
Towards Collaborative Continuous Benchmarking for HPC
Olga Pearce

Lawrence Livermore National Lab
Alec Scott

Lawrence Livermore National Lab
Gregory Becker

Lawrence Livermore National Lab

Riyaz Haque
Lawrence Livermore National Lab

Nathan Hanford
Lawrence Livermore National Lab

Stephanie Brink
Lawrence Livermore National Lab

Doug Jacobsen
Google

Heidi Poxon
Amazon Web Services

Jens Domke
RIKEN R-CCS

Todd Gamblin
Lawrence Livermore National Lab

ABSTRACT
Benchmarking is integral to procurement of HPC systems, com-
municating HPC center workloads to HPC vendors, and verifying
performance of the delivered HPC systems. Currently, HPC bench-
marking is manual and challenging at every step, posing a high
barrier to entry, and hampering reproducibility of the benchmarks
across different HPC systems. In this paper, we propose collabora-
tive continuous benchmarking to enable functional reproducibility,
automation, and community collaboration in HPC benchmarking.
Recent progress in HPC automation allows us to consider previously
unimaginable large-scale improvements to the HPC ecosystem.
We define the minimal requirements for collaborative continuous
benchmarking and develop a common language to streamline the
interactions between HPC centers, vendors, and researchers. We
demonstrate the initial implementation of collaborative continuous
benchmarking, and introduce an open source continuous bench-
marking repository, Benchpark, for community collaboration. We
believe collaborative continuous benchmarking will help overcome
the human bottleneck in HPC benchmarking, enabling better evalu-
ation of our systems and enabling a more productive collaboration
within the HPC community.
ACM Reference Format:
Olga Pearce, Alec Scott, Gregory Becker, Riyaz Haque, Nathan Hanford,
Stephanie Brink, Doug Jacobsen, Heidi Poxon, Jens Domke, and Todd Gam-
blin. 2023. Towards Collaborative Continuous Benchmarking for HPC. In
Workshops of The International Conference on High Performance Computing,
Network, Storage, and Analysis (SC-W 2023), November 12–17, 2023, Den-
ver, CO, USA. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/
3624062.3624135

1 INTRODUCTION
The system lifecycle for an HPC system spans several years and in-
cludes stages related to procurement, acceptance, and service.HPC

olga@llnl.gov.

This work is licensed under a Creative Commons Attribution-NoDerivs International
4.0 License.

SC-W 2023, November 12–17, 2023, Denver, CO, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0785-8/23/11.
https://doi.org/10.1145/3624062.3624135

system benchmarking is an integral component throughout this
process. During the procurement of a system, benchmarking is
used to communicate HPC center workloads with HPC vendors
and other organizations. Benchmarking enables performance mod-
eling across different hardware. It also helps evaluate which of the
proposed HPC systems will result in the best performance for a par-
ticular HPC center workload, and is useful for co-designing future
HPC system procurements. During acceptance of an HPC system,
benchmarking can be used to assess early access systems and the
changing software stacks. Benchmarking is also critical for deter-
mining if the delivered system reaches the expected performance.
And finally, once the system has been accepted and is in service,
benchmarking is a useful tool for tracking system performance over
time and diagnosing hardware failures.

HPC ecosystem players, such as application developers and
HPC centers use benchmarking in their various roles. HPC appli-
cation developers write benchmarks to communicate performance
characteristics, as well as hardware and software requirements of
their applications. HPC centers incorporate benchmarks into their
system procurement and acceptance processes. HPC vendors use
benchmarks to understand hardware and software requirements
of the systems to propose or deliver. HPC researchers use bench-
marks to study and model performance and propose new hardware,
software, and middleware designs. Productive involvement of the
many HPC ecosystem players is only possible if they are able to
functionally reproduce the benchmarks.

The state-of-the-practice of HPC system benchmarking is
manual, high maintenance, and challenging at every step. Beyond
deciding the benchmark problem definition and writing the bench-
mark source code, various challenges arise:

• Build environments on each HPC system are different, and
porting build scripts to new systems is manual;

• Execution environments on each HPC system are different,
and porting execution scripts to new systems is manual;

• Hardware and software stacks on each HPC system are evolv-
ing (e.g., hardware upgrades, firmware upgrades, software
stack upgrades), and therefore require manual updates to
the build and execution scripts for the benchmark;

• Triggering builds and runs of the benchmark is manual, so
benchmark results do not stay up-to-date; and

• Performance analysis of the benchmark results is manual,
limiting how much of the performance is tracked.

627

https://doi.org/10.1145/3624062.3624135
https://doi.org/10.1145/3624062.3624135
https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://doi.org/10.1145/3624062.3624135
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3624062.3624135&domain=pdf&date_stamp=2023-11-12


SC-W 2023, November 12–17, 2023, Denver, CO, USA Olga Pearce et al.

The state-of-the-practice in benchmarking is fully manual and
presents a high barrier to entry for the HPC players to engage in
benchmarking and make their contributions to HPC. Additionally,
when these players invest effort and resources into getting bench-
marks to work, there is no mechanism for them to reproducibly
share their work with others. As a result, benchmark maintenance
falls behind any such efforts by invested players.We identify several
key observations which underpin our work:

• The many HPC players in benchmarking need to be able to
run the benchmarks in a functionally reproducible manner;

• Reproducibility is only possible when the process is suffi-
ciently described to enable automation;

• Automation of benchmark building, running, and evalua-
tion will enable more frequent testing of benchmarks, while
lowering the barrier to entry for HPC players;

• Enabling collaborative maintenance of orthogonal concerns
in benchmarking (from algorithms to systems) will enable
the many players in HPC benchmarking to contribute to
the maintenance, and enable broader testing and thus more
value from benchmarking efforts.

We believe automated benchmarking in HPC is now possible be-
cause of improvements in automation across the industry. In recent
years, HPC centers have developed automated systems for building
and running software and have worked to bring continuous integra-
tion capabilities into the HPC center, which allows us to consider
the large-scale improvements to the HPC ecosystem made possible
by applying these methods which are new to HPC but have been
in production within other computing ecosystems for years.

We propose continuous benchmarking, an approach to defining
benchmarking in a reproducible way, thus enabling both automa-
tion and reproducibility. We leverage continuous integration (CI)
to test each step of benchmarking, including source code, inputs,
building, running, and evaluation. Our approach enables mainte-
nance of these components in an orthogonal way, thus distributing
the workload of benchmark maintenance among the HPC play-
ers and enabling community contribution to the benchmarking
effort. Our continuous benchmarking approach will lead to better
software practices, easier maintenance, better benchmarks, and
software sustainability, leading to better understanding and thus
better co-design of HPC systems.

This paper makes the following contributions:
• Determination of the minimal requirements for continuous
benchmarking;

• Definition of the continuous benchmark suite and its open
source components;

• Design of a portable benchpark repository, Benchpark [22],
for community collaboration on benchmarking with min-
imized human effort required via maximizing reuse by or-
thogonalizing components;

• Demonstration of the initial implementation.
Section 2 introduces Benchpark, our proposed architecture for
collaborative continuous benchmarking. Section 3 describes the
automation components we leverage in Benchpark (Spack 3.1, Ram-
ble 3.2, CI 3.3). Section 4 demonstrates the Benchpark workflow for
running experiments, and for adding new benchmarks and systems
to Benchpark, and Section 5 discusses our next steps. Section 6

describes related efforts in the area. Section 7 discusses benchmark
sustainability, collaborative maintenance, and the role of cloud.

2 BENCHPARK: AN ARCHITECTURE FOR
CONTINUOUS BENCHMARKING

We define continuous benchmarking as a fully automated mecha-
nism for evaluating HPC benchmark performance on specified HPC
systems. Continuous benchmarking will enable testing the impact
of software changes to a wide variety of components, including
benchmark source code and input parameters, build instructions,
execution instructions, and CI testing. Being able to automate the
benchmarking process and store the results of the evaluation before
and after any changes to hardware, firmware, drivers, or software
will provide a deeper understanding of the impact of these changes.

A continuous benchmarking system must be able to track the
location of versioned benchmark source code. It needs to track
benchmark inputs and run parameters, which may be system de-
pendent. It needs reproducible methods for building and running
benchmarks. Those methods need to be integrated with the in-
puts and run parameters. Build and run methods need to be easily
portable across systems, or the continuous benchmarking frame-
work of one architecture will be of limited value to any other system.
Finally, it needs to automate the characterization of performance
results from the benchmarks. All of these systems all must follow
data integrity standards to avoid deterioration of the working code
with minimal human oversight and intervention.

We introduce Benchpark [22], a continuous benchmarking frame-
work designed for automation of testing and a vehicle for collabora-
tion of HPC players from across the world where human input and
validation is currently necessary. Benchpark is an infrastructure-
as-code project combining a variety of open source tools into a
fully specified system for tracking benchmark performance across
a variety of systems, across multiple HPC centers, and across arbi-
trary choices of benchmarks. Table 1 presents the components of
Benchpark, and implementation choices wemade to enable orthogo-
nalization of benchmarks, systems, and experiments. In Table 1 and
the remainder of the paper, we adopt the following color scheme:

• Benchmark-specific: Specification for each benchmark,
without any system-specific information. Benchpark requires
exactly one such specification per benchmark, including
where to find benchmark source and build specs (package.py),
benchmark input and run specification (application.py).

• HPC System-specific: Specification for each system, with-
out any benchmark-specific information. Benchpark requires
exactly one such specification per system, including system
software (compilers.yaml,packages.yaml), build config files
(spack.yaml), scheduler and launcher (variables.yaml), and
(optional) performance counters to collect.

• Experiment-specific: We define experiments as the in-
stances of the benchmark the user wants to run on a given
system. Examples include a strong-scaling study of a bench-
mark (a set of experiments with the same problem size, scaled
on a different number of resources) on a CPU+GPU hetero-
geneous system using the GPU for the main computation.
The complete experiment specification is specified in spack,
experiments, and success_criteria sections of ramble.yaml.

628



Towards Collaborative Continuous Benchmarking for HPC SC-W 2023, November 12–17, 2023, Denver, CO, USA

Table 1: Components of Benchpark, a collaborative continuous benchmark suite
Component Benchmark-specific HPC System-specific Experiment-specific

1 Source code package.py archspec (Sec. 3.1.3) ramble.yaml: spack
2 Build instructions package.py Spack config. files, spack.yaml ramble.yaml: spack
3 Benchmark input application.py, (optional) data variables.yaml ramble.yaml: experiments
4 Run instructions application.py variables.yaml: scheduler, launcher ramble.yaml: experiments
5 Experiment evaluation (optional) application.py (optional) hardware counters, etc. ramble.yaml: success_criteria
6 CI testing .gitlab-ci.yml Hubcast@LLNL/RIKEN/AWS/... Benchpark executable

(a) Benchpark directory structure (b) Benchpark component interaction

1: User clones Benchpark repository
> git clone benchpark

2: User runs Benchpark with a system profile
and benchmark suite template

> ./bin/benchpark $experiment
> $system $workspace_dir

3: Benchpark clones Spack and Ramble

4: Benchpark generates workspace config

5: User calls Ramble within workspace
> ramble workspace setup

6: Ramble uses Spack to build each benchmark

7: Ramble renders batch experiment scripts

8: User calls Ramble to submit batch experi-
ment scripts, Ramble executes each bench-
mark with experiment scripts

> ramble on

9: User calls Ramble to analyze the benchmark
output and extract metrics

> ramble workspace analyze

(c) Workflow: Run Benchpark experiments

Figure 1: Benchpark components and user workflow for running experiments using Benchpark

An overview of Benchpark is shown in Figure 1, including the direc-
tory structure (Figure 1a), component interaction (Figure 1b), and
the workflow of running experiments using Benchpark (Figure 1c).
Benchpark heavily leverages Spack (see Section 3.1) and Ramble
(see Section 3.2) for its functionality.

The Benchpark repository contains four subdirectories (Fig-
ure 1a): 1) benchpark directory contains the driver script, 2) configs
contains the specific HPC system details, 3) experiments contains
the test descriptions for each of the benchmarks, 4) repo directory
is a construct from Spack and Ramble and is for overlay information
not contained in the upstream Spack or Ramble repositories.

