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ABSTRACT
Batched linear solvers play a vital role in computational sciences,

especially in the fields of plasma physics and combustion simula-

tions. With the imminent deployment of the Aurora Supercomputer

and other upcoming systems equipped with Intel GPUs, there is a

compelling demand to expand the capabilities of these solvers for

Intel GPU architectures.

In this paper, we present our efforts in porting and optimizing

the batched iterative solvers on Intel GPUs using the SYCL program-

ming model. These new solvers achieve impressive performance

on the Intel GPU Max 1550s (Ponte Vecchio GPUs) which surpass

our previous CUDA implementation on NVIDIA H100 GPUs by

an average of 2.4x for the PeleLM application inputs. The batched

solvers are ready for production use in real-world scientific applica-

tions through the Ginkgo library, complementing the performance

portability of the batched functionality of Ginkgo.
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1 INTRODUCTION
Batched iterative solvers have recently received a lot of attention

due to their efficiency in solving batches of small and medium-

sized sparse problems[8, 25, 26]. Similar to the monolithic prob-

lems, batched iterative solvers in particular outperform their direct

counterparts if they can use the solution of a similar problem, for

example, the previous system in a Picard loop, as the initial guess,

which can dramatically shorten the iteration process. For a sequence

of linear systems, direct solvers always have to start from scratch
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with a complete (sparse) factorization for each problem. Generally,

sparse direct solvers have the disadvantage that the fill-in in the

factorization process is unknown a priori. In the batched case, this

conflicts with the goal of packing all operations of the solve into a

single kernel to reduce the main memory access. So batched sparse

direct solvers will typically compose of two kernels with a memory

allocation in-between, while batched iterative solvers can execute

as a single kernel that can leverage data locality.

Batched routines were originally developed for NVIDIA GPUs,

as these GPUs were the first to be used in scientific computing [4,

11, 16]. The batched kernels were written in NVIDIA’s CUDA pro-

gramming ecosystem [29]. In the last years, an increasing number

of leadership systems are equipped with GPUs from other vendors,

including AMD and Intel, there is a need to port these routines

beyond the CUDA backend. SYCL drew our interests due to its per-

formance efficiency and portability on different architectures, such

as CPUs, GPUs, and FPGAs [19, 24]. SYCL is a cross-platform ab-

straction layer inspired by OpenCL [33]. Its underlying fundamental

principles of portability and efficiency enable the composition of

code, in a "single-source" style using completely standard C++, for

heterogeneous architectures. SYCL’s increasing popularity has led

to the development of a diverse range of implementations within its

ecosystem [7, 13]. Among them, the Intel oneAPI Toolkit provides

a SYCL implementation and compilers which are highly efficient

for Intel GPUs [23].

Historically, batched functionality was developed for scenarios

where many small and independent problems had to be tackled in

parallel with the same algorithm, with each small problem being

too small to fully use the available compute resources. In that sense,

batched functionality is suitable for data-parallel problems. Typical

use cases for batched functionality are parallel applications of a

linear operator as a dense or sparse batched matrix-vector multipli-

cation [31], the parallel solution of a set of pairwise-independent lin-

ear systems [12], or the parallel singular value decomposition [15].

The use of these methods spans from high-order FEM schemes over

tensor contractions in quantumHall effects, astrophysics, metabolic

networks, and quantum chemistry to image and signal processing.

With the rise of machine learning and the heavy use of deep neural

networks, the batched dense matrix-matrix multiplication [4] has

become the most prominent use case for batched functionality. In

many cases, the data-parallel problems arise by breaking down

a large problem into many small problems that can be handled

more efficiently if they are considered independently. A colorful

example is the application of a block-Jacobi preconditioner that

can be expressed either by applying a block-diagonal matrix to a

global vector or by applying a set of small dense matrices to vec-

tor segments, with the latter allowing for a more localized kernel

execution. In consequence, batched operations are traditionally

designed to perform the same pre-defined sequence of operations
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on all problems of the set. This allows for handling all problems in

a SIMD-fashion: the problem-individual properties have no influ-

ence on the batched kernel execution. Given the strong demand for

batched functionality and the possibility to leverage hardware char-

acteristics in the performance optimization of batched functionality,

the community has agreed on a de-facto batched BLAS interface

convention [3] that mostly adheres to the vendor implementation

of batched BLAS libraries [21, 30].

Batched dense functionality is often used in sparse linear algebra

computations, for example when handling problems that contain

small dense blocks, such as high-order finite element discretizations

or supernodal factorizations. At the same time, there exists little

work on batched sparse functionality. One of the earliest efforts on

batched sparse functionality is the batched sparse matrix vector

product kernel developed by Collins et al. [11]. However, the design

and execution of the batched sparse matrix vector multiplication

kernel is different from the traditional batched functionality as it

uses different storage formats for the distinct sparse problems and

launches suitable kernels – matching the storage format – via run-

time polymorphism. With regard to batched sparse direct solvers,

we mention in passing some work on batched tri-diagonal and

penta-diagonal systems [17, 36]. However, these direct methods are

restricted to batched tri- and penta-diagonal systems and typically

utilize only one GPU thread per batch entry to solve it sequentially.

While this approach is advantageous for certain types of problems,

it does not utilize the fine-grained parallelism as is possible with

iterative methods.

Recently, there have been some developments in the batched

iterative solver, as an alternative to batched direct methods [5, 27].

In particular, for GPUs, it has been shown that the batched iterative

methods can match/outperform the batched direct counterparts.

