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Abstract—Computational science has made rapid progress in
recent years, leading to ever increasing demand for supercom-
puting resources. For scientific applications that leverage such
resources, Message Passing Interface (MPI) plays a crucial role
in enabling distributed memory parallelization across multiple
nodes. However, parallelizing MPI code manually, and specif-
ically, performing domain decomposition, is a challenging and
error-prone task.

In this paper, we address this problem by developing MPI-
RICAL, a novel data-driven, programming-assistance tool that
assists programmers in writing domain decomposition based
distributed memory parallelization code using MPI. Specifically,
we leverage Transformer architecture — the invention that led to
advancements in the field of natural language processing (NLP)
— with a supervised language model to suggest MPI functions
and their proper locations in the code on the fly. In addition
to the novel model for MPI-based parallel programming, in
this paper, we also introduce MPICodeCorpus, the first publicly-
available corpus of MPI-based parallel programs that is cre-
ated by mining more than 15,000 open-source repositories on
GitHub. Experimental results demonstrate the effectiveness of
MPI-RICAL on both dataset from MPICodeCorpus and more
importantly, on a compiled benchmark of MPI-based paral-
lel programs for numerical computations that represent real-
world scientific applications. Specifically, MPI-RICAL achieves
F1 scores between 0.87-0.91 on these programs, demonstrating
its accuracy in suggesting correct MPI functions at appropriate
code locations. The source code used in this work, as well
as other relevant sources, are available at: https://github.com/
Scientific-Computing-Lab-NRCN/MPI-rical.

Index Terms—MPI, Domain Decomposition, MPI-rical, MPI-
CodeCorpus, SPT-Code, Transformer, LLM

I. INTRODUCTION

Computational science is a research field that simulates
scientific problems with mathematical or analytical models,
usually on supercomputers [1]. Some simulations are mostly
phenomena too complex to be reliably predicted by theory
analytically and too dangerous or expensive to reproduce in
a lab. In order to imitate these complex phenomena properly,
their corresponding simulations require high resolution, hence,
a considerable amount of memory and CPU hours. These mas-
sive calculations are typically parallelized via the distributed

memory paradigm across multiple nodes—the overall calcu-
lation is solved by dividing it among different processors that
communicate with each other and are individually responsible
for a local yet synchronized sub-calculation. The concept of
communication and a shared computation between different
processors is described by the Message-Passing model. This
enables the full exploitation of the given computing power by
using all the available memory. Nowadays, the most common
parallelization paradigm addressing these tasks is MPI with its
popular implementations — OpenMPI and MPICH [2].

As mentioned, to simulate complex phenomena accurately
via scientific applications, high resolution, which leads to
high memory consumption, is required. Such complex sim-
ulations usually cannot be performed on a single node due
to their insufficient memory and/or computational power.
Consequently, scientific applications have been adopting the
distributed computations approach. One of the common meth-
ods for distributed computing is to partition the data structures
into different nodes, such that each node holds a different
partition of the data structures. This method, known as domain
decomposition [3], solves the problem by splitting the prob-
lem’s domain (data structures, for example) into subdomains.
Although each subdomain performs the same computations
on different partitions of the data, these computations are
performed in parallel to other subdomains, thus reducing the
time required to perform complex simulations.

Successes in computational science have sharply increased
the demand for supercomputing resources over the past twenty
years [4] and, therefore, there is an ever-present need for
distributed parallelization schemes. Consequently, many auto-
mated static tools for source-to-source parallelization of serial
code to shared memory and shared memory to distributed
memory have been created (Section II). Nonetheless, due to
the complexity of the task at hand, none have been developed
for translating serial code to distributed memory code. There
are, inherently, more problems in parallelizing code in a
distributed memory environment than in a shared-memory
environment, specifically for distributing memory between
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different processes (Domain Decomposition). For instance, it
is common to misplace send/receive functions, especially in a
large source code or when a programmer is unfamiliar with the
whole code. Moreover, one must know variable dependencies
and the code structure from start to end; therefore, a deep
understanding of the source code is required.

We believe that the emerging field of code language process-
ing (CLP) shows the potential of building a code advisor for
distributed memory parallelism. Code Language Processing is
an emerging field that involves the application of probabilistic
techniques such as AI and machine learning and deterministic
techniques such as formal program analysis to understand code
semantics, extract information from source code, and identify
patterns, among others [5]–[7]. More importantly, the vast
amount of open-source code hosted on code hosting sites such
as GitHub, with access to powerful computing resources, has
fueled the field of CLP. Recent advancements in the field of
NLP have led to several tools that assist developers in vari-
ous software engineering tasks such as analyzing comments,
generating documentation from code, code summarization,
code completion, and code translation [8]–[10]. Some of
these tools, such as GitHub’s CoPilot 1 [11], and Google’s
code completion model [12] also assist developers in their
programming task by acting as code advisors (via plugins) to
popular code editors (such as Visual Studio Code).

