
Evaluating the performance portability of SYCL across CPUs and
GPUs on bandwidth-bound applications

István Z Reguly
reguly.istvan@itk.ppke.hu

Pázmány Péter Catholic University, Faculty of Information Technology and Bionics
Budapest, Hungary

ABSTRACT
In this paper, we evaluate the portability of the SYCL program-
ming model on some of the latest CPUs and GPUs from a wide
range of vendors, utilizing the two main compilers: DPC++ and
hipSYCL/OpenSYCL. Both compilers currently support GPUs from
all three major vendors; we evaluate performance on the Intel(R)
Data Center GPU Max 1100, the NVIDIA A100 GPU, and the AMD
MI250X GPU. Support on CPUs currently is less established, with
DPC++ only supporting x86 CPUs through OpenCL, however,
OpenSYCL does have an OpenMP backend capable of targeting
all modern CPUs; we benchmark the Intel Xeon Platinum 8360Y
Processor (Ice Lake), the AMD EPYC 9V33X (Genoa-X), and the
Ampere Altra platforms. We study a range of primarily bandwidth-
bound applications implemented using the OPS and OP2 DSLs,
evaluate different formulations in SYCL, and contrast their per-
formance to “native” programming approaches where available
(CUDA/HIP/OpenMP). On GPU architectures SCYL on average
even slightly outperforms native approaches, while on CPUs it falls
behind - highlighting a continued need for improving CPU perfor-
mance.While SYCL does not solve all the challenges of performance
portability (e.g. needing different algorithms on different hardware),
it does provide a single programmingmodel and ecosystem to target
most current HPC architectures productively.

CCS CONCEPTS
• Software and its engineering → Parallel programming lan-
guages; Distributed programming languages; • Computing
methodologies→ Vector / streaming algorithms.

KEYWORDS
Benchmarking, CPU, GPU, portability, SYCL, CFD

ACM Reference Format:
István Z Reguly. 2023. Evaluating the performance portability of SYCL across
CPUs and GPUs on bandwidth-bound applications. In Workshops of The
International Conference on High Performance Computing, Network, Storage,
and Analysis (SC-W 2023), November 12–17, 2023, Denver, CO, USA. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3624062.3624195

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SC-W 2023, November 12–17, 2023, Denver, CO, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0785-8/23/11. . . $15.00
https://doi.org/10.1145/3624062.3624195

1 INTRODUCTION
Performance portability of scientific codes has been an increasing
challenge ever since the emergence of accelerators. There has been
an explosion of programming approaches that target some of the
existing hardware architectures - developers of high performance
computing (HPC) codes on one hand want to exploit the perfor-
mance offered by the latest and greatest architectures, but on the
other hand cannot afford to keep refactoring their codes, or even
keep multiple implementations around.

Over time, it has become clear that the level of abstraction of
programming models (lower level models expose a wider range of
capabilities) is proportional to their portability; e.g. CUDA allows
access to the full range of features on NVIDIA GPUs, but is not
portable to any other vendors. Approaches at higher levels of ab-
straction, such as OpenMP do enable a better degree of portability,
though still not trivially, as it uses different pragmas and clauses for
CPUs and offload targets. KOKKOS [6] represents an even higher
level of abstraction, and is portable across most shared-memory
parallel architectures. DSLs, such as OP2 and OPS [17, 19] further
increase the level of abstraction, narrowing it to two of the compu-
tational dwarfs [2], but allow portability not just shared memory,
but distributed memory systems too.

At the lower levels of abstraction (SIMT - Single Instruction Mul-
tiple Threads) there was an early effort in OpenCL [14] to deliver
portability, but due to less than enthusiastic support from hardware
vendors and the HPC community, it never took a significant share
of used programming models in the HPC space. The SYCL and SYCL
2020 standards adopted a modern C++ interface to make the SIMT
model more easily available. Intel’s OneAPI effort in particular al-
lows a single source code to be portable across most modern HPC
platforms, including support for native hardware libraries (such as
BLAS) with a single interface - allowing much easier access to a
large existing software ecosystem.

As part of OneAPI, Intel develops the OneAPI DPC++/C++ com-
piler (to which we will refer to as the DPC++ compiler later on), a
version of which is available open source [8], currently supports In-
tel/NVIDIA/AMD GPU architectures by directly compiling to their
respective intermediate representations or to SPIR-V[11]. CPU ar-
chitectures are supported by targeting OpenCL drivers capable of
accepting SPIR-V - currently the only well-established drivers are
from Intel, targeting x86 CPUs. The OpenSYCL [1] project similarly
compiles code to device-specific IRs in LLVM for GPUs, but is also
capable of utilizing OpenMP to target any CPUs, including ARM.

There have been numerous papers exploring porting CUDA or
other codes to SYCL [4, 20], and some that study portability across
different platforms [7, 10] for a particular application. Our work is

https://orcid.org/0000-0002-4385-4204
https://doi.org/10.1145/3624062.3624195
https://doi.org/10.1145/3624062.3624195

SC-W 2023, November 12–17, 2023, Denver, CO, USA Istvan Reguly

AMD
MI250X
(1 GCD)

NVIDIA
A100 40GB

Intel Data Center
GPU Max 1100

Intel Xeon
Platinum 8360Y
dual-socket

AMD EPYC
9V33X
dual-socket

Ampere
Altra

single socket
1290 GB/s 1310 GB/s 803 GB/s 296 GB/s 561 GB/s 167 GB/s

Table 1: Achieved bandwidth on STREAM Triad, measured with BabelStream.

novel in that it takes a range of different bandwidth-bound appli-
cations (7 in total), and evaluates performance portability across
the widest range of hardware architectures yet, including the latest
NVIDIA A100, AMD MI250X, and Intel Data Center GPU Max 1100
GPUs, as well as some of the latest avilable CPUs from Intel (Ice
Lake), AMD (Genoa-X), and ARM (Ampere Altra). We study the
effects of different formalizations of SYCL code on performance
across different hardware and compilers, and contrast them to “na-
tive” programming approaches.