Applications such as combustion and fusion plasma simulations

need to solve hundreds of thousands of small to medium linear

systems, each sharing a sparsity pattern. For the linear solution of

these systems, placed inside a non-linear loop, it is advantageous

to use an iterative solver, as that allows to incorporate an initial

guess which can accelerate the linear system solution within the

outer loop. Additionally, we might not need to solve the system to

machine precision accuracy but can control the solution accuracy

based on the parameters of the outer non-linear loop [5].

In this paper, we extend our previous GPU-native batched linear

solvers to the SYCL ecosystem and showcase the performance on

Intel GPUs. We compare the performance of the batched solvers

on Intel GPUs against the NVIDIA GPUs, both on their vendor

native programming models (SYCL and CUDA respectively). We

explore the subtleties in the kernels and the differences required to

optimize performance for both programming models. Focusing on a

simple 3-point stencil discretization problem, we study scaling and

demonstrate that we outperform the state-of-art for all problem

sizes. We also use matrices derived from the Pele reaction flow

simulation application that uses SUNDIALS [20] to solve the ODE

linear systems, which lend themselves to batched solutions.

In Section 2, we provide some background on batched solvers,

their need in applications, and aspects that need to be considered

for batched iterative solvers. We also briefly detail the SYCL pro-

gramming model and its features and the Intel GPU hardware char-

acteristics. In Section 3, we detail the design of our batched sparse

iterative solvers. In particular, we showcase our batched iterative

solver design that comes with the flexibility of using different pre-

conditioners, stopping criteria, and sparse matrix storage formats,

and monitor the solver convergence for each system in the batch

individually. We also elaborate on the specific SYCL optimizations

that enable us to maximize performance on the Intel GPU.

After presenting all implementation details, in Section 4 we in-

vestigate the hardware performance, and time-to-solution of the

batched sparse iterative solver technology. This includes the evalu-

ation for benchmark problems arising in real-world PeleLM com-

bustion applications. We also briefly discuss the performance porta-

bility and productivity of the implemented SYCL-based solvers. In

Section 5, we summarize our findings and provide a roadmap for

the extension of the batched sparse iterative functionality that we

plan to provide in the Ginkgo open-source library [9, 10].

In summary, we make the following contributions:

• Successfully porting the batched iterative solvers onto the

Intel GPUs using the SYCL programming model.

• Performance tuning for the ported solvers on the Intel GPUs

for a wide range of matrix sizes.

• Performance evaluation for two different paradigms: a three-

point stencil matrix used to study scaling behaviour, and

matrices from the PeleLM application.

• A thorough evaluation of the performance of the batched

iterative solvers on Intel GPUs and their comparison against

the latest NVIDIA H100 GPU, both using the vendor native

programming models.

2 BACKGROUND
Consider applications such as a chemical reaction or astrophysical

simulations, which aim to evolve the reactive flow in time on a

discretized 3D mesh. These simulations typically operator split the

reactions from the hydrodynamics and hence require a solution of

many independent chemical reaction ODEs. The resulting chemical

reaction equations are usually very stiff, requiring the usage of im-

plicit time stepping schemes such as the Backward Differentiation

Formula(BDF) [20]. In each time step, one needs to solve a non-

linear system. Solving this non-linear system with, for example,

a Newton iteration requires the solution of linear systems. These

linear systems characterize the reaction of species in the domain.

As the species in the domain are the same across all cells and the

reaction matrix is defined for the species, for each spatial discretiza-

tion cell, we need to solve a linear system, with the linear system

for all cells sharing the sparsity pattern.

Many other applications such as fusion plasma simulations or

finite element simulations also require the solution of independent

linear systems [25], and particularly within a non-linear iteration

loop.

2.1 Batched iterative solvers
In contrast to batched direct solvers, batched iterative solvers pro-

vide the possibility to vary the solution accuracy, which can be

beneficial to reduce the runtime of the non-linear iteration. Addi-

tionally, iterative solvers can incorporate solution information in

the form of an initial guess, which can accelerate the overall time

to solution.
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This tunable accuracy and initial guess capabilities come at the

cost of complexities in design and implementation. Iterative solvers

do not follow a pre-defined execution, but the number of iterations

depends on the matrix properties, the stopping criterion, and the

precision format being used. Due to the nature of iterative solvers,

the design needs to take into account the efficient composition of

kernels with the plethora of parameters that are necessary for an

efficient iterative solution.

With hierarchical architecture such as GPUs, the design needs to

minimize memory movement, maximize local memory usage, and

the overall occupancy of the GPU to maximize the performance.

This optimization typically has to account for the target problem

or the target problem class. We here focus on linear systems of

small to medium size (of the order of 10 to 2,000 rows) and system

matrices sharing the same sparsity pattern.

2.2 Overview of Ponte Vecchio GPUs
architecture

To motivate the design of batched iterative solvers for Intel GPUs,

we provide some technical background on the Intel GPU architec-

ture.

The X
e
-core is the smallest thread-level building block of the

PVC GPU. Each X
e
-core consists of eight X

e
Vector Engines (XVEs),

each of which have a 512-bit register, and can therefore perform 256

FP32 or FP64 operations per cycle. Each X
e
-core can execute eight

multithreads simultaneously, with each hardware thread having

4096 bytes of private memory in the form of 128 general purpose

registers.