Over the years, different methods of translating OpenMP
code into MPI code have been proposed, but none have
been developed for translating serial code into parallel code
for distributed memory systems. Nonetheless, there has been
a recent attempt to address a related but different issue.
Specifically, with the advancements in AI-based NLP, there
have been attempts at generating MPI-based parallel code di-
rectly from natural language descriptions using large language
models (LLMs) [13]–[15]. LLMs, as the name suggests, are
AI models that are trained to understand natural languages
using large training datasets. These LLMs are then fine-tuned
on source code-related training datasets (to produce code
LLMs) and are evaluated on various downstream tasks such as
code completion, code summarization, etc. Nichols et al. [16]
recently fine-tuned PolyCoder [15], a code LLM, on a high-
performance computing (HPC) dataset and evaluated it on
the downstream tasks of automatically generating OpenMP-
based and MPI-based programs from a given natural language
prompt. Note, however, that none of the existing approaches
attempt to translate serial code into MPI-based parallel code.

In this paper, we approach the problem of an MPI-based
domain decomposition code assistance by using a code LLM.
Specifically, we suggest appropriate MPI functions as well
as their code locations to insert those functions to the pro-
grammer. Towards that end, we propose a novel approach
that leverages a Transformer-based code LLM, named SPT-
Code, that has been trained on semantic understanding tasks
for several programming languages. Nevertheless, we apply
SPT-Code for our particular task by finetuning it on a dataset

1https://github.com/features/copilot

of approximately 25,000 C programs out of more than 50,000
C programs from our MPICodeCorpus. We collected these
programs from 16,500 GitHub repositories specifically for
our task. We call the SPT-Code model finetuned on our
dataset MPI-RICAL. Our experimental evaluation shows that
MPI-RICAL performs well on our test dataset and, more
importantly, on the benchmark of valid domain decomposition
programs obtained from numerical computation codes (subsec-
tion VI-C). We believe MPI-RICAL can be deployed in code
editors to assist programmers in the complicated and error-
prone work of writing MPI-based parallel code for distributed
memory systems.

Contributions. The main contributions of this paper are:
• To the best of our knowledge, ours is the first approach

that attempts to learn a data-driven programming assis-
tance tool for distributed memory systems (and specifi-
cally MPI).

• We train and evaluate our approach, named MPI-RICAL,
on 25,000 C programs obtained from GitHub and find that
our model performs well in suggesting MPI functions for
domain decomposition into an MPI-based parallel code.
More importantly, we also evaluate MPI-RICAL on a set
of numerical computations with domain decomposition
programs and find that the model can also handle general
programs well.

• Unlike existing approaches that directly generate MPI-
based programs from natural language prompts, MPI-
RICAL can be integrated into an IDE as an MPI domain
decomposition assisting tool. It can thus serve as an in-
editor programming assistance tool for MPI-based paral-
lel programs.

• As a part of our research, we have created MPICodeCor-
pus, a large corpus of domain decomposition-based pro-
grams and their corresponding MPI-based parallel pro-
grams, obtained by mining 16,500 GitHub repositories.
In the spirit of advancing scientific research, we are
open-sourcing this corpus. To the best of our knowledge,
MPICodeCorpus is the first publicly-available corpus of
MPI-based parallel programs.

II. PREVIOUS WORK

While we are unaware of any existing approaches for
automatically translating serial code into parallel code for dis-
tributed memory systems, translating serial code into parallel
code for shared memory systems has been an active area of
research.

A. Serial to Shared-Memory Parallelization

Techniques for the problem of serial code to shared-memory
parallel code have mostly focused on heuristics and rule-based
methods for many years. Examples include S2S compilers
such as Cetus [17] and Par4All [18] that have been developed
to automatically insert OpenMP pragmas into code. Standard
compilers such as GCC and LLVM also now contain passes
for automatic parallelization of serial code. These methods
often had limited capabilities and robustness. However, with

https://github.com/features/copilot


the rapid growth of deep learning in general and specifically in
the NLP domain, there have been several attempts [19], [20]
to apply data-driven language models to parallelize serial code
for shared-memory systems automatically. More importantly,
these probabilistic approaches improve upon deterministic
tools such as compilers by handling incomplete code (such
as code under development) and enabling the possibility of
assisting programmers in code editors.

B. Serial to Distributed-Memory Parallelization

Although, we are not aware of any existing approaches for
translating serial code into MPI-based parallel code, there ex-
ists two types of techniques for generating MPI-based parallel
code from different types of inputs.

(i) Generating MPI-based parallel code from OpenMP-
based parallel code: Over the years, different methods of con-
verting OpenMP-based parallel code into MPI-based parallel
code have been proposed [21]–[23], but none have been devel-
oped for translating serial code to MPI-based distributed mem-
ory code. There are, inherently, more problems in parallelizing
code in a distributed memory environment than in a shared-
memory environment, specifically for distributing memory
between different processes (Domain Decomposition). It is
common to misplace send/receive functions, especially in
a large source code or when a programmer is unfamiliar
with the whole code. One must know variable dependencies
and the code structure from start to end; therefore, a deep
understanding of the source code is required. The problem
of translating OpenMP-based parallel code into MPI-based
parallel code is relatively simpler since the question of if
a structured block can be parallelized is already solved by
OpenMP.

