
Performance Engineering for Graduate Students:
A View from Amsterdam

Ana-Lucia Varbanescu
University of Twente

Enschede, The Netherlands
a.l.varbanescu@utwente.nl

Stephen Nicholas Swatman
University of Amsterdam

Amsterdam, The Netherlands
s.n.swatman@uva.nl

Anuj Pathania
University of Amsterdam

Amsterdam, The Netherlands
a.pathania@uva.nl

ABSTRACT
HPC relies on experts to design, implement, and tune (computa-
tional science) applications that can efficiently use current (su-
per)computing systems. As such, we strongly believe we must ed-
ucate our students to ensure their ability to drive these activities,
together with the domain experts. To this end, in 2017, we have
designed a performance engineering course that, inspired by sev-
eral conference-like tutorials, covers the principles and practice of
performance engineering: benchmarking, performance modeling,
and performance improvement. In this paper, we describe the goals,
learning objectives, and structure of the course, share students feed-
back and evaluation data, and discuss the lessons learned. After
teaching the course seven times, our results show that the course
is tough (as expected) but very well received, with high-scores and
several students continuing on the path of performance engineering
during and after their master studies.

CCS CONCEPTS
• Social and professional topics → Model curricula; Comput-
ing education programs; • Software and its engineering →
Software performance.
ACM Reference Format:
Ana-Lucia Varbanescu, Stephen Nicholas Swatman, and Anuj Pathania.
2023. Performance Engineering for Graduate Students: A View from Ams-
terdam. In Workshops of The International Conference on High Performance
Computing, Network, Storage, and Analysis (SC-W 2023), November 12–17,
2023, Denver, CO, USA. ACM, New York, NY, USA, 9 pages. https://doi.org/
10.1145/3624062.3624102

1 INTRODUCTION
As high-performance computing (HPC) focuses on the design of ap-
plications (and systems) that maximize performance and efficiency.
HPC is often defined in the context of big science, large-scale appli-
cations, but has been slowly expanding—sometimes with different
names, such as HPDA (high-performance data analytics) or HTC
(high-throughput computing)—towards medium-size applications
and simulation, and even non-scientific applications like, for exam-
ple, traditional data science or machine learning applications.

Maximizing performance was very often the task of library de-
velopers and/or expert developers, who focused specifically on a

This work is licensed under a Creative Commons Attribution International
4.0 License.

SC-W 2023, November 12–17, 2023, Denver, CO, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0785-8/23/11.
https://doi.org/10.1145/3624062.3624102

couple of codes and, with inside knowledge of the implementation
and problem domain, managed to steadily improve these applica-
tions for the specific target machines—often supercomputers with
somewhat custom architectures. However, the rapid development
of multi- and many-core processors and accelerators, and their cre-
ative combinations in large-scale clusters and supercomputers, has
significantly increased the demand for HPC, to the point where it
has far exceeded the ability of experts to keep up. To cope with
this massive demand, better tools and more systematic approaches
are needed to provide highly-optimized, very efficient versions of
HPC applications for the broad range of computing systems. We
call the discipline that focuses on this systematic approach Per-
formance Engineering. In this paper, we discuss the design and
implementation of a graduate (i.e., MSc) level course on perfor-
mance engineering. This is the first and only such course in The
Netherlands to this date.

Our approach to performance engineering covers application
and system characterization, performance modeling, and optimiza-
tions. We target multi-node heterogeneous platforms combining
CPUs and GPUs (as accelerators), and use existing methods and
tools—often used by experts—to demonstrate how the performance
engineering process can be effectively conducted regardless of the
specifics of the application and/or machine. To this end, the course
covers both theoretical and practical aspects of the process: the
lectures describe the concepts and methods, while the practical as-
signments enable students to actually test these methods and tools,
and experience their strengths and limitations. The course further
includes a project where, using an application of their choice, the
students demonstrate all the stages of the performance engineer-
ing process, and ultimately provide a better version of the chosen
application. In this paper, we describe in detail how these three
components are combined.

We have taught the performance engineering course for seven
years (in-person and, during the COVID-19 pandemic, online), and
we have collected valuable feedback from 41 students who partici-
pated in the course. The feedback—from which we extract the data
we use in this paper as evaluation data—indicates that students
highly appreciate the course and its topics, even though they find
the course difficult in terms of workload. The feedback, combined
with the assessment results, have also provided us valuable insights
into how to further improve the course; we also shared these lessons
learned in this paper.

In summary, the main contribution of this work is to describe
the first (and only) performance engineering course for HPC in
The Netherlands, from design to implementation and evaluation,
including lessons learned and future work suggestions. To this end,
the remainder of this paper is structured as follows. In Section 2 we

357

https://orcid.org/0000-0002-4932-1900
https://orcid.org/0000-0002-3747-3229
https://orcid.org/0000-0002-5813-7021
https://doi.org/10.1145/3624062.3624102
https://doi.org/10.1145/3624062.3624102
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3624062.3624102
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3624062.3624102&domain=pdf&date_stamp=2023-11-12

SC-W 2023, November 12–17, 2023, Denver, CO, USA Ana-Lucia Varbanescu, Stephen Nicholas Swatman, and Anuj Pathania

introduce the main terminology we use, and discuss related cours-
es/tutorials that have inspired us in our design. Next, Sections 3
and 4 introduce the design and implementation of the course. In
Section 5 we present the analysis of the students results (and feed-
back). Finally, we discuss several lessons learned in Section 6, and
conclude the paper in Section 7.

2 BACKGROUND AND RELATEDWORK
In this section we provide a short overview of the technologies and
definitions we use in the course, as well as a brief discussion on
related work.

2.1 Computing Systems
The course covers heterogeneous, potentially multi-node systems
built from CPUs and GPUs. CPUs are representative multi-cores,
with multiple caches and shared main memory. GPUs are repre-
sentative many-cores, and are used as accelerators for the main
CPU—i.e., the GPU is the accelerator device to the CPU host.Multiple
nodes—potentially heterogeneous both intra- and inter-node—are
representative for scaled-out systems, like clusters and supercom-
puters.