The rest of the paper is structured as follows: Section 2 intro-
duces the hardware platforms studied, Section 3 presents the appli-
cations and their parallel implementations that we evaluate, Section
4 conducts a detailed analysis of results, comparing applications,
parallelizations, and compilers. Finally, Section 5 draws conclusions.

2 TEST HARDWARE
To conduct this study, the following hardware platforms and soft-
ware configurations were evaluated:

(1) Intel Xeon Platinum 8360Y Processor, available in the Baskerville
cluster at the University of Birmingham. Two sockets, each
with 36 cores, Hyperthreading on. 512 GB DDR4 RAM. Clock
frequencies between 2.4 GHz (base frequency) - 2.8 GHz
(all-core turbo), giving a theoretical 11-13 FP32 TFLOPS/s.
Software: RHEL 8.5, Intel OneAPI Base and HPC toolkits,
2023.1 (including Intel MPI). Benchmarked July 11, 2023.

(2) AMD EPYC 9V33X with 3D V-Cache Technology, available
as an Azure HB176rs v4 virtual machine. Two sockets, each
with 88 available cores, Hyperthreading off. 2x2 NUMA re-
gions, with 704 GB DDR5 RAM. Clock frequencies between
2.4 GHz (base frequency) - 3.7 GHz (turbo), giving a theo-
retical 9.22-14.22 FP32 TFLOPS/s. Software: Ubuntu 22.04,
GCC 12.3 and AMD Optimizing C/C++ Compiler 4.0. Bench-
marked Aug 4, 2023.

(3) Ampere Altra, available as an Azure D64ps v5 virtual ma-
chine. One socket with 64 available cores, Hyperthreading
off. Single NUMA region, with 208 GB DDR4 RAM. Clock
frequency at 3.0 GHz, giving a theoretical 3 FP32 TFLOPS/s.
Software: Ubuntu 22.04, GCC 12.3 and ARMCompiler 23.04.1
Compiler Benchmarked Aug 5, 2023.

(4) AMD MI250X GPU, available on the LUMI (Cray EX) super-
computer. Only a single GCD was benchmarked. 110 com-
pute units, 7040 streaming processors, running at up to 1700
MHz, giving 23.95 peak FP32 TFLOPS/s. Software: RoCM
5.4.2, Cray Programming Environment 22.12. Benchmarked
Apr 15, 2023.

(5) NVIDIA A100 40GB PCI-e GPU, 108 streaming processors,
6912 CUDA cores, running at up to 1410 MHz, giving 19.49
peak FP32 TFLOPS/s. Software: Centos 8 Stream, CUDA 11.6,
Benchmarked Jun 10, 2023.

(6) Intel Data Center GPU Max 1100, available in the Intel De-
veloper Cloud. 56 𝑋𝑒 cores, running at up to 1550 MHz.
Software: Ubuntu 22.04, Intel OneAPI Base and HPC toolkits,
2023.1 (including Intel MPI). Benchmarked Aug 5, 2023.

Since the applications studies are primarily bound by memory
bandwidth, the achievable peak bandwidth on these platforms is of
key interest. To measure this, we used BabelStream [5], compiled
with the native parallelizations and compilers, and report them
in Table 1 - we will use these figures later to compute achieved
fraction of peak, and refer it to as achieved architectural efficiency.

3 APPLICATIONS AND PARALLELIZATIONS
The benchmarked applications include a range of primarily bandwidth-
limited applications, with varying levels of computational intensity
and complexity. Structured mesh applications are structurally sim-
pler, whereas the MG-CFD unstructured mesh requires more com-
plex addressing and the resolution of race conditions. The codes
and their key properties as are follows:

(1) CloverLeaf 2D/3D [13] – structured-mesh Eulerian hydrody-
namics simulation, representative of nuclear security codes.
Mostly bandwidth-bound, with some operations on faces/edges
that may be latency bound. Double precision, 76802(2D),
4083(3D) problem size, 50 iterations.

(2) OpenSBLI SA & SN [9] – structured mesh finite difference
Navier-Stokes solver for capturing shock-boundary layer
interactions. Production code with 2 varians – Store All
(SA), which is bandwidth-bound, and Store None (SN), which
recomputes derivatives on the fly, reducing data movement
pressure, but still mostly bandwidth bound. Double precision,
3203 problem size, 20 time iterations.

(3) RTM - proxy code for a Reverse TimeMigration application’s
forward pass, uses a complex 8th order finite difference sten-
cil. Sensitive to cache locality and vectorization, has large
communications volume over MPI. Single precision, 3203
problem size, 10 time iterations.

(4) Acoustic – structured-mesh high-order (8th) finite difference
acoustic wave propagation solver. Bandwidth and cache lo-
cality bound, with large communications volume over MPI.
Single precision, 10003 problem size, 30 time iterations.

(5) MG-CFD [15] – unstructured mesh finite volume Euler equa-
tions solver with multigrid – proxy for Rolls-Royce’s CFD
simulator Hydra. Bound by latencies and indirect memory ac-
cesses. Double precision, NASA Rotor37 case with 8 million
vertices, 25 iterations.

All codes are implemented in the OPS (structured mesh) and OP2
(unstructured mesh) Domain Specific Languages [17, 19], which
allows us to generate different parallelizations based on the high-
level description of the computations. As presented in earlier work,
OP2 and OPS have been shown to deliver performance that closely

Evaluating the performance portability of SYCL across CPUs and GPUs on bandwidth-bound applications SC-W 2023, November 12–17, 2023, Denver, CO, USA

matches hand-written and tuned implementations [12, 18, 19]. Both
DSLs support the MPI and MPI+X execution models, where X can
be OpenMP, CUDA/HIP, SYCL, and more.

