
Scaling Computational Fluid Dynamics: In Situ Visualization of
NekRS using SENSEI

Victor A. Mateevitsi
Argonne National Laboratory
United States of America
vmateevitsi@anl.gov

Mathis Bode
Forschungszentrum Jülich

Jülich Supercomputing Centre
Germany

m.bode@fz-juelich.de

Nicola Ferrier
Argonne National Laboratory
United States of America

nferrier@anl.gov

Paul Fischer
Argonne National Laboratory

University of Illinois
Urbana-Champaign

United States of America
fischerp@illinois.edu

Jens Henrik Göbbert
Forschungszentrum Jülich

Jülich Supercomputing Centre
Germany

j.goebbert@fz-juelich.de

Joseph A. Insley
Argonne National Laboratory
Northern Illinois University
United States of America

insley@anl.gov

Yu-Hsiang Lan
Argonne National Laboratory

University of Illinois
Urbana-Champaign

United States of America
ylan@anl.gov

Misun Min
Argonne National Laboratory
United States of America

mmin@anl.gov

Michael E. Papka
Argonne National Laboratory
University of Illinois at Chicago

United States of America
papka@anl.gov

Saumil Patel
Argonne National Laboratory
United States of America

spatel@anl.gov

Silvio Rizzi
Argonne National Laboratory
United States of America

srizzi@anl.gov

Jonathan Windgassen
Forschungszentrum Jülich

Jülich Supercomputing Centre
Germany

j.windgassen@fz-juelich.de

ABSTRACT
In the realm of Computational Fluid Dynamics (CFD), the demand
formemory and computation resources is extreme, necessitating the
use of leadership-scale computing platforms for practical domain
sizes. This intensive requirement renders traditional checkpointing
methods ineffective due to the significant slowdown in simulations
while saving state data to disk. As we progress towards exascale
and GPU-driven High-Performance Computing (HPC) and con-
front larger problem sizes, the choice becomes increasingly stark:
to compromise data fidelity or to reduce resolution. To navigate
this challenge, this study advocates for the use of in situ analy-
sis and visualization techniques. These allow more frequent data
"snapshots" to be taken directly from memory, thus avoiding the
need for disruptive checkpointing. We detail our approach of in-
strumenting NekRS, a GPU-focused thermal-fluid simulation code
employing the spectral element method (SEM), and describe varied
in situ and in transit strategies for data rendering. Additionally, we
provide concrete scientific use-cases and report on runs performed
on Polaris, Argonne Leadership Computing Facility’s (ALCF) 44
Petaflop supercomputer and JülichWizard for European Leadership
Science (JUWELS) Booster, Jülich Supercomputing Centre’s (JSC)
71 Petaflop High Performance Computing (HPC) system, offering
practical insight into the implications of our methodology.

1 INTRODUCTION
Rooted in the Spectral Element Method (SEM) [9], NekRS [8] is
a GPU-accelerated thermal-fluid simulation code. Rapidly becom-
ing a staple in modeling and simulating turbulent flows, it finds
uses across a wide spectrum, from simulating internal combustion
engines to large-scale atmospheric and oceanic flows, as well as
reactor thermal hydraulics. The challenges posed by these simula-
tions are significant in terms of scale, resolution, and computational
demand. NekRS tackles these hurdles using libParanumal [11, 26],
a high-order finite element solver, and the OCCA library [17, 18], a
hardware-agnostic solution, to enable optimized performance and
scalability.

With the advent of exascale supercomputers like Argonne Na-
tional Laboratory’s Aurora [23], the disparity between rapid on-chip
processing and slower disk storage is set to widen. Data-saving to
disk could notably hamper simulations, necessitating pauses for
I/O operations to complete. This situation leaves scientists with a
tough choice: reduce checkpoint frequency or simplify the domain
by lowering the resolution, both potentially resulting in overlooked
discoveries.