2.2 Programming Languages
Programming HPC has not yet reached consensus in terms of
a standardized (set of) programming model(s) for its supercom-
puting systems. Therefore, based on popularity and accessibility,
our course uses C/C++ as main programming language, combined
with OpenMP (for shared-memory and accelerator programming),
CUDA and OpenACC (for NVIDIA GPUs), and MPI for distributed
computing. While our approach to performance engineering, and
the methods we propose to support it, are agnostic to the pro-
gramming models and languages being used, we find that most
open-source tools are built to work with this mix of models. We fur-
ther rely on assembly for several of the detailed, low-level analyses
we teach in the course.

2.3 Performance Engineering
For the purpose of our course, we adapted the definition of perfor-
mance engineering from the discipline of software engineering [12]
as follows: Software Performance Engineering (SPE) is a systematic,
quantitative approach to the cost-effective development of software
systems to meet performance requirements. SPE is a software-oriented
approach that focuses on architecture, design, and implementation
choices. SPE provides the information needed to build software that
meets performance requirements within a given budget (defined in
terms of time, cost, or efficiency).

Further inspired by [5, 12], we define the process of performance
engineering as a seven-stage, iterative process, as follows:
Stage 1 Collect and analyse (user) performance requirements.
Stage 2 Understand current performance.
Stage 3 Assess feasibility of the requirements.
Stage 4 Assess suitable approaches to meet the requirements (in-

cluding algorithm and/or system (co-)design).
Stage 5 Apply tuning and optimization.
Stage 6 Assess progress and iterate back to steps 3–5.
Stage 7 Analyse and document the process and the final result.

The lectures cover all stages, while the practical aspects of the
course specifically target stages 2–6, allowing students to learn how
to use (and further become proficient using) different tools for each
of these stages.

2.4 Related Work
We have started our course from the concepts of “performance
engineering” found in the software engineering discipline [12]. We
combined these aspects with methods and tools presented in scien-
tific articles such as the Roofline model [17], the ECM model [11],
microbenchmarking [18] and benchmarking [9, 10]. We further in-
corporate the technical and practical aspects described in tutorials
presented in the relevant HPC venues, such as single-core perfor-
mance engineering (at SC and ICPE), performance modeling using
the Roofline model for CPUs and GPUs (at SC, NVIDIA TechDays),
performance modeling for distributed applications (at SC, ISC), or
the polyhedral model (at HiPEAC). As such, we have designed a
course that provides a unique, novel combination of theoretical
concepts and methodological aspects for performance engineering.

While ours is the first and only course on performance engi-
neering in The Netherlands, we have also drawn inspiration from
courses like Computer Systems from CMU1, Performance Engi-
neering from MIT2, Performance Modeling from TUDelft3 and the
University of Edinburgh4, and Queuing Theory from MIT5. These
courses provided inspiration in terms of matching theoretical topics
with tools and assignments. However, to the best of our knowledge,
no other academic course currently taught provides the same range
and mix of topics as our course.

3 COURSE DESIGN
In this section we describe the goals of our course, the learning
objectives, and the structure we propose. We provide further details
on the actual implementation in Section 4.

3.1 Goals and Learning Objectives
The course focuses on the modern aspects of performance en-
gineering in the context of parallel applications and distributed
heterogeneous (super)computing systems. To this end, the course
introduces performance metrics and measurement techniques, per-
formance analysis, benchmarking and microbenchmarking, per-
formance models (analytical and statistical), and performance pre-
diction. The course further demonstrates how to apply these tech-
niques for several applications running on multi-node computing
systems, featuring combinations of multi-core CPUs and many-core
GPU accelerators. The ultimate goal of the course is to bundle these
techniques together and provide students the opportunity to create
their own performance engineering toolbox, which they can success-
fully use to deploy a systematic approach for performance engineering
on any application.

1http://15418.courses.cs.cmu.edu/spring2016/lectures
2https://ocw.mit.edu/courses/6-172-performance-engineering-of-software-systems-
fall-2018/
3https://repository.tudelft.nl/islandora/object/uuid%3Aea4a3f85-597c-479c-b045-
15da8dc4850b
4https://www.inf.ed.ac.uk/teaching/courses/pm/
5https://ocw.mit.edu/courses/15-072j-queues-theory-and-applications-spring-2006/

358

http://15418.courses.cs.cmu.edu/spring2016/lectures
https://ocw.mit.edu/courses/6-172-performance-engineering-of-software-systems-fall-2018/
https://ocw.mit.edu/courses/6-172-performance-engineering-of-software-systems-fall-2018/
https://repository.tudelft.nl/islandora/object/uuid%3Aea4a3f85-597c-479c-b045-15da8dc4850b
https://repository.tudelft.nl/islandora/object/uuid%3Aea4a3f85-597c-479c-b045-15da8dc4850b
https://www.inf.ed.ac.uk/teaching/courses/pm/
https://ocw.mit.edu/courses/15-072j-queues-theory-and-applications-spring-2006/

Performance Engineering for Graduate Students: A View from Amsterdam SC-W 2023, November 12–17, 2023, Denver, CO, USA

The course is designed to meet eight learning objectives [15].
Specifically, at the end of the course, students will be able to:

Objective 1 Quantify (using the appropriate tools and methods)
the performance of an application running on a computing sys-
tem using the appropriate metric;

Objective 2 Demonstrate and compare several performance mod-
eling methods, and assess their usefulness for practical problems;

Objective 3 Classify and use several performance prediction meth-
ods, and compare their applicability in practice;

Objective 4 Design an empirical performance analysis process for
any application, interpret its results, and recommend solutions
for performance improvement;

Objective 5 Design and use a suitable model for accurate perfor-
mance prediction for a given application;

Objective 6 Apply and assess different (existing) optimization tech-
niques to parallel and distributed codes;

Objective 7 Design and develop a complete performance engineer-
ing process, apply it successfully on any given application, and
assess its outcome in terms of performance gain;

Objective 8 Use different performance engineering tools (e.g., pro-
filers, microbenchmarks and benchmarks, performance counters
libraries, etc.).

3.2 Prerequisites
Performance engineering is a multi-disciplinary topic, combining
computer systems and computer architecture, algorithm design,
parallel and distributed algorithms, and parallel programming. For
students to succeed in following this course, we formulated the
following prerequisites:

Prerequisite 1 Computer organization and architecture basics,
including data representation, CPU architecture and functional-
ity, assembly language literacy, memory hierarchy and caching,
multi- and many-core architectures;

Prerequisite 2 Computer systems fundamentals, including shared-
memory systems, distributed systems, and heterogeneous sys-
tems design and implementation;

Prerequisite 3 Parallel algorithms design and development, and
basic skills in C/C++ as support language.