Figure 1b and Figure 1c illustrate how the different Benchpark
components interact. First, the user clones the Benchpark repository

from GitHub. Then, the user runs Benchpark with a system profile
and benchmark suite template file. Internally, Benchpark clones
Spack and Ramble from GitHub, then creates a workspace. Next,
the user calls Ramble within the workspace, and Ramble builds
each benchmark through Spack and generates batch experiment
scripts. Lastly, the user calls Ramble again to perform benchmark
analysis and extract performance metrics.

3 HPC AUTOMATION ENABLES BENCHPARK
Recent progress in HPC automation allows us to consider large-
scale improvements in HPC benchmarking. We next describe the
technologies we leverage in Benchpark: Spack (for reproducible

629



SC-W 2023, November 12–17, 2023, Denver, CO, USA Olga Pearce et al.

build instructions), Ramble (for reproducible run instructions), and
the CI technologies for automation of Benchpark.

3.1 Reproducible Build Instructions
Spack [10, 18] is a package manager for HPC. Spack runs entirely in
user-space, and allows for combinatorial versioning of installations
across all facets of the build configuration space. Spack consists of
four primary components:

(1) The Spec syntax, to specify the user constraints on a build,
called abstract specs;

(2) The concretizer, an algorithm that takes abstract specs and
fills in remaining choice points for the build space, producing
concrete specs;

(3) Package files, which define the build space for the package
and provide package installation recipes templatized by the
concrete spec output from the concretizer;

(4) The installation engine, which handles installing packages
from source or binary cache.

Spack adds an environment behavior similar to Python’s virtual-
env [28], following amanifest-and-lockmodel similar to Bundler [17]
and other package managers [13, 14, 27]. In Spack, environment
manifests are treated as user input, and the output of the concretizer
is written to a lockfile. Algorithm 2 shows an example workflow.

SC-W 2023, November 12–17, 2023, Denver, CO, USA Olga Pearce et al.

build instructions), Ramble (for reproducible run instructions), and
the CI technologies for automation of Benchpark.

3.1 Reproducible Build Instructions
Spack [10, 18] is a package manager for HPC. Spack runs entirely in
user-space, and allows for combinatorial versioning of installations
across all facets of the build configuration space. Spack consists of
four primary components:

(1) The Spec syntax, to specify the user constraints on a build,
called abstract specs;

(2) The concretizer, an algorithm that takes abstract specs and
fills in remaining choice points for the build space, producing
concrete specs;

(3) Package files, which define the build space for the package
and provide package installation recipes templatized by the
concrete spec output from the concretizer;

(4) The installation engine, which handles installing packages
from source or binary cache.

Spack adds an environment behavior similar to Python’s virtual-
env [28], following amanifest-and-lockmodel similar to Bundler [17]
and other package managers [13, 14, 27]. In Spack, environment
manifests are treated as user input, and the output of the concretizer
is written to a lockfile. Algorithm 2 shows an example workflow.

1 spack env create --dir .
2 spack env activate --dir .
3 spack add amg2023+caliper
4 spack --config -scope /path/to/configs concretize
5 spack install

Figure 2: Spack environment workflow

3.1.1 Creating a Spack environment. A Spack environment man-
ifest provides a list of abstract specs, and can be combined with
configuration. In Benchpark, we list the packages needed to run our
benchmarks in the environment manifest as abstract specs. Spack
environments are written in YAML. Spack environments can be
managed by Spack or stored independently from Spack, as defined
in the manifest in spack.yaml (Figure 3). In Benchpark, the list of
abstract specs for the environment is configured in Ramble 3.2.
The environment is instantiated with Spack, and concretized with
configuration to target the current system.

1 spack:
2 specs: [amg2023+caliper]
3 concretizer:
4 unify: true
5 view: true

Figure 3: spack.yaml: A simple Spack environment manifest
combining an abstract spec amg2023+caliper with configura-
tion for concretizer and view

3.1.2 Importing local configuration. Spack provides a highly
customizable configuration to tailor the behavior of Spack to the
local system. Configurable parameters in Spack include the loca-
tion of available compilers, externally installed packages to use for
dependencies, and detailed preferences for concretizer decisions
for build options. Benchpark specifies per-system directories with
known Spack configurations, which can be tailored for both system
architecture and HPC site policy.

Benchpark’s Spack configurations specify the locations of system
software and compilers (which are determined by HPC facility

staff), as well as preferred versions of dependencies, which are
determined by specialists with knowledge of particular benchmarks.
An example Spack configuration is shown in Figure 4.

1 packages:
2 blas:
3 externals:
4 - spec: intel -oneapi -mkl@2022 .1.0
5 prefix: /path/to/intel -oneapi -mkl
6 buildable: false
7 mpi:
8 externals:
9 - spec: mvapich2@2 .3.7- gcc12 .1.1- magic
10 prefix: /path/to/mvapich2
11 buildable: false

Figure 4: A system-specific spack.yaml configures Spack to
use BLAS and MPI libraries installed on the system

3.1.3 Archspec. Spack uses Archspec [7] to build executables
for Benchpark. Archspec is a library for detecting and determining
compiler flags for various CPU architectures. Originally developed
in Spack, Archspec is used by Spack 1) to tailor build recipes to the
target architecture, and 2) to determine the system architecture,
and to determine which source to fetch for packages with alternate
source code for different architectures.

3.2 Reproducible Run Instructions
Ramble [12, 15] is a Python experimentation framework enabling
the creation of large sets of experiments with concise YAML files. It
is heavily based off of Spack’s infrastructure, and provides domain-
specific languages for describing how experiments can be created
for applications as well as abstract modifiers for changing the be-
havior of the experiments in repeatable ways.

One of the goals of Ramble is to improve replicability of ex-
perimental results, and increase productivity when performing
large sets of experiments. The primary entry point for users is a
ramble workspace, which is a self contained directory represent-
ing a set of experiments. A workspace is configured with a YAML
file, and at least one template execution script.

Figure 5 shows the Ramble workflow for creating reproducible
experiments; the steps are described in subsequent sections.

1 ramble workspace create
2 ramble workspace edit
3 ramble workspace setup
4 ramble on
5 ramble workspace analyze

Figure 5: Ramble experiments workflow

3.2.1 Workspace Create. The workspace_create constructs a
self-contained directory for a set of experiments, with a directory
structure for experiment directories, required input files, and soft-
ware environment definitions.

3.2.2 Workspace Edit. The ramble workspace edit command
opens ramble.yaml, the primary configuration file for theworkspace,
in an editor for the user to manipulate. The user defines what ex-
periments to run, and whether the experiments should be executed
sequentially or submitted to a batch scheduler (or a mix of the two).

3.2.3 Workspace Setup. The ramble workspace setup com-
mand sets up the workspace via the following actions:

• Ensuring any required compilers are installed / accessible;
• Downloading source and input files;

Figure 2: Spack environment workflow

3.1.1 Creating a Spack environment. A Spack environment man-
ifest provides a list of abstract specs, and can be combined with
configuration. In Benchpark, we list the packages needed to run our
benchmarks in the environment manifest as abstract specs. Spack
environments are written in YAML. Spack environments can be
managed by Spack or stored independently from Spack, as defined
in the manifest in spack.yaml (Figure 3). In Benchpark, the list of
abstract specs for the environment is configured in Ramble 3.2.
The environment is instantiated with Spack, and concretized with
configuration to target the current system.

SC-W 2023, November 12–17, 2023, Denver, CO, USA Olga Pearce et al.

build instructions), Ramble (for reproducible run instructions), and
the CI technologies for automation of Benchpark.

3.1 Reproducible Build Instructions
Spack [10, 18] is a package manager for HPC. Spack runs entirely in
user-space, and allows for combinatorial versioning of installations
across all facets of the build configuration space. Spack consists of
four primary components:

(1) The Spec syntax, to specify the user constraints on a build,
called abstract specs;

(2) The concretizer, an algorithm that takes abstract specs and
fills in remaining choice points for the build space, producing
concrete specs;

(3) Package files, which define the build space for the package
and provide package installation recipes templatized by the
concrete spec output from the concretizer;

(4) The installation engine, which handles installing packages
from source or binary cache.

Spack adds an environment behavior similar to Python’s virtual-
env [28], following amanifest-and-lockmodel similar to Bundler [17]
and other package managers [13, 14, 27]. In Spack, environment
manifests are treated as user input, and the output of the concretizer
is written to a lockfile. Algorithm 2 shows an example workflow.

1 spack env create --dir .
2 spack env activate --dir .
3 spack add amg2023+caliper
4 spack --config -scope /path/to/configs concretize
5 spack install

Figure 2: Spack environment workflow

3.1.1 Creating a Spack environment. A Spack environment man-
ifest provides a list of abstract specs, and can be combined with
configuration. In Benchpark, we list the packages needed to run our
benchmarks in the environment manifest as abstract specs. Spack
environments are written in YAML. Spack environments can be
managed by Spack or stored independently from Spack, as defined
in the manifest in spack.yaml (Figure 3). In Benchpark, the list of
abstract specs for the environment is configured in Ramble 3.2.
The environment is instantiated with Spack, and concretized with
configuration to target the current system.

1 spack:
2 specs: [amg2023+caliper]
3 concretizer:
4 unify: true
5 view: true

Figure 3: spack.yaml: A simple Spack environment manifest
combining an abstract spec amg2023+caliper with configura-
tion for concretizer and view

3.1.2 Importing local configuration. Spack provides a highly
customizable configuration to tailor the behavior of Spack to the
local system. Configurable parameters in Spack include the loca-
tion of available compilers, externally installed packages to use for
dependencies, and detailed preferences for concretizer decisions
for build options. Benchpark specifies per-system directories with
known Spack configurations, which can be tailored for both system
architecture and HPC site policy.

Benchpark’s Spack configurations specify the locations of system
software and compilers (which are determined by HPC facility

staff), as well as preferred versions of dependencies, which are
determined by specialists with knowledge of particular benchmarks.
An example Spack configuration is shown in Figure 4.

1 packages:
2 blas:
3 externals:
4 - spec: intel -oneapi -mkl@2022 .1.0
5 prefix: /path/to/intel -oneapi -mkl
6 buildable: false
7 mpi:
8 externals:
9 - spec: mvapich2@2 .3.7- gcc12 .1.1- magic
10 prefix: /path/to/mvapich2
11 buildable: false

Figure 4: A system-specific spack.yaml configures Spack to
use BLAS and MPI libraries installed on the system

3.1.3 Archspec. Spack uses Archspec [7] to build executables
for Benchpark. Archspec is a library for detecting and determining
compiler flags for various CPU architectures. Originally developed
in Spack, Archspec is used by Spack 1) to tailor build recipes to the
target architecture, and 2) to determine the system architecture,
and to determine which source to fetch for packages with alternate
source code for different architectures.

3.2 Reproducible Run Instructions
Ramble [12, 15] is a Python experimentation framework enabling
the creation of large sets of experiments with concise YAML files. It
is heavily based off of Spack’s infrastructure, and provides domain-
specific languages for describing how experiments can be created
for applications as well as abstract modifiers for changing the be-
havior of the experiments in repeatable ways.

One of the goals of Ramble is to improve replicability of ex-
perimental results, and increase productivity when performing
large sets of experiments. The primary entry point for users is a
ramble workspace, which is a self contained directory represent-
ing a set of experiments. A workspace is configured with a YAML
file, and at least one template execution script.

Figure 5 shows the Ramble workflow for creating reproducible
experiments; the steps are described in subsequent sections.

1 ramble workspace create
2 ramble workspace edit
3 ramble workspace setup
4 ramble on
5 ramble workspace analyze

Figure 5: Ramble experiments workflow

3.2.1 Workspace Create. The workspace_create constructs a
self-contained directory for a set of experiments, with a directory
structure for experiment directories, required input files, and soft-
ware environment definitions.

3.2.2 Workspace Edit. The ramble workspace edit command
opens ramble.yaml, the primary configuration file for theworkspace,
in an editor for the user to manipulate. The user defines what ex-
periments to run, and whether the experiments should be executed
sequentially or submitted to a batch scheduler (or a mix of the two).