OPS follows a standard Cartesian decomposition for structured
mesh stencil codes, with shared memory parallelizations of 2D/3D
loop nests. For SYCL specifically, we can generate two variants: a
“flat” parallel implementation, wherewe pass a single cl::sycl::range
to parallel_for, as well as an “nd_range” version, where work-
group shape is specified by passing a cl::sycl::nd_range to
parallel_for. The key difference between the two approaches
is that the “flat” version leaves the exact choice of workgroup shape
for each individual kernel up to the runtime. The “nd_range” ver-
sion in contrast requires the programmer to specify the shape, and
whereas this can be done for each an every kernel separately in
principle, in our tests we only tune for the best performing shape
for the entire application.

Block 0
Block 1

Block 2

Block 0
Block 1

Block 2

Figure 1: Colored execution strategies for unstructured mesh
computations - global (left) and hierarchical (middle and
right)

Unstructured mesh computations on the other hand introduce
data-driven dependencies: there are mapping tables describing con-
nectivity between different sets (e.g. edges to vertices). In distributed
systems, the problem is decomposed using a graph partitioner such
as PT-Scotch [3], and uses a standard owner-compute approach
[17]. In sharedmemory parallel environment there are race conflicts
to avoid: for example, when executing two edges that indirectly
increment data on the same vertex. OP2 supports three execution
strategies to resolve these conflicts, as illustrated on Figure 1: (1)
global coloring, where edges are colored so no two edges share the
same vertex - this approach is simple, but by construction has very
poor data reuse. (2) hierarchical coloring, where edges are broken
up into groups (blocks), blocks are colored so no two blocks of
the same color share a vertex, and subsequently edges within each
block are colored as well - in hierarchical parallel environments
(GPU threads and thread blocks) this allows for data reuse within
blocks. (3) the use of atomics, where available and performant - this
approach allows for good data locality (given a good mesh ordering)
but may be limited by the throughput of atomic operations.

4 PERFORMANCE RESULTS
4.1 Structured mesh applications on GPU

architectures
The structurally simpler problems fall in the category of structured
mesh stencil computations - although there is still significant di-
versity between applications in terms of computational intensity
and cost of handling boundary conditions. Overall runtime results

are shown in Figures 2, 3, and 4 for the different applications and
parallelizations.

CloverLeaf 2D and 3D have low computational intensity, very
simple stencils, and a large fraction of loops operating on the bound-
ary of the domain. The NVIDIA A100 achieves up to 92% and 82%
architectural efficiency respectively - with 1.5% and 7.8% of time
spent in boundary update kernels. While the native CUDA does
perform best, the SYCL nd_range versions with both compilers are
within 10%. The DPC++ runtime chooses very poor workgroup
sizes for a few kernels, making the 2D version with the flat for-
mulation perform very poorly - similarly the OpenSYCL version
chooses suboptimal workgroup sizes in 3D, resulting in an almost
50% slowdown. The RTM and Acoustic applications both achieve up
to 48% architectural efficiency - here SYCL compiled with DPC++ is
highly competitive, outperforming CUDA on Acoustic by 10%. On
OpenSBLI, the more compute-intensive formulation StoreNone (SN)
achieves 74% efficiency, whereas the StoreAll (SA) variant achieves
92% - there is significantly less variation for the less complex SA
version in performance between different compilers and variations
compared to the SN version, with only OpenSYCL + flat underper-
forming due to poor workgroup size choice. On average, the DPC++
compiler (with nd_range) is only 1.2% slower than native CUDA,
and OpenSYCL with nd_range is 5.3% slower.

Performance on the AMD MI250X structurally paints a similar
picture, with SYCL flat formulations performing poorly in similar
combinations as on the A100. However, in contrast to the A100, the
achieved architectural efficiency is consistently lower, with Clover-
Leaf 2D/3D at 78% and 56% - computations on the boundary take
significantly longer (2.6% and 11.1% respectively), due to higher
kernel launch latencies. Similarly, RTM and Acoustic achieve 19%
and 30% respectively, OpenSBLI SN achieves 39% and SA 59% effi-
ciency. Both the DPC++ compiler and OpenSYCL offer competitive
performance compared to HIP, particularly the optimized nd_range
variants. Notably on the RTM and Acoustic applications OpenSYCL
performs better than the native HIP by 1.5% and 11% respectively.
Figure 3 also shows runtimes achieved with OpenMP offload, com-
piled with the Cray compilers, showing competitive performance
(though failing on CloverLeaf 3D). On average, the DPC++ compiler
(with nd_range) is 15.9% slower than native HIP, and OpenSYCL
with nd_range is 4.5% slower. In comparison to OpenMP offload
code compiled with Cray, DPC++ is 2.3% slower, but OpenSYCL is
9.1% faster.

On the Intel Data Center GPU Max 1100, the recommended
programming approach is SYCL, but we also compare to OpenMP
offload variants (marked as “native” on plots), compiled with the
OneAPI C/C++ compilers. Overall, efficiency on the Max 1100 is
close to the NVIDIA A100 GPU - with CloverLeaf 2D/3D achieving
82% and 72% respectively, spending the least amount of time in
boundary computations (0.9 and 4.8%). The RTM and Acoustic
applications achieve the highest fraction of peak across all GPUs
(and even CPUs, except for Acoustic on the Genoa-X) at 59% and
53% respectively. The OpenMP offload variant and the SYCL flat
formulations perform consistently worse than the tuned nd_range
variants - and this difference is larger compared to the MI250X and
A100 GPUs (ignoring the extremely poorly performing outliers).
This is mainly because the Max 1100 is more sensitive to the right
choice of workgroup shape, which based on our profiling comes

SC-W 2023, November 12–17, 2023, Denver, CO, USA Istvan Reguly

3.83

7.78

0.61

1.64

3.81 2.79

3.87

7.87

0.62

1.81

3.86 2.54

8.96

0.67

2.31

3.85

3.60

4.07

8.43

0.69

1.64

3.89 2.82

4.26

12.39

0.84

4.22

8.73

3.04

0
2
4
6
8

10
12
14
16
18
20

CloverLeaf CloverLeaf 3D RTM OpenSBLI SN OpenSBLI SA Acoustic

Ru
nt

im
e

(s
ec

on
ds

)