Prerequisite 4 Parallel and distributed programming basics, in-
cluding OpenMP, CUDA, OpenCL, and MPI.

Prerequisite 5 Basic statistics and data analysis methods, includ-
ing regression techniques.

The performance engineering course is embedded in the com-
puter science master program which is realized as a joint degree
program between the University of Amsterdam and the Vrije Uni-
versiteit Amsterdam. Students in the program have knowledge of
all the aforementioned prerequisites to a certain extent. The course
is mandatory for students in the “Parallel Computing Systems”
concentration, and is available as an elective course to all other
students. Although we provide quick refreshers for all the topics dis-
cussed above, we observe that students who have prior knowledge
in these topics (in the sense of having actively taken courses, solved
assignments, or developed small projects in these topics) perform
better, because they can build their own performance engineering
toolbox and expertise on top of assimilated knowledge.

Overall, the most successful students in the course are computer
science students, but we have had several successful graduates from
computational science (where modeling and numerical methods
are focused much more than systems and performance aspects)
and exchange students with diverse backgrounds. These successes
indicate that the course is self-contained and comprehensive.

3.3 Course Structure
To reach the course goal and achieve its learning objectives, we
have structured the course along three types of activities: lectures,
assignments, and project.

Lectures. We designed the theoretical part of the course to cover
the principle and methods of performance engineering. To this end,
we teach how to correctly measure and communicate performance
data, design microbenchmarks and benchmarking suites, design
and validate different performance models, and design and opti-
mize parallel applications for modern computing systems. Lectures
combine fundamental systems and applications knowledge with
modern, state-of-the-art methods from literature.

Assignments. The course relies on assignments to encourage stu-
dents to link the theoretical aspects presented in the course with
existing processing and tools that facilitate the application of these
theoretical aspects in practice. The assignments formulate a general
problem, provide a starting point in the form of code templates, and
require students to follow specific performance engineering steps
to analyze and/or improve the code. All assignments rely heavily
on empirical research—from experimental design to data analysis—
but use simple applications to limit the coding effort required for
completion. All assignments also require detailed documentation
to allow students to learn not only how to execute performance
engineering tasks, but also how to document them for non-expert
stakeholders (e.g., domain experts, application owners, system de-
signers).

Project. While assignments are self-contained and designed to fo-
cus on specific aspects of the performance engineering process, the
project enables students to experience the deployment of perfor-
mance engineering for a larger, real case-study application. This
enables them to better understand the limitations and challenges
of the provided methods and tools, and the manual effort still re-
quired when actually aiming to systematically improve application
performance, aiming at efficient HPC applications. For the project,
the students must achieve four important milestones:

Milestone 1 Define an application of interest and formulate a per-
formance problem to be solved.

Milestone 2 Formulate a plan to deploy performance engineer-
ing methods to solve the proposed performance problem. The
required elements of the plan are: benchmarking, performance
analysis, requirements analysis, performance modeling and pre-
diction, performance optimization, reflection.

Milestone 3 Document the performance engineering process.
Milestone 4 Present their intermediate and final results to an au-

dience of their peers.

359

SC-W 2023, November 12–17, 2023, Denver, CO, USA Ana-Lucia Varbanescu, Stephen Nicholas Swatman, and Anuj Pathania

3.4 Assessment
The course uses continuous assessment, combining an exam, in-
class quizzes, assignments, and a project which includes a report
and two presentations.

The exam assesses the theoretical knowledge of the students,
targeting mostly the knowledge they have acquired during the lec-
tures. The exam is included to ensure that students do understand
the fundamentals of the tools they employ, which in turn demon-
strates they can think critically about the output of the tools they
use, as well as they can port their knowledge to new systems, tools,
and applications. We find that such an exam is a real discriminating
factor between students who only master the usage of tools and
those who truly understand the methodological aspects of perfor-
mance engineering. We use in-class quizzes to stimulate students
to acquire such knowledge. The exam is, by design, individual—
compared with the rest of the course components, which can be
solved individually or, ideally, in teams of 2–4 students.

Assignments are provided to encourage students to practice with
all tools we believe to be important for a performance engineer’s
arsenal. We find such assignments work when they are focused
and targeted at specific elements in the performance engineering
process. The challenging aspect of these assignments is to find he
right balance between workload and learning benefits.

Finally, we assess the completion of the chosen project, including
the presentation and report the students provide. We assess the
project based on the feasibility of the proposed plan to address the
identified performance problem, the suitability of the employed
methods and tools, and the communication aspect (including the
reports and the presentation). We do not factor in the success (or
lack thereof) in achieving a specific performance goal, but rather
focus on the analysis and reflection aspects—i.e., how and why
certain steps succeed or fail.

Overall, the final students grades are calculated as a weighted
average of these three grades. We chose to give the largest weight to
the project, as many of our students lack experience with working
on real applications and systems, while being mostly exposed to
simple, “in-lab” assignments that are dedicated to show how meth-
ods and tools do work. In the case of the projects, students mostly
learn how and why many such methods and tools are limited and/or
fail in a real-life scenario, and how they can use their theoretical
knowledge to compensate for these limitations. We further choose
equal weights for the assignments and the theoretical exam, but
allow for slack for the students to slightly compensate one with the
other, if/when needed (more details in Section 4).

4 COURSE IMPLEMENTATION
In this section we present the actual implementation of the pro-
posed course. Specifically, we (briefly) discuss the alignment of
learning objectives to the specific lectures and assignments, and
the actual topics we cover with each of them. The course has been
running in a block of 8 weeks, with three weekly scheduled activ-
ities: lectures, labs (dedicated to the practical assignments), and
seminars (dedicated to the projects). The final week is dedicated to
the exam and project final presentation.

Table 1: Overview of topics covered in the course, as well
as the stages of the performance engineering process (Sec-
tion 2.3) and the learning objectives (Section 3.1) which mo-
tivate each topic.