(ii) Generating MPI-based parallel code from natural lan-
guage descriptions: Recent advancements in deep-learning-
based NLP such as Transformer architecture [24] have led
to the creation of large language models (LLMs), such as
ChatGPT, that can now perform various natural language
tasks such as question answering, translation, etc. Various
existing approaches have finetuned these LLMs on source code
datasets [15], including even those specific to HPC to solve
HPC related tasks such as predicting OpenMP pragmas for
code [13], [14], [16]. Nichols et al. [16] recently finetuned
GPT-2, GPT-Neo, and PolyCoder LLMs [15] using their HPC
dataset (source programs in C/C++ and repositories filtered
by HPC related topics) to predict OpenMP pragmas for loops
and to generate MPI-based parallel programs from natural lan-
guage problem description. They named their best-performing
model (i.e., PolyCoder trained on HPC source code) HPC-
Coder. Although HPC-Coder shows promising results in gen-
erating MPI-based parallel programs, it is unclear if it can
generate MPI-based programs for problem descriptions that
are not part of its training dataset. This is because the test
MPI programs that they used for their evaluation are well-
known problems having existing MPI-based implementations.
We believe that unseen problem descriptions would be the case

of MPI programmers implementing domain decomposition in
serial code in code editors.

III. RESEARCH OBJECTIVES

Our objective in this research effort is to develop a
programming-assistance tool that can assist MPI programmers
in automatically generating correct MPI functions in an MPI-
based domain decomposition parallel code. Developing this
tool implies the model has an understanding of MPI routines.
We break this problem down into two subproblems:

RQ1: Is MPI-RICAL capable of generating calls to correct
MPI functions?

Conceptually, the difference between the underwriting do-
main decomposition MPI code and MPI code after our model
suggestions is the list of MPI functions that would be called.
Out of the many MPI functions called through the code,
checking whether the right MPI functions have been generated
is critical for assessing the model’s suggested solution. Note
that in this version of the paper, we examine for functions’
names only — we do not consider function arguments.

RQ2: Is MPI-RICAL capable of inserting the calls to MPI
functions in the right locations?

Generating correct MPI functions is not enough because the
locations of these functions in the code are also important for
the validity of MPI programs. As such, this research question
evaluates if the MPI function calls are inserted at the correct
locations in the code. Conceptually, a location in code can be
considered as a line number in a source program, an edge in
the control-flow and a data-flow graph of a program, among
others. In this effort, we keep it simple and consider the line
number in the source program as the location.

IV. MPI-RICAL

Given the promising results delivered by Transformer ar-
chitecture and, more specifically, SPT-Code [25] model for
the code translation problem, we chose SPT-Code for our
approach. However, as SPT-Code does not support C/C++
languages or HPC programs, We fine-tune SPT-Code on a
dataset created from MPICodeCorpus, a task-specific dataset
that we have collected. This fine-tuned model, called MPI-
RICAL, addresses the given task. This approach, as well as
the chosen transformers-based model, will be explained in the
following subsections.

A. A brief background on SPT-Code

SPT-Code is a multi-layer Transformer used by pre-training
models such as BART [26], and T5 [27] with source code
in different languages in CodeSearchNet dataset [28], mainly
Java and Python. SPT-Code has several innovations which
led to achieving state-of-the-art performance on code-related
downstream tasks after fine-tuning. Some of them are pre-
training the decoder in addition to the encoder, which is
often lacking with no real reason, and inputting the model
with three different types of code components: plain code,
linearized abstract-syntax tree (AST), and natural language,
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(a) Overview of the model’s training and evaluation. The dataset is created
from MPICodeCorpus while three files constitute one example; MPI-based
parallel C code (label), MPI-based parallel C code, with functions excluded,
and its X-SBT (linearized AST). Our model, MPI-RICAL, trains and evaluates
these examples. MPI-RICAL was pre-trained from the CodeSearchNet dataset.

Auto-Regressive 
Decoder

A B C [SOS] A B C D

Bidirectional 
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int done=0; 
double sum, x; 
MPI_INIT(&argc, &argv); 
while(!done)
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compound_statement

[SEP] E F G

A B C D [EOS]

int done=0; 
double sum, x; 
while(!done)

Code X-SBT

Code

(b) Translation task overview of MPI-RICAL
(based on SPT-Code). The source code and its
X-SBT are tokenized and concatenated into the
encoder. Source code with the predicted MPI
functions in the predicted locations is then derived
out of the decoder — The procedure is the same
as the regular sequence-to-sequence model.

Fig. 1: Overview of MPI-RICAL

while linearized AST is natural language description of the
AST. SPT-Code is significantly smaller than LLMs, enabling
fast training/inference times, which is necessary for fusion in
IDEs.