CUDA DPC++ ndrange DPC++ flat OpenSYCL ndrange OpenSYCL flat

Figure 2: Runtime of structured mesh applications on the NVIDIA A100 GPU with different compilers and parallel implemen-
tations

4.60

11.68

1.75

3.18

5.99 4.26

4.92

2.04

3.73

6.01

5.30

5.53

14.16

1.90

3.60

7.17 4.79

15.01

2.16

4.00

6.88

6.604.87

13.03

1.58

3.55

6.53 4.20

6.36

13.04

3.32

3.55

10.78

0
2
4
6
8

10
12
14
16
18
20

CloverLeaf CloverLeaf 3D RTM OpenSBLI SN OpenSBLI SA Acoustic

Ru
nt

im
e

(s
ec

on
ds

)

HIP Cray OMP DPC++ ndrange DPC++ flat OpenSYCL ndrange OpenSYCL flat

Figure 3: Runtime of structured mesh applications on the AMD MI250X GPU (1 GCD) with different compilers and parallel
implementations

down to L1/L2 cache hit rates improving significantly - this is
supported by the fact that the Max 1100 has the largest L2 cache
(at 208 MB), whereas the A100 only has 40 MB, and the MI250X
16 MB. On average, the DPC++ compiler with nd_range is 30.2%
faster than OpenMP offload, and OpenSYCL is 27.6% faster.

When looking at the consistency of achieved performance by
taking the standard deviation of efficiencies of the best variant on
each application, the Max 1100 has an average of 68% (third-best
after Genoa-X’s 79% and the A100’s 73%), but the lowest standard
deviation, at 11.6% (with the Xeon following at 11.8%, and the rest
above 17%).

4.2 Structured mesh applications on CPU
architectures

On CPU architectures the pure MPI and the hybrid MPI+OpenMP
programming approaches are still the most prevalent in the high
performance computing community, with OpenMP often utilized
through a portability layer such as KOKKOS [6]. Therefore, as a
baseline, we evaluate both pure MPI and MPI+OpenMP as imple-
mented by OPS (forcing vectorization on the innermost loop, and
collapsing the outer loops with OpenMP’s collapse clause).

On the Intel Xeon Platinum 8360Y processor, we use the OneAPI
C/C++ compilers (named icx/icpx) and Intel MPI (both from the
2023.1 toolkit) to compile MPI, OpenMP and SYCL (denoted with
DPC++), and OpenSYCL compiled on top of LLVM/Clang 14.0, com-
piling applicationswith the –opensycl-targets=omp.accelerated
switch, targeting LLVM’s libomp. As on GPUs, the overhead of

Evaluating the performance portability of SYCL across CPUs and GPUs on bandwidth-bound applications SC-W 2023, November 12–17, 2023, Denver, CO, USA

8.48

16.66

1.09

5.85

9.66 8.267.13

13.80

0.83

3.11

7.37

3.81

11.38

16.82

0.87

3.42

7.76

4.64

7.08

14.07

0.81

3.42

7.98

4.16

8.09

17.39

0.98

4.69

10.39

5.17

0
2
4
6
8

10
12
14
16
18
20

CloverLeaf CloverLeaf 3D RTM OpenSBLI SN OpenSBLI SA Acoustic

Ru
nt

im
e

(s
)

OpenMP DPC++ ndrange DPC++ flat OpenSYCL ndrange OpenSYCL flat

Figure 4: Runtime of structured mesh applications on the Intel GPU Max 1100 with different compilers and parallel implemen-
tations

20.5

42.9

4.2

9.8

27.0

10.8

20.7

44.7

3.4

10.8

24.4 16.1

24.6

50.1

4.1

11.1

29.7

17.2

25.7

51.9

3.1

10.1

33.1

9.7

22.8

68.9

5.0

13.8

28.5 21.4

25.3

64.4

5.6

14.2

34.1

39.6

0

10

20

30

40

50

60

70

80

CloverLeaf CloverLeaf 3D RTM OpenSBLI SN OpenSBLI SA Acoustic

Ru
nt

im
e

(s
ec

on
ds

)

MPI OpenMP DPCPP ndrange DPCPP flat OpenSYCL ndrange OpenSYCL flat

Figure 5: Runtime of structured mesh applications on the Intel Xeon Platinum 8360Y Processor with different compilers and
parallel implementations

boundary condition handling is relevant here, because DPC++ has
to go through the OpenCL drivers for each kernel launch - on
CloverLeaf 2D these kernels account for 5.4% (nd_range) and 8.7%
(flat) of the runtime, In contrast with MPI+OpenMP only 0.34%
of runtime is spent in boundary loops, and with OpenSYCL 2.5%
(nd_range) and 1.24% (flat) - this is because OpenSYCL maps to
OpenMP at compile-time. For CloverLeaf 3D however, this flips
around, with OpenSYCL spending up to 27% of time in boundary
loops. It is also noteworthy, that reductions take 6-7× more time
with SYCL compared to OpenMP - here we had to use user-defined
binary tree reductions as SYCL 2020’s built-in reductions are not
yet supported in OpenSYCL for this target, and had compilation
issues with DPC++. The other applications show less variability
across different parallelizations; the DPC++ compiler performs 10%
better on the more compute-intensive RTM and Acoustic applica-
tions compared to MPI/MPI+OpenMP due to better vectorization

efficiency. The best performing implementations achieve between
42% (RTM) and 77% (CloverLeaf 2D) efficiency.