Stages Learning Obj.
Topic 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8
Basics of performance ✓ ✓
Code tuning and optimization ✓ ✓✓
Roofline model and extensions ✓ ✓✓✓ ✓
Analytical modeling ✓✓ ✓✓✓✓
(Micro)benchmarking ✓ ✓ ✓ ✓✓✓
Data-driven and stat. modeling ✓ ✓ ✓✓✓ ✓✓
Simulation and simulators ✓ ✓ ✓ ✓ ✓✓✓
Perf. counters and patterns ✓ ✓✓ ✓✓✓
Scale-out to distributed systems ✓✓✓✓✓✓✓ ✓✓✓✓✓
Queuing theory ✓✓ ✓✓
Polyhedral model ✓ ✓✓✓

4.1 Lectures and Topics
The course covers the topics listed in Table 1, aligned with both
the performance engineering process (Section2.3) and the learning
objectives (Section 3.1).

The course has been taught with different numbers of lectures:
we started from 7 lectures (one per week), but, given the growing
list of topics, we eventually extended the number of lectures to 10;
we give two lectures per week in the first three weeks, where more
theoretical knowledge is needed. The lectures are provided in the
performance engineering repository [16].

4.2 Labs and Assignments
The course features four practical assignments, which are briefly
introduced in the following paragraphs. The actual assignments, in-
cluding code, data, and templates for reporting (where needed), are
available in the course repository [16]. For all assignments we allow
students to use their own machines and we further provide access
to the DAS-5 HPC cluster (featuring job isolation and dedicated
hardware resources via a SLURM-based scheduler) [1].

Assignment 1: The Roofline Model. The goal of this assignment is
to allow students to use one of the simplest performance modeling
tools available to performance engineering: the Roofline model [17].
However, the model relies on a deep understanding of computer sys-
tems and their main performance indicators, the balance between
compute- and memory-bound in systems and applications, and a
characterization of the application itself. In this assignment, the
students are provided a basic matrix multiplication code, and are
asked to provide a Roofline model for the sequential code, then fur-
ther optimize the code (based on the information from the Roofline
model)—thus addressing the identified bottleneck(s)—and reapply
the same modeling technique. This exercise aims to demonstrate
that the model is able to capture different versions of the same code.
Finally, the assignment also requires the students to implement and
Roofline-model a parallel version of matrix multiplication. Again,
the goal is to demonstrate how the model of both the system and
the application change when parallelism is added.

360

Performance Engineering for Graduate Students: A View from Amsterdam SC-W 2023, November 12–17, 2023, Denver, CO, USA

To bootstrap this assignment, we provide sequential code for ma-
trix multiplication, and suggest optimizations like loop reordering
and loop tiling. We do not aim to achieve the best possible perform-
ing matrix multiplication, but rather to have different versions with
different performance envelopes, to demonstrate the sensitivity of
the model.

Finally, the assignment requires the students to practice their
experimental design skills, as we request to provide models and
evaluations of the model using different input datasets. We also
suggest tools that can calculate and plot the model automatically,
but want the students to reflect on the difference between modeling
by hand and by tool. Please note that very little coding is required for
this assignment in terms of adapting matrix multiplication (around
100 lines of code), but a lot of effort is required for systematic
evaluation and model validation (for which we recommend and
eventually provide scripts and templates).

Assignment 2: Analytical Modeling and Microbenchmarking. In this
assignment, students need to provide an analytical model of their
matrix multiplication versions - sequential and parallel, calibrate
these models using microbenchmarking, and evaluate the models
against measured performance data. We further add a second kernel
to the mix, where we ask students to also model basic histogram
calculation, aiming to add data-dependent behavior as additional
modeling challenge. The students can reuse their code and/or pro-
vided code for both kernels.

The goal for this assignment is threefold: we want students (1) to
observe and understand the levels of granularity in analytical mod-
els, and the additional calibration challenges that come with those,
(2) to get familiar with microbenchmarking as a model calibration
tool, and (3) expose students to models that, although potentially
very inaccurate, can still provide important insight into the per-
formance of a given application. The students learn by trial and
error to find the right level of granularity (ranging from coarse, at
function level, to very fine, at ASM instruction level) where the
kernels can be accurately model, and understand the difference in
the details provided by these different models.

This assignment also provides students the opportunity to use
the tabulated performance data for different processors [3], or dif-
ferent microbenchmarking tools, like STREAM or uops. They can
further get familiar with detailed performance profilers like perf,
NVIDIA’s nvprof/nsight, as well as with instruction scheduler sim-
ulators like IACA, OSACA [8], or LLVM-MCA.

Assignment 3: Statistical Modeling. In this assignment, students
must demonstrate they can work around the limitations of ana-
lytical modeling by using machine-learning models. To this end,
they are required to collect performance data from a relevant set of
inputs, and model—using statistical methods—the expected perfor-
mance. Finally, they must evaluate the prediction accuracy of the
proposed model. To do so, they revisit matrix multiplication, and
are provided with a new kernel: sparse matrix-vector multiplica-
tion (SpMV). We provide three versions of the kernel—based on the
three classical storage models, CSR, CSC, and COO—and request
them to model the sequential version, one parallel version of their
choice, and compare the results against an analytical model.

With this assignments, we aim to showcase the challenges of
defining and collecting training data, of feature engineering, and

of empirical validation for such models. We further showcase the
interpretability of the models by comparison, by exposing students
to two extremes: the highly-explainable analytical model vs. the
black-box statistical models. Depending on the types of data they
choose to collect, this assignment can further expose students to
tools for collecting performance counter data and/or other detailed
performance indicators. However, these are separately introduced
and demonstrated in assignment 4.

Assignment 4: Performance Counters and Performance Patterns. This
final assignment goes into further detail into collecting detailed
performance data for one of the provided kernels. We opted for
SpMV, but the same exercise can be applied for matrix multipli-
cation. Furthermore, to better illustrate the use of performance
counters in the context of performance anomalies hypotheses, we
introduce the concept of performance patterns (inspired by Treibig
et al. [14]) and encourage students to understand the correlation
of performance patterns and observed counters values. For the lat-
ter part, we ask students to develop a simple (synthetic) kernel to
demonstrate some of this performance patterns, and show they can
be identified and fixed using performance counters data.