In situ processing [15], which facilitates data processing while it
remains in memory, presents a compelling solution to this challenge.
The SENSEI project [4] embodies this approach, aiming to equip

ar
X

iv
:2

31
2.

09
88

8v
2

 [
cs

.D
C

]
 1

8
D

ec
 2

02
3

Mateevitsi et al.

the simulation code with the flexibility to interchange in situ algo-
rithms without recompilation. In this paper, we demonstrate the
instrumentation of NekRS with SENSEI and present our scalability
experiments conducted using real scientific use-cases.

2 BACKGROUND
The advancement in computational capabilities has significantly
outpaced that of I/O speeds, leading to a heightened interest in
in situ processing. This technique revolves around the immediate
analysis and visualization of data, directly from memory, sidestep-
ping the delays of I/O operations. As a result, simulations become
more efficient with reduced cycles spent on intensive I/O. Early
adoptions of this method can be traced back to Zajac et al. [25], who
showcased a simulation of Earth and satellite orbits plotted straight
onto microfilm. However, the rise of heterogeneous systems and
the sheer variety of analysis algorithms and graphics Application
Programming Interfaces (APIs) like OpenGL, DirectX, Vulkan, and
ANARI have compounded the intricacy of embedding universal
cross-platform in situ capabilities in scientific codes. Dedicated in
situ libraries are now essential, offering specialized tools for such
diverse platforms, simplifying tasks such as image rendering, and
easing code instrumentation.

2.1 In situ libraries
Presently, several key libraries, notably Ascent [14], Catalyst [3],
LibSim [6, 13], and SENSEI [4] are the most active ones. Ascent,
part of the ALPINE project and backed by the U.S. Department
of Energy’s (DOE) Exascale Computing Project (ECP) [19], is a
lightweight in situ visualization and analysis library built for multi-
physics HPC simulations. Its unique selling point is its minimal
reliance on external dependencies, with VTK-m [21] employed for
rendering. Catalyst, maintained by Kitware, relies on VTK, facili-
tating detailed visualization workflows via VTK’s comprehensive
visualization tools. In a similar vein, LibSim [6, 13] operates along-
side VisIt [7].

2.2 Computational Fluid Dynamics
Computational Fluid Dynamics (CFD) employs numerical methods
to study fluid flow problems [1]. Its applications span from design-
ing combustors and simulating nuclear reactors to aerodynamic
modeling of aircrafts and space shuttles [12]. Nek5000, pioneered
in the late 80s [9, 10], stands out as a gold standard for spectral ele-
ment simulations, scaling efficiently across varying computational
platforms. Instrumentation studies by Atzori et al. [2] and Bernar-
doni et al. [5] shed light on its adaptability with in situ libraries
like Catalyst and SENSEI. Despite Nek5000’s enduring prominence
over 35 years, the advent of GPU-accelerated HPCs necessitated a
major code overhaul, giving rise to its successor, NekRS [8].

3 METHODOLOGY
SENSEI is structured around two primary components: the Analy-
sisAdaptor and DataAdaptor.

3.1 AnalysisAdaptor
The AnalysisAdaptor serves as the interface for in situ analysis
codes and algorithms, connecting with tools like Catalyst, VTK-
m, or OSPray [24]. Developing a new AnalysisAdaptor necessi-
tates extending the existing interface and implementing the desired
analysis functionality. These adaptors offer flexibility; they can be
swapped dynamically at runtime via an .xml configuration file.
For instance, to enable in situ image rendering through Catalyst,
one can activate the Catalyst AnalysisAdaptor without needing
to recompile the entire codebase, as illustrated in Listing 1.