Linearized AST. AST, being a tree structure, cannot be fed
directly to the SPT-Code model. As a result, AST needs to
be converted into a linearized format. Towards that end, the
SPT-Code authors develop a representation called X-SBT to
represent the structural information of the source code. X-
SBT is a simplified version of SBT [29]. SPT-Code authors
observe that sequences obtained by classical traversal methods
(such as depth-first search) are lossy since AST can not be
reconstructed back from them, meaning there are multiple
labels to a certain input. This ambiguity can confuse the
learning process. Therefore, SBT was created — a structure-
based traversal method to traverse the AST that addresses
the specified problem. SPT-Code authors observed that SBT
sequences, however, can be more than 3 times longer than the
original code; hence, they developed X-SBT, which can reduce
the length of the traversals’ sequences by more than half.
This is done by changing the sequence to an XML-like form
and keeping syntactic information (expression level nodes and
above) only. AST is parsed using TreeSitter parser 2. Note that
TreeSitter quickly and successfully parses code even if there
are syntax errors. These advantages make TreeSitter suited to
live code advising.

B. Fine-Tuning — Code Translation

Conceptually, we consider our task as a code translation
problem, translating MPI-based domain decomposition code

2https://github.com/tree-sitter/tree-sitter

without MPI functions to include MPI functions. Code trans-
lation handles both the research objectives, generating MPI
functions and predicting their locations. Code translation in
SPT-Code works as a generation task in a regular sequence-to-
sequence fashion, while the input to the encoder is the source
code, and then its linearized AST is separated by a symbol
[SEP].

Figure 1 shows the overview of MPI-RICAL. Specifically,
Figure 1a shows the training and evaluation process of MPI-
RICAL. In particular, we mine GitHub repositories for MPI-
based C/C++ programs for HPC to build our dataset named
MPICodeCorpus. We discuss the details of our dataset in
the next section. Every C program from our dataset is then
processed to produce input and output for MPI-RICAL. Specif-
ically, as every C program from MPICodeCorpus contains
MPI functions already, we consider them as labels. In order
to generate inputs for our model, we prune MPI function calls
from input programs to generate MPI functions free programs
(denoted as code in the figure) and then generate their X-SBT
using SPT-Code. Figure 1b shows the details of the inputs and
outputs of our translation task. We illustrate the full workings
of MPI-RICAL in Figure 2.

C. Measuring performance of MPI-RICAL on the research
objectives

Although we formulate the given task as a code translation
task, in order to measure the performance of MPI-RICAL
we observe that both research objectives can be evaluated
as classification tasks. We perform this simplification as both
objectives can be nicely formulated as classification objectives.
Specifically, the research question RQ1 can be thought of
as a multi-class classification problem — predicting an MPI

https://github.com/tree-sitter/tree-sitter
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# Line Amount

≤ 10 2,670
11-50 22,361
51-99 14,078
≥ 100 10,575

(a) Code lengths.

Function Amount

MPI_Finalize 35,983
MPI_Comm_rank 32,312
MPI_Comm_size 28,742
MPI_Init 25,114
MPI_Recv 10,340
MPI_Send 9,841
MPI_Reduce 8,503
MPI_Bcast 5,296

(b) MPI Common Core functions
(counted per file).

TABLE I: General statistics related to the MPICodeCorpus.

0 0.2 0.4 0.6 0.8 1
0

2,000

4,000

Lines Ratio

Fr
eq

ue
nc

y

Init-Finalize to All Lines Ratio

Fig. 3: Ratio of the length of a parallel code to the overall
program length

function out of 456 possible MPI functions (i.e., classes)
appearing in MPICodeCorpus. The second research question
RQ2 can be thought of as a binary classification problem —
given a code location (as a code token), predict if an MPI
function would appear after it.

V. MPICodeCorpus

A. Corpus

While several large code datasets in diverse programming
languages exist [30]–[34], datasets containing MPI-based par-
allel programs are rare. Therefore, we have created a corpus
consisting of MPI-based parallel programs to train and eval-
uate SPT-Code on the given task. Specifically, we created
the corpus by mining eligible repositories on github.com,
the popular code hosting service for open-source software
development. In particular, we used github-clone-all 3, a script
for mining repositories stored on GitHub. We have extracted
C files from repositories containing the phrase “MPI” in the
title, description, and the README file. Overall, we extracted
59,446 C programs from approximately 16,500 repositories
— we define a program as a source file containing the main
function, its headers, and implementations’ files.

Moreover, we apply the following inclusion and exclusion
criteria for dataset creation:

3https://github.com/rhysd/github-clone-all

1) Inclusion Criteria: Once we extracted programs from
the repositories, we parsed them using pycparser [35], a
Python package for generating an AST from C programs.
In order to ensure that our model trains on complete MPI
programs that contain all relevant MPI function calls, we only
consider complete programs that are successfully parsed by
the parser.

2) Exclusion Criteria: Due to hardware limitations, we
have limited training examples to files with 320 tokens (ap-
proximately 50 lines). Hence, we excluded files with more than
320 tokens. In addition, the AST generation has been used as a
selector. Programs that could not be parsed by pycparser were
excluded. Table Ia shows the distribution of code lengths of
our corpus. Given the hardware limitation, we had to drop
almost 50% of the code examples from our corpus.