One important aspect of this assignment is to expose students to
clear performance patterns that often appear in HPC applications
and algorithms, and teach them how they can identify them with
empirical tools. Furthermore, in this assignment, students also get
familiar with tools like Linux perf, PAPI [2], Likwid [13], Intel
VTune, as well as NVIDIA Nsight Systems and Nsight Compute.

4.2.1 Coverage and Timeline. The current assignments cover all
technical skills for performance analysis, modeling, and prediction.
We note that we do not cover well the modeling and analysis of
distributed systems (where we discuss and demonstrate tools like
Vampir [6], Score-P [7], and the Scalasca approach [4]), but we
found that we have insufficient time in this format to also cover
these tools/approaches into an actual assignment.

We provide assignments somewhat sequentially: first assignment
1 (2 weeks deadline), followed by assignment 2 (2 weeks deadline,
some days overlapping with assignment 1), and followed by both
assignments 3 and 4, which we release at the same time, and the
deadline is the end of the 8-week course period (effectively, students
have 3 weeks for both assignments). This approach allows students
to mix and match different parts of the assignments, often guided
by what they need for their project.

We also provide 2–3 in-person lab sessions (with TAs support)
to help students complete each of these assignments. Lab sessions
focus on methods and tools demonstration, using simpler/different
kernels than those from the assignments, but allowing students to
observe how the tools are being used in practice.

4.3 Seminars and the Project
To support the development of the project, we kick-off the project
in week 1, and provide the following timeline for students to plan
their work:
Week 1 Brief introduction of the project goals and several exam-

ples at high-level (dedicated seminar). We focus on describing
the goals of the project, and helping students understand what a
performance challenge could be for a different application.

361

SC-W 2023, November 12–17, 2023, Denver, CO, USA Ana-Lucia Varbanescu, Stephen Nicholas Swatman, and Anuj Pathania

Week 2 Students work on providing a prototype of the sequen-
tial/reference version. We note that this version can be based
on their own code or any open-source code they find useful as
reference implementation.

Week 3 Students must define their evaluation strategy and define
an experimental setup (dedicated seminar). We focus here on the
right infrastructure, metrics, and measurement methods needed
for the assessment of current and improved performance of the
target application.

Week 4 Students should provide a first performance model of the
code, and potentially apply the first optimizations. This leads to
creating more prototypes starting from the reference code.

Week 5 Students have a skeleton of their report and provide a
short (5-minute) talk to introduce their application, status and
goals, and first model.

Weeks 6–7 Students provide more prototypes and a full perfor-
mance engineering process, evaluating each prototype and moti-
vating (through models) the following prototype(s). These weeks
focus on performance analysis, modeling, and improvement.

Week 8 Students finalize project report and presentation, and re-
flect on whether and how they managed to meet the performance
requirements.
For weeks 2, 4–6 we schedule invited talks from previous stu-

dents and/or performance engineering experts that discuss their
approach (and successes) in applying performance engineering.
The remainder of the seminar time is allocated to consultation and
discussion about the challenges of different projects.

4.4 Grading
The student grades are calculated as a weighted average using the
grade for the exam, the assignments, and the project, and using
in-class quizzes as bonus points. In accordance with the system
ubiquitously adopted in higher education in The Netherlands, final
grades lie between 1 and 10: the worst and best possible grades,
respectively. In this system, a grade of 5.5 or higher is considered a
passing grade. Grades are calculated using Equation 1, where 𝐺𝑃

is the project grade, 𝐺𝐴 is the assignments grade, 𝐺𝐸 is the exam
grade—a simple sum of the points achieved for correct answers—
and 𝑆𝑄 is the score for in-class assignments.

𝐺 = max(1,min(10, 0.5×𝐺𝑃 + 0.3×𝐺𝐴 + 0.3× (𝐺𝐸 + 𝑆𝑄/70))) (1)

Note that our grading scheme clearly rewards the most important
part of the course, the project, but it also provides some slack to
enable students to excel in either the theoretical or the practical
aspects of the course (i.e., exam or assignments, respectively), and
rewards them for in-class participation through quizzes.

To calculate the project grade, we combine the grade for the
project itself (i.e., the application of performance engineering meth-
ods and tools to the application at hand), 𝐺𝑝

𝑃
, the report, 𝐺𝑟

𝑃
, and

the presentations (midterm and final, averaged), 𝐺𝑡
𝑃

, as follows:

𝐺𝑃 = 0.4 ×𝐺
𝑝

𝑃
+ 0.3 ×𝐺𝑟

𝑃 + 0.3 ×𝐺𝑡
𝑃 (2)

For the assignments, we use a points system that enables stu-
dents to work in different groups. Each assignment has an allocated
number of points (10p, 9p, 11p, 12p for assignments 1, 2, 3, and

2017 2018 2019 2020 2021 2022 2023
Year

0

20

40

St
ud

en
ts

Total enrolled
Passing grades
Evaluation respondents

Figure 1: The number of students who enrolled in the course,
and the number of course evaluation respondents. Note that
the evaluation for the 2019 and 2022 courses are unavailable.

4, respectively) and the final grade is calculated as the sum of the
assignment points, 𝐺𝑖

𝐴
, 1 ≤ 𝑖 ≤ 4, divided by a factor that accounts

for the number of students per team (we remind the reader the as-
signments and project are to be executed in teams of 1–4 students).
Specifically, the calculation is described in Equation 3.

𝐺𝐴 = 10
∑

1≤𝑖≤4𝐺
𝑖
𝐴

𝑁
where 𝑁 =

32 for 1 student
36 for 2 students
40 for 3–4 students

(3)

5 EVALUATION
In this section we reflect on the student performance and the feed-
back we have received for this course.

5.1 Students’ Performance
The total number of students who have enrolled in the course over
seven years is 146. Due to the high workload and advanced content,
15–50% drop out of the course; in total, 93 students have completed
the course with a passing grade. In the following paragraphs, we
present a few insights on the progress of the students in this course,
based on their grades.

The average grade for the students passing the course is 8. This is
higher than other courses due to the many different ways to achieve
points. In fact, we find that students that finalize the course also get
very good results, while those who would usually struggle fail and
drop out early on. This is also a side-effect of the relative low impact
of the final exam grade, which is often used as a discriminating
factor between good and very good student performance, and rarely
as a pass/fail discriminator.