<sensei >
<analysis type="catalyst" pipeline="

pythonscript" filename="analysis.py"
frequency="100" />

</sensei >

Listing 1: SENSEI AnalysisAdaptor Configuration

3.2 DataAdaptor
Data is channeled to the AnalysisAdaptor through the use of
the DataAdaptor. This component is a C++ interface provided by
SENSEI, which simulation codes must extend and implement. The
role of this child adaptor is to relay data (aligned with the VTK
data model) to SENSEI. Moreover, an intermediary "bridge" code is
responsible for embedding SENSEI into the simulation, initializing
the library, updating the data, managing adaptors, and periodically
invoking analysis routines.

class DataAdaptor : sensei :: DataAdaptor
{

void Initialize(nek_data) { }
int GetNumberOfMeshes () { };
int GetMeshMetadata () { };
int GetMesh () { };
int AddArray () { };

};

Listing 2: Pseudocode of the DataAdaptor

Given the identical data models employed by both Nek5000
and NekRS, we crafted a unique nek_sensei::DataAdaptor class
(Listing 2) and corresponding bridge code (Listing 3). To promote
reusability and ease maintenance, we housed this code in a separate
repository and integrated it into both Nek5000 and NekRS using a
GitHub submodule.

NekRS employs OCCA [18], a flexible, vendor-agnostic framework
for parallel programming across heterogeneous platforms. When
compiled with a GPU backend, such as CUDA, NekRS operates on
the GPU. This poses a challenge, as simulation data residing on
GPU device memory must be transferred to the CPU before being
relayed to SENSEI due to VTK data model’s current lack of GPU
device memory support.

void initialize(MPI_Comm* comm , nek_data) {
NekDataAdaptor *da = new NekDataAdaptor ();
da->Initialize(nek_data);

Scaling Computational Fluid Dynamics: In Situ Visualization of NekRS using SENSEI

ConfigurableAnalysis ca = new
ConfigurableAnalysis ();

ca->Initialize("conf.xml");
}

void update(double* t, DataAdaptor **d) { }

Listing 3: Pseudocode of the bridge code

For the evaluation, we compiled NekRS latest version (v23), and
used SENSEI’s development branch. To enable the Catalyst Analy-
sisAdaptor, we compiled against ParaView 5.11.1, which was com-
piled with OSPRay support.

4 RESULTS
To evaluate the effectiveness of the instrumentation, we conducted
experiments on two distinct HPCs: Polaris, a 44 Petaflops HPE Cray
GPU-based HPC, and JUWELS Booster, a 71 Petaflops Atos GPU-
based HPC. Polaris houses 560 nodes, each fitted with a single AMD
EPYC "Milan" processor and four NVIDIA A100 GPUs. JUWELS
Booster consists of 936 compute nodes, each equipped with 2 AMD
EPYC "Rome" CPUs and 4 NVIDIA A100 GPUs. The network has a
DragonFly+ topology with HDR-200 InfiniBand.

The primary goal of these experiments is to quantify the compu-
tational overhead introduced by our workflow. The first use case
run on Polaris and is an example for an in situ application of our
workflow, while the second one run on JUWELS Booster and uses
an in transit setup.

To maintain comparability, we show similar performance met-
rics for both cases. However, we do not perform exactly the same
analyses, as the focus is on providing deep insight into the appli-
cation of different workflow strategies, rather than a one-to-one
comparison of the supercomputing environments. For the sake of
reproducibility, we have made all source and analysis code, use
cases, and data available [16].

4.1 In situ Pebble-bed reactor case
Our assessment hinged on two pivotal metrics: runtime and mem-
ory footprint. Herein, runtime refers to the total elapsed wall-clock
time, while memory footprint corresponds to the aggregate memory
high water mark across all MPI ranks. The configuration adopted
for this test include:

• Original: Here, NekRS runs sans the SENSEI interface,
serving as the baseline.

• Checkpointing: This configuration witnesses NekRS run
with built-in checkpointing initiated at every n frames. In
this context, checkpointing pertains to the practice of peri-
odically storing raw simulation data onto disk.

• Catalyst: In this mode, NekRS, integrated with the SENSEI
interface, leverages the Catalyst AnalysisAdaptor. Data is
copied from the GPU to the CPU and subsequently passed to
SENSEI, which employs the Catalyst Adaptor for rendering
tasks.