3) Code Standardization: Code standardization is crucial
for both training the model and evaluating the results. We
performed standardization by regenerating all the programs
back from AST back — amending wrong indentations, and
deleting unnecessary linebreaks and spaces.

B. Dataset Creation

Note that, as we mentioned before, although we have
described our task as a code translation task, we measure the
performance of MPI-RICAL as a classification task. Toward
that end, we use our dataset for supervised learning. Our
dataset contains MPI-based parallel code with MPI functions
excluded as inputs while its corresponding original MPI-
based parallel code as labels. Specifically, each MPI function
in the MPI-based parallel code is replaced with an empty
string (removed); hence, information about both functions and
locations is lost. The overall process of creating our dataset is
depicted in Figure 4. As mentioned before, the dataset contains
approximately 25,000 examples.

C. Statistics

Understanding the most used functions, which we will call
“MPI Common Core” functions, is critical for evaluating the
model’s performance. Ensuring that the model performs well
on the relevant and most useful functions is a priority for
validating that the model does its job and comprehends the
given task. Towards that end, we analyzed MPICodeCorpus
for MPI Common Core functions. The distribution of these
functions is presented in Table Ib. Note that in the table,
a function occurrence is counted per file, meaning multiple
occurrences of some function in a file are still counted as
one. One observation from the table is that the MPI function
distribution is exponentially decreasing, while the MPI Com-
mon Core functions are at the beginning, while the rest are
marginal.

Analyzing the ratio between the length of MPI-based paral-
lel code and the whole code is important to understand the
level of impact parallelization may have on the programs.
In other words, we want to ensure that the parallelization
consumes a reasonable amount of code and is not a minor
addition. We determine the length of MPI-based parallel code

https://github.com/rhysd/github-clone-all
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by considering MPI_Init, which initializes the parallelized
area, and MPI_Finalize, which ends it. Therefore, counting
the number of lines between these two functions gives the
length of parallel code. As can be seen from (Figure 3), most
of the MPI programs have more than half of the lines inside the
parallelized code, which is sufficient for training. In addition,
it is important to note that out of the raw data, MPI_Init
and MPI_Finalize were both included in 20,228 files.

VI. EXPERIMENTAL RESULTS

Setup. We trained MPI-RICAL on our dataset containing
24,125 examples. We split this dataset into train, validation,
and test using a standard splitting ratio of 80:10:10. We then
train the model with the translation task. The model was
developed using PyTorch [36] framework and was trained on
Nvidia Tesla-V100 GPU, having 32GB memory. The training
was carried out with a batch size of 32, 320 tokens and 5
epochs for each task. Figure 5 shows the progress of training
runs over multiple epochs.
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Fig. 5: The training loss, validation loss, and accuracy of MPI-
RICAL as a function of epoch numbers.

A. Performance Metrics

As we measure the performance of MPI-RICAL as a su-
pervised classification task, we use standard metrics of F1
score, precision, and recall to measure the performance of
MPI-RICAL.

We define positive and negative prediction for our task as:
1) True Positive (TP) — MPI-RICAL predicts that an MPI

function can be inserted at a given location, and the
predicted MPI function is indeed the ground truth (label).

Quality Measure MPICodeCorpus

M-F1 0.87
M-Precision 0.85

M-Recall 0.89
MCC-F1 0.89

MCC-Precision 0.91
MCC-Recall 0.87

BLEU 0.93
Meteor 0.62
Rouge-l 0.95

ACC 0.57

TABLE II: Performance of MPI-RICAL on MPICodeCorpus
test set.

2) False Positive (FP) — MPI-RICAL predicts that an MPI
function can be inserted at a given location, but the
predicted MPI function is different than the ground truth
(label).

3) True Negative (TN) — The model predicts that no MPI
function can be inserted at a given location, and this
prediction matches with the ground truth.

4) False Negative (FN) — The model predicts that no MPI
function can be inserted at a given location, but the
ground truth says otherwise.

Our measurements have one-line tolerance, meaning identi-
cal ground-truth MPI function and its corresponding generated
function will be considered matching only if there is one
line difference between their locations. This is important since
replacing the locations of two near MPI functions usually has
no influence on the code. Figure 6 demonstrates the notion of
positive and negative outcomes for our task. Note that TN is
out of our scope since our focus is on MPI function generation.

B. Results on MPICodeCorpus

Performance of MPI-RICAL on MPICodeCorpus is in Ta-
ble II. MPI function distribution looks like a decreasing
exponent. Therefore, it is important to distinguish between the
commonly-used functions (MPI Common Core) and the rest.
Hence, results have been evaluated on both the overall MPI
functions and the MPI Common Core functions, marked as
M-F1 and MCC-F1 correspondingly.



Fig. 6: Positive and negative prediction for measuring our models’ performance is illustrated.

C. Results on Fully Compiled Numerical Computations

After evaluating on MPICodeCorpus, we decided to evalu-
ate MPI-RICAL on real-world benchmarks. Parallel programs
in standard benchmarks are usually optimized and carefully
tested. Therefore, they can offer insights into the model’s
performance on real, error-free MPI codes.