3.2.3 Workspace Setup. The ramble workspace setup com-
mand sets up the workspace via the following actions:

• Ensuring any required compilers are installed / accessible;
• Downloading source and input files;

Figure 3: spack.yaml: A simple Spack environment manifest
combining an abstract spec amg2023+caliper with configura-
tion for concretizer and view

3.1.2 Importing local configuration. Spack provides a highly cus-
tomizable configuration to tailor the behavior of Spack to the local
system. Configurable parameters in Spack include the location of
available compilers, externally installed packages to use for depen-
dencies, and detailed preferences for concretizer decisions for build
options. Benchpark specifies per-system directories with known
Spack configurations, which can be tailored for both system archi-
tecture and HPC site policy.

Benchpark’s Spack configurations specify the locations of system
software and compilers (which are determined by HPC facility
staff), as well as preferred versions of dependencies, which are
determined by specialists with knowledge of particular benchmarks.
An example Spack configuration is shown in Figure 4.

SC-W 2023, November 12–17, 2023, Denver, CO, USA Olga Pearce et al.

build instructions), Ramble (for reproducible run instructions), and
the CI technologies for automation of Benchpark.

3.1 Reproducible Build Instructions
Spack [10, 18] is a package manager for HPC. Spack runs entirely in
user-space, and allows for combinatorial versioning of installations
across all facets of the build configuration space. Spack consists of
four primary components:

(1) The Spec syntax, to specify the user constraints on a build,
called abstract specs;

(2) The concretizer, an algorithm that takes abstract specs and
fills in remaining choice points for the build space, producing
concrete specs;

(3) Package files, which define the build space for the package
and provide package installation recipes templatized by the
concrete spec output from the concretizer;

(4) The installation engine, which handles installing packages
from source or binary cache.

Spack adds an environment behavior similar to Python’s virtual-
env [28], following amanifest-and-lockmodel similar to Bundler [17]
and other package managers [13, 14, 27]. In Spack, environment
manifests are treated as user input, and the output of the concretizer
is written to a lockfile. Algorithm 2 shows an example workflow.

1 spack env create --dir .
2 spack env activate --dir .
3 spack add amg2023+caliper
4 spack --config -scope /path/to/configs concretize
5 spack install

Figure 2: Spack environment workflow
3.1.1 Creating a Spack environment. A Spack environment man-

ifest provides a list of abstract specs, and can be combined with
configuration. In Benchpark, we list the packages needed to run our
benchmarks in the environment manifest as abstract specs. Spack
environments are written in YAML. Spack environments can be
managed by Spack or stored independently from Spack, as defined
in the manifest in spack.yaml (Figure 3). In Benchpark, the list of
abstract specs for the environment is configured in Ramble 3.2.
The environment is instantiated with Spack, and concretized with
configuration to target the current system.

1 spack:
2 specs: [amg2023+caliper]
3 concretizer:
4 unify: true
5 view: true

Figure 3: spack.yaml: A simple Spack environment manifest
combining an abstract spec amg2023+caliper with configura-
tion for concretizer and view

3.1.2 Importing local configuration. Spack provides a highly
customizable configuration to tailor the behavior of Spack to the
local system. Configurable parameters in Spack include the loca-
tion of available compilers, externally installed packages to use for
dependencies, and detailed preferences for concretizer decisions
for build options. Benchpark specifies per-system directories with
known Spack configurations, which can be tailored for both system
architecture and HPC site policy.

Benchpark’s Spack configurations specify the locations of system
software and compilers (which are determined by HPC facility

staff), as well as preferred versions of dependencies, which are
determined by specialists with knowledge of particular benchmarks.
An example Spack configuration is shown in Figure 4.

1 packages:
2 blas:
3 externals:
4 - spec: intel -oneapi -mkl@2022 .1.0
5 prefix: /path/to/intel -oneapi -mkl
6 buildable: false
7 mpi:
8 externals:
9 - spec: mvapich2@2 .3.7- gcc12 .1.1- magic
10 prefix: /path/to/mvapich2
11 buildable: false

Figure 4: A system-specific spack.yaml configures Spack to
use BLAS and MPI libraries installed on the system

3.1.3 Archspec. Spack uses Archspec [7] to build executables
for Benchpark. Archspec is a library for detecting and determining
compiler flags for various CPU architectures. Originally developed
in Spack, Archspec is used by Spack 1) to tailor build recipes to the
target architecture, and 2) to determine the system architecture,
and to determine which source to fetch for packages with alternate
source code for different architectures.

3.2 Reproducible Run Instructions
Ramble [12, 15] is a Python experimentation framework enabling
the creation of large sets of experiments with concise YAML files. It
is heavily based off of Spack’s infrastructure, and provides domain-
specific languages for describing how experiments can be created
for applications as well as abstract modifiers for changing the be-
havior of the experiments in repeatable ways.

One of the goals of Ramble is to improve replicability of ex-
perimental results, and increase productivity when performing
large sets of experiments. The primary entry point for users is a
ramble workspace, which is a self contained directory represent-
ing a set of experiments. A workspace is configured with a YAML
file, and at least one template execution script.

Figure 5 shows the Ramble workflow for creating reproducible
experiments; the steps are described in subsequent sections.

1 ramble workspace create
2 ramble workspace edit
3 ramble workspace setup
4 ramble on
5 ramble workspace analyze

Figure 5: Ramble experiments workflow

3.2.1 Workspace Create. The workspace_create constructs a
self-contained directory for a set of experiments, with a directory
structure for experiment directories, required input files, and soft-
ware environment definitions.

3.2.2 Workspace Edit. The ramble workspace edit command
opens ramble.yaml, the primary configuration file for theworkspace,
in an editor for the user to manipulate. The user defines what ex-
periments to run, and whether the experiments should be executed
sequentially or submitted to a batch scheduler (or a mix of the two).

3.2.3 Workspace Setup. The ramble workspace setup com-
mand sets up the workspace via the following actions:

• Ensuring any required compilers are installed / accessible;
• Downloading source and input files;

Figure 4: A system-specific spack.yaml configures Spack to
use BLAS and MPI libraries installed on the system

3.1.3 Archspec. Spack uses Archspec [7] to build executables for
Benchpark. Archspec is a library for detecting and determining
compiler flags for various CPU architectures. Originally developed
in Spack, Archspec is used by Spack 1) to tailor build recipes to the
target architecture, and 2) to determine the system architecture,
and to determine which source to fetch for packages with alternate
source code for different architectures.

3.2 Reproducible Run Instructions
Ramble [12, 15] is a Python experimentation framework enabling
the creation of large sets of experiments with concise YAML files. It
is heavily based off of Spack’s infrastructure, and provides domain-
specific languages for describing how experiments can be created
for applications as well as abstract modifiers for changing the be-
havior of the experiments in repeatable ways.

One of the goals of Ramble is to improve replicability of ex-
perimental results, and increase productivity when performing
large sets of experiments. The primary entry point for users is a
ramble workspace, which is a self contained directory represent-
ing a set of experiments. A workspace is configured with a YAML
file, and at least one template execution script.

Figure 5 shows the Ramble workflow for creating reproducible
experiments; the steps are described in subsequent sections.

3.2.1 Workspace Create. The workspace_create constructs a self-
contained directory for a set of experiments, with a directory struc-
ture for experiment directories, required input files, and software
environment definitions.

3.2.2 Workspace Edit. The ramble workspace edit command
opens ramble.yaml, the primary configuration file for theworkspace,

630



Towards Collaborative Continuous Benchmarking for HPC SC-W 2023, November 12–17, 2023, Denver, CO, USA

SC-W 2023, November 12–17, 2023, Denver, CO, USA Olga Pearce et al.

build instructions), Ramble (for reproducible run instructions), and
the CI technologies for automation of Benchpark.

3.1 Reproducible Build Instructions
Spack [10, 18] is a package manager for HPC. Spack runs entirely in
user-space, and allows for combinatorial versioning of installations
across all facets of the build configuration space. Spack consists of
four primary components:

(1) The Spec syntax, to specify the user constraints on a build,
called abstract specs;

(2) The concretizer, an algorithm that takes abstract specs and
fills in remaining choice points for the build space, producing
concrete specs;

(3) Package files, which define the build space for the package
and provide package installation recipes templatized by the
concrete spec output from the concretizer;

(4) The installation engine, which handles installing packages
from source or binary cache.

Spack adds an environment behavior similar to Python’s virtual-
env [28], following amanifest-and-lockmodel similar to Bundler [17]
and other package managers [13, 14, 27]. In Spack, environment
manifests are treated as user input, and the output of the concretizer
is written to a lockfile. Algorithm 2 shows an example workflow.

1 spack env create --dir .
2 spack env activate --dir .
3 spack add amg2023+caliper
4 spack --config -scope /path/to/configs concretize
5 spack install

Figure 2: Spack environment workflow
3.1.1 Creating a Spack environment. A Spack environment man-

ifest provides a list of abstract specs, and can be combined with
configuration. In Benchpark, we list the packages needed to run our
benchmarks in the environment manifest as abstract specs. Spack
environments are written in YAML. Spack environments can be
managed by Spack or stored independently from Spack, as defined
in the manifest in spack.yaml (Figure 3). In Benchpark, the list of
abstract specs for the environment is configured in Ramble 3.2.
The environment is instantiated with Spack, and concretized with
configuration to target the current system.

1 spack:
2 specs: [amg2023+caliper]
3 concretizer:
4 unify: true
5 view: true

Figure 3: spack.yaml: A simple Spack environment manifest
combining an abstract spec amg2023+caliper with configura-
tion for concretizer and view

3.1.2 Importing local configuration. Spack provides a highly
customizable configuration to tailor the behavior of Spack to the
local system. Configurable parameters in Spack include the loca-
tion of available compilers, externally installed packages to use for
dependencies, and detailed preferences for concretizer decisions
for build options. Benchpark specifies per-system directories with
known Spack configurations, which can be tailored for both system
architecture and HPC site policy.

Benchpark’s Spack configurations specify the locations of system
software and compilers (which are determined by HPC facility

staff), as well as preferred versions of dependencies, which are
determined by specialists with knowledge of particular benchmarks.
An example Spack configuration is shown in Figure 4.

1 packages:
2 blas:
3 externals:
4 - spec: intel -oneapi -mkl@2022 .1.0
5 prefix: /path/to/intel -oneapi -mkl
6 buildable: false
7 mpi:
8 externals:
9 - spec: mvapich2@2 .3.7- gcc12 .1.1- magic
10 prefix: /path/to/mvapich2
11 buildable: false

Figure 4: A system-specific spack.yaml configures Spack to
use BLAS and MPI libraries installed on the system

3.1.3 Archspec. Spack uses Archspec [7] to build executables
for Benchpark. Archspec is a library for detecting and determining
compiler flags for various CPU architectures. Originally developed
in Spack, Archspec is used by Spack 1) to tailor build recipes to the
target architecture, and 2) to determine the system architecture,
and to determine which source to fetch for packages with alternate
source code for different architectures.

3.2 Reproducible Run Instructions
Ramble [12, 15] is a Python experimentation framework enabling
the creation of large sets of experiments with concise YAML files. It
is heavily based off of Spack’s infrastructure, and provides domain-
specific languages for describing how experiments can be created
for applications as well as abstract modifiers for changing the be-
havior of the experiments in repeatable ways.

One of the goals of Ramble is to improve replicability of ex-
perimental results, and increase productivity when performing
large sets of experiments. The primary entry point for users is a
ramble workspace, which is a self contained directory represent-
ing a set of experiments. A workspace is configured with a YAML
file, and at least one template execution script.

Figure 5 shows the Ramble workflow for creating reproducible
experiments; the steps are described in subsequent sections.

1 ramble workspace create
2 ramble workspace edit
3 ramble workspace setup
4 ramble on
5 ramble workspace analyze

Figure 5: Ramble experiments workflow

3.2.1 Workspace Create. The workspace_create constructs a
self-contained directory for a set of experiments, with a directory
structure for experiment directories, required input files, and soft-
ware environment definitions.

3.2.2 Workspace Edit. The ramble workspace edit command
opens ramble.yaml, the primary configuration file for theworkspace,
in an editor for the user to manipulate. The user defines what ex-
periments to run, and whether the experiments should be executed
sequentially or submitted to a batch scheduler (or a mix of the two).