The average assignments grade is around 8. Given the clear
nature of the assignments, and the extensive support we provide in
terms of tools, demonstration, and feedback, students provide very
good solutions for the assignments. Traditionally, reports are of
somewhat lower quality (often due to time pressure). To improve
this aspect, we provided reporting templates. which have helped
raising the average grade in the last couple of years.

The average exam grade for the students is around 7.5; this
is due to the difficult nature of the exam, and the fact that we
cover more theoretical aspects of performance engineering. These
are also aspects that are not practiced extensively during the labs.
We find that such exams are very good to discriminate individual
talent/preparation within the teams which, otherwise, will receive
the same grade. We observe that in-class quizzes clearly help with

362

Performance Engineering for Graduate Students: A View from Amsterdam SC-W 2023, November 12–17, 2023, Denver, CO, USA

good performance in the exam, as students often understand where
and how to emphasize on specific topics. However, we do admit
these quizzes may take a long time to create and grade, and more
detailed feedback would help even further with the comprehension
of the more theoretical aspects of the course.

For projects, the average grade is 8. This somewhat expected,
given that we follow closely their progress, and we provide many
feedback and consultation moments. The grades are not higher
due to time pressure and, often, due to challenging priorities and
project management within the team(s). However, all projects we
have seen have been successful to a certain degree, with grades
ranging from 6.5 (where parallelism was not correctly applied) to 10
(for work that we still use as example when we kick-off the project
every year).

On a side note, we find it interesting to provide insight into the
projects students have chosen to complete in this course. Recurring
projects are, in the decreasing order of popularity: 2D stencil code
optimization (due to an assignment from a previous course), game
of life (also an assignment in a previous course), graph processing
(due to one of the recurring invited lectures). However, we have
also seen exotic applications, like content generation for games
(RushHour), game optimization (EVE Online), solving Wordle, or
FFT optimizations.

5.2 Students’ Feedback
Overall, students grade the course between 8 and 9 (out of 10)
every year, including during the pandemic. This is exceptionally
high for courses in the Dutch academic system. They consistently
grade the acquired knowledge, applicability, and practical relevance
above 90%. Students appreciate the connection between the course,
assignments, and project, and appreciate the ability to work on their
own application. They further enjoy the final project presentations,
where they not only get to brag about their own results, but also
learn about new applications and new methods/tools to analyze
and improve these applications.

On the downside, students are more critical of the high workload
of the course: they claim to spend 20–50% more time than officially
allocate for the course. To alleviate this problem, we created lab
templates (to allow the reporting to be more efficient) and provided
more flexible deadlines for the different assignments. We also fur-
ther emphasized the importance of automation in their empirical
analysis (from data collection to plotting), which seems to be the
most time consuming aspect of the assignments and/or project.

6 LESSONS LEARNED
Before concluding this paper, we summarize our insights after these
five years of teaching in a set of six lessons learned. They are:

Lesson 1 Performance Engineering is appealing when treated like
a puzzle. We appeal to students’ curiosity to understand why
applications behave weirdly on different systems. To allow for
this, one needs to prepare topics and assignments that showcase
such behavior.

Lesson 2 Provide both methods and tools for each part of the
course. Students appreciate the theory much better when they
can link it to concrete examples. Furthermore, this mix enables

Table 2: Aggregated student responses to evaluation ques-
tions. Data was taken in 2017, 2018, 2020, 2021, and 2023.

(a) Responses to questions on a scale from “Firmly Disagree” (corre-
sponding to a numeric value 1) to “Firmly Agree” (corresponding to
5), where a higher score is considered better.

Statement Fi
rm

ly
D

isa
gr

ee
D

isa
gr

ee
N

eu
tra

l

Ag
re

e

Fi
rm

ly
Ag

re
e

M
“The course . . . ”

Taught me a lot 0 0 1 17 18 4.5
Was clearly structured 0 2 3 19 13 4.2
Was intellectually challenging 0 0 2 9 25 4.6

“I acquired, learned, or developed . . . ”
Factual knowledge 0 0 1 13 13 4.4
Fundamental principles 0 1 2 16 11 4.2
Current scientific theories 0 3 5 13 9 3.9
To apply subject matter 0 0 0 7 22 4.8
Professional skills 0 0 3 13 15 4.4
Technical skills 0 0 6 14 9 4.1

“. . . helped me understand the subject”
Assignment 1 0 1 1 12 16 4.4
Assignment 2 0 0 1 11 16 4.5
Assignment 3 1 1 1 17 10 4.1
Assignment 4 0 1 1 12 13 4.4

Note: In 2017-2018, assignments were evaluated with a single score; these
scores have been duplicated across the four separate assignments in this
table.
(b) Responses to questions on a scale from “Very Low” (numeric
value 1) to “Very High” (numeric value 5), where a score between 3
and 4 is considered optimal.

Statement To
o

Lo
w

Lo
w

Ju
st

Ri
gh

t

H
ig

h

To
o

H
ig

h

M
“The . . . of the course was”

Workload 0 0 11 14 11 4.0
Level 0 1 16 13 6 3.7

them to build an intuition about how to navigate the perfor-
mance engineering process and, in the long term, how to further
improve it.

Lesson 3 Do not underestimate empirical analysis efforts. We often
notice that students spend a lot of time in empirical analysis. This
is often the case when experimental design is missing, and/or
automation is not properly defined. We spend time and provide
many examples on how this should be done, to allow them to
build such automated setups correctly and efficiently.

Lesson 4 Projects stimulate creativity, and students should be al-
lowed exploration time and space. As such, we provide no end-
line for our projects. Instead, we want them to try different things
and report, after critical reflection, on their findings.

Lesson 5 Stimulate critical thinking to reporting on both positive
and negative results. There are no negative results for our pro-
jects/assignments: we grade the process and the actual insights,
and not the ultimate speed-up or high-accuracy models students

363

SC-W 2023, November 12–17, 2023, Denver, CO, USA Ana-Lucia Varbanescu, Stephen Nicholas Swatman, and Anuj Pathania

achieved. Rather, understanding why and how methods and tools
work and fail is fundamental to this course.

Lesson 6 This is an intensive course for both teachers and students.
Keeping the material up-to-date, adding new tools and infras-
tructure, and eliminating deprecated content are difficult when
preparing the course. However, we are proud to offer something
that students can rely on and immediately apply for their next
performance engineering project in real-life.