Each PVC GPU consists of 2 stacks which are connected via a

Stack-to-Stack link. Each stack has its own dedicated resources: 4

X
e
-slices, a Level 2 Cache, and a directly connected 64 GB of High

Bandwidth Memory (HBM). Each X
e
-slice consists of 16 X

e
-cores.

Overall, each PVC GPU has 128 X
e
-cores and 128 GB of HBM.

Even though the two stacks have separately connected HBMs,

this HBMs can be accessed directly by the other stack. This feature

enables fast and efficient communication between the two stacks,

via the HBM.

In practice, when running an application, this two-stack GPU

can be seen as a single GPU device. The GPU driver and the runtime

work together to automatically distribute the workloads across the

two stacks. This describes the so-called implicit scaling mode. In
contrast to the implicit scaling mode, the explicit scaling mode allows
users to explicitly allocate the workloads and memory placement

for each stack. Each stack then executes its own workloads.

As one may find more familiar with NVIDIA GPU terminology,

the mapping between NVIDIA’s terminology and Intel’s terminol-

ogy is provided in Table 1. Overall, with the exception that the PVC

GPUs consist of 2 stacks, all other terminologies can be directly

paired with the NVIDIA terminology.

2.3 SYCL Programming Model
SYCL is a Khronos Group language standard that enables developers

to express data-parallel computations using standard C++ templates

and lambda functions, abstracting the underlying hardware com-

plexity and allowing seamless execution on diverse accelerators.

Figure 1: Hierarchy of the SYCL kernel index space [32].

Table 1: GPU architecture terminology mapping [23]

CUDA Capable GPUs Ponte Vecchio GPUs

CUDA Core XVE

Streaming Multiprocessor X
e
-Core (XC)

Processor Cluster X
e
-Slice

N/A X
e
-Stack

Table 2: Execution model mapping from CUDA to SYCL [23]

CUDA SYCL

Thread work-item

Warp sub-group

Block work-group

Grid ND-range

The SYCL kernel consists of the main kernel computation which

is expressed as a C++ lambda function, the argument values associ-

ated with the kernel, and the parameters that define an index space.

The kernel index space is often defined via an ND-Range.

Figure 1 illustrates the index hierarchy of the kernel instance, in

which the smallest kernel execution unit is called a work-item. Mul-

tiple consecutive work-items can be organized into a 1-dimensional

set called a sub-group. The computation of a sub-group can be pro-

cessed by one or few SIMD operations on a XVE. Additionally, one

can also perform collective operations such as broadcast, shuffle,

reduction, etc within a sub-group.

A work-group consists of a 1-,2-, or 3-dimensional set of consec-

utive sub-groups. Each work-group has a local memory which is

shared among all the work-items within a work-group. Depending

on the implementation and the hardware availability, this Shared

Local Memory (SLM) can be mapped into different physical memo-

ries. On Intel GPUs, the SLM is allocated on the L1 cache. Typically,

the work-items in a work-group are executed together on a X
e
-

core. Depending on the work-group size and availability of the L1

cache, each X
e
-core can handle multiple work-groups at a time.

Additionally, the work-items within a work-group can be synchro-

nized via local memory fences but synchronization across different

work-groups is not possible in SYCL.

As one may be more familiar with CUDA terminologies, the

execution model mapping between CUDA and SYCL can be found

in Table 2.
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Table 3: Batched feature support in Ginkgo

Mat. formats Solvers Preconditioners Stop. criteria

BatchDense BatchCg BatchJacobi Absolute

BatchCsr BatchBicgstab BatchIlu Relative

BatchEll BatchGmres BatchIsai
BatchTrsv

3 IMPLEMENTING BATCHED ITERATIVE
SOLVERS

In this section, we discuss the design and the interface of batched

sparse iterative solvers. Our goal is to develop batched sparse iter-

ative solvers to be flexible in terms of accepting a preconditioner

transforming the linear systems 𝐴𝑖𝑥𝑖 = 𝑏𝑖 , 𝑖 = 1 . . . 𝑛 into the pre-

conditioned system 𝑀𝑖𝐴𝑖𝑥𝑖 = 𝑀𝑖𝑏𝑖 , 𝑖 = 1 . . . 𝑛 with 𝑀𝑖 being a

preconditioner adjusted to the specific system 𝐴𝑖 , but all precondi-

tioners𝑀𝑖 being of the same preconditioner type.

The objective of a batched solver interface is to leverage the data

parallelism present in the batched problem at hand and map it to

the hardware parallelism available. Batched solvers are favorable in

cases where the individual matrices are relatively small, and a large

numbers of these independent linear systems needs to be solved.

The criteria that influence the design and implementation are the

following:

(1) The size of the individual batch entries: the number of rows

and the number of non-zeros.

(2) The number of linear systems to be solved.

(3) Common sparsity patterns between the batched matrices, if

any.

(4) Properties of the batched linear systems that influence con-

vergence (condition numbers, etc.)

To enable support for a wide variety of applications, Ginkgo

supports different batched matrix formats, solvers, and precondi-

tioners, as shown in Table 3. We note that due to the templated

design, any of the columns can be combined with another, with

only a few exceptions (such as BatchIsai needing the BatchCsr
matrix format).

3.1 Batched matrix formats
Sparse matrices typically store an array of non-zero values, as well

as integer arrays encoding the sparsity pattern. For our problem

space, all the matrices in the batch share the same sparsity pattern.