3.2.3 Workspace Setup. The ramble workspace setup com-
mand sets up the workspace via the following actions:

• Ensuring any required compilers are installed / accessible;
• Downloading source and input files;

Figure 5: Ramble experiments workflow

Users

GitHub
Repo

Hubcast
Bot

Metrics Database

CI 
Builders

S3
Cache

Benchmark
Runners

GitLab
Repo

Figure 6: Benchpark automation workflow

in an editor for the user to manipulate. The user defines what ex-
periments to run, and whether the experiments should be executed
sequentially or submitted to a batch scheduler (or a mix of the two).

3.2.3 Workspace Setup. The ramble workspace setup command
sets up the workspace via the following actions:

• Ensuring any required compilers are installed / accessible;
• Downloading source and input files;
• Installing any required software with Spack (see Section 3.1);
• Creating execution directories for every experiment;
• Generating files from every template file in the configs.

Once setup is complete, all experiments are ready for execution.

3.2.4 Ramble On. The ramble on command is used to execute all
of the experiments. Its exact behavior depends on the configuration
within the workspace, but it supports many execution methods.

3.2.5 Workspace Analyze. Once all of the jobswithin theworkspace
are complete, the ramble workspace analyze command can be
used to extract all of the figures of merit for the experiments.

3.3 Benchpark Automation
The automationworkflow in Benchpark is shown in Figure 6. Bench-
park relies on GitLab CI through Hubcast and Jacamar to manage
the continuous integration task of continuous benchmarking, in-
cluding scalability of runs and delegating user-login information
to individual HPC centers for security. We leverage GitLab CI to
test each component of Benchpark, including source code, inputs,
builds, run scripts, and evaluation on systems both in the cloud
and hosted locally. GitLab was chosen over native GitHub runners
due to GitLab’s popularity at HPC centers (because of compati-
bility with Jacamar) and because it can be used in private HPC
environments for smaller communities.

3.3.1 Hubcast. Hubcast [23] is a secure mirroring application for
GitHub and GitLab repositories. Unlike GitLab’s built-in mirroring
functionality, Hubcast allows untrusted pull requests from forks to
be mirrored to a GitLab once they pass a configured set of security

criteria. Once mirrored, these pull request branches may then be
used for GitLab CI and the status of any workflows will be reported
back to GitHub via Hubcast.

We use Hubcast in Benchpark to securely run user contributions
via GitLab CI on both local and cloud resources while maintaining
the canonical repository on GitHub. To prevent untrusted code
from running on HPC resources, a pull request must be reviewed
and approved by a site and system administrator, before Hubcast
will mirror the commit to GitLab, GitLab CI will begin executing,
and the status will be streamed back through Hubcast to show as a
native status check on the pull request on GitHub.

3.3.2 Jacamar CI. Jacamar [8] is a custom executor for GitLab CI
runners in HPC environments. Instead of running multiple CI jobs
all under a single service user, Jacamar uses setuid to execute jobs
as the user who triggered them. This allows the actions of a job to
be more easily tied back to the user who initiated it and prevent
the creation of additional service accounts.

We use Jacamar within Benchpark to improve system security
and limit the actions possible by CI jobs. If a job is submitted by
a user without an account at a participating site, the job will be
run as the user who approved the pull request further improving
logging and audit checks.

4 ADDING BENCHMARKS TO BENCHPARK
To add a benchmark to Benchpark, a full specification of the bench-
mark, its build, and its run instructions for at least one platform is
required. Similarly, one must give a full specification of the system
to add the system to Benchpark. To demonstrate the addition of
benchmarks and systems to Benchpark, we will detail our specifi-
cation of the following two benchmarks in Benchpark:

(1) A saxpy micro-benchmark;
(2) AMG2023 [21];

These Benchpark benchmarks currently build & run on 3 systems:
(1) cts1: a CPU-only system (Intel Xeon),
(2) ats2: IBM Power9+NVIDIA V100 CPU/GPU hybrid system;
(3) ats4 EAS: AMD Trento+MI-250X CPU/GPU hybrid system.

We demonstrate our implementation of the Benchpark components
required for continuous benchmarking (Table 1) using the saxpy
micro-benchmark as an example.

4.1 Benchmark Source
Figure 7 illustrates a snippet of the saxpy source code: a single
kernel ported to the target architecture.

Towards Collaborative Continuous Benchmarking for HPC SC-W 2023, November 12–17, 2023, Denver, CO, USA

Users

GitHub
Repo

Hubcast
Bot

Metrics Database

CI 
Builders

S3
Cache

Benchmark
Runners

GitLab
Repo

Figure 6: Benchpark automation workflow
• Installing any required software with Spack (see Section 3.1);
• Creating execution directories for every experiment;
• Generating files from every template file in the configs.

Once setup is complete, all experiments are ready for execution.

3.2.4 Ramble On. The ramble on command is used to execute
all of the experiments. Its exact behavior depends on the configura-
tion within the workspace, but it supports many execution methods.

3.2.5 Workspace Analyze. Once all of the jobswithin theworkspace
are complete, the ramble workspace analyze command can be
used to extract all of the figures of merit for the experiments.

3.3 Benchpark Automation
The automationworkflow in Benchpark is shown in Figure 6. Bench-
park relies on GitLab CI through Hubcast and Jacamar to manage
the continuous integration task of continuous benchmarking, in-
cluding scalability of runs and delegating user-login information
to individual HPC centers for security. We leverage GitLab CI to
test each component of Benchpark, including source code, inputs,
builds, run scripts, and evaluation on systems both in the cloud
and hosted locally. GitLab was chosen over native GitHub runners
due to GitLab’s popularity at HPC centers (because of compati-
bility with Jacamar) and because it can be used in private HPC
environments for smaller communities.

3.3.1 Hubcast. Hubcast [23] is a secure mirroring application
for GitHub and GitLab repositories. Unlike GitLab’s built-in mir-
roring functionality, Hubcast allows untrusted pull requests from
forks to be mirrored to a GitLab once they pass a configured set of
security criteria. Once mirrored, these pull request branches may
then be used for GitLab CI and the status of any workflows will be
reported back to GitHub via Hubcast.

We use Hubcast in Benchpark to securely run user contributions
via GitLab CI on both local and cloud resources while maintaining
the canonical repository on GitHub. To prevent untrusted code
from running on HPC resources, a pull request must be reviewed
and approved by a site and system administrator, before Hubcast
will mirror the commit to GitLab, GitLab CI will begin executing,
and the status will be streamed back through Hubcast to show as a
native status check on the pull request on GitHub.

3.3.2 Jacamar CI. Jacamar [8] is a custom executor for GitLab
CI runners in HPC environments. Instead of running multiple CI
jobs all under a single service user, Jacamar uses setuid to execute
jobs as the user who triggered them. This allows the actions of a job

to be more easily tied back to the user who initiated it and prevent
the creation of additional service accounts.

We use Jacamar within Benchpark to improve system security
and limit the actions possible by CI jobs. If a job is submitted by
a user without an account at a participating site, the job will be
run as the user who approved the pull request further improving
logging and audit checks.

4 ADDING BENCHMARKS TO BENCHPARK
To add a benchmark to Benchpark, a full specification of the bench-
mark, its build, and its run instructions for at least one platform is
required. Similarly, one must give a full specification of the system
to add the system to Benchpark. To demonstrate the addition of
benchmarks and systems to Benchpark, we will detail our specifi-
cation of the following two benchmarks in Benchpark:

(1) A saxpy micro-benchmark;
(2) AMG2023 [21];

These Benchpark benchmarks currently build & run on 3 systems:
(1) cts1: a CPU-only system (Intel Xeon),
(2) ats2: IBM Power9+NVIDIA V100 CPU/GPU hybrid system;
(3) ats4 EAS: AMD Trento+MI-250X CPU/GPU hybrid system.

We demonstrate our implementation of the Benchpark components
required for continuous benchmarking (Table 1) using the saxpy
micro-benchmark as an example.

4.1 Benchmark Source
Figure 7 illustrates a snippet of the saxpy source code: a single
kernel ported to the target architecture.
1 void saxpy_kernel(float* r, float* x, float* y, int size){
2 for (int i = 0; i < size; ++i) {
3 r[i] = A * x[i] + y[i];
4 }
5 }

Figure 7: Source code snippet of saxpy_kernel

4.2 Benchmark Input
Our implementation of saxpy takes in one input parameter (size)
and generates arrays of the input size in the main function prior
to calling the kernel; more complex benchmarks may take in more
parameters and/or input files. Benchmark input must be specified in
Ramble’s application.py (lines 6-8 in Figure 8), with further parame-
terization specified in the experiments section of ramble.yaml (line
20 in Figure 10) to specify the specific experiment of interest and
meet any further target machine constraints, e.g., the problem size
must fit into the system memory. Our full saxpy implementation
also contains references to a variety of APIs, such as MPI, so those
parameters are specified as well.

4.3 Build Instructions
Spack package.py (Figure 11) contains application-specific Spack
instructions required to build the benchmark (see Section 3.1). The
specification in package.py does not contain any system-specific
information, and works across systems. To build an executable on
a given system, we also need system-specific Spack configuration
files, i.e., compilers.yaml (compiler definitions) and packages.yaml
(package definitions). The system-specific spack.yaml (Figure 9)
specifies compiler and package versions to use on the given system,

Figure 7: Source code snippet of saxpy_kernel

4.2 Benchmark Input
Our implementation of saxpy takes in one input parameter (size)
and generates arrays of the input size in the main function prior
to calling the kernel; more complex benchmarks may take in more

631



SC-W 2023, November 12–17, 2023, Denver, CO, USA Olga Pearce et al.

parameters and/or input files. Benchmark input must be specified in
Ramble’s application.py (lines 6-8 in Figure 8), with further parame-
terization specified in the experiments section of ramble.yaml (line
20 in Figure 10) to specify the specific experiment of interest and
meet any further target machine constraints, e.g., the problem size
must fit into the system memory. Our full saxpy implementation
also contains references to a variety of APIs, such as MPI, so those
parameters are specified as well.

4.3 Build Instructions
Spack package.py (Figure 11) contains application-specific Spack
instructions required to build the benchmark (see Section 3.1). The
specification in package.py does not contain any system-specific
information, and works across systems. To build an executable on
a given system, we also need system-specific Spack configuration
files, i.e., compilers.yaml (compiler definitions) and packages.yaml
(package definitions). The system-specific spack.yaml (Figure 9)
specifies compiler and package versions to use on the given system,
which feeds into the experiment-specific ramble.yaml (line 3 and
lines 25-34 in Figure 10) to couple the application and the system
configuration and produce a concrete package definition.

SC-W 2023, November 12–17, 2023, Denver, CO, USA Olga Pearce et al.

which feeds into the experiment-specific ramble.yaml (line 3 and
lines 25-34 in Figure 10) to couple the application and the system
configuration and produce a concrete package definition.

1 class Saxpy(SpackApplication):
2 name = "saxpy"
3 ...
4 executable('p', 'saxpy -n {n}', use_mpi=True)
5 workload('problem ', executables =['p'])
6 workload_variable('n', default='1',
7 description='problem size',
8 workloads =['problem '])
9 figure_of_merit("success",
10 fom_regex=r'(?P<done >Kernel done)',
11 group_name='done', units='')
12 success_criteria('pass',
13 mode='string ', match=r'Kernel done',
14 file='{experiment_run_dir }/{ experiment_name }.out')

Figure 8: Ramble application.py

1 spack:
2 packages:
3 default -compiler:
4 spack_spec: gcc@12 .1.1
5 default -mpi:
6 spack_spec: mvapich2@2 .3.7- gcc12 .1.1
7 gcc1211:
8 spack_spec: gcc@12 .1.1
9 lapack:
10 spack_spec: intel -oneapi -mkl@2022 .1.0
11 mpi -compilers:
12 spack_spec: mvapich2@2 .3.7- compilers

Figure 9: Ramble spack.yaml

1 ramble:
2 include:
3 - ./ configs/spack.yaml
4 - ./ configs/variables.yaml
5 config:
6 deprecated: true
7 spack_flags:
8 install: '--add --keep -stage'
9 concretize: '-U -f'
10 applications:
11 saxpy:
12 workloads:
13 problem:
14 env_vars:
15 set:
16 OMP_NUM_THREADS: '{n_threads}'
17 variables:
18 n_ranks: '8'
19 batch_time: '120'
20 experiments:
21 saxpy_{n}_{n_nodes}_{n_ranks}_{n_threads }:
22 variables:
23 processes_per_node: ['8', '4']
24 n_nodes: ['1', '2']
25 n_threads: ['2', '4']
26 n: ['512', '1024']
27 matrices:
28 - size_threads:
29 - n
30 - n_threads
31 spack:
32 packages:
33 saxpy:
34 spack_spec: saxpy@1 .0.0 +openmp ^cmake@3 .23.1
35 compiler: default -compiler
36 environments:
37 saxpy:
38 packages:
39 - default -mpi
40 - saxpy

Figure 10: Ramble ramble.yaml. Compiler and packages sec-
tions point at the definitions in spack.yaml (Figure 9).