Moving on to the the AMD EPYC 9V33X (Genoa-X) processor,
we were able to install and use the OneAPI C/C++ compilers to
run SYCL code, however, as it is not optimized for this hardware,
performance was not ideal. For the baseline, we used the AMD
Optimizing C/C++ Compilers. For CloverLeaf 2D, both DPC++ (flat
variant) and OpenSYCL (either variant) produced code that gave
incorrect results. CloverLeaf 3D worked correctly, but the DPC++
compiler and OpenCL runtime gave significant overheads across
the board - OpenSYCLwith the nd_range optimizationwas however
able to slightly outperform both MPI and MPI+OpenMP. On the
RTM application, MPI+OpenMP outperformed all other variants by
1.46-1.95×, but for other codes the margins are reduced for various
SYCL implementations. For the best variants, Genoa-X achieves up
to 107% efficiency on CloverLeaf 2D thanks to its large L3 cache, its

SC-W 2023, November 12–17, 2023, Denver, CO, USA Istvan Reguly

7.77

20.01

2.31

4.13

11.56

4.28

8.45

19.70

1.27

3.68

9.45

4.42

14.93

31.75

2.48

6.22

18.16

8.64

29.35

2.00

5.28

18.60

4.53

18.49

2.38

5.21

10.86 7.95

1.86

4.02

13.21

20.20

0

5

10

15

20

25

30

35

40

CloverLeaf CloverLeaf 3D RTM OpenSBLI SN OpenSBLI SA Acoustic

Ru
nt

im
e

(s
ec

on
ds

)

MPI OpenMP DPC++ ndrange DPC++ flat OpenSYCL ndrange OpenSYCL flat

Figure 6: Runtime of structured mesh applications on the AMD EPYC 9V33X Processor with different compilers and parallel
implementations

38.0

90.3

8.5

28.4

49.7

30.4

37.0

90.3

7.3

26.1

49.7

30.1

42.7

8.2

32.5

58.8 45.040.0

106.1

8.0

28.0

56.1 43.6

0

20

40

60

80

100

120

CloverLeaf CloverLeaf 3D RTM OpenSBLI SN OpenSBLI SA Acoustic

Ru
nt

im
e

(s
ec

on
ds

)

MPI OpenMP OpenSYCL ndrange OpenSYCL flat

Figure 7: Runtime of structured mesh applications on the Ampere Altra Processor with different compilers and parallel
implementations

lowest is 54% on RTM - on average this platform gave the highest
efficiency at 78%.

Finally, on the Ampere Altra platform we were only able to com-
pare OpenSYCL to MPI/OpenMP (the OneAPI toolkit only supports
x86) - this architecture has a single NUMA node, so we didn’t use
MPI+OpenMP. The SYCL implementations offer competitive per-
formance here as well, being within 10-15% of MPI or OpenMP
for most applications except Acoustic, where auto-vectorization
did not work for SYCL - but it did for MPI/OpenMP. OpenSBLI SN
failed to vectorize across all variants, achieving only 36% efficiency.
The less compute-intensive code achieved 75% (CloverLeaf 2D), 56%
(CloverLeaf 3D) and 55% (OpenSBLI SA).

4.3 Unstructured mesh application - MG-CFD
Due to their complexity, unstructured mesh applications present
more of a challenge to how they can be formulated in a program-
ming model, then mapped to the hardware. As discussed, we have
three distinct parallelization approaches that use different ways of
avoiding race conditions - atomics, global coloring, and hierarchi-
cal coloring. GPUs have hardware support for fast floating-point
atomics (though on the MI250X there are “safe” and “unsafe” ones -
we used the unsafe ones where we could, and got correct results),
CPUs only have support for generic atomics, and with a lower
throughput, but they are functioning and give the correct results.

On Figure 8 we compare different parallelizations and compilers
on GPU architectures - note that there is no “native” version to
compare against on the Intel GPU Max 1100. Here, compilers work
consistently, with a few notable differences. On the AMD MI250X

Evaluating the performance portability of SYCL across CPUs and GPUs on bandwidth-bound applications SC-W 2023, November 12–17, 2023, Denver, CO, USA

1.54

1.43

1.71

1.30

2.97

2.73

1.21

2.69

7.30

3.45

7.87

3.57

5.37

7.45

3.37

5.06

3.19

2.78

4.12 2.74

4.09

3.85 2.70

4.05

0
1
2
3
4
5
6
7
8
9

MI250X A100 MAX 1100

Ru
nt

im
e

(s
ec

on
ds

)

CUDA/HIP atomics DPCPP atomics OpenSYCL atomics

CUDA/HIP global DPCPP global OpenSYCL global

CUDA/HIP hierarchical DPCPP hierarchical OpenSYCL hierarchical

Figure 8: Runtime of MG-CFD (Rotor37) on GPU architectures with different compilers and parallel implementations

5.79 3.36

11.18

5.13 1.80

9.50

4.28 1.88

9.66

10.01

3.05

10.92

4.83

7.50
11.10

11.41

13.43

14.12

14.35

25.39

4.42

13.73

0

5

10

15

20

25

30

Xeon GenoaX Altra

Ru
nt

im
e

(s
ec

on
ds

)

OpenMP MPI MPI+Vec

DPC++ atomics DPC++ global DPC++ hierarchical

OpenSYCL atomics OpenSYCL global OpenSYCL hierarchical

Figure 9: Runtime of MG-CFD (Rotor37) on the CPU architectures with different compilers and parallel implementations

with OpenSYCL, we could not access the unsafe atomics, therefore
got significantly worse throughput with the safe atomics compared
to HIP and DPC++. On the A100, SYCL implementations for all but
one parallelizations and compilers outperformed native CUDA -
with OpenSYCL+atomics 18% faster than CUDA+atomics. Atomics
throughput in the Max 1100 appears to be the limiting factor, as
the performance of hierarchical and global coloring versions are in
line with the performance differences to the A100.

