND) di�erence algorithm and its vari-
ations. Algorithmica 1, 1-4 (nov 1986), 251–266. h�ps://doi.org/10.

1007/bf01840446

[52] David Notkin. 1985. The GANDALF project. Journal of Systems and

Software 5, 2 (1985), 91–105. h�ps://doi.org/10.1016/0164-1212(85)

90011-1

[53] Augustus Odena, Charles Sutton, David Martin Dohan, Ellen Jiang,
Henryk Michalewski, Jacob Austin, Maarten Paul Bosma, Maxwell
Nye, Michael Terry, and Quoc V. Le. 2021. Program Synthesis with
Large Language Models. arXiv:2108.07732 [cs.PL]

[54] Cyrus Omar, David Moon, Andrew Blinn, Ian Voysey, Nick Collins, and
Ravi Chugh. 2021. Filling Typed Holes with Live GUIs. In Proceedings

of the 42nd ACM SIGPLAN International Conference on Programming

Language Design and Implementation (Virtual, Canada) (PLDI 2021).
Association for Computing Machinery, New York, NY, USA, 511–525.
h�ps://doi.org/10.1145/3453483.3454059

[55] Cyrus Omar, Young Seok Yoon, Thomas D. LaToza, and Brad A. Myers.
2012. Active code completion. In 2012 34th International Conference on

Software Engineering (ICSE). IEEE. h�ps://doi.org/10.1109/icse.2012.

6227133

[56] Vaclav Pech, Alex Shatalin, and Markus Voelter. 2013. JetBrains MPS
as a tool for extending Java. In Proceedings of the 2013 International

Conference on Principles and Practices of Programming on the Java

Platform: Virtual Machines, Languages, and Tools, Stuttgart, Germany,

September 11-13, 2013, Martin Plümicke andWalter Binder (Eds.). ACM,
165–168. h�ps://doi.org/10.1145/2500828.2500846

[57] Oleksandr Polozov and Sumit Gulwani. 2015. FlashMeta: A Frame-
work for Inductive Program Synthesis. In Proceedings of the 2015 ACM

SIGPLAN International Conference on Object-Oriented Programming,

Systems, Languages, and Applications (Pittsburgh, PA, USA) (OOPSLA
2015). Association for Computing Machinery, New York, NY, USA,
107–126. h�ps://doi.org/10.1145/2814270.2814310

[58] Mohammad Raza and Sumit Gulwani. 2017. Automated Data Extrac-
tion Using Predictive Program Synthesis. In Proceedings of the Thirty-

First AAAI Conference on Arti�cial Intelligence, February 4-9, 2017, San

Francisco, California, USA., Satinder P. Singh and Shaul Markovitch
(Eds.). AAAI Press, 882–890. h�p://aaai.org/ocs/index.php/AAAI/

AAAI17/paper/view/15034

[59] Lukas Renggli, Marcus Denker, and Oscar Nierstrasz. 2010. Language
Boxes. In Software Language Engineering, Mark van den Brand, Dra-
gan Gašević, and Je� Gray (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 274–293.

[60] Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie
Rusk, Evelyn Eastmond, Karen Brennan, Amon Millner, Eric Rosen-
baum, Jay Silver, Brian Silverman, and Yasmin Kafai. 2009. Scratch:
Programming for All. Commun. ACM 52, 11 (nov 2009), 60–67.
h�ps://doi.org/10.1145/1592761.1592779

[61] Bernhard Rumpe, Katrin Hölldobler, and Oliver Kautz. May 2021. Mon-

tiCore Language Workbench and Library Handbook: Edition 2021 (2021
ed.). Shaker Verlag. h�ps://www.se-rwth.de/research/MontiCore/

Aachener Informatik-Berichte, Software Engineering, Band 48.
[62] Tree sitter contributors. 2023. Tree-sitter - a parser generator tool and

an incremental parsing library. h�ps://tree-si�er.github.io/tree-si�er/

Accessed on September 10, 2023.
[63] Calvin Smith and Aws Albarghouthi. 2016. MapReduce Program

Synthesis. In Proceedings of the 37th ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI ’16). ACM,
New York, NY, USA, 326–340. h�ps://doi.org/10.1145/2908080.2908102

[64] Armando Solar-Lezama. 2008. Program Synthesis by Sketching. PhD
Thesis. University of California at Berkeley, Berkeley, CA, USA.