7 CONCLUSION
As HPC and (super)computing systems increase in diversity, more
effort is needed to keep improving the performance and efficiency
of applications for newer systems. In turn, this means more spe-
cialists are needed to directly work with domain experts for HPC
applications, but also to design and build better tools to facilitate
this process. To create these specialists, we need our students to be
aware, able, and willing to contribute to performance engineering.
We strongly believe this can only happen if students are properly
trained in the systematic nature of the performance engineering
process.

To facilitate this education, we designed and implemented the
first (and only) graduate-level course on performance engineering
in The Netherlands. Our course combines lectures, assignments,
and a project to combine theoretical, methodological, and practical
aspects (and tools) to demonstrate and practice the full performance
engineering process. After teaching the course for seven years, we
can observe that such a course (1) is feasible for graduate-level
students with basic knowledge of computer architecture and pro-
gramming, (2) provides them with a deeper understanding and
practical, applicable knowledge of efficient systems and application
design, and (3) improves their ability to communicate with dif-
ferent stakeholders, including applications’ end-users and system
designers. Students’ feedback indicates the course is challenging
and interesting in its open approach to assignments and project.
The course has been evaluated among the top courses in the pro-
gram, and it has lead to 10–25% of the students in each year’s cohort
to be interested in taking on a performance engineering project for
their MSc degree.

To further improve the course, we identified one main challenge
to be tackled and three topics to be further developed. The main
challenge facing this course is the continuous updating of the mate-
rial: students appreciate it because it is up-to-date with the current
tools and practices from the field, yet this often requires yearly
efforts to test and update software, libraries, and tools. This can be
extra-challenging when the course relies on shared machines, with
very limited user rights. In terms of topics to be improved, we list
the three critical ones: (1) supporting various vendors hardware,
(2) including additional metrics—such as energy-efficiency—more
prominently, and (3) expanding the distributed computing aspect
of the course, potentially extending towards shared systems like
cloud computing, the computing continuum, and the use of virtual
machines or containers.

REFERENCES
[1] Henri Bal, Dick Epema, Cees de Laat, Rob van Nieuwpoort, John Romein, Frank

Seinstra, Cees Snoek, and Harry Wijshoff. 2016. A Medium-Scale Distributed Sys-
tem for Computer Science Research: Infrastructure for the Long Term. Computer

49, 05 (5 2016), 54–63. https://doi.org/10.1109/MC.2016.127
[2] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. 2000. A Portable Pro-

gramming Interface for Performance Evaluation on Modern Processors. The
International Journal of High Performance Computing Applications 14, 3 (2000),
189–204. https://doi.org/10.1177/109434200001400303

[3] Agner Fog et al. 2011. Instruction tables: Lists of instruction latencies, throughputs
and micro-operation breakdowns for Intel, AMD and VIA CPUs. Copenhagen
University College of Engineering 93 (2011), 110.

[4] Markus Geimer, Felix Wolf, Brian J. N. Wylie, Erika Ábrahám, Daniel Becker, and
Bernd Mohr. 2010. The Scalasca performance toolset architecture. Concurrency
and Computation: Practice and Experience 22, 6 (2010), 702–719. https://doi.org/
10.1002/cpe.1556

[5] Lizy Kurian John and Lieven Eeckhout (Eds.). 2006. Performance Evaluation and
Benchmarking (1st ed.). CRC Press, Boca Raton, Florida, United States of America.

[6] Andreas Knüpfer, Holger Brunst, Jens Doleschal, Matthias Jurenz, Matthias Lieber,
Holger Mickler, Matthias S. Müller, and Wolfgang E. Nagel. 2008. The Vampir
Performance Analysis Tool-Set. In Tools for High Performance Computing. Springer
Berlin Heidelberg, Berlin & Heidelberg, Germany, 139–155.

[7] Andreas Knüpfer, Christian Rössel, Dieter an Mey, Scott Biersdorff, Kai Diethelm,
Dominic Eschweiler, Markus Geimer, Michael Gerndt, Daniel Lorenz, Allen Mal-
ony, Wolfgang E. Nagel, Yury Oleynik, Peter Philippen, Pavel Saviankou, Dirk
Schmidl, Sameer Shende, Ronny Tschüter, Michael Wagner, Bert Wesarg, and
Felix Wolf. 2012. Score-P: A Joint Performance Measurement Run-Time Infras-
tructure for Periscope,Scalasca, TAU, and Vampir. In Tools for High Performance
Computing 2011. Springer Berlin Heidelberg, Berlin & Heidelberg, Germany,
79–91.

[8] Jan Laukemann, Julian Hammer, Johannes Hofmann, Georg Hager, and Gerhard
Wellein. 2018. Automated Instruction Stream Throughput Prediction for Intel and
AMD Microarchitectures. In 2018 IEEE/ACM Performance Modeling, Benchmarking
and Simulation of High Performance Computer Systems (PMBS) (Dallas, Texas,
USA). IEEE, New York, New York, USA, 121–131. https://doi.org/10.1109/PMBS.
2018.8641578

[9] John D. McCalpin. 1991-2007. STREAM: Sustainable Memory Bandwidth in High
Performance Computers. Technical Report. University of Virginia, Charlottesville,
Virginia. http://www.cs.virginia.edu/stream/ A continually updated technical
report. http://www.cs.virginia.edu/stream/.

[10] John D. McCalpin. 1995. Memory Bandwidth and Machine Balance in Current
High Performance Computers. IEEE Computer Society Technical Committee on
Computer Architecture (TCCA) Newsletter 2, 19-25 (12 1995), 19–25.

[11] Johannes Seiferth, Christie Alappat, Matthias Korch, and Thomas Rauber. 2018.
Applicability of the ECM Performance Model to Explicit ODE Methods on Current
Multi-core Processors. In High Performance Computing, Rio Yokota, Michèle Wei-
land, David Keyes, and Carsten Trinitis (Eds.). Springer International Publishing,
Cham, 163–183.

[12] Connie Smith. 2003. Performance Evaluation – Stories and Perspectives - Chapter 16:
Software performance engineering. Austrian Computer Society, Vienna, Austria.