Therefore, to minimize memory requirements, we store only one

copy of the sparsity pattern for the batched matrix formats. We ad-

ditionally implement two batch matrix formats, one general format,

BatchCsr, and a specialized format, BatchEll in addition to the

dense matrix format, BatchDense.
The BatchCsrmatrix format is based on the popular Compressed

Sparse Row (CSR) matrix storage format, where one stores an array

of column indexes per row corresponding to each non-zero value

in the matrix. An accumulated sum of the number of non-zeros

per row is additionally necessary. This matrix format is suitable for

general matrices with large variations in the number of non-zeros

per row and performs generally well for most sparsity patterns.

Figure 2: Batch Matrix Storage formats - BatchDense,
BatchCsr and BatchEll

The BatchCsr is an extension of this format where we store the

column indexes and the row pointers for only one matrix and store

the values of all the matrices.

For matrices that have a similar number of non-zeros in ev-

ery row, we can optimize the storage by padding the rows to a

uniform number of non-zeros per row, removing the need for a

pointers array. This also gives us additional advantages in terms

of coalesced accesses. The BatchEll matrix format stores one set

of column indexes and the values of all the batch entries. In con-

trast to BatchCsr, we store the column indexes and the values in

column-major allowing for coalesced accesses which is suitable for

GPUs.

Figure 2 visualizes the schematic and the storage requirements of

BatchCsr and BatchEll compared to the BatchDense format.With

batched sparse matrix formats, the additional cost of storing the

indexes and the pointers can be easily amortized over an increasing

number of systems in the batch. The storage requirements therefore

are:

(1) BatchDense: num_matrices x num_nnz_per_matrix
(2) BatchCsr: [num_matrices x num_nnz_per_matrix]

+ [(num_rows + 1) x 1] + [num_nonzeros_per_matrix
x 1]

(3) BatchEll: [num_matrices x num_nnz_per_matrix]
+ [num_nnz_per_row x num_rows x 1]

3.2 Batched solver kernels
Iterative solvers such as CG, BiCGSTAB, GMRES can be easily com-

posed of BLAS 1, BLAS 2, and sparse matrix vector operations [34].

Ginkgo supports different batched versions of the iterative solvers,

suitable for matrices with different properties and these are listed

in Table 3. With our problem space consisting of small to medium-

sized linear systems, and our aim to optimize the compute and

memory usage, we map one work-group to one linear system. This

enables us to write efficient kernels for each linear system without

worrying about global synchronization between workgroups (as

each linear system is independent and requires no communication).

With the sparse matrix vector product being the workhorse of

the Krylov solvers, we implement tuned SpMV kernels for each

batched matrix format. For the BatchCsr matrix, we implement

a sub-group to row-based mapping for matrices which provides

good performance for general matrices. For matrices that are more

balanced and have only a few nonzeros per row, the BatchEll
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Figure 3: Multi-level dispatch mechanism

matrix format is more suitable, which handles one row per work

item removing the need to communicate between thread using

sub-warp reductions [25].

In addition to the SpMV kernel, kernels such as dot, scalar addi-

tion, and norm are also implemented. Reduction operations such

as dot and norm are implemented using the reduction over the

whole work-group which is a primitive function provided by SYCL.

For small matrices, it is more efficient to implement the reduction

within a subgroup since we do not need to read/write through the

SLM. These reduction operations were implemented in a different

fashion compared to our CUDA-based solvers as in CUDA only

warp-level reductions are used as no efficient thread-block level

reduction operations are available.

We note that these building blocks are all device kernels and in-

lined, involving no host-device transfers. This enables the compiler

to optimize the entire solver kernel as a whole. Additionally, the

SpMV, scalar operations, dot, and norm kernels are shared between

the different solvers, reducing code duplication and improving code

sustainability.

3.3 Multi-level dispatch mechanism
We design a multi-level dispatch mechanism as shown in Figure 3

that preserves flexibility, enabling the runtime choice between the

different matrix formats, solvers, stopping criteria and precondi-

tioners.

3.4 Minimizing kernel launch latency
For batched solvers, the time to solution for one batch item can

be very small, particularly for small linear systems. Launching

one kernel for each batch item or for even a few items at once

is therefore intractable. To minimize kernel launch overhead, we

gather all functionality in a single kernel handling all items of the

batch.

The strategy of packing all functionality into a single kernel

enables the compiler to optimize the templated kernel as a single

instance after the multi-level dispatch mechanism has instanti-

ated the different kernel options (precision format, matrix format,

preconditioner, stopping criterion). The modern C++ templating

mechanism in this case not only avoids code complexity, but also

Algorithm 1 The BatchCg solver.

1: for 𝑏 < 𝑁𝑏𝑎𝑡𝑐ℎ𝑒𝑠 do
2: 𝒓 ← 𝒃 −𝑨𝒙, 𝒛 ← 𝑴𝒓,𝒑 ← 𝒛, 𝒕 ← 0
3: 𝜌 ← 𝒓 · 𝒛, 𝛼 ← 1, 𝜌 ← 1

4: for 𝑖 < 𝑁𝑖𝑡𝑒𝑟 do
5: if |𝜌 | < 𝜏 then
6: break
7: end if
8: 𝒕 ← 𝑨𝒑
9: 𝛼 ← 𝜌

𝒑 ·𝒕
10: 𝒙 ← 𝒙 + 𝛼𝒑
11: 𝒓 ← 𝒓 − 𝛼 𝒕
12: 𝒛 ← precond(𝒓 )
13: 𝜌 ← 𝒓 · 𝒛
14: 𝒑 ← 𝒛 + 𝜌

𝜌 · 𝒑
15: 𝜌 ← 𝜌

16: end for
17: end for

kernel branching which is prohibitively expensive when handling

small problems.