1 class Saxpy(CMakePackage , CudaPackage , ROCmPackage):
2 """ Test saxpy problem."""
3 ...
4 version('1.0.0 ')
5
6 variant("openmp", default=True , description="OpenMP")
7
8 def cmake_args(self):
9 spec = self.spec
10 args = []
11
12 if '+openmp ' in spec:
13 args.append('-DUSE_OPENMP=ON')
14 ...
15
16 if '+cuda' in spec:
17 args.append('-DUSE_CUDA=ON')
18 ...
19
20 if '+rocm' in spec:
21 args.append('-DUSE_HIP=ON')
22 ...
23
24 return args

Figure 11: Spack package.py

1 variables:
2 mpi_command: 'srun -N {n_nodes} -n {n_ranks}'
3 batch_submit: 'sbatch {execute_experiment}'
4 batch_nodes: '#SBATCH -N {n_nodes}'
5 batch_ranks: '#SBATCH -n {n_ranks}'
6 batch_timeout: '#SBATCH -t {batch_time }:00'
7 compilers: [gcc1211 , intel202160classic]

Figure 12: Ramble variables.yaml

1 #!/bin/bash
2 {batch_nodes}
3 {batch_ranks}
4 cd {experiment_run_dir}
5 {spack_setup}
6 {command}

Figure 13: Ramble execute_experiment.tpl template

4.4 Run Instructions
To fully specify an experiment, defined as a given application run-
ning on a given system, in a configuration desired by the user (e.g.,
scaling study), we need the following specifications:

(1) application-specific application.py;
(2) system-specific variables.py;
(3) experiment-specific execute_experiments.tpl.
Ramble’s application.py provides Ramble instructions for exe-

cuting the experiment (lines 4-8 in Figure 8) and evaluating the
outcome of the experiment (lines 9-14 in Figure 8). Similarly to
Spack’s package.py, Ramble’s application.py is application-specific,
and does not contain any system-specific information.

The necessary system-specific scheduler and launcher commands
are defined in variables.yaml (Figure 12).

The necessary experiment-specific input parameters and config-
uration options are defined in ramble.yaml (lines 5-24 in Figure 10),
and are used to generate a set of concrete experiments. The “ma-
trices" section is the syntactic sugar that allows a user to define
a cross-product of the variables to generate a set of experiments
(https://googlecloudplatform.github.io/ramble/workspace_config.ht
ml#variable-matrices).

Lastly, we use a template file, execute_experiment.tpl (Figure 13),
to generate the runtime script for each individual experiment with
the correct options instantiated from ramble.yaml and variables.yaml.

Figure 8: Ramble application.py

SC-W 2023, November 12–17, 2023, Denver, CO, USA Olga Pearce et al.

which feeds into the experiment-specific ramble.yaml (line 3 and
lines 25-34 in Figure 10) to couple the application and the system
configuration and produce a concrete package definition.

1 class Saxpy(SpackApplication):
2 name = "saxpy"
3 ...
4 executable('p', 'saxpy -n {n}', use_mpi=True)
5 workload('problem ', executables =['p'])
6 workload_variable('n', default='1',
7 description='problem size',
8 workloads =['problem '])
9 figure_of_merit("success",
10 fom_regex=r'(?P<done >Kernel done)',
11 group_name='done', units='')
12 success_criteria('pass',
13 mode='string ', match=r'Kernel done',
14 file='{experiment_run_dir }/{ experiment_name }.out')

Figure 8: Ramble application.py

1 spack:
2 packages:
3 default -compiler:
4 spack_spec: gcc@12 .1.1
5 default -mpi:
6 spack_spec: mvapich2@2 .3.7- gcc12 .1.1
7 gcc1211:
8 spack_spec: gcc@12 .1.1
9 lapack:
10 spack_spec: intel -oneapi -mkl@2022 .1.0
11 mpi -compilers:
12 spack_spec: mvapich2@2 .3.7- compilers

Figure 9: Ramble spack.yaml

1 ramble:
2 include:
3 - ./ configs/spack.yaml
4 - ./ configs/variables.yaml
5 config:
6 deprecated: true
7 spack_flags:
8 install: '--add --keep -stage'
9 concretize: '-U -f'
10 applications:
11 saxpy:
12 workloads:
13 problem:
14 env_vars:
15 set:
16 OMP_NUM_THREADS: '{n_threads}'
17 variables:
18 n_ranks: '8'
19 batch_time: '120'
20 experiments:
21 saxpy_{n}_{n_nodes}_{n_ranks}_{n_threads }:
22 variables:
23 processes_per_node: ['8', '4']
24 n_nodes: ['1', '2']
25 n_threads: ['2', '4']
26 n: ['512', '1024']
27 matrices:
28 - size_threads:
29 - n
30 - n_threads
31 spack:
32 packages:
33 saxpy:
34 spack_spec: saxpy@1 .0.0 +openmp ^cmake@3 .23.1
35 compiler: default -compiler
36 environments:
37 saxpy:
38 packages:
39 - default -mpi
40 - saxpy

Figure 10: Ramble ramble.yaml. Compiler and packages sec-
tions point at the definitions in spack.yaml (Figure 9).

1 class Saxpy(CMakePackage , CudaPackage , ROCmPackage):
2 """ Test saxpy problem."""
3 ...
4 version('1.0.0 ')
5
6 variant("openmp", default=True , description="OpenMP")
7
8 def cmake_args(self):
9 spec = self.spec
10 args = []
11
12 if '+openmp ' in spec:
13 args.append('-DUSE_OPENMP=ON')
14 ...
15
16 if '+cuda' in spec:
17 args.append('-DUSE_CUDA=ON')
18 ...
19
20 if '+rocm' in spec:
21 args.append('-DUSE_HIP=ON')
22 ...
23
24 return args

Figure 11: Spack package.py

1 variables:
2 mpi_command: 'srun -N {n_nodes} -n {n_ranks}'
3 batch_submit: 'sbatch {execute_experiment}'
4 batch_nodes: '#SBATCH -N {n_nodes}'
5 batch_ranks: '#SBATCH -n {n_ranks}'
6 batch_timeout: '#SBATCH -t {batch_time }:00'
7 compilers: [gcc1211 , intel202160classic]

Figure 12: Ramble variables.yaml

1 #!/bin/bash
2 {batch_nodes}
3 {batch_ranks}
4 cd {experiment_run_dir}
5 {spack_setup}
6 {command}

Figure 13: Ramble execute_experiment.tpl template

4.4 Run Instructions
To fully specify an experiment, defined as a given application run-
ning on a given system, in a configuration desired by the user (e.g.,
scaling study), we need the following specifications:

(1) application-specific application.py;
(2) system-specific variables.py;
(3) experiment-specific execute_experiments.tpl.
Ramble’s application.py provides Ramble instructions for exe-

cuting the experiment (lines 4-8 in Figure 8) and evaluating the
outcome of the experiment (lines 9-14 in Figure 8). Similarly to
Spack’s package.py, Ramble’s application.py is application-specific,
and does not contain any system-specific information.

The necessary system-specific scheduler and launcher commands
are defined in variables.yaml (Figure 12).

The necessary experiment-specific input parameters and config-
uration options are defined in ramble.yaml (lines 5-24 in Figure 10),
and are used to generate a set of concrete experiments. The “ma-
trices" section is the syntactic sugar that allows a user to define
a cross-product of the variables to generate a set of experiments
(https://googlecloudplatform.github.io/ramble/workspace_config.ht
ml#variable-matrices).

Lastly, we use a template file, execute_experiment.tpl (Figure 13),
to generate the runtime script for each individual experiment with
the correct options instantiated from ramble.yaml and variables.yaml.

Figure 9: Ramble spack.yaml

4.4 Run Instructions
To fully specify an experiment, defined as a given application run-
ning on a given system, in a configuration desired by the user (e.g.,
scaling study), we need the following specifications:

(1) application-specific application.py;
(2) system-specific variables.py;
(3) experiment-specific execute_experiments.tpl.

SC-W 2023, November 12–17, 2023, Denver, CO, USA Olga Pearce et al.

which feeds into the experiment-specific ramble.yaml (line 3 and
lines 25-34 in Figure 10) to couple the application and the system
configuration and produce a concrete package definition.

1 class Saxpy(SpackApplication):
2 name = "saxpy"
3 ...
4 executable('p', 'saxpy -n {n}', use_mpi=True)
5 workload('problem ', executables =['p'])
6 workload_variable('n', default='1',
7 description='problem size',
8 workloads =['problem '])
9 figure_of_merit("success",
10 fom_regex=r'(?P<done >Kernel done)',
11 group_name='done', units='')
12 success_criteria('pass',
13 mode='string ', match=r'Kernel done',
14 file='{experiment_run_dir }/{ experiment_name }.out')

Figure 8: Ramble application.py

1 spack:
2 packages:
3 default -compiler:
4 spack_spec: gcc@12 .1.1
5 default -mpi:
6 spack_spec: mvapich2@2 .3.7- gcc12 .1.1
7 gcc1211:
8 spack_spec: gcc@12 .1.1
9 lapack:
10 spack_spec: intel -oneapi -mkl@2022 .1.0
11 mpi -compilers:
12 spack_spec: mvapich2@2 .3.7- compilers

Figure 9: Ramble spack.yaml

1 ramble:
2 include:
3 - ./ configs/spack.yaml
4 - ./ configs/variables.yaml
5 config:
6 deprecated: true
7 spack_flags:
8 install: '--add --keep -stage'
9 concretize: '-U -f'
10 applications:
11 saxpy:
12 workloads:
13 problem:
14 env_vars:
15 set:
16 OMP_NUM_THREADS: '{n_threads}'
17 variables:
18 n_ranks: '8'
19 batch_time: '120'
20 experiments:
21 saxpy_{n}_{n_nodes}_{n_ranks}_{n_threads }:
22 variables:
23 processes_per_node: ['8', '4']
24 n_nodes: ['1', '2']
25 n_threads: ['2', '4']
26 n: ['512', '1024']
27 matrices:
28 - size_threads:
29 - n
30 - n_threads
31 spack:
32 packages:
33 saxpy:
34 spack_spec: saxpy@1 .0.0 +openmp ^cmake@3 .23.1
35 compiler: default -compiler
36 environments:
37 saxpy:
38 packages:
39 - default -mpi
40 - saxpy

Figure 10: Ramble ramble.yaml. Compiler and packages sec-
tions point at the definitions in spack.yaml (Figure 9).