There are MPI-based parallel code examples from bench-
marks such as Standard Performance Evaluation Corporation
(SPEC) [37], [38], NAS Parallel Benchmarks (NPB) [39],
and even books like Using MPI [40] and Using Advanced
MPI [41]. Nonetheless, only a small fraction of the code ex-
amples from these benchmarks passed our inclusion-exclusion
criteria. Therefore, we compiled a benchmark of our own
— fully compiled numerical computation codes 4 that are
short and include complete code context (the examples and
the results are attached to the footnote). Specifically, we
have written and compiled these 11 MPI-based parallel code
examples with domain decomposition. Each demonstrates a
selected numerical computation, such as pi calculation with
Riemann Sum, matrix multiplication, function integration and
etc. All these examples have passed our inclusion criteria.
We evaluated the validity of MPI-based parallel programs
generated by MPI-RICAL by compiling and running them.

Performance of MPI-RICAL on this benchmark as measured
by the suited M-F1 score is presented in Table III. The
automatic M-F1 calculation is limited since it only has one-line
tolerance, meaning generated MPI functions and the ground-
truth function will be considered matching only if there is one
line difference between their locations. In this case, manually
measuring enables more accurate results. In summary, the
model achieved M-F1 of 0.91, M-Precision of 0.98, and M-
Recall of 0.86.

VII. CONCLUSION AND FUTURE WORK

Recent advancements in language models have transformed
static automatic parallelization tools into contextualized learn-
ing models. In this paper, we propose a novel approach for
assisting MPI programmers in writing MPI-based parallel code
for distributed memory systems, specifically domain decom-
position. Our proposed approach suggests MPI functions in
the right locations using a transformer-based model named
MPI-RICAL, which is trained on the first MPI-specific code
corpus called MPICodeCorpus. Experimental results demon-
strate that MPI-RICAL performs well on test programs from
MPICodeCorpus. More importantly, we evaluated MPI-RICAL
on 11 carefully selected and compiled MPI programs with

4https://github.com/Scientific-Computing-Lab-NRCN/MPI-
rical/tree/main/BENCHMARK

Code M-F1 M-Precision M-Recall

Array Average 0.88 1.0 0.8
Vector Dot Product 0.88 1.0 0.8

Min-Max 0.66 1 0.5
Matrix-Vector Multiplication 0.9 0.83 1.0

Sum (Reduce & Gather) 0.8 1.0 0.6
Merge Sort 1.0 1.0 1.0

Pi Monte-Carlo 1.0 1.0 1.0
Pi Riemann Sum 1.0 1.0 1.0

Factorial 0.88 1.0 0.8
Fibonacci 1.0 1.0 1.0

Trapezoidal Rule (Integration) 1.0 1.0 1.0
Total 0.91 0.98 0.86

TABLE III: Performance of MPI-RICAL on numerical com-
putations benchmark.

domain decomposition codes to find that MPI-RICAL also
performs well on real-world programs. We believe that the
results imply good domain decomposition and MPI-based
parallelization understanding of MPI-RICAL.

While we present the initial approach and results for a
data-driven distributed-memory parallelism advisor model, we
belive that further research directions have been unlocked. For
future work, we plan to create a model trained and evaluated
on complete codes with no length restriction. To do that while
still training a transformer-based model, there is a need to ei-
ther dramatically upgrade the hardware or use continual learn-
ing [42]. This will enable full exploitation of MPICodeCorpus.
In addition, we belive that pre-train a language model with a
corpus of C programs instead of Java or Python might improve
the results. Furthermore, the current work measures generated
MPI functions while ignoring structural code changes, which
we believe are an integral part of MPI-based parallel programs.
Additional research about measuring the accuracy of generated
MPI functions’ arguments and MPI code structure has to be
done.

ACKNOWLEDGMENT

This research was supported by the Israeli Council for
Higher Education (CHE) via the Data Science Research Cen-
ter, Ben-Gurion University of the Negev, Israel; Intel Cor-
poration (oneAPI CoE program); and the Lynn and William
Frankel Center for Computer Science. Computational support
was provided by the NegevHPC project [43] and Intel Devel-
oper Cloud [44]. The authors thank Re’em Harel, Israel Hen,
and Gabi Dadush for their help and support.

REFERENCES

[1] P. Prabhu, T. B. Jablin, A. Raman, Y. Zhang, J. Huang, H. Kim, N. P.
Johnson, F. Liu, S. Ghosh, S. Beard et al., “A survey of the practice of
computational science,” in State of the practice reports, 2011, pp. 1–12.

https://github.com/Scientific-Computing-Lab-NRCN/MPI-rical/tree/main/BENCHMARK
https://github.com/Scientific-Computing-Lab-NRCN/MPI-rical/tree/main/BENCHMARK


[2] P. Pacheco, Parallel programming with MPI. Morgan Kaufmann, 1997.
[3] B. F. Smith, Domain decomposition methods for partial differential

equations. Springer, 1997.
[4] A. S. William Gropp, Ewing Lusk, Using MPI: Portable Parallel

Programming with the Message-Passing Interface, 2014.
[5] T. Niazi, T. Das, G. Ahmed, S. M. Waqas, S. Khan, S. Khan,

A. A. Abdelatif, and S. Wasi, “Investigating novice developers’ code
commenting trends using machine learning techniques,” Algorithms,
vol. 16, no. 1, 2023. [Online]. Available: https://www.mdpi.com/
1999-4893/16/1/53

[6] T. Sharma, M. Kechagia, S. Georgiou, R. Tiwari, I. Vats, H. Moazen,
and F. Sarro, “A survey on machine learning techniques for source code
analysis,” 2022.