Memory locality is the other key factor determining performance
for MG-CFD. Given the good ordering of the mesh, the atomic
version executes adjacent edges on adjacent threads/work items,
giving good spatial locality for edge-based data and good temporal
locality for vertex-based data. On the MI250X, the profiler reports
this version reading 3500 bytes per wave (64 threads), and a 91%
hit rate in L2. For the global coloring approach adjacent edges have
different colors, and therefore edges executed at the same time
(which have the same color) will not be adjacent, and therefore
both spatial and temporal locality will be poor. On the MI250X,

this version reads 39000 bytes per wave, and achieves only 58% hit
rate in L2. The hierarchical coloring represents a middle ground:
although different thread blocks/workgroups do not share data,
threads/work items in the same workgroup do. On these GPUs the
best performing block size was 256, on CPUs 4096. On the MI250X,
we read 8600 bytes/wave and achieve an 83% hit rate in L2. Similarly,
the A100 GPU has L2 hit rates of 72%/54%/62% respectively for the
three schemes.

We calculate effective bandwidth in OP2 for each kernel as the to-
tal size of datasets accessed (multiplied by 2 if read-write), plus the
size of mapping tables used, divided by execution time. Achieved ef-
fective bandwidth is then weighted averaged over different kernels.
Once again, taking the best performing variants on each architec-
ture, the A100 achieves 86% efficiency, the MI250X 69% efficiency,
and the Max 1100 63% efficiency.

The runtimes of MG-CFD on CPU architectures are shown in
Figure 9; here we see a very mixed picture. First, there are numerous
SYCL variant and compiler combinations which failed to compile

SC-W 2023, November 12–17, 2023, Denver, CO, USA Istvan Reguly

(with internal compiler errors, mostly OpenSYCL), crashed during
execution, or produced incorrect results. These are the same vari-
ants as on the GPUs, where each worked and validated. Second,
while DPC++ was able to vectorize the hierarchical formulation
of SYCL, it was consistently slower than the non-vectorized ver-
sion (which used a workgroup size of 1). In terms of execution
scheme, this non-vectorizing hierarchical version corresponds to
the MPI+OpenMP version, which also does not vectorize kernels
with race conditions. Overall architectural efficiencies on the CPU
platforms for the best implementations (auto-vectorizing MPI) are
108% on the Xeon, 135% on the Genoa-X, and 86% on the Altra -
these high values are due to data re-use across subsequent com-
putational loops on the coarser levels of the multigrid, especially
significant on the Genoa-X thanks to its large L3 cache (2 × 1.1GB).

4.4 Performance portability of SYCL
Of all the programming approaches evaluated, we compared against
non-portable baselines (MPI, MPI+OpenMP on CPUs, CUDA/HIP
on GPUs). It is only SYCL code that one way or another was able
to run on all platforms studied - one may argue that OpenMP is
portable as well, given its support for offload, however different
pragmas have to be used, and support in the open-source LLVM
compilers for NVIDIA GPUs is still not great - we saw runtime
errors for multiple applications (usually too many arguments trying
to be passed at kernel launch). Technically, there was no single
compiler and SYCL formulation that ran across all applications
and architectures (with CloverLeaf 2D only working with DPC++
nd_range on Genoa-X, and Altra not supporting DPC++), yet there
is at least one compiler and SYCL formulation that works across all
architectures and applications.

Figure 10 shows the architectural efficiency (percentage of peak
memory bandwidth) for different combinations on structured mesh
applications (note that “native” on the Intel Data Center GPU Max
1100 is OpenMP offload), and Figure 11 for the unstructured mesh
application MG-CFD.

On structured meshes, the various native approaches on average
achieve 59% efficiency (with a standard deviation of 21%) - in com-
parison DPC++ nd_range achieves 54% (std. 19%) and OpenSYCL
nd_range achieves 52% (std 21%), which is very competitive for
a single code variant across all these applications and platforms.
With the flat variant this reduces to 47% (std 19%) and 41% (std 19%)
with DPC++ and OpenSYCL respectively. There is a significant dif-
ference between CPU and GPU architectures however - nd_range
versions achieve 60% efficiency on average across the different GPU
architectures, whereas only 45%-48% on CPU architectures; there
is only a small difference for the “native” approaches (56% and 61%
respectively). The performance portability metric [16], ignoring
failing/unavailable variants gives 0.49 for DPC++ nd_range and
0.46 for OpenSYCL nd_range, which is reduced to 0.35 and 0.29 for
the flat variants with DPC++ and OpenSYCL respectively. Overall,
SYCL delivers a very good trade-off in terms of portability and
performance for structured mesh applications - part of which is its
support for the “flat” formulation, which lets the runtime libraries
pick the right workgroup shape for a given kernel and the target
platform. While in a few cases this currently leads to significant
performance degradation, which will likely be addressed in future

Na
tiv

e

DP
C+

+
nd

ra
ng

e

DP
C+

+
fla

t

Op
en

SY
CL

 n
dr

an
ge

Op
en

SY
CL

 fl
at

A100 - CloverLeaf
A100 - CloverLeaf 3D

A100 - RTM
A100 - OpenSBLI SN
A100 - OpenSBLI SA

A100 - Acoustic
MI250X - CloverLeaf

MI250X - CloverLeaf 3D
MI250X - RTM

MI250X - OpenSBLI SN
MI250X - OpenSBLI SA

MI250X - Acoustic
Max 1100 - CloverLeaf

Max 1100 - CloverLeaf 3D
Max 1100 - RTM

Max 1100 - OpenSBLI SN
Max 1100 - OpenSBLI SA

Max 1100 - Acoustic
Xeon 8360Y - CloverLeaf

Xeon 8360Y - CloverLeaf 3D
Xeon 8360Y - RTM

Xeon 8360Y - OpenSBLI SN
Xeon 8360Y - OpenSBLI SA

Xeon 8360Y - Acoustic
Genoa-X - CloverLeaf

Genoa-X - CloverLeaf 3D
Genoa-X - RTM

Genoa-X - OpenSBLI SN
Genoa-X - OpenSBLI SA

Genoa-X - Acoustic
Altra - CloverLeaf

Altra - CloverLeaf 3D
Altra - RTM

Altra - OpenSBLI SN
Altra - OpenSBLI SA

Altra - Acoustic

93 92 11 87 83
82 81 71 76 52
92 91 91 90 40
74 67 52 74 29
49 48 44 43 35
44 49 34 44 41
78 65 6 74 57
56 46 43 50 50
59 50 52 54 33
39 34 31 35 35
17 16 14 19 9
29 26 19 30 6
68 81 51 82 72
63 76 62 74 60
59 78 74 72 55
34 63 58 58 42
44 58 55 59 49
24 53 43 48 39
77 64 61 69 62
66 57 55 41 44
64 52 47 54 45
55 48 53 39 38
38 32 42 26 23
51 32 56 26 14
107 56
76 47 51 81 7
87 45 44 75 62
77 45 53 54 70
54 28 34 29 37
67 33 64 36 14
75 65 70
56 37 47
55 47 49
36 29 34
32 28 29
32 22 22