1 class Saxpy(CMakePackage , CudaPackage , ROCmPackage):
2 """ Test saxpy problem."""
3 ...
4 version('1.0.0 ')
5
6 variant("openmp", default=True , description="OpenMP")
7
8 def cmake_args(self):
9 spec = self.spec
10 args = []
11
12 if '+openmp ' in spec:
13 args.append('-DUSE_OPENMP=ON')
14 ...
15
16 if '+cuda' in spec:
17 args.append('-DUSE_CUDA=ON')
18 ...
19
20 if '+rocm' in spec:
21 args.append('-DUSE_HIP=ON')
22 ...
23
24 return args

Figure 11: Spack package.py

1 variables:
2 mpi_command: 'srun -N {n_nodes} -n {n_ranks}'
3 batch_submit: 'sbatch {execute_experiment}'
4 batch_nodes: '#SBATCH -N {n_nodes}'
5 batch_ranks: '#SBATCH -n {n_ranks}'
6 batch_timeout: '#SBATCH -t {batch_time }:00'
7 compilers: [gcc1211 , intel202160classic]

Figure 12: Ramble variables.yaml

1 #!/bin/bash
2 {batch_nodes}
3 {batch_ranks}
4 cd {experiment_run_dir}
5 {spack_setup}
6 {command}

Figure 13: Ramble execute_experiment.tpl template

4.4 Run Instructions
To fully specify an experiment, defined as a given application run-
ning on a given system, in a configuration desired by the user (e.g.,
scaling study), we need the following specifications:

(1) application-specific application.py;
(2) system-specific variables.py;
(3) experiment-specific execute_experiments.tpl.
Ramble’s application.py provides Ramble instructions for exe-

cuting the experiment (lines 4-8 in Figure 8) and evaluating the
outcome of the experiment (lines 9-14 in Figure 8). Similarly to
Spack’s package.py, Ramble’s application.py is application-specific,
and does not contain any system-specific information.

The necessary system-specific scheduler and launcher commands
are defined in variables.yaml (Figure 12).

The necessary experiment-specific input parameters and config-
uration options are defined in ramble.yaml (lines 5-24 in Figure 10),
and are used to generate a set of concrete experiments. The “ma-
trices" section is the syntactic sugar that allows a user to define
a cross-product of the variables to generate a set of experiments
(https://googlecloudplatform.github.io/ramble/workspace_config.ht
ml#variable-matrices).

Lastly, we use a template file, execute_experiment.tpl (Figure 13),
to generate the runtime script for each individual experiment with
the correct options instantiated from ramble.yaml and variables.yaml.

Figure 10: Ramble ramble.yaml. Compiler and packages sec-
tions point at the definitions in spack.yaml (Figure 9).

SC-W 2023, November 12–17, 2023, Denver, CO, USA Olga Pearce et al.

which feeds into the experiment-specific ramble.yaml (line 3 and
lines 25-34 in Figure 10) to couple the application and the system
configuration and produce a concrete package definition.

1 class Saxpy(SpackApplication):
2 name = "saxpy"
3 ...
4 executable('p', 'saxpy -n {n}', use_mpi=True)
5 workload('problem ', executables =['p'])
6 workload_variable('n', default='1',
7 description='problem size',
8 workloads =['problem '])
9 figure_of_merit("success",
10 fom_regex=r'(?P<done >Kernel done)',
11 group_name='done', units='')
12 success_criteria('pass',
13 mode='string ', match=r'Kernel done',
14 file='{experiment_run_dir }/{ experiment_name }.out')

Figure 8: Ramble application.py

1 spack:
2 packages:
3 default -compiler:
4 spack_spec: gcc@12 .1.1
5 default -mpi:
6 spack_spec: mvapich2@2 .3.7- gcc12 .1.1
7 gcc1211:
8 spack_spec: gcc@12 .1.1
9 lapack:
10 spack_spec: intel -oneapi -mkl@2022 .1.0
11 mpi -compilers:
12 spack_spec: mvapich2@2 .3.7- compilers

Figure 9: Ramble spack.yaml

1 ramble:
2 include:
3 - ./ configs/spack.yaml
4 - ./ configs/variables.yaml
5 config:
6 deprecated: true
7 spack_flags:
8 install: '--add --keep -stage'
9 concretize: '-U -f'
10 applications:
11 saxpy:
12 workloads:
13 problem:
14 env_vars:
15 set:
16 OMP_NUM_THREADS: '{n_threads}'
17 variables:
18 n_ranks: '8'
19 batch_time: '120'
20 experiments:
21 saxpy_{n}_{n_nodes}_{n_ranks}_{n_threads }:
22 variables:
23 processes_per_node: ['8', '4']
24 n_nodes: ['1', '2']
25 n_threads: ['2', '4']
26 n: ['512', '1024']
27 matrices:
28 - size_threads:
29 - n
30 - n_threads
31 spack:
32 packages:
33 saxpy:
34 spack_spec: saxpy@1 .0.0 +openmp ^cmake@3 .23.1
35 compiler: default -compiler
36 environments:
37 saxpy:
38 packages:
39 - default -mpi
40 - saxpy

Figure 10: Ramble ramble.yaml. Compiler and packages sec-
tions point at the definitions in spack.yaml (Figure 9).

1 class Saxpy(CMakePackage , CudaPackage , ROCmPackage):
2 """ Test saxpy problem."""
3 ...
4 version('1.0.0 ')
5
6 variant("openmp", default=True , description="OpenMP")
7
8 def cmake_args(self):
9 spec = self.spec
10 args = []
11
12 if '+openmp ' in spec:
13 args.append('-DUSE_OPENMP=ON')
14 ...
15
16 if '+cuda' in spec:
17 args.append('-DUSE_CUDA=ON')
18 ...
19
20 if '+rocm' in spec:
21 args.append('-DUSE_HIP=ON')
22 ...
23
24 return args

Figure 11: Spack package.py

1 variables:
2 mpi_command: 'srun -N {n_nodes} -n {n_ranks}'
3 batch_submit: 'sbatch {execute_experiment}'
4 batch_nodes: '#SBATCH -N {n_nodes}'
5 batch_ranks: '#SBATCH -n {n_ranks}'
6 batch_timeout: '#SBATCH -t {batch_time }:00'
7 compilers: [gcc1211 , intel202160classic]

Figure 12: Ramble variables.yaml

1 #!/bin/bash
2 {batch_nodes}
3 {batch_ranks}
4 cd {experiment_run_dir}
5 {spack_setup}
6 {command}

Figure 13: Ramble execute_experiment.tpl template

4.4 Run Instructions
To fully specify an experiment, defined as a given application run-
ning on a given system, in a configuration desired by the user (e.g.,
scaling study), we need the following specifications:

(1) application-specific application.py;
(2) system-specific variables.py;
(3) experiment-specific execute_experiments.tpl.
Ramble’s application.py provides Ramble instructions for exe-

cuting the experiment (lines 4-8 in Figure 8) and evaluating the
outcome of the experiment (lines 9-14 in Figure 8). Similarly to
Spack’s package.py, Ramble’s application.py is application-specific,
and does not contain any system-specific information.

The necessary system-specific scheduler and launcher commands
are defined in variables.yaml (Figure 12).

The necessary experiment-specific input parameters and config-
uration options are defined in ramble.yaml (lines 5-24 in Figure 10),
and are used to generate a set of concrete experiments. The “ma-
trices" section is the syntactic sugar that allows a user to define
a cross-product of the variables to generate a set of experiments
(https://googlecloudplatform.github.io/ramble/workspace_config.ht
ml#variable-matrices).

Lastly, we use a template file, execute_experiment.tpl (Figure 13),
to generate the runtime script for each individual experiment with
the correct options instantiated from ramble.yaml and variables.yaml.

Figure 11: Spack package.py

Ramble’s application.py provides Ramble instructions for exe-
cuting the experiment (lines 4-8 in Figure 8) and evaluating the
outcome of the experiment (lines 9-14 in Figure 8). Similarly to
Spack’s package.py, Ramble’s application.py is application-specific,
and does not contain any system-specific information.

632



Towards Collaborative Continuous Benchmarking for HPC SC-W 2023, November 12–17, 2023, Denver, CO, USA

SC-W 2023, November 12–17, 2023, Denver, CO, USA Olga Pearce et al.

which feeds into the experiment-specific ramble.yaml (line 3 and
lines 25-34 in Figure 10) to couple the application and the system
configuration and produce a concrete package definition.

1 class Saxpy(SpackApplication):
2 name = "saxpy"
3 ...
4 executable('p', 'saxpy -n {n}', use_mpi=True)
5 workload('problem ', executables =['p'])
6 workload_variable('n', default='1',
7 description='problem size',
8 workloads =['problem '])
9 figure_of_merit("success",
10 fom_regex=r'(?P<done >Kernel done)',
11 group_name='done', units='')
12 success_criteria('pass',
13 mode='string ', match=r'Kernel done',
14 file='{experiment_run_dir }/{ experiment_name }.out')

Figure 8: Ramble application.py

1 spack:
2 packages:
3 default -compiler:
4 spack_spec: gcc@12 .1.1
5 default -mpi:
6 spack_spec: mvapich2@2 .3.7- gcc12 .1.1
7 gcc1211:
8 spack_spec: gcc@12 .1.1
9 lapack:
10 spack_spec: intel -oneapi -mkl@2022 .1.0
11 mpi -compilers:
12 spack_spec: mvapich2@2 .3.7- compilers

Figure 9: Ramble spack.yaml

1 ramble:
2 include:
3 - ./ configs/spack.yaml
4 - ./ configs/variables.yaml
5 config:
6 deprecated: true
7 spack_flags:
8 install: '--add --keep -stage'
9 concretize: '-U -f'
10 applications:
11 saxpy:
12 workloads:
13 problem:
14 env_vars:
15 set:
16 OMP_NUM_THREADS: '{n_threads}'
17 variables:
18 n_ranks: '8'
19 batch_time: '120'
20 experiments:
21 saxpy_{n}_{n_nodes}_{n_ranks}_{n_threads }:
22 variables:
23 processes_per_node: ['8', '4']
24 n_nodes: ['1', '2']
25 n_threads: ['2', '4']
26 n: ['512', '1024']
27 matrices:
28 - size_threads:
29 - n
30 - n_threads
31 spack:
32 packages:
33 saxpy:
34 spack_spec: saxpy@1 .0.0 +openmp ^cmake@3 .23.1
35 compiler: default -compiler
36 environments:
37 saxpy:
38 packages:
39 - default -mpi
40 - saxpy

Figure 10: Ramble ramble.yaml. Compiler and packages sec-
tions point at the definitions in spack.yaml (Figure 9).

1 class Saxpy(CMakePackage , CudaPackage , ROCmPackage):
2 """ Test saxpy problem."""
3 ...
4 version('1.0.0 ')
5
6 variant("openmp", default=True , description="OpenMP")
7
8 def cmake_args(self):
9 spec = self.spec
10 args = []
11
12 if '+openmp ' in spec:
13 args.append('-DUSE_OPENMP=ON')
14 ...
15
16 if '+cuda' in spec:
17 args.append('-DUSE_CUDA=ON')
18 ...
19
20 if '+rocm' in spec:
21 args.append('-DUSE_HIP=ON')
22 ...
23
24 return args

Figure 11: Spack package.py

1 variables:
2 mpi_command: 'srun -N {n_nodes} -n {n_ranks}'
3 batch_submit: 'sbatch {execute_experiment}'
4 batch_nodes: '#SBATCH -N {n_nodes}'
5 batch_ranks: '#SBATCH -n {n_ranks}'
6 batch_timeout: '#SBATCH -t {batch_time }:00'
7 compilers: [gcc1211 , intel202160classic]

Figure 12: Ramble variables.yaml

1 #!/bin/bash
2 {batch_nodes}
3 {batch_ranks}
4 cd {experiment_run_dir}
5 {spack_setup}
6 {command}

Figure 13: Ramble execute_experiment.tpl template

4.4 Run Instructions
To fully specify an experiment, defined as a given application run-
ning on a given system, in a configuration desired by the user (e.g.,
scaling study), we need the following specifications:

(1) application-specific application.py;
(2) system-specific variables.py;
(3) experiment-specific execute_experiments.tpl.
Ramble’s application.py provides Ramble instructions for exe-

cuting the experiment (lines 4-8 in Figure 8) and evaluating the
outcome of the experiment (lines 9-14 in Figure 8). Similarly to
Spack’s package.py, Ramble’s application.py is application-specific,
and does not contain any system-specific information.

The necessary system-specific scheduler and launcher commands
are defined in variables.yaml (Figure 12).

The necessary experiment-specific input parameters and config-
uration options are defined in ramble.yaml (lines 5-24 in Figure 10),
and are used to generate a set of concrete experiments. The “ma-
trices" section is the syntactic sugar that allows a user to define
a cross-product of the variables to generate a set of experiments
(https://googlecloudplatform.github.io/ramble/workspace_config.ht
ml#variable-matrices).