[7] J. Gottschlich, A. Solar-Lezama, N. Tatbul, M. Carbin, M. Rinard,
R. Barzilay, S. Amarasinghe, J. B. Tenenbaum, and T. Mattson, “The
three pillars of machine programming,” in Proceedings of the 2nd
ACM SIGPLAN International Workshop on Machine Learning and
Programming Languages, 2018, pp. 69–80.

[8] A. Svyatkovskiy, S. K. Deng, S. Fu, and N. Sundaresan, “Intellicode
compose: Code generation using transformer,” in Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ser. ESEC/FSE
2020, 2020, p. 1433–1443.

[9] F. Shi, D. Fried, M. Ghazvininejad, L. Zettlemoyer, and S. I. Wang,
“Natural language to code translation with execution,” 2022.

[10] C. Zhang, J. Wang, Q. Zhou, T. Xu, K. Tang, H. Gui, and F. Liu, “A
survey of automatic source code summarization,” Symmetry, vol. 14,
no. 3, 2022.

[11] “GitHub Copilot,” [Online]. [Online]. Available: https://github.com/
features/copilot

[12] “Ml-enhanced code completion improves developer productivity,”
[Online]. [Online]. Available: https://ai.googleblog.com/2022/07/
ml-enhanced-code-completion-improves.html

[13] L. Chen, P.-H. Lin, T. Vanderbruggen, C. Liao, M. Emani,
and B. de Supinski, “LM4HPC: Towards Effective Language
Model Application in High-Performance Computing,” arXiv preprint
arXiv:2306.14979, 2023.

[14] W. F. Godoy, P. Valero-Lara, K. Teranishi, P. Balaprakash, and J. S.
Vetter, “Evaluation of OpenAI Codex for HPC Parallel Programming
Models Kernel Generation,” arXiv preprint arXiv:2306.15121, 2023.

[15] F. F. Xu, U. Alon, G. Neubig, and V. J. Hellendoorn, “A systematic
evaluation of large language models of code,” in Proceedings of the
6th ACM SIGPLAN International Symposium on Machine Programming,
2022, pp. 1–10.

[16] D. Nichols, A. Marathe, H. Menon, T. Gamblin, and A. Bhatele,
“Modeling Parallel Programs using Large Language Models,” arXiv
preprint arXiv:2306.17281, 2023.

[17] C. Dave, H. Bae, S.-J. Min, S. Lee, R. Eigenmann, and S. Midkiff,
“Cetus: A source-to-source compiler infrastructure for multicores,” Com-
puter, vol. 42, no. 12, 2009.

[18] B. Creusillet, R. Keryell, S. Even, S. Guelton, and F. Irigoin, “Par4All:
Auto-Parallelizing C and Fortran for the CUDA Architecture,” 2009.

[19] R. Harel, Y. Pinter, and G. Oren, “Learning to Parallelize in a Shared-
Memory Environment with Transformers,” in Proceedings of the 28th
ACM SIGPLAN Annual Symposium on Principles and Practice of
Parallel Programming, 2023, pp. 450–452.

[20] T. Kadosh, N. Schneider, N. Hasabnis, T. Mattson, Y. Pinter, and
G. Oren, “Advising OpenMP Parallelization via a Graph-Based Ap-
proach with Transformers,” arXiv preprint arXiv:2305.11999, 2023.

[21] A. Basumallik and R. Eigenmann, “Towards automatic translation of
OpenMP to MPI,” in Proceedings of the 19th annual international
conference on Supercomputing, 2005, pp. 189–198.

[22] C. Ferner, B. Wilkinson, and B. Heath, “Toward Using Higher-Level
Abstractions to Teach Parallel Computing,” in 2013 IEEE International
Symposium on Parallel & Distributed Processing, Workshops and Phd
Forum, 2013, pp. 1291–1296.

[23] A. Saà-Garriga, D. Castells-Rufas, and J. Carrabina, “OMP2MPI: Au-
tomatic MPI code generation from OpenMP programs,” 01 2015.

[24] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[25] C. Niu, C. Li, V. Ng, J. Ge, L. Huang, and B. Luo, “SPT-code: Sequence-
to-sequence pre-training for learning the representation of source code,”
arXiv preprint arXiv:2201.01549, 2022.

[26] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy,
V. Stoyanov, and L. Zettlemoyer, “BART: Denoising sequence-to-
sequence pre-training for natural language generation, translation, and
comprehension,” arXiv preprint arXiv:1910.13461, 2019.