The kernel execution then handles the solution of all items in

the batch with the same solver configuration.

3.5 Maximizing local memory usage
Maximizing the performance of the batched solvers requires ef-

ficient usage of both the compute and memory hierarchy. It is

essential to keep frequently used data in SLM since accessing this

memory has a lower latency than the global memory.

In our implementation, we map one linear system into one work-

group, i.e. each work-group solves one linear system at a time.

Within that, each work-group keeps its intermediate vectors which

requires for the iterative solvers to solve the system separately. The

sizes of these vectors depends on the size of the batch item matrix.

To reduce the latency of memory accesses, it is beneficial to allocate

these intermediate vectors on the SLM. The pre-conditioned matrix

and a copy of the result vector x are also allocated on the SLM as

they are repeatedly used in the solvers kernel. Besides, the system

matrix and the right-hand side are read-only data that needed to

fetched from the global memory in every iteration, but their sizes

are relatively large for being kept inside the SLM. Therefore, caching

these data into another level cache, for example, L2, is favorable.

For medium to large matrix sizes, allocating all these objects

on the SLM is impossible as the size of the SLM is limited. For

each batched iterative solver type, we prioritize these intermediate

vectors based on its usage frequency and sizes. Based on this priority,

the solvers dynamically determine at runtime how many vectors

can be allocated on the SLM, given the input matrix size and the

available SLM memory on the device. The host then selects and

dispatches the appropriate kernel which allocates the required

amount of SLM and assign these objects accordingly.

The priority for storing those objects on the SLM can be illus-

trated through the BatchCg, for example. Its algorithm can be found

in Algorithm 1. Based on the usage frequency and the size of these

objects, the priority we assign in decreasing order is: 𝑟 , 𝑧, 𝑝 , 𝑡 , 𝑥 .
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The preconditioner workspace is also allocated on the SLM if the

SLM is still available.

3.6 Optimizations based on the matrix size
It is important for the batched solvers to have good performance

across a wide range of matrix sizes so that it meets the needs of

different real-world applications. In this section, we discuss the op-

timizations techniques we used for our SYCL-based batched solvers

relying on the size of the input matrices.

The performance of GPU kernels often depends highly on the

execution configuration. Since we assign one linear matrix system

to one work-group, it is beneficial to select the work-group size

based on the input matrix size. In our implementation, the work-

group size is chosen dynamically at runtime depending on the

number of rows of the input matrix, as follows:

• The work-group size should not exceed the maximal work-

group size supported by the device.

• The work-group size should be divisible by the sub-group

size.

• The work-group size should be at least equal to the number

of rows so that the SpMV kernel performs efficiently.

Thus, for small matrices, in the case when the number of rows is

divisible by the sub-group size, the number of rows is chosen as the

work-group size. Otherwise, we choose the work-group size equals

to the next round-up number by sub-group size of the number of

rows. This round-up strategy shows a performance improvement

for some input cases, as shown in Table 6 (Appendix A). The maxi-

mal work-group size is selected in the case of large input matrix

cases. These selecting work-group strategies not only increases

the thread utilization within a work-group but also increases the

number of possible work-groups that can be scheduled on the same

XVE at a time, enhancing the GPU occupancy.

Besides the work-group size, the sub-group size also plays an

important role in the performance of the GPU kernels in SYCL. In

fact, the Intel PVC GPUs support two different sub-group sizes: 16

and 32. For our batched solver implementations, empirically, we

measured that a sub-group size of 16 is better for the small matrices,

while a size of 32 performed better for larger input matrices. Thus,

the SYCL-based batched solvers are implemented in such a way that

they can choose the sub-group size, in addition to the work-group

size, dynamically, at runtime. In practice, since SYCL only allows

to enforce the sub-group size with a compile-time known number,

we use C++ templating to instantiate kernels with all possible sub-

group size values and the proper kernel is selected at runtime based

on the matrix size.

Additionally, as the matrix size also dictates whether the reduc-

tion operations use a single sub-group or the whole work-group, we

implemented our batched solvers in such a way that the selection

can happen at runtime for these reduction operations as well. Again,

we use the C++ templating ideas to minimize runtime overhead.

Overall, due to these optimizations, the batched solvers switch

between different paths in the kernel launch stage, and the selected

kernel depends on the matrix size. Since the thresholds between

small and large matrix sizes are different for different GPUs capa-

bilities, these thresholds need to be determined experimentally for

Table 4: Reference for data inputs

Input case # Unique matrices Matrix size # Nnz/matrix

3pt stencil - - 3 x 𝑛𝑟𝑜𝑤𝑠

drm19 67 22 x 22 438

gri12 73 33 x 33 978

gri30 90 54 x 54 2560

dodecane_lu 78 54 x 54 2332

isooctane 72 144 x 144 6135

Table 5: GPUs specifications

A100 H100 PVC-1S PVC-2S

FP64 Peak (TFLOPs) 9.7 26 22.9 45.8

HBM BW Peak (TB/s) 1.6 2.0 1.6 3.2

Shared Local Mem. (KB) 192 228 128 128

each targeted device before using these solvers to ensure optimal

performance for that architecture.