Lastly, we use a template file, execute_experiment.tpl (Figure 13),
to generate the runtime script for each individual experiment with
the correct options instantiated from ramble.yaml and variables.yaml.

Figure 12: Ramble variables.yaml

SC-W 2023, November 12–17, 2023, Denver, CO, USA Olga Pearce et al.

which feeds into the experiment-specific ramble.yaml (line 3 and
lines 25-34 in Figure 10) to couple the application and the system
configuration and produce a concrete package definition.

1 class Saxpy(SpackApplication):
2 name = "saxpy"
3 ...
4 executable('p', 'saxpy -n {n}', use_mpi=True)
5 workload('problem ', executables =['p'])
6 workload_variable('n', default='1',
7 description='problem size',
8 workloads =['problem '])
9 figure_of_merit("success",
10 fom_regex=r'(?P<done >Kernel done)',
11 group_name='done', units='')
12 success_criteria('pass',
13 mode='string ', match=r'Kernel done',
14 file='{experiment_run_dir }/{ experiment_name }.out')

Figure 8: Ramble application.py

1 spack:
2 packages:
3 default -compiler:
4 spack_spec: gcc@12 .1.1
5 default -mpi:
6 spack_spec: mvapich2@2 .3.7- gcc12 .1.1
7 gcc1211:
8 spack_spec: gcc@12 .1.1
9 lapack:
10 spack_spec: intel -oneapi -mkl@2022 .1.0
11 mpi -compilers:
12 spack_spec: mvapich2@2 .3.7- compilers

Figure 9: Ramble spack.yaml

1 ramble:
2 include:
3 - ./ configs/spack.yaml
4 - ./ configs/variables.yaml
5 config:
6 deprecated: true
7 spack_flags:
8 install: '--add --keep -stage'
9 concretize: '-U -f'
10 applications:
11 saxpy:
12 workloads:
13 problem:
14 env_vars:
15 set:
16 OMP_NUM_THREADS: '{n_threads}'
17 variables:
18 n_ranks: '8'
19 batch_time: '120'
20 experiments:
21 saxpy_{n}_{n_nodes}_{n_ranks}_{n_threads }:
22 variables:
23 processes_per_node: ['8', '4']
24 n_nodes: ['1', '2']
25 n_threads: ['2', '4']
26 n: ['512', '1024']
27 matrices:
28 - size_threads:
29 - n
30 - n_threads
31 spack:
32 packages:
33 saxpy:
34 spack_spec: saxpy@1 .0.0 +openmp ^cmake@3 .23.1
35 compiler: default -compiler
36 environments:
37 saxpy:
38 packages:
39 - default -mpi
40 - saxpy

Figure 10: Ramble ramble.yaml. Compiler and packages sec-
tions point at the definitions in spack.yaml (Figure 9).

1 class Saxpy(CMakePackage , CudaPackage , ROCmPackage):
2 """ Test saxpy problem."""
3 ...
4 version('1.0.0 ')
5
6 variant("openmp", default=True , description="OpenMP")
7
8 def cmake_args(self):
9 spec = self.spec
10 args = []
11
12 if '+openmp ' in spec:
13 args.append('-DUSE_OPENMP=ON')
14 ...
15
16 if '+cuda' in spec:
17 args.append('-DUSE_CUDA=ON')
18 ...
19
20 if '+rocm' in spec:
21 args.append('-DUSE_HIP=ON')
22 ...
23
24 return args

Figure 11: Spack package.py

1 variables:
2 mpi_command: 'srun -N {n_nodes} -n {n_ranks}'
3 batch_submit: 'sbatch {execute_experiment}'
4 batch_nodes: '#SBATCH -N {n_nodes}'
5 batch_ranks: '#SBATCH -n {n_ranks}'
6 batch_timeout: '#SBATCH -t {batch_time }:00'
7 compilers: [gcc1211 , intel202160classic]

Figure 12: Ramble variables.yaml

1 #!/bin/bash
2 {batch_nodes}
3 {batch_ranks}
4 cd {experiment_run_dir}
5 {spack_setup}
6 {command}

Figure 13: Ramble execute_experiment.tpl template

4.4 Run Instructions
To fully specify an experiment, defined as a given application run-
ning on a given system, in a configuration desired by the user (e.g.,
scaling study), we need the following specifications:

(1) application-specific application.py;
(2) system-specific variables.py;
(3) experiment-specific execute_experiments.tpl.
Ramble’s application.py provides Ramble instructions for exe-

cuting the experiment (lines 4-8 in Figure 8) and evaluating the
outcome of the experiment (lines 9-14 in Figure 8). Similarly to
Spack’s package.py, Ramble’s application.py is application-specific,
and does not contain any system-specific information.

The necessary system-specific scheduler and launcher commands
are defined in variables.yaml (Figure 12).

The necessary experiment-specific input parameters and config-
uration options are defined in ramble.yaml (lines 5-24 in Figure 10),
and are used to generate a set of concrete experiments. The “ma-
trices" section is the syntactic sugar that allows a user to define
a cross-product of the variables to generate a set of experiments
(https://googlecloudplatform.github.io/ramble/workspace_config.ht
ml#variable-matrices).

Lastly, we use a template file, execute_experiment.tpl (Figure 13),
to generate the runtime script for each individual experiment with
the correct options instantiated from ramble.yaml and variables.yaml.

Figure 13: Ramble execute_experiment.tpl template

The necessary system-specific scheduler and launcher commands
are defined in variables.yaml (Figure 12).

The necessary experiment-specific input parameters and config-
uration options are defined in ramble.yaml (lines 5-24 in Figure 10),
and are used to generate a set of concrete experiments. The “ma-
trices" section is the syntactic sugar that allows a user to define
a cross-product of the variables to generate a set of experiments
(https://googlecloudplatform.github.io/ramble/workspace_config.ht
ml#variable-matrices).

Lastly, we use a template file, execute_experiment.tpl (Figure 13),
to generate the runtime script for each individual experiment with
the correct options instantiated from ramble.yaml and variables.yaml.

4.5 Performance Evaluation and FOM
After performing a set of experiments, we use ramble workspace analyze
to evaluate the outcomes. Ramble provides several ways to define
success/failure and figures of merit (FOM); application-specific cri-
teria can be defined in application.py (lines 9-14 in Figure 8 in
our saxpy example), or for individual experiments in ramble.yaml
(Figure 10). Ramble also provides the modifier construct to cap-
ture architecture-specific FOMs (e.g., hardware counters); we are
currently working on the implementation of these more advanced
evaluation techniques for our benchmarks.

5 FUTUREWORK
One of the goals of this work is to enable performance analysis
and modeling of our benchmarks across many systems. To that
end, we would like to enable our collaborators to contribute the
performance results of the benchmarks as they execute them on
their systems. Benchpark produces an exact specification of the
experiments, including application-specific, system-specific, and
experiment-specific manifests that enable functional reproducibil-
ity of these experiments. Storing the Benchpark manifest with the
performance results will enable introspection into benchmark per-
formance across systems and time.We are also looking into creating
a dashboard for the Benchpark results, which would provide a quick
glance of the multi-dimensional performance data for our bench-
marks. The interactive dashboard could be designed with some
pre-built plots and visualizations, and the user could toggle data
on/off as needed. We are working to understand the needs of the

HPC benchmarking community, along with dashboards of other
efforts (e.g., MLCommons [26]), to propose a dashboard design.

For performance measurements such as function-level timings
and GPU performance counters, we plan to annotate the bench-
marks with Caliper [2, 3, 19], a portable performance profiling
library for HPC applications. After we gain experience with the
automated generation of benchmark performance metrics, we will
look into enabling optional use of different performance analysis
tools. Caliper can be configured to use always-on profiling, enabling
collection of performance profiles for each run of our benchmark
under different build settings or execution contexts. We will use
Adiak [20] to collect metadata related to the build settings and exe-
cution contexts, enabling filtering and sorting of collected profiles.

Figure 14: Extra-P model for performance of a function in
one of our applications. Red dots represent performancemea-
surements of an MPI_Bcast function on the CTS architecture.
The blue line is a scaling function computed by Extra-P from
the performance measurements.

Thicket [5, 24] is a python-based toolkit for exploratory data
analysis (EDA) of multi-dimensional performance data, and can be
used to analyze the Caliper-generated performance profiles. Thicket
composes performance data from multiple performance profiles po-
tentially generated at different scales, on different architectures, us-
ing different versions of dependencies, and by different tools. With
Thicket, we can programmatically analyze the multi-dimensional
performance data with scripts. An example of an EDA analysis is
shown in Figure 14, which shows an analytical performance model
computed by Extra-P [6].

In addition to collecting benchmark performance results from
collaborators, we will look at collecting metrics on benchmark
usage (which codes in Benchpark are accessed most heavily, which
have been contributed to most recently, etc.). The need or value
for a specific benchmark can change as science, algorithms, or
computing needs change, and understanding which benchmarks
are most relevant to the community can also improve procurement,
vendor, and system monitoring productivity.

633



SC-W 2023, November 12–17, 2023, Denver, CO, USA Olga Pearce et al.

6 RELATEDWORK
Continuous benchmarking of backbone network performance be-
tween HPC centers has been available for decades [29]. However,
continuously benchmarking HPC systems themselves has proven
difficult for a variety of reasons. For example, HPC applications
may have vastly different characteristics, such as strong-scaling
vs. weak-scaling applications, and nearest-neighbor exchanges vs.
collective operations. Furthermore, the underlying hardware can
vary widely between HPC systems, and many of these differences
cannot easily be abstracted away by an operating system providing
protocol abstraction layers above the hardware, as is the case in
inter-center networking.

Nevertheless, application-specific and domain-specific continu-
ous benchmarking systems have been deployed. Ginkgo library [1]
has an automated performance evaluation framework. While such
an approach could be adapted for different code-bases on a case-
by-case basis, our approach seeks to synthesize the installation,
dependencymanagement, and results of multiple benchmarks, mini-
applications, and proxy applications in a single framework with
a single interface while representing all dependencies, from the
application to the hardware.

There are also repeatable benchmark frameworks such as Pavil-
ion [16] and JUBE [4], which are targeted at HPC systems. Both
are capable of storing and organizing benchmark output, and criti-
cally, they are capable of interfacing with HPC system schedulers.
However, neither of these has the ability to manage benchmarks
across many systems with heterogenous dependencies as they don’t
directly leverage a package manager.

The Machine Learning Commons (MLCommons) [25, 26] has
standardized a set of benchmarks specific to machine learning
applications in their MLPerf benchmark suite. In contrast, our con-
tinuous benchmarking system is designed to run a much larger
set of benchmarks across a large variety of systems with vastly
different dependencies. Most of MLPerf is aimed at benchmarking
cloud offerings, similarly to PerfKit [11].

All of these approaches share some fundamental commonalities
with our approach. They are designed to be reproducible, they can
be run continuously as the underlying software changes, and they
offer rich introspection into how the benchmarks were run, along
with rich performance data. In contrast, our approach to continuous
benchmarking focuses more on leveraging package management
and federated CI technologies that have only recently proliferated
in order to address a much larger set of benchmarking needs from
developers, HPC centers, and hardware vendors.

7 BENCHMARK SUSTAINABILITY
Community-driven approaches for software sustainability, such as
Spack, show that many can benefit by contributing their knowledge
to a single repository, assembling the collective knowledge—there
in the form of build scripts and dependencies—of the entire HPC
community. Our Benchpark approach is the logical next step for
benchmarking, because it allows broad community contribution,
limits the divergence between real science code and benchmark
code, and lowers the barrier of entry for non-experts by providing
build and run recipes. These features should lower the human labor
involved in designing, maintaining, and running benchmarks. In

the past, (procurement) benchmarks have been very much a one-off
or fairly static code base. Every few years, when a new system is in
planing, a few computer scientists try to find a number of represen-
tative applications from a sea of domain scientists and code bases
running on their system. This information is hardly shared across
centers and nations, with notable exceptions of the ECP Proxy Ap-
plications [9] which represents the interest of multiple US centers,
simultaneously. Benchpark allows the individual benchmarks to be
closer to their Spack counterparts and being updates over time, but
also being “frozen” in time for procurement purposes. Therefore,
the computer scientists can focus more on analyzing the bench-
marks and track system performance over time, while the domain
scientists do not need to periodically (re-)create special-purpose
copies of their code (or fragments thereof) which do not serve them
any immediate purpose.