136

https://library.wolfram.com/infocenter/Books/8513/
https://www.youtube.com/watch?v=XGm_khXZl44
https://doi.org/10.15439/2015F289
https://doi.org/10.1145/1869459.1869497
https://doi.org/10.1145/3379337.3415842
https://doi.org/10.1145/3379337.3415842
https://doi.org/10.1145/1124772.1124831
https://doi.org/10.1016/j.infsof.2015.11.001
https://doi.org/10.1016/j.infsof.2015.11.001
https://doi.org/10.1007/s10009-010-0142-1
https://doi.org/10.1145/3417990.3421998
https://github.com/OrangeX4/latex2sympy
https://doi.org/10.1145/2594291.2594333
https://doi.org/10.1145/2594291.2594333
https://doi.org/10.1109/TSE.1981.231109
https://doi.org/10.1145/1118890.1118892
https://doi.org/10.1007/bf01840446
https://doi.org/10.1007/bf01840446
https://doi.org/10.1016/0164-1212(85)90011-1
https://doi.org/10.1016/0164-1212(85)90011-1
https://arxiv.org/abs/2108.07732
https://doi.org/10.1145/3453483.3454059
https://doi.org/10.1109/icse.2012.6227133
https://doi.org/10.1109/icse.2012.6227133
https://doi.org/10.1145/2500828.2500846
https://doi.org/10.1145/2814270.2814310
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/15034
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/15034
https://doi.org/10.1145/1592761.1592779
https://www.se-rwth.de/research/MontiCore/
https://tree-sitter.github.io/tree-sitter/
https://doi.org/10.1145/2908080.2908102

GPCE ’23, October 22–23, 2023, Cascais, Portugal Niklas Korz and Artur Andrzejak

[65] Tim Teitelbaum and Thomas Reps. 1981. The Cornell Program Synthe-
sizer: A Syntax-Directed Programming Environment. Commun. ACM

24, 9 (sep 1981), 563–573. h�ps://doi.org/10.1145/358746.358755

[66] Markus Voelter, Sebastian Benz, Christian Dietrich, Birgit Engelmann,
Mats Helander, Lennart C. L. Kats, Eelco Visser, and GuidoWachsmuth.
2013. DSL Engineering - Designing, Implementing and Using Domain-

Speci�c Languages. dslbook.org.
[67] Markus Voelter, Janet Siegmund, Thorsten Berger, and Bernd Kolb.

2014. Towards User-Friendly Projectional Editors. In Software Lan-

guage Engineering, Benoît Combemale, David J. Pearce, Olivier Barais,
and Jurgen J. Vinju (Eds.). Lecture Notes in Computer Science, Vol. 8706.

Springer International Publishing, 41–61. h�ps://doi.org/10.1007/978-

3-319-11245-9_3

[68] Markus Voelter, Tamás Szabó, Sascha Lisson, Bernd Kolb, Sebastian
Erdweg, and Thorsten Berger. 2016. E�cient Development of Con-
sistent Projectional Editors Using Grammar Cells. In Proceedings of

the 2016 ACM SIGPLAN International Conference on Software Lan-

guage Engineering (Amsterdam, Netherlands) (SLE 2016). Associa-
tion for Computing Machinery, New York, NY, USA, 28–40. h�ps:

//doi.org/10.1145/2997364.2997365

Received 2023-07-14; accepted 2023-09-03

137

https://doi.org/10.1145/358746.358755
https://doi.org/10.1007/978-3-319-11245-9_3
https://doi.org/10.1007/978-3-319-11245-9_3
https://doi.org/10.1145/2997364.2997365
https://doi.org/10.1145/2997364.2997365

	Abstract
	1 Introduction
	2 Virtual DSL - Concepts and Algorithms
	2.1 Patterns and Templating Language
	2.1.1 Details of Active Nodes

	2.2 Pattern Matching on Abstract Syntax Trees
	2.3 Rendering and Editing Projections

	3 Generating DSL Components from Examples
	3.1 Analyzing Samples of Projected Code
	3.2 Analyzing Samples of Projections
	3.3 Mapping Placeholders from Code to Projections
	3.4 Constructing a Pattern and a Projection Template

	4 Implementation Details
	4.1 Overall Architecture
	4.2 Projections: Implementation and Editor Integration
	4.2.1 Input Management

	4.3 Simplified Definitions of Projections

	5 Evaluation
	5.1 DSL for Spreadsheet Analysis
	5.1.1 Discussion

	5.2 DSL for Formula Editing
	5.3 Analysis of the Development Effort
	5.4 Generating Patterns and Projections from Samples: Advantages and Limitations

	6 Related Work
	7 Conclusions and Future Work
	References