4 PERFORMANCE EVALUATION
In this section, we evaluate runtime and scalability of the batched

solvers on the latest Intel GPUs with SYCL and benchmark the

performance against the batched solver implementation for NVIDIA

GPUs with CUDA.

4.1 Experimental setup
To evaluate our SYCL-based batched iterative solvers, we consider

two classes of inputs, summarized in Table 4:

• Matrices generated from a 3-point stencil, whose number

of rows can be increased as necessary to study the scaling

behaviour of the batched solvers.

• Matrices from the PeleLM+SUNDIALS application, which

consists of matrices derived from different reactive flow sim-

ulations. Each mechanism gives us a different matrix set and

we have as many items in the batch as the number of cells in

the mesh. As we would like to have a smaller test case, we

extract the matrices from the application for a few cells and

replicate it to emulate the solution for a larger mesh. The

matrices for this application are fairly small (22 rows to 144

rows) and relatively dense. More information on this dataset

is available in [5].

In the experiment, all input matrices are stored in the BatchCsr for-
mat.We study the performance for two batched iterative solvers, the

BatchCg and the BatchBicgstab. Additionally, the PeleLM+SUNDIALS

matrices use a scalar Jacobi preconditioner to accelerate conver-

gence.

We compare the batched iterative solvers on three different

GPUs:

(1) NVIDIA A100 80GB PCIe using CUDA 11.8.0

(2) NVIDIA H100 PCIe Gen 5 using CUDA 11.8.0

(3) Intel Data Center GPUMax 1550 (PVC) using Intel(R) oneAPI

DPC++/C++ Compiler 2023.2.0
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(a) W.r.t matrix sizes, 217 matrices

(b) W.r.t number of matrices, the matrix size (64 x 64)

Figure 4: Scaling of the SYCL batched solvers on 1 stack of
the PVC GPU with respect to the problem sizes using the
synthetic input. The runtimes of the solvers scale almost
linearly with the problem size.

Some salient features of the GPUs that are relevant in our case

is tabulated in Table 5.

4.2 Scaling evaluation with the synthetic input
Using a standard 3-point stencil problem, we can generate a batch

of symmetric, positive definite (SPD) matrices that allows us to

do scaling experiments in both the matrix size and the batch size.

Figure 4 shows the scaling behaviour using 1 stack of the Intel GPU

for both the BatchCg and the BatchBicgstab solver. In Figure 4a,

we fix the batch size to 2
17

and increase the matrix size (number of

rows) for each of the batch items. As expected, the overall runtime

increases linearly with the matrix size. In Figure 4b, we increase

the number of items in the batch from 2
13

to 2
17

for a individual

problem size of 64 × 64 and again observe a linear increase in the

run-time. This means that we are able to fully saturate the GPU ,

and additional linear systems need to wait for the current systems

to be completed. Overall, the great scalability of our batched solvers

would allow them to address different potential simulations which

are problem-size dependent.

The Intel GPU consists of two separate stacks that can be viewed

as a single GPU or as two separate GPUs, as previously mentioned.

The batched solvers, being embarrassing parallel, can take advan-

tage of this feature via the implicit scaling mode. It can be done auto-

matically as the Intel GPU driver can split theworkloads, i.e. number

(a) Batch CG

(b) Batch BiCGSTAB

Figure 5: Performance comparison of the SYCL batched
solvers on 1- and 2-stacks of the PVC GPUs with respect
to different matrix sizes. The synthetic input set is used with
2
17 matrices. For the speedup, the performance of 1-stack is
used as a baseline. With implicit scaling on 2-stacks, the two
solvers achieve between 1.5x – 2.0x speedup, and the larger
matrix size, the higher speedup.

of matrices, and schedule them on the two stacks without explicit

requests from the users. This implicit scaling behaviour and its ben-

efits are shown in Figure 5 for both BatchCg and BatchBicgstab
solvers. We observe on average a 1.8x speedup for BatchCg and

1.9x for the BatchBicgstab solver going from 1 stack to 2 stacks,

revealing that the batched solvers indeed provide the embarrass-

ing parallelism that can be harnessed by the GPUs. The speedup,

however, is lower than 2x due to the NUMA effects, as the memory

allocation is not perfectly split across the two stacks with the im-
plicit scaling mode. Nevertheless, the reasonable achieved speedup

suggests that we can easily scale to multiple GPUs as distribut-

ing these batched matrices over the MPI ranks is trivial and no

additional communication is necessary.

4.3 Performance evaluation with the real
application inputs

For benchmarking the performance of the batched solvers on the

Intel GPUs, against the batched solvers on state of the art NVIDIA

GPUs, we use matrices from the PeleLM+SUNDIALS application,

described in Table 4. Since these matrices are non-SPD, BatchCg
can not be used to solve these systems, thus only BatchBicgstab is
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(a) drm19 (Matrix size: 22 x 22) (b) gri12 (Matrix size: 33 x 33)

(c) gri30 (Matrix size: 54 x 54) (d) dodecane_lu (Mat. size: 54 x 54)

(e) isooctane (Mat. size: 144 x 144)

Figure 6: Runtime of the two batched solvers on the three
GPUs with different input data from the PeleLM simulations.
Overall, the SYCL solvers on the PVC GPUs outperform the
ones on the NVIDIA H100 for all input cases.

evaluated in this section. The vendor-native programming models

are used: SYCL-based solvers for Intel PVC GPUs and CUDA-based

solvers for NVIDIA A100 and H100. The CUDA implementation of

the batched iterative solver can be found in our previous paper [5].