7.1 Benchpark for Collaboration
Besides our indications for software sustainability—of benchmarks
in particular—we also see a clear role of Benchpark in collabora-
tions between supercomputing centers, HPC/cloud vendors, and/or
nations. For example, during our collaboration on Benchpark we
moved a few simple benchmark kernels between an on-premise su-
percomputer and cloud instances of similar architecture for compet-
itive performance benchmarking. To our surprise, the microbench-
mark was executing correctly on one system but crashing on the
other. Even after deploying a near identical operating system in
the cloud and moving the exact same binary and dependencies
between the systems, the faulty behavior persisted. Only due to
the compactness of the microbenchmark and because of the lim-
ited number of people involved in benchmarking both systems,
the root cause, i.e., a bug in the underlying math library related
to a specific hardware feature (which was missing in the cloud),
was identified within days by the software vendor. While Bench-
park was not ready by the time this occurred, it demonstrated to
us that quickly deploying complex benchmarks (e.g., proxy-apps
and upwards) in a reproducible way across multiple different ar-
chitectures for functionality or performance comparisons is very
labor-intensive and communication-heavy. Potentially, every in-
volved person in the collaboration between on-premise, cloud, and
software vendor, will require the identical source code, build en-
vironment and instructions, runtime environment, inputs, and/or
hardware to identify and debug problems. Benchpark will alleviate
the inter-person (mis-)communication by providing a reproducible
and easily track-/shareable environment, especially when cross-site
access for individuals is impractical.

7.2 The Role of Cloud
As we work to streamline the interactions between HPC centers,
vendors, and researchers by developing a collaborative continuous
benchmarking solution, using cloud technologies can strengthen
the solution. As a test of benchmark portability, cloud resources
can be treated like another platform. Cloud infrastructure provides
a variety of node architectures that can be used to test and evaluate
benchmark behavior. Configuring a cluster of desired or locally
unavailable processors without the need to wait in queues for ac-
cess can quickly provide answers to functional or performance

634



Towards Collaborative Continuous Benchmarking for HPC SC-W 2023, November 12–17, 2023, Denver, CO, USA

questions. Making benchmark results easily accessible to the HPC
community is another way to incorporate cloud resources, includ-
ing use of services that are designed to analyze data. As an example
of community access, the Spack build pipeline and rolling binary
cache makes packages available to all Spack users around the globe
through Amazon CloudFront, focusing the time to build applica-
tions on only the dependencies with special requirements.

8 CONCLUSIONS
Benchmarking is an important component to co-designing, procur-
ing, and evaluating performance on HPC systems. Currently, the
process for system benchmarking is a manual and tedious effort,
leading to a high barrier to entry, and hampering productivity and
reproducibility of benchmarks across different HPC systems.

In this paper, we introduce collaborative continuous benchmarking
to enable functional reproducibility, automation, and community
collaboration in HPC benchmarking. We introduced Benchpark,
an open source repository for continuous benchmarking. We be-
lieve this will lead to better evaluation of our systems and more
productive collaborations within the HPC community.

ACKNOWLEDGMENTS
This work was performed under the auspices of the U.S. Depart-
ment of Energy by Lawrence Livermore National Laboratory under
Contract DE-AC52-07NA27344 (LLNL-CONF-853344).

REFERENCES
[1] Hartwig Anzt, Yen-Chen Chen, Terry Cojean, Jack Dongarra, Goran Flegar, Pratik

Nayak, Enrique S. Quintana-Ortí, Yuhsiang M. Tsai, and Weichung Wang. 2019.
Towards Continuous Benchmarking: An Automated Performance Evaluation
Framework for High Performance Software. In Proceedings of the Platform for
Advanced Scientific Computing Conference (Zurich, Switzerland) (PASC ’19). As-
sociation for Computing Machinery, New York, NY, USA, Article 9, 11 pages.
https://doi.org/10.1145/3324989.3325719

[2] David Boehme, Pascal Aschwanden, Olga Pearce, Kenneth Weiss, and Matthew
LeGendre. 2021. Ubiquitous Performance Analysis. In High Performance Comput-
ing, Bradford L. Chamberlain, Ana-Lucia Varbanescu, Hatem Ltaief, and Piotr
Luszczek (Eds.). Springer International Publishing, Cham, 431–449.

[3] David Boehme, Todd Gamblin, David Beckingsale, Peer-Timo Bremer, Alfredo
Gimenez, Matthew LeGendre, Olga Pearce, and Martin Schulz. 2016. Caliper:
Performance Introspection for HPC Software Stacks. In Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis (Salt Lake City, Utah) (SC ’16). IEEE Press, Article 47, 11 pages.

[4] Thomas Breuer, Sebastian LÃ¼hrs, Andreas Smolenko, and Julia Wellmann. 2022.
JUBE (Version 2.5.1); 2.5.1. https://doi.org/10.5281/ZENODO.7534373

[5] Stephanie Brink, Michael McKinsey, David Boehme, W. Daryl Hawkins, Connor
Scully-Allison, Ian Lumsden, Treece Burgess, Vanessa Lama, Katherine E. Isaacs,

Jakob LÃ¼ttgau, Michela Taufer, and Olga Pearce. 2023. Thicket: Seeing the Per-
formance Experiment Forest for the Individual Run Trees. In ACM International
Symposium on High-Performance Parallel and Distributed Computing (HPDC).
ACM, Orlando, FL, USA. https://doi.org/10.1145/3588195.3592989

[6] Alexandru Calotoiu, Torsten Hoefler, Marius Poke, and Felix Wolf. 2013. Using
Automated Performance Modeling to Find Scalability Bugs in Complex Codes.
In Proc. of the ACM/IEEE Conference on Supercomputing (SC13), Denver, CO, USA.
ACM, 1–12. https://doi.org/10.1145/2503210.2503277

[7] Massimiliano Culpo, Gregory Becker, Carlos Eduardo Arango Gutierrez, Kenneth
Hoste, and Todd Gamblin. 2020. archspec: A library for detecting, labeling,
and reasoning about microarchitectures. In In 2nd International Workshop on
Containers and New Orchestration Paradigms for Isolated Environments in HPC
(CANOPIE-HPC’20) (12).

[8] ECP. 2010. Jacamar-CI. https://gitlab.com/ecp-ci/jacamar-ci.
[9] Exascale Computing Project. 2018. ECP Proxy Apps Suite. https://proxyapps.

exascaleproject.org/ecp-proxy-apps-suite/.
[10] Todd Gamblin, Matthew LeGendre, Michael R. Collette, Gregory L. Lee, Adam

Moody, Bronis R. de Supinski, and Scott Futral. 2015. The Spack PackageManager:
Bringing Order to HPC Software Chaos (Supercomputing 2015 (SCâ€™15)). Austin,
Texas, USA. https://doi.org/10.1145/2807591.2807623 LLNL-CONF-669890.

[11] Google. 2016. PerfKit Benchmarker. https://github.com/GoogleCloudPlatform/
PerfKitBenchmarker.

[12] Google. 2023. Ramble. https://github.com/GoogleCloudPlatform/ramble.
[13] I. Bicking. 2011. pip: Package Install tool for Python. https://github.com/pypa/pip.
[14] I. Z. Schlueter. 2009. NPM. https://github.com/npm/npm.
[15] Doug Jacobsen and Bob Bird. 2023. Ramble: A flexible, extensible, and composable

experimentation framework. InHPC TestsWorkshop at the ACM/IEEE International
Conference on High Performance Computing, Network, Storage, and Analysis (SC|23).
ACM, Denver, CO, USA.

[16] LANL. 2014. Pavilion Framework. https://github.com/hpc/pavilion2.
[17] Carl Lerche, Yehuda Katz, and André Arko. 2010. Bundler. https://github.com/

rubygems/bundler/blob/master/LICENSE.md.
[18] LLNL. 2015. Spack. https://github.com/spack/spack.
[19] LLNL. 2017. Caliper. https://github.com/llnl/caliper.
[20] LLNL. 2019. Adiak. http://github.com/LLNL/adiak.
[21] LLNL. 2023. AMG2023. https://github.com/LLNL/amg2023.
[22] LLNL. 2023. Benchpark. https://github.com/LLNL/benchpark.
[23] LLNL. 2023. Hubcast. https://github.com/LLNL/hubcast.
[24] LLNL. 2023. Thicket. https://github.com/llnl/thicket.
[25] Peter Mattson, Christine Cheng, Cody Coleman, Greg Diamos, Paulius Micike-

vicius, David Patterson, Hanlin Tang, Gu-Yeon Wei, Peter Bailis, Victor Bit-
torf, David Brooks, Dehao Chen, Debojyoti Dutta, Udit Gupta, Kim Hazelwood,
Andrew Hock, Xinyuan Huang, Atsushi Ike, Bill Jia, Daniel Kang, David Kan-
ter, Naveen Kumar, Jeffery Liao, Guokai Ma, Deepak Narayanan, Tayo Ogun-
tebi, Gennady Pekhimenko, Lillian Pentecost, Vijay Janapa Reddi, Taylor Robie,
Tom St. John, Tsuguchika Tabaru, Carole-Jean Wu, Lingjie Xu, Masafumi Ya-
mazaki, Cliff Young, and Matei Zaharia. 2019. MLPerf Training Benchmark.
arXiv:1910.01500 [cs.LG]

[26] ML Commons. 2023. MLPerf. https://mlcommons.org/en/.
[27] Rust. 2014. Cargo: The Rust package manager. https://github.com/rust-lang/

cargo.
[28] Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateS-

pace, Scotts Valley, CA.
[29] J. Zurawski, M. Swany, and D. Gunter. 2006. A Scalable Framework for Represen-

tation and Exchange of Network Measurements. In 2nd International Conference
on Testbeds and Research Infrastructures for the Development of Networks and Com-
munities, 2006. TRIDENTCOM 2006. 9 pp.–417. https://doi.org/10.1109/TRIDNT.
2006.1649176

635

https://doi.org/10.1145/3324989.3325719
https://doi.org/10.5281/ZENODO.7534373
https://doi.org/10.1145/3588195.3592989
https://doi.org/10.1145/2503210.2503277
https://gitlab.com/ecp-ci/jacamar-ci
https://proxyapps.exascaleproject.org/ecp-proxy-apps-suite/
https://proxyapps.exascaleproject.org/ecp-proxy-apps-suite/
https://doi.org/10.1145/2807591.2807623
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://github.com/GoogleCloudPlatform/ramble
https://github.com/pypa/pip
https://github.com/npm/npm
https://github.com/hpc/pavilion2
https://github.com/rubygems/bundler/blob/master/LICENSE.md
https://github.com/rubygems/bundler/blob/master/LICENSE.md
https://github.com/spack/spack
https://github.com/llnl/caliper
http://github.com/LLNL/adiak
https://github.com/LLNL/amg2023
https://github.com/LLNL/benchpark
https://github.com/LLNL/hubcast
https://github.com/llnl/thicket
https://arxiv.org/abs/1910.01500
https://mlcommons.org/en/
https://github.com/rust-lang/cargo
https://github.com/rust-lang/cargo
https://doi.org/10.1109/TRIDNT.2006.1649176
https://doi.org/10.1109/TRIDNT.2006.1649176

	Abstract
	1 Introduction
	2 Benchpark: An Architecture for Continuous Benchmarking
	3 HPC Automation Enables Benchpark
	3.1 Reproducible Build Instructions
	3.2 Reproducible Run Instructions
	3.3 Benchpark Automation

	4 Adding Benchmarks to Benchpark
	4.1 Benchmark Source
	4.2 Benchmark Input
	4.3 Build Instructions
	4.4 Run Instructions
	4.5 Performance Evaluation and FOM

	5 Future work
	6 Related Work
	7 Benchmark Sustainability
	7.1 Benchpark for Collaboration
	7.2 The Role of Cloud

	8 Conclusions
	Acknowledgments
	References