[27] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer
learning with a unified text-to-text transformer,” The Journal of Machine
Learning Research, vol. 21, no. 1, pp. 5485–5551, 2020.

[28] H. Husain, H.-H. Wu, T. Gazit, M. Allamanis, and M. Brockschmidt,
“Codesearchnet challenge: Evaluating the state of semantic code search,”
arXiv preprint arXiv:1909.09436, 2019.

[29] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep code comment gener-
ation,” in 2018 IEEE/ACM 26th International Conference on Program
Comprehension (ICPC). IEEE, 2018, pp. 200–20 010.

[30] S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy, A. Blanco,
C. Clement, D. Drain, D. Jiang, D. Tang et al., “Codexglue: A machine
learning benchmark dataset for code understanding and generation,”
arXiv preprint arXiv:2102.04664, 2021.

[31] M.-A. Lachaux, B. Roziere, L. Chanussot, and G. Lample, “Un-
supervised translation of programming languages,” arXiv preprint
arXiv:2006.03511, 2020.

[32] N. Hasabnis and J. Gottschlich, “ControlFlag: A Self-Supervised
Idiosyncratic Pattern Detection System for Software Control Structures,”
in Proceedings of the 5th ACM SIGPLAN International Symposium
on Machine Programming, ser. MAPS 2021. New York, NY, USA:
Association for Computing Machinery, 2021. [Online]. Available:
https://doi.org/10.1145/3460945.3464954

[33] Z. Yao, D. S. Weld, W.-P. Chen, and H. Sun, “Staqc: A systematically
mined question-code dataset from stack overflow,” in Proceedings of the
2018 World Wide Web Conference, 2018, pp. 1693–1703.

[34] V. Markovtsev and W. Long, “Public git archive: a big code dataset
for all,” in Proceedings of the 15th International Conference on Mining
Software Repositories, 2018, pp. 34–37.

[35] E. Bendersky, “Pycparser,” 2010.
[36] A. Paszke et al., “PyTorch: An imperative style, high-performance deep

learning library,” Advances in neural information processing systems,
vol. 32, 2019.

[37] K. M. Dixit, “The SPEC benchmarks,” Parallel computing, vol. 17, no.
10-11, pp. 1195–1209, 1991.

[38] G. Juckeland, W. Brantley, S. Chandrasekaran, B. Chapman, S. Che,
M. Colgrove, H. Feng, A. Grund, R. Henschel, W.-M. W. Hwu et al.,
“SPEC ACCEL: A standard application suite for measuring hardware
accelerator performance,” in High Performance Computing Systems. Per-
formance Modeling, Benchmarking, and Simulation: 5th International
Workshop, PMBS 2014, New Orleans, LA, USA, November 16, 2014.
Revised Selected Papers 5. Springer, 2015, pp. 46–67.

[39] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber et al., “The nas parallel benchmarks,” The International
Journal of Supercomputing Applications, vol. 5, no. 3, pp. 63–73, 1991.

[40] W. Gropp, W. D. Gropp, E. Lusk, A. Skjellum, and A. D. F. E. E. Lusk,
Using MPI: portable parallel programming with the message-passing
interface. MIT press, 1999, vol. 1.

[41] W. Gropp, T. Hoefler, R. Thakur, and E. Lusk, Using advanced MPI:
Modern features of the message-passing interface. MIT Press, 2014.

[42] M. Biesialska, K. Biesialska, and M. R. Costa-Jussa, “Continual lifelong
learning in natural language processing: A survey,” arXiv preprint
arXiv:2012.09823, 2020.

[43] “NegevHPC Project,” https://www.negevhpc.com, [Online].
[44] Intel, “Intel Developer Cloud,” https://www.intel.com/content/www/us/

en/developer/tools/devcloud/overview.html, 2023, [Online].

https://www.mdpi.com/1999-4893/16/1/53
https://www.mdpi.com/1999-4893/16/1/53
https://github.com/features/copilot
https://github.com/features/copilot
https://ai.googleblog.com/2022/07/ml-enhanced-code-completion-improves.html
https://ai.googleblog.com/2022/07/ml-enhanced-code-completion-improves.html
https://doi.org/10.1145/3460945.3464954
https://www.negevhpc.com
https://www.intel.com/content/www/us/en/developer/tools/devcloud/overview.html
https://www.intel.com/content/www/us/en/developer/tools/devcloud/overview.html

	Introduction
	Previous Work
	Serial to Shared-Memory Parallelization
	Serial to Distributed-Memory Parallelization

	Research Objectives
	MPI-rical
	A brief background on SPT-Code
	Fine-Tuning — Code Translation
	Measuring performance of MPI-rical on the research objectives

	MPICodeCorpus
	Corpus
	Inclusion Criteria
	Exclusion Criteria
	Code Standardization

	Dataset Creation
	Statistics

	Experimental Results
	Performance Metrics
	Results on MPICodeCorpus
	Results on Fully Compiled Numerical Computations

	Conclusion and Future Work
	References