Figure 6 presents the runtime comparison of the solvers for solv-

ing the five test problems on NVIDIA A100, NVIDIA H100, and

Intel PVC GPUs. Overall, the batched solver on 2 stacks of the PVC

GPUs outperforms the ones on the A100 and H100 GPUs signifi-

cantly for all matrices and batch sizes. In addition, the figure also

demonstrates that the SYCL-based batched solvers scale well on real

application inputs in a similar fashion to the previous experiment

with the synthetic input matrices.

Figure 7 provides a direct performance comparison of the batched

solvers on the three GPUs. Except for the gri12 case, all other

other input cases shows notable performance of the solvers on 1

stack of the PVC GPUs when compared with the NVIDIA GPUs.

In average, the PVC-1S is 1.7x and 1.3x faster than the A100 and

H100, respectively, across all input cases. Similarly, the PVC-2S

outperforms the A100 and H100 by an average factor of 3.1 and 2.4,

respectively.

Figure 7: Normalized speedup comparison for different in-
put cases with 2

17 matrices and the runtime of A100 is the
baseline. The PVC GPU with 1- and 2-stacks are 1.3 and 2.4
times faster then the H100, in average.

Figure 8: Roofline analysis and memory metrics of the
BatchBicgstab for the dodecane_lu input case with 2

17 ma-
trices on 1-stack of the PVC GPU. The solver performance
relies heavily on the Shared Local Memory and has not reach
the SLM Bandwidth Bound.

4.4 Roofline analysis
The performance of the SYCL-based batched solvers on the Intel

GPUs is also evaluated using the Intel Advisor Tool.

We analyse the BatchBicgstab solver for the dodecane_lu input

case with the batch size of 2
17

matrices on 1 stack of the PVC GPU.

The profiling results outline that the XVE Threading Occupancy

is around 50% with the XVE Array Active stays around 40%. This

means that the kernel workloads do not fully occupy all available

XVE on the X
e
-cores. This is expected, as in the solver kernel

implementation, we let each work-group use the maximum amount

of shared local memory available regardless of the work-group size.

With this strategy, even if the thread-group size is smaller than the

number of work-items a X
e
-core can handle, there are not more

thread-groups get scheduled on the same X
e
-core due to the limit

on the available shared local memory. In other words, we trade

the XVE occupancy for increased amount of shared local memory

usage in each work-group, which is more important to achieve a

good performance for the batched iterative solvers, as previously

discussed in Section 3.5.



Porting Batched Iterative Solvers onto Intel GPUs with SYCL SC-W 2023, November 12–17, 2023, Denver, CO, USA

Figure 8 presents the roofline performance chart and the mem-

ory metrics of the solver. The time breakdown for the memory

subsystem shows that 65% of the time spent for memory transac-

tions is spent on the SLM requests. In addition, there are almost

3 TB of data passes through the SLM which is much larger than

the one passes through either the L3 or HBM. This means that

the performance of the solver mainly relies on the efficiency of

the SLM accesses which is expected, since the solver keeps all fre-

quently accessed data in the SLM for this input case. In addition,

11% of memory accesses are from the L3 (which is actually the

L2 Cache on the GPU stack) implying that the batch matrices and

the right hand side (constant objects) are likely cached into the

this last level cache, which facilitates the accessing of these matrix

from the work-group. In the roofline analysis, we observe that the

performance of the solver lies on the L3 Bandwidth roof which is

relatively good. However, the solver does not yet reach the SLM

Bandwidth roof. Further optimizations to improve SLM accesses,

for example identifying possible bank-conflicts and resolving them,

will be part of our future work.

4.5 Performance portability and productivity
SYCL itself is a portable programming model and several applica-

tions use SYCL to successfully support multiple hardware platforms,

such as [18, 24]. For the Ginkgo project, the existence of such a

portable programming model promises both performance porta-

bility and productivity for the library, potentially giving us the

opportunity to focus our work on algorithm developments instead

of supporting multiple backends. Nonetheless, porting the Ginkgo

SYCL backend to other platforms posed several challenges, as dis-

cussed below.

Our first attempt was to port the Ginkgo SYCL backend, which in-

cludes both normal routines and batched routines, onto the NVIDIA

GPUs. We used the llvm compiler with the SYCL extensions devel-

oped by Intel, as it supports SYCL on the Intel GPUs, AMD GPUs,

and NVIDIA GPUs [22]. Some components of the Ginkgo SYCL

backend employ routines from the Intel oneAPI Math Kernel Li-

brary (oneMKL) and the Intel oneAPI DPC++ Library (oneDPL)

which are partially supported on the NVIDIA GPUs [1]. We ex-

perienced an issue with linking against those Intel libraries while

compiling the Ginkgo SYCL backend for NVIDIA GPUs, an issue

which is not resolved at the time of this paper. Since the imple-

mented batched iterative solvers themselves do not use the routines

from neither oneMKL or oneDPL, ideally, we could compile them

without linking against these libraries. This can be done for porta-

bility evaluation purposes, though other routines may not be fully

functional. However, even if this is done, the current state of the

SYCL implementation on CUDA platforms for the used llvm com-

piler does not fully support complex floating-point functions [2],

hence prohibiting us from porting the routines onto the NVIDIA

GPUs.