The test bench used to test our instrumentation was the "pb146"
use case simulation, an inherent example within the NekRS suite.
This simulation models a computational fluid dynamics represen-
tation of a pebble-bed nuclear reactor core, housing 146 spherical

Figure 1: Visualization of the pb146 use case simulation, illus-
trating flow dynamics within a pebble-bed nuclear reactor.

pebbles (Figure 1), and runs on the GPUs. Such a simulation is of
particular interest, given the growing interest in advanced carbon-
neutral nuclear fission reactors [20]. For all configurations, we
allowed the simulation to execute for 3,000 timesteps, instigating
either checkpointing or in situ processes at 100 timestep intervals.

Trials were conducted on 70 nodes (12.5% of Polaris, constituting
280 ranks), 140 nodes (25% of Polaris, which is 560 ranks), and 280
nodes (50% of Polaris, which is 1120 ranks) under both Catalyst and
Checkpointing configurations. The elapsed time for the Original
configuration was deduced by subtracting the Checkpointing time
from the cumulative elapsed time. The outcome is depicted in Figure
2. As expected, the Original configuration showcased optimal time
efficiency, unburdened by I/O or in situ processing overheads. In
juxtaposition, the Catalyst approach bore a slight overhead when
pitted against Checkpointing. However, it’s crucial to highlight
that the storage demand for Catalyst was a mere 6.5MB, in stark
contrast to the whopping 19GB necessitated by Checkpointing.
This signifies that, while the computational overheads of in situ
almost mirror those of Checkpointing, they accomplish this at an
impressive storage economy, nearly three orders of magnitude less.
Delving deeper, Figure 3 illustrates that Catalyst’s CPU memory
overhead is approximately 25% greater. This escalation is rational,
given the need to transition data from GPU to CPU and the inherent
overhead accompanying Catalyst operations.

Mateevitsi et al.

Figure 2: Comparison of time-to-solution across 280, 560 and
1,120 rank runs for Catalyst, Checkpointing, and Original
configurations.

Figure 3: Memory usage comparison between the 280, 560
and 1,120 rank runs for both Catalyst and Checkpointing
configurations.

4.2 In transit Mesoscale case
Rayleigh-Bénard convection (RBC) is one of the classical natural
convection types in fluid thermodynamics and has been widely
studied (Fig. 4). A basic setup leading to RBC is a fluid heated from
below (i.e., perpendicular to the direction of gravity). Depending
on the so-called Rayleigh number (Ra), the heat transfer in such

a setup is dominated either by conduction (low Ra) or convection
(high Ra), and a so-called Bénard cell is formed.

Figure 4: Side view visualization of a RBC case.

Numerically, high Ra setups are very interesting because these
flows are highly turbulent, leading to a large separation of scales.
Therefore, large meshes with high resolution are required and sim-
ulations are only possible with supercomputers, making it a perfect
example for our workflow. A recent example of RBC computed
on supercomputers used parameters relevant to conditions at the
Sun’s surface, resulting in so-called mesoscale convection [22].

For our scaling measurements, NekRS-SENSEI is complemented
by ADIOS2 (v.2.9.1) for data transport, resulting in an in transit vi-
sualization workflow. A major advantage of the in-transit workflow
is that the memory available for simulation nodes is independent of
the number of visualization cores/nodes. Since available memory is
often one of the limiting parameters for simulation size, this avoids
unnecessary trade-offs between simulation size and visualization
speed. The endpoint of our workflow is always a SENSEI data con-
sumer, and the ratio of simulation nodes to endpoint nodes is 4:1
in all cases.

The Sustainable Staging Transport (SST) engine with its classic
streaming data architecture is selected as the ADIOS2 engine. It is
configured to communicate via UCX for data transport and is set
to use TCP sockets on Infiniband for control operations and BP as
a data marshaling option.