Figure 10: Achieved architectural efficiency on structured
mesh applications

releases, in most cases flat is shown to be competitive with a tuned
nd_range version. Furthermore, with an iterative development ap-
proach one can initially rely on the flat formulation, and move to
nd_range for the most critical kernels, optimizing the shape for the
various targets.

Evaluating the performance portability of SYCL across CPUs and GPUs on bandwidth-bound applications SC-W 2023, November 12–17, 2023, Denver, CO, USA

M
PI

M
PI

+O
pe

nM
P

CU
DA

/H
IP

 a
to

m
ics

CU
DA

/H
IP

 g
lo

ba
l

CU
DA

/H
IP

 h
ie

ra
rc

hi
ca

l
DP

C+
+

at
om

ics
DP

C+
+

gl
ob

al
DP

C+
+

hi
er

ar
ch

ica
l

Op
en

SY
CL

 a
to

m
ics

Op
en

SY
CL

 g
lo

ba
l

Op
en

SY
CL

 h
ie

ra
rc

hi
ca

l

A100

MI250X

Max 1100

Xeon 8360Y

GenoaX

Altra

73 30 37 80 29 38 86 31 39

69 15 33 62 13 26 39 14 28

57 32 42 63 34 42

108 80 46 42 62 42 33

130 73 80 50 21 17 55

85 73 61 32 60

Figure 11: Achieved architectural efficiency on the unstruc-
tured mesh application MG-CFD

The unstructuredmesh applicationMG-CFD paints amoremixed
picture. While on GPUs, SYCL performance is well in line with “na-
tive” approaches (43% efficiency on average with native, 42% with
various SYCL versions), performance on CPUs is less consistent -
even if we ignore the numerous aforementioned compiler/runtime
issues. We can observe that performance on the Xeon 8360Y Pro-
cessor with SYCL is not competitive (SYCL being 30% slower than
OpenMP). On GenoaX, the DPC++ atomics version (which does
vectorize) is competitive with OpenMP, but not with pure MPI.
OpenSYCL on Intel and AMD CPUs is also not competitive - its best
is on GenoaX, where SYCL hierarchical is 31% slower than OpenMP.
On the Ampere Altra the matching hierarchical is still 21% slower
than OpenMP. The performance portability metric for OpenSYCL +
atomics (which worked on all platforms) is 0.42, but when picking
the best available compiler and SYCL variant combination on each
platform, it improves to 0.67.

There is another important implication of these results; a single
algorithmic variant/implementation may be portable across differ-
ent hardware platforms, but aside from simpler cases, it will not
be performance portable. This is well documented in the literature:
massively parallel GPU architectures often require different algo-
rithmic approaches than classical CPU architectures. SYCL does not
solve this problem, but it does give its users a single programming
model and environment to express these different variants and to
target different architectures.

5 CONCLUSIONS
In this paper we have taken a thorough look at the performance
portability of the SYCL programming model across most available

modern HPC architectures, including Intel, AMD, and NVIDIA
GPUs, as well as Intel, AMD, and ARM CPUs. On a set of proxy and
production applications that are mainly bound by the performance
of the memory system, we have contrasted different formulations of
SYCL code, compiled with the two available compilers - DPC++ and
OpenSYCL/hipSYCL. We have also compared these to established
baseline implementations - MPI/MPI+OpenMP on CPUs and native
CUDA/HIP on GPUs.

The results demonstrate very good portability for both struc-
tured and unstructured mesh computations on GPUs, with highly
competitive performance compared to the native (non-portable)
implementations. Across all applications and all platforms, the best
native versions achieve on average 62.7% architectural efficiency,
and the best SYCL implementations achieve 59.1%.

Performance portability is excellent on GPU architectures in
particular, with native approaches only at 57.6% efficiency and
the best SYCL implementation at 62.7%. In contrast, stability and
performance on CPUs is still more of an issue, with several versions
failing to compile, crashing, or giving incorrect results. Achieved
efficiency with native approaches is on average at 67.8% on CPUs,
but with SYCL only at 55.5%. SYCL implementations outperform
native ones in a handful of notable cases - on GPUs (NVIDIA in
particular), this is mainly due to the difference in the compiler
stack, with LLVM applying more powerful optimizations, while on
CPUs SYCL variants sometimes yielded more efficient vectorized
implementations.

Overall utilizing SYCL is a good approach for performance porta-
bility if one needs this level of abstraction, with strong compiler
support when targeting GPUs, but support for CPUs needs to be
improved if SYCL is to become a truly versatile approach. While
SYCL does not solve the performance portability challenge, it does
provide a unified programming model capable of targeting most
modern HPC architectures. Community support for SYCL may still
prove to be a challenge, as currently only two compilers are broadly
available (one by Intel, one an academic research project), which
represents a risk in the longer term.

ACKNOWLEDGMENTS
We are grateful for the support of the OneAPI Innovator program,
and the advice and assistance of Mark Lubin, Xiao Zhu, and Rob
Muller-Albrecht at Intel in particular.

This research was supported by Rolls-Royce plc., and by the UK
EPSRC (EP/S005072/1 – Strategic Partnership in Computational
Science for Advanced Simulation and Modelling of Engineering
Systems – ASiMoV). This work was also supported in part by the
Hungarian Academy of Sciences under Grant POST-COVID2021-64.