With the success of the A64FX-based Fugaku system at Riken,

we have seen high interest in sparse linear algebra libraries for

ARM-based systems [6, 18, 35]. Additionally, SYCL compilers for

ARM processors have been developed [7]. Therefore, we attempted

to port the Ginkgo SYCL backend for the A64FX processor. For

this, we used the OpenSYCL to compile our SYCL backend on

the Ookami Cluster at Stony Brook University via the ACCESS

program [14]. We successfully verified the compiler and the setup

environment with a simple standalone kernel - vector-add. For
compiling Ginkgo SYCL backend, we faced two main issues. First,

oneMKL and oneDPL do not support ARM processors. Linking

against other ARM-supported math libraries requires re-writing

all API calls, as there is not yet a standard for sparse linear algebra

routines. Second, while OpenSYCL has made significant progress

in the implementation, it has not achieved full SYCL conformance.

The SYCL-based batched iterative solvers, therefore, are not yet

portable to the A64FX processors.

Nevertheless, Ginkgo supports multiple hardware architectures

including CPUs, NVIDIAGPUs, AMDGPUs, and Intel GPUs through

OpenMP, CUDA, HIP, and SYCL backends. Hence, Ginkgo itself is

a performance portable library from a user’s perspective, as it pro-

vides users sparse solvers across multiple platforms. Even though

the portability of the SYCL backend in general and the SYCL-based

batched iterative solvers in particular on other non-Intel GPUs

platforms are not achieved at the time of the paper, the developed

SYCL-based solvers hold promises for our future research endeav-

ors in developing a portable backend as well as improving the

productivity of Ginkgo developers.

5 CONCLUSION
We have presented our successful work on porting the Ginkgo’s

batched iterative solvers onto Intel GPUs with the SYCL program-

mingmodel. The design of the batched iterative solvers is delineated

and the different optimization strategies are discussed. The SYCL-

based batched iterative solvers shows nearly linear scaling with

respect to the problem sizes and exhibit effective scaling on 2 stacks

of the PVC GPU using the implicit scaling mode. The performance

of the ported solvers on the Intel GPU Max 1550s surpasses the one

on NVIDIA H100 GPU by an average factor of 2.4 for the matrices

from the PeleLM application. Moreover, the solvers demonstrate

exemplary the hardware resource utilization, as evidenced by the

analysis conducted using the Intel Advisor Tool.

Appendices

A PERFORMANCE APPENDIX

Table 6: Percentage speed-up when rounding the work-group
size to a multiple of the sub-group size

Batch size 32768 65536 131072 262144 Average

drm19 0.8 -0.2 0.6 -0.6 1.3

gri12 50.9 54.8 50.8 52.1 48.5

gri30 2.9 2.6 3.2 3.1 3.2

dodecane_lu 1.3 1.5 1.7 1.9 1.6

isooctane 0.0 -0.1 -0.0 0.1 0.1
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B REPRODUCIBILITY APPENDIX
In order to ensure reproducibility of results, we provide the code

and elaborate on the settings and parameters used to produce these

results.

Obtaining the source code
The source code is open-source and available on the Ginkgo-Project

Github (https://github.com/ginkgo-project/ginkgo.git). The code

used for this paper is archived on Zenodo [28].

Building and installing Ginkgo
To build Ginkgo with SYCL, the following components are neces-

sary:

(1) The CMake build platform, CMake-3.26.3 was used in this

paper.

(2) Intel oneAPI Toolkit installation, Intel oneAPI 2023.05.15.006

was used in this paper.

The Ginkgo library and the batched functionality use the same

canonical CMake setup as elaborated in the Ginkgo documenta-

tion (https://ginkgo-project.github.io/ginkgo/doc/develop/install_

ginkgo.html).

Benchmarking
The performance results from this paper can be reproduced follow-

ing these steps:

(1) Building Ginkgo with SYCL backend:

• Make a build directory: $ mkdir build && cd build
• Configure Ginkgo with the SYCL backend :

$ cmake -DCMAKE_CXX_COMPILER=icpx
-DGINKGO_BUILD_DPCPP=on ..
• Compile Ginkgo: $ make

(2) Building Ginkgo with CUDA backend: follow the repro-

ducibility appendix in [5].

(3) Performance tests:

• The benchmarks with the synthetic 3pt stencil input can

be found in the directory:

./ginkgo/examples/batched-solver.
• The benchmarks with input matrices from the PeleLM

application can be found in the directory:

ginkgo/examples/batched-solver-from-files.
• The benchmarking scripts for both input classes are pro-

vided in run-test-dpcpp.sh and run-test-cuda.sh.

Our setup
The performance of the solvers on the Intel GPUs were measured

on the Sunspot - the testbed system for the Aurora supercomputer

- deployed by the Argonne Leadership Computing Facility at Ar-

gonne National Laboratory, US. Each node consists of 2x Intel Xeon

CPU Max Series (Sapphire Rapids) and 6x Intel Data Center GPU

Max Series (PVC). Compilers and related libraries are from the Intel

oneAPI 2023.05.15.006 Toolkit.

The performance of the solvers on the NVIDIA GPUs were ob-

tained from our in-house testing nodes at the University of Ten-

nessee, Knoxville, as follow:

• 1 node: 2x Intel Xeon Silver 4309Y CPU and 1x NVIDIA H100

PCIe Gen5 80GB.

• 1 node: 2x AMD EPYC 7742 CPU and 8x NVIDIA A100 SXM4

80GB .

GCC-11.3.1 was used as the host compiler and CUDA Toolkit 11.8.0

was used as the device compiler on both nodes.
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