This in-transit workflow is evaluated using three measurement
points:

• No Transport: For this reference measurement, no SEN-
SEI analysis adapter is enabled in the SENSEI runtime XML
configuration. However, SENSEI is still used for the mea-
surement.

• Checkpointing: The SENSEI endpoint is configured to
write the pressure and velocity fields to the storage system
as VTU files.

• Catalyst: The SENSEI endpoint receives the data from
NekRS-SENSEI and renders two images using ParaView
over Python.

As before for the in situ case, our analysis for the in transit case
focuses on the overhead in terms of time (Fig. 5) and memory (Fig. 6)

Scaling Computational Fluid Dynamics: In Situ Visualization of NekRS using SENSEI

caused by the visualization for the simulation node. Furthermore,
the scalability is evaluated by means of weak scaling, i.e. the the-
oretical load per node is kept constant as the number of nodes is
increased.

Figure 5: Measurement of the mean time per timestep on the
NekRS-SENSEI simulation nodes. Each rank represents one
GPU.

Figure 6: Measurement of the main memory footprint per
NekRS-SENSEI simulation node. Each rank represents one
GPU.

The measurements shown in Figure 5 highlight two important
points for the in transit workflow. First, the times for the Catalyst

and Checkpointing measurement points are very similar, meaning
that the in transit overhead is small. Second, the times for increasing
nodes do not increase significantly. Therefore, weak scaling works
well, and it can be assumed that the workflow will work for even
larger setups.

This result is also supported by Figure 6. The memory consump-
tion for Catalyst and No Transport is very similar. The memory
overhead of Checkpointing is visible, but not very large. Again, note
that the memory available for the simulation nodes is independent
of the number of visualizers.

5 DISCUSSION AND CONCLUSION
Across both the in situ Pebble-bed reactor case and the in transit
Mesoscale case, we have evaluated the computational paradigms
that leverage contemporary in situ and in transit visualization
methodologies. This exploration aimed to balance computational
efficiency, storage necessities, and effective visualization in the
dynamic landscape of high-performance computing.

A recurring theme in our assessments is the value that advanced
visualization brings to computational workloads. Whether analyz-
ing the flow dynamics within a pebble-bed reactor or exploring
the turbulent flows of Rayleigh-Bénard convection, the ability to
"see" the data in real-time significantly augments our analytical ca-
pacities. Both case studies underscore the importance of managing
computational efficiency in conjunction with data storage and vi-
sualization requirements. The Catalyst approach in the Pebble-bed
reactor case presented an impressive storage economy, demonstrat-
ing that efficient visualization doesn’t need to come at the expense
of increased storage demands. Similarly, the in-transit approach
for the Mesoscale case showed that with the right tools and con-
figuration, overheads can be minimized, preserving the sanctity
of computational resources. One of the key markers of success for
any high-performance computing methodology is scalability. Our
results, especially in the context of the in-transit visualization of
Rayleigh-Bénard convection, attest to the fact that these approaches
are not merely academic exercises but are scalable, efficient, and
ready for the rigors of future complex simulations.

In conclusion, as the gap between I/O and computational de-
mands widens, methodologies like in situ and in transit analysis
and visualization offer promising pathways. Our findings demon-
strate that with careful configuration, integration of advanced tools,
and an understanding of the underlying phenomena, we can achieve
computational efficiency without compromising on visualization
efficacy. As computational simulations become even more intricate
and demand increased resources, such approaches will be pivotal
in advancing scientific understanding.