REFERENCES
[1] Aksel Alpay and Vincent Heuveline. 2020. SYCL beyond OpenCL: The archi-

tecture, current state and future direction of hipSYCL. In Proceedings of the
International Workshop on OpenCL. 1–1.

[2] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis,
Parry Husbands, Kurt Keutzer, David A Patterson, William Lester Plishker, John
Shalf, Samuel Webb Williams, et al. 2006. The landscape of parallel computing
research: A view from berkeley. (2006).

[3] Cédric Chevalier and François Pellegrini. 2008. PT-Scotch: A tool for efficient
parallel graph ordering. Parallel computing 34, 6-8 (2008), 318–331.

[4] Steffen Christgau and Thomas Steinke. 2020. Porting a legacy cuda stencil code to
oneapi. In 2020 IEEE International Parallel and Distributed Processing Symposium

SC-W 2023, November 12–17, 2023, Denver, CO, USA Istvan Reguly

Workshops (IPDPSW). IEEE, 359–367.
[5] Tom Deakin, James Price, Matt Martineau, and Simon McIntosh-Smith. 2018.

Evaluating attainable memory bandwidth of parallel programming models via
BabelStream. International Journal of Computational Science and Engineering 17,
3 (2018), 247–262.

[6] H Carter Edwards, Christian R Trott, and Daniel Sunderland. 2014. Kokkos:
Enablingmanycore performance portability through polymorphicmemory access
patterns. Journal of parallel and distributed computing 74, 12 (2014), 3202–3216.

[7] Mehdi Goli, Kumudha Narasimhan, Ruyman Reyes, Ben Tracy, Daniel Soutar,
Svetlozar Georgiev, Evarist M Fomenko, and Eugene Chereshnev. 2020. To-
wards cross-platform performance portability of dnn models using sycl. In 2020
IEEE/ACM International Workshop on Performance, Portability and Productivity in
HPC (P3HPC). IEEE, 25–35.

[8] Intel. [n. d.]. Intel/LLVM: Intel staging area for llvm.org contribution. home for
Intel LLVM-based projects. https://github.com/intel/llvm

[9] C. T. Jacobs, S. P. Jammy, and N. D. Sandham. 2017. OpenSBLI: A framework for
the automated derivation and parallel execution of finite difference solvers on
a range of computer architectures. Journal of Computational Science 18 (2017),
12–23. https://doi.org/10.1016/j.jocs.2016.11.001

[10] Zheming Jin and Jeffrey S Vetter. 2022. Understanding performance portability
of bioinformatics applications in sycl on an nvidia gpu. In 2022 IEEE International
Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2190–2195.

[11] John Kessenich, Boaz Ouriel, and Raun Krisch. 2018. Spir-v specification. Khronos
Group 3 (2018), 17.

[12] Richard O Kirk, Gihan R Mudalige, Istvan Z Reguly, Steven A Wright, Matt J
Martineau, and Stephen A Jarvis. 2017. Achieving performance portability for a
heat conduction solver mini-application on modern multi-core systems. In 2017
IEEE International Conference on Cluster Computing (CLUSTER). IEEE, 834–841.

[13] Andrew Mallinson, David A Beckingsale, Wayne Gaudin, J Herdman, John
Levesque, and Stephen A Jarvis. 2013. Cloverleaf: Preparing hydrodynamics
codes for exascale. The Cray User Group 2013 (2013).

[14] Aaftab Munshi. 2009. The opencl specification. In 2009 IEEE Hot Chips 21 Sympo-
sium (HCS). IEEE, 1–314.

[15] AMB Owenson, Steven A Wright, Richard A Bunt, YK Ho, Matthew J Street,
and Stephen A Jarvis. 2020. An unstructured CFD mini-application for the
performance prediction of a production CFD code. Concurrency and Computation:
Practice and Experience 32, 10 (2020), e5443.

[16] S. John Pennycook and Jason D. Sewall. 2021. Revisiting a Metric for Performance
Portability. In 2021 International Workshop on Performance, Portability and Pro-
ductivity in HPC (P3HPC). 1–9. https://doi.org/10.1109/P3HPC54578.2021.00004

[17] I Reguly. 2012. Op2: An active library framework for solving unstructured mesh-
based applications on multi-core and many-core architectures. In 2012 Innovative
Parallel Computing (InPar). IEEE, 1–12.

[18] IZ Reguly, AC Mallinson, WP Gaudin, and JA Herdman. 2015. Performance anal-
ysis of a high-level abstractions-based hydrocode on future computing systems.
In High Performance Computing Systems. Performance Modeling, Benchmarking,
and Simulation: 5th International Workshop, PMBS 2014, New Orleans, LA, USA,
November 16, 2014. Revised Selected Papers 5. Springer, 85–104.

[19] István Z Reguly, Gihan R Mudalige, Michael B Giles, Dan Curran, and Simon
McIntosh-Smith. 2014. The ops domain specific abstraction for multi-block
structured grid computations. In 2014 Fourth International Workshop on Domain-
Specific Languages and High-Level Frameworks for High Performance Computing.
IEEE, 58–67.

[20] Yuhsiang M Tsai, Terry Cojean, and Hartwig Anzt. 2021. Porting sparse linear
algebra to Intel GPUs. In European Conference on Parallel Processing. Springer,
57–68.

https://github.com/intel/llvm
https://doi.org/10.1016/j.jocs.2016.11.001
https://doi.org/10.1109/P3HPC54578.2021.00004

	Abstract
	1 Introduction
	2 Test hardware
	3 Applications and parallelizations
	4 Performance results
	4.1 Structured mesh applications on GPU architectures
	4.2 Structured mesh applications on CPU architectures
	4.3 Unstructured mesh application - MG-CFD
	4.4 Performance portability of SYCL

	5 Conclusions
	Acknowledgments
	References