[13] Jan Treibig, Georg Hager, and Gerhard Wellein. 2010. LIKWID: A Lightweight
Performance-Oriented Tool Suite for x86 Multicore Environments. In 2010 39th
International Conference on Parallel Processing Workshops (San Diego, California,
United States of America). IEEE, New York, New York, United States of America,
207–216. https://doi.org/10.1109/ICPPW.2010.38

[14] Jan Treibig, Georg Hager, and Gerhard Wellein. 2012. Performance Patterns and
Hardware Metrics on Modern Multicore Processors: Best Practices for Perfor-
mance Engineering. In Euro-Par Workshops. Springer Berlin Heidelberg, Berlin &
Heidelberg, Germany, 451–460. https://doi.org/10.1007/978-3-642-36949-0_50

[15] University of Amsterdam. 2022. Course catalogue (2022-2023). University of
Amsterdam. https://studiegids.uva.nl/xmlpages/page/2022-2023-en/search-
programme/programme/7283/251111

[16] Ana-Lucia Varbanescu and Stephen Nicholas Swatman. 2023. Performance
Engineering Course repository. https://github.com/alvarbanescu/PerfEngCourse

[17] Samuel Williams, Andrew Waterman, and David Patterson. 2009. Roofline: An
Insightful Visual Performance Model for Multicore Architectures. Commun. ACM
52, 4 (apr 2009), 65–76. https://doi.org/10.1145/1498765.1498785

[18] Henry Wong, Misel-Myrto Papadopoulou, Maryam Sadooghi-Alvandi, and An-
dreas Moshovos. 2010. Demystifying GPU microarchitecture through mi-
crobenchmarking. In 2010 IEEE International Symposium on Performance Anal-
ysis of Systems & Software (ISPASS) (White Plains, New York, United States
of America). IEEE, New York, New York, United States of America, 235–246.
https://doi.org/10.1109/ISPASS.2010.5452013

364

https://doi.org/10.1109/MC.2016.127
https://doi.org/10.1177/109434200001400303
https://doi.org/10.1002/cpe.1556
https://doi.org/10.1002/cpe.1556
https://doi.org/10.1109/PMBS.2018.8641578
https://doi.org/10.1109/PMBS.2018.8641578
http://www.cs.virginia.edu/stream/
https://doi.org/10.1109/ICPPW.2010.38
https://doi.org/10.1007/978-3-642-36949-0_50
https://studiegids.uva.nl/xmlpages/page/2022-2023-en/search-programme/programme/7283/251111
https://studiegids.uva.nl/xmlpages/page/2022-2023-en/search-programme/programme/7283/251111
https://github.com/alvarbanescu/PerfEngCourse
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1109/ISPASS.2010.5452013

Performance Engineering for Graduate Students: A View from Amsterdam SC-W 2023, November 12–17, 2023, Denver, CO, USA

A ARTIFACT INFORMATION
In accordance with the Supercomputing Transparency and Repro-
ducibility Initiative, this appendix provides additional detail about
the artifacts relevant for this manuscript.

A.1 Artifact Description
Our paper presents our experience with teaching performance
engineering to graduate students. In order to allow maximal re-use
of our materials and to provide transparency about the performance
of the course, we have made all the lecture slides and assignments—
both the documents and the framework code—available, as well
as the quantitative data used in this paper and the software used
to create figures and tables from that data. The remainder of this
section details the different artifacts which we provide; a schematic
overview of the artifacts is given in Figure2.

We provide three artifacts: the frameworks designed to provide
support for students’ assignments, and the scripts to be used to
generate the figures and tables in this paper:

SW-1 Assignment frameworks implemented in C which are
used by students. Available in assignments/code/.

SW-2 Python script to generate Figure1 with information
about student counts. Uses DATA-1. Available as
scripts/make_plots.py.

SW-3 Python script to generate Table 2 with information about
student evaluations about the quality of the course. Uses
DATA-2. Available as scripts/make_tables.py.

Furthermore, we provide two (anonymized) data artifacts about
the historical performance of the course:
DATA-1 Structured historical data about the number of enrolled

students, the number of students with a passing grade,
and the number of evaluation respondents. Available as
data/students.csv.

DATA-2 Structured historical data about select questions an-
swered by students in the evaluations of the course. Avail-
able as data/metrics.csv.

Finally, we provide two artifacts in the form of documents relat-
ing to the lectures and the assignments:

PaperLATEX DOC-1 DOC-2

SW-1Table 2Figure 1

SW-3SW-2

DATA-2DATA-1

Figure 2: Dependency graph between the paper, its figures,
and the associated artifacts. Artifacts with solid borders are
provided as-is, artifacts with dashed borders can be deter-
ministically reproduced using the provided artifacts, and
artifacts with dotted borders can be provided upon request.

DOC-1 Lecture slides as they were used in the 2022 edition of
the course, available as PDF documents in slides/.

DOC-2 Assignment documents as they were used in the 2022
edition of the course, available as PDF documents in
assignments/.

A.2 Artifact Availability
All of the aformentioned documents, software, and data are avail-
able in our GitHub repository [16].

A.3 Artifact Evaluation
Our assignments require a heterogeneous system, using a CPU and
NVIDIA GPU. We have used both Intel and AMD CPUs, although
the tools we recommend are Intel-specific. We have use GPUs of
compute capability between 3.0 and 7.2. We have not tried AMD
GPUs, due to limited hardware access and available TA support.

The aforementioned software frameworks were not altered in
any way for this paper: our code focuses solely on providing the
seed the students need to use for their development. All the code can
be compiled with off-the-shelf C/C++ compilers. All the provided
code is developed by teachers and/or TAs, or uses open-source
code available online (e.g., code for reading matrices in the matrix
market format).

365

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Computing Systems
	2.2 Programming Languages
	2.3 Performance Engineering
	2.4 Related Work

	3 Course Design
	3.1 Goals and Learning Objectives
	3.2 Prerequisites
	3.3 Course Structure
	3.4 Assessment

	4 Course Implementation
	4.1 Lectures and Topics
	4.2 Labs and Assignments
	4.3 Seminars and the Project
	4.4 Grading

	5 Evaluation
	5.1 Students' Performance
	5.2 Students' Feedback

	6 Lessons Learned
	7 Conclusion
	References
	A Artifact Information
	A.1 Artifact Description
	A.2 Artifact Availability
	A.3 Artifact Evaluation