ACKNOWLEDGMENTS
This work was supported by and used resources of the Argonne
Leadership Computing Facility, which is a U.S. Department of
Energy Office of Science User Facility supported under Contract
DE-AC02- 06CH11357. This work was supported by Northern Illi-
nois University. This work was supported in part by the Direc-
tor, Office of Science, Office of Advanced Scientific Computing
Research, of the U.S. Department of Energy under Contract DE-
AC02-06CH11357, through the grant “Scalable Analysis Methods

Mateevitsi et al.

and In Situ Infrastructure for Extreme Scale Knowledge Discovery”,
program manager Dr. Margaret Lenz. The authors from JSC ac-
knowledge computing time grants for the project TurbulenceSL by
the JARA-HPC Vergabegremium provided on the JARA-HPC Parti-
tion part of the supercomputer JURECA at Jülich Supercomputing
Centre, Forschungszentrum Jülich, the Gauss Centre for Super-
computing e.V. (www.gauss-centre.eu) for funding this project by
providing computing time on the GCS Supercomputer JUWELS at
Jülich Supercomputing Centre (JSC), and funding from the Euro-
pean Union’s Horizon 2020 research and innovation program un-
der the Center of Excellence in Combustion (CoEC) project, grant
agreement no. 952181. Support by the Joint Laboratory for Extreme
Scale Computing (JLESC, https://jlesc.github.io/) for traveling is
acknowledged.

REFERENCES
[1] John David Anderson and John Wendt. 1995. Computational fluid dynamics.

Vol. 206. Springer.
[2] Marco Atzori, Wiebke Köpp, Steven W. D. Chien, Daniele Massaro, Fermín

Mallor, Adam Peplinski, Mohamad Rezaei, Niclas Jansson, Stefano Markidis,
Ricardo Vinuesa, Erwin Laure, Philipp Schlatter, and Tino Weinkauf. 2022. In
situ visualization of large-scale turbulence simulations in Nek5000 with ParaView
Catalyst. The Journal of Supercomputing 78, 3 (Feb. 2022), 3605–3620. https:
//doi.org/10.1007/s11227-021-03990-3

[3] Utkarsh Ayachit, Andrew Bauer, Berk Geveci, Patrick O’Leary, Kenneth More-
land, Nathan Fabian, and Jeffrey Mauldin. 2015. ParaView Catalyst: Enabling
In Situ Data Analysis and Visualization. In Proceedings of the First Workshop
on In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization
(ISAV2015). Association for Computing Machinery, New York, NY, USA, 25–29.
https://doi.org/10.1145/2828612.2828624

[4] Utkarsh Ayachit, Brad Whitlock, Matthew Wolf, Burlen Loring, Berk Geveci,
David Lonie, and E. Wes Bethel. 2016. The SENSEI Generic In Situ Interface.
In 2016 Second Workshop on In Situ Infrastructures for Enabling Extreme-Scale
Analysis and Visualization (ISAV). 40–44. https://doi.org/10.1109/ISAV.2016.013

[5] Bennett Bernardoni, Nicola Ferrier, Joseph Insley, Michael E Papka, Saumil Patel,
and Silvio Rizzi. 2018. In situ visualization and analysis to design large scale
experiments in computational fluid dynamics. In 2018 IEEE 8th Symposium on
Large Data Analysis and Visualization (LDAV). IEEE, 94–95.

[6] Hank Childs. 2012. In Situ Processing. (Nov. 2012). https://escholarship.org/uc/
item/3st8x19d

[7] Hank Childs. 2012. VisIt: An End-User Tool for Visualizing and Analyzing Very
Large Data. (Nov. 2012). https://escholarship.org/uc/item/69r5m58v

[8] Paul Fischer, Stefan Kerkemeier, Misun Min, Yu-Hsiang Lan, Malachi Phillips,
Thilina Rathnayake, Elia Merzari, Ananias Tomboulides, Ali Karakus, Noel
Chalmers, and Tim Warburton. 2022. NekRS, a GPU-accelerated spectral el-
ement Navier–Stokes solver. Parallel Comput. 114 (Dec. 2022), 102982. https:
//doi.org/10.1016/j.parco.2022.102982

[9] Paul Fischer, Einar M. Ronquist, Daniel Dewey, and Anthony T. Patera. 1988.
Spectral element methods: Algorithms and architectures. Technical Report NAS
1.26:182701. https://ntrs.nasa.gov/citations/19880011494 NTRS Author Affil-
iations: Massachusetts Inst. of Tech. NTRS Document ID: 19880011494 NTRS
Research Center: Legacy CDMS (CDMS).

[10] Paul Frederick Fischer. 1989. Spectral element solution of the Navier-Stokes equa-
tions on high performance distributed-memory parallel processors. PhD Thesis.
Massachusetts Institute of Technology.

[11] A. Karakus, N. Chalmers, K. Świrydowicz, and T. Warburton. 2019. A GPU
accelerated discontinuous Galerkin incompressible flow solver. J. Comput. Phys.
390 (Aug. 2019), 380–404. https://doi.org/10.1016/j.jcp.2019.04.010

[12] Essam E. Khalil. 2021. CFD History and Applications. ARCHIVES OF AKADEMIA
BARU ARTICLES 4, 2 (July 2021), 43–46. https://www.akademiabaru.com/index.
php/archives/article/view/278 Number: 2.

[13] T Kuhlen, R Pajarola, and K Zhou. 2011. Parallel in situ coupling of simulation
with a fully featured visualization system. In Proceedings of the 11th Eurographics
Conference on Parallel Graphics and Visualization (EGPGV), Vol. 10. Eurographics
Association Aire-la-Ville, Switzerland, 101–109.

[14] Matthew Larsen, Eric Brugger, Hank Childs, and Cyrus Harrison. 2022. Ascent:
A Flyweight In Situ Library for Exascale Simulations. In In Situ Visualization for
Computational Science (Mathematics and Visualization), Hank Childs, Janine C.
Bennett, and Christoph Garth (Eds.). Springer International Publishing, Cham,
255–279. https://doi.org/10.1007/978-3-030-81627-8_12

[15] Kwan-Liu Ma, Chaoli Wang, Hongfeng Yu, and Anna Tikhonova. 2007. In-
situ processing and visualization for ultrascale simulations. Journal of Physics:

Conference Series 78, 1 (July 2007), 012043. https://doi.org/10.1088/1742-6596/
78/1/012043

[16] Victor A. Mateevitsi, Mathis Bode, Nicola Ferrier, Paul Fischer, Jens Henrik
Göbbert, Joseph A. Insley, Yu-Hsiang Lan, Misun Min, Michael E. Papka, Saumil
Patel, Silvio Rizzi, and Jonathan Windgassen. 2023. Software and Analysis for
paper: Scaling Computational Fluid Dynamics: In Situ Visualization of NekRS
using SENSEI. https://doi.org/10.5281/zenodo.8377974

[17] David Medina. 2015. OKL: A Unified Language for Parallel Architectures. (June
2015). https://scholarship.rice.edu/handle/1911/102233 Accepted: 2018-06-
19T17:49:54Z.

[18] David S. Medina, Amik St-Cyr, and T. Warburton. 2014. OCCA: A unified
approach to multi-threading languages. https://doi.org/10.48550/arXiv.1403.0968
arXiv:1403.0968 [cs].

[19] Paul Messina. 2017. The Exascale Computing Project. Computing in Science
& Engineering 19, 3 (May 2017), 63–67. https://doi.org/10.1109/MCSE.2017.57
Conference Name: Computing in Science & Engineering.

[20] MisunMin, Yu-Hsiang Lan, Paul Fischer, EliaMerzari, Stefan Kerkemeier, Malachi
Phillips, Thilina Rathnayake, April Novak, Derek Gaston, Noel Chalmers, and
Tim Warburton. 2022. Optimization of full-core reactor simulations on summit.
In Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis (SC ’22). IEEE Press, Dallas, Texas, 1–11.

[21] KennethMoreland, Christopher Sewell, WilliamUsher, Li-ta Lo, JeremyMeredith,
David Pugmire, James Kress, Hendrik Schroots, Kwan-Liu Ma, Hank Childs,
Matthew Larsen, Chun-Ming Chen, RobertMaynard, and Berk Geveci. 2016. VTK-
m: Accelerating the Visualization Toolkit for Massively Threaded Architectures.
IEEE Computer Graphics and Applications 36, 3 (May 2016), 48–58. https://
doi.org/10.1109/MCG.2016.48 Conference Name: IEEE Computer Graphics and
Applications.

[22] Ambrish Pandey, Dmitry Krasnov, Katepalli R Sreenivasan, and Jörg Schumacher.
2022. Convective mesoscale turbulence at very low Prandtl numbers. Journal of
Fluid Mechanics 948 (2022), A23. Publisher: Cambridge University Press.

[23] Rick Stevens, Jini Ramprakash, Paul Messina, Michael Papka, and Katherine Riley.
2019. Aurora: Argonne’s Next-Generation Exascale Supercomputer. Technical
Report. Argonne National Lab. (ANL), Argonne, IL (United States). https://www.
osti.gov/sciencecinema/biblio/1562918

[24] I Wald, GP Johnson, J Amstutz, C Brownlee, A Knoll, J Jeffers, J Günther, and
P Navratil. 2017. OSPRay - A CPU Ray Tracing Framework for Scientific Visu-
alization. IEEE Transactions on Visualization and Computer Graphics 23, 1 (Jan.
2017), 931–940. https://doi.org/10.1109/TVCG.2016.2599041 Conference Name:
IEEE Transactions on Visualization and Computer Graphics.

[25] E. E. Zajac. 1964. Computer-made perspective movies as a scientific and
communication tool. Commun. ACM 7, 3 (March 1964), 169–170. https:
//doi.org/10.1145/363958.363993

[26] Kasia Świrydowicz, Noel Chalmers, Ali Karakus, and Tim Warburton. 2019.
Acceleration of tensor-product operations for high-order finite element methods.
The International Journal of High Performance Computing Applications 33, 4 (July
2019), 735–757. https://doi.org/10.1177/1094342018816368 Publisher: SAGE
Publications Ltd STM.

https://doi.org/10.1007/s11227-021-03990-3
https://doi.org/10.1007/s11227-021-03990-3
https://doi.org/10.1145/2828612.2828624
https://doi.org/10.1109/ISAV.2016.013
https://escholarship.org/uc/item/3st8x19d
https://escholarship.org/uc/item/3st8x19d
https://escholarship.org/uc/item/69r5m58v
https://doi.org/10.1016/j.parco.2022.102982
https://doi.org/10.1016/j.parco.2022.102982
https://ntrs.nasa.gov/citations/19880011494
https://doi.org/10.1016/j.jcp.2019.04.010
https://www.akademiabaru.com/index.php/archives/article/view/278
https://www.akademiabaru.com/index.php/archives/article/view/278
https://doi.org/10.1007/978-3-030-81627-8_12
https://doi.org/10.1088/1742-6596/78/1/012043
https://doi.org/10.1088/1742-6596/78/1/012043
https://doi.org/10.5281/zenodo.8377974
https://scholarship.rice.edu/handle/1911/102233
https://doi.org/10.48550/arXiv.1403.0968
https://doi.org/10.1109/MCSE.2017.57
https://doi.org/10.1109/MCG.2016.48
https://doi.org/10.1109/MCG.2016.48
https://www.osti.gov/sciencecinema/biblio/1562918
https://www.osti.gov/sciencecinema/biblio/1562918
https://doi.org/10.1109/TVCG.2016.2599041
https://doi.org/10.1145/363958.363993
https://doi.org/10.1145/363958.363993
https://doi.org/10.1177/1094342018816368

	Abstract
	1 Introduction
	2 Background
	2.1 In situ libraries
	2.2 Computational Fluid Dynamics

	3 Methodology
	3.1 AnalysisAdaptor
	3.2 DataAdaptor

	4 Results
	4.1 In situ Pebble-bed reactor case
	4.2 In transit Mesoscale case

	5 Discussion and Conclusion
	Acknowledgments
	References

