
Modelling Data Locality of Sparse Matrix-Vector Multiplication
on the A64FX

Sergej Breiter∗
sergej.breiter@nm.ifi.lmu.de

Ludwig-Maximilians-Universität
München

Munich, Germany

James D. Trotter∗
james@simula.no

Simula Research Laboratory
Oslo, Norway

Karl Fürlinger
karl.fuerlinger@nm.ifi.lmu.de

Ludwig-Maximilians-Universität
München

Munich, Germany

ABSTRACT
One of the novel features of the Fujitsu A64FX CPU is the sector
cache. This feature enables hardware-supported partitioning of the
L1 and L2 caches and allows the programmer control of which
partition is used to place data in. This paper performs an in-depth
study of how to apply the sector cache to a frequently used sparse
matrix-vector multiplication (SpMV) kernel. A performance model
based on reuse analysis is used to better understand situations
where the sector cache leads to improved reuse and to predict
the cache behavior. The model correctly predicts the number of
L2 cache misses within 2–3% for sequential and parallel SpMV
with 48 threads using a collection of 490 sparse matrices. Further
experiments show the effect of various sector cache configurations
on performance. A median speedup of about 1.05× is achieved,
whereas the maximum speedup is about 1.6×.

CCS CONCEPTS
• Computer systems organization→Multicore architectures;
• Computing methodologies→ Shared memory algorithms;
•Mathematics of computing→Mathematical software per-
formance; • General and reference→ Performance; Estimation.

KEYWORDS
sparse matrix-vector multiplication, A64FX, cache partitioning, sec-
tor cache, performance model
ACM Reference Format:
Sergej Breiter, James D. Trotter, and Karl Fürlinger. 2023. Modelling Data
Locality of Sparse Matrix-Vector Multiplication on the A64FX. InWorkshops
of The International Conference on High Performance Computing, Network,
Storage, and Analysis (SC-W 2023), November 12–17, 2023, Denver, CO, USA.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3624062.3624198

1 INTRODUCTION
Fujitsu’s A64FX is an HPC-oriented processor developed for the Fu-
gaku supercomputer [22]. Not only is it one of the few ARM-based
CPUs designed for HPC workloads [16], but the A64FX emerged
through a co-design process involving hardware, software and
∗Both authors contributed equally to this research.

This work is licensed under a Creative Commons Attribution International
4.0 License.

SC-W 2023, November 12–17, 2023, Denver, CO, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0785-8/23/11.
https://doi.org/10.1145/3624062.3624198

scientific applications, which resulted in unique features such as
high-speed HBM2 memory and Scalable Vector Extensions (SVE)
with 512-bit vectors [22]. Several studies have investigated the
performance of the A64FX on workloads ranging from microbench-
marks and proxy applications to realistic scientific computing work-
loads [3, 7, 12, 20]. So far little attention has been paid to one of
the A64FX’s more unusual features, namely the sector cache, which
provides finer control over data placement in the CPU’s data caches
than is usually allowed. The underlying idea is simple: by partition-
ing the cache into sectors and assigning different data to each sector,
one can avoid cache pollution or conflicts that lead to unnecessarily
or prematurely evicting data that might instead be reused.

For problems involving dense matrices or structured grids, ef-
fective use of the sector cache has been shown to reduce cache
misses by 15–50 % [5]. Moreover, in the case of dense matrix-vector
multiplication, performance improves by a factor of 2.8× for vector
sizes in the range 2–6MB [1]. The benefit of the sector cache in
this case is well understood. However, in the case of sparse matrix-
vector multiplication (SpMV), previous studies indicate that the
sector cache provided little benefit when tested on a range of sparse
matrices, yielding only a minor performance improvement of up to
about 10–20 % in rare cases [1].

The aim of this paper is to study how to use the A64FX sector
cache for sparse kernels, such as SpMV, that are faced with irreg-
ular and indirect memory access patterns. To do so, we present a
performance model based on reuse analysis to describe the cache
behavior of SpMV from the sparsity pattern and dimensions of the
input matrix. The model is applied to a typical SpMV kernel for
the Compressed Sparse Row (CSR) format and incorporates the
effects of the sector cache. Finally, we present measurements of
cache misses and performance under different sector cache configu-
rations on the A64FX using a variety of input matrices, which show
that our model accurately describes the last-level cache behavior
and the effect of cache partitioning for large matrices. In summary,
our paper makes the following contributions:

• A comprehensive performance study and in-depth analysis
of CSR SpMV on the A64FX, including the effect of the sector
cache feature
• A locality analysis based on reuse distance of sparse matrices
using their sparsity pattern
• A cache miss model for parallel codes on multicore archi-
tectures with multiple shared caches including the effect of
cache partitioning

The rest of the paper is organized as follows. First, we explain the
cache partitioning mechanism of the A64FX and reuse distance in
Section 2. Second, we analyze the influence of matrix dimensions

1334

https://orcid.org/0009-0007-7742-1427
https://orcid.org/0000-0003-4498-020X
https://orcid.org/0000-0003-0398-4087
https://doi.org/10.1145/3624062.3624198
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3624062.3624198
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3624062.3624198&domain=pdf&date_stamp=2023-11-12

SC-W 2023, November 12–17, 2023, Denver, CO, USA Breiter and Trotter et al.

together with the effect of cache partitioning on SpMV, and describe
our approach to derive the cache miss model in Section 3. The
description of our experiments and an analysis of the results follows
in Section 4. Related work is discussed in Section 5 before we
conclude in Section 6.

2 BACKGROUND
In this section, we first describe the cache partitioning mechanism
of the A64FX and how it can be applied to a CSR SpMV kernel.
Afterwards, we briefly explain reuse distance and how it can be
used to assess cache behavior.

2.1 Cache partitioning on A64FX
Cache partitioning allows dividing a cache into multiple partitions.
Fujitsu’s A64FX processor is equipped with a way-based hardware
cache partitioning mechanism, named sector cache [10]. It enables
dividing the private L1D and shared, last-level L2 caches into atmost
four partitions, called sectors, and assigning a program’s data objects
(e.g., arrays) to the different partitions. The partitioning policy (i.e.,
partition sizes and data assignment) can be chosen dynamically at
runtime and without flushing the cache. Partition sizes are set by
allocating a number of cache ways to each sector. The assignment
of data to a partition is specified by setting a sector ID number on
each memory instruction (e.g., loads and stores), which is encoded
in the otherwise unused top byte of the virtual address. Further
details on the sector cache mechanism can be found in the A64FX
micro-architectural manual [10] and the A64FX HPC extension
specification [9].

The Fujitsu C/C++ Compiler (FCC) [11] provides compiler direc-
tives to specify the partitioning policy in application code for the
A64FX processor. Although FCC’s directives are limited to a maxi-
mum of two sectors, and the same partition sizes must be used on
every core, this is nonetheless sufficient for our usage in this paper.
Listing 1 shows an example of using the directives for an SpMV
kernel with a matrix in CSR format. Line 1 specifies the number
of cache ways allocated to sector 1. That is, N2 ways are allocated
for the L2 cache, and, optionally, N1 ways for the L1 cache. The
remaining cache ways are allocated to sector 0. Line 2 specifies the
data objects (arrays or pointers) assigned to sector 1. In this case,
the arrays a and colidx are assigned to sector 1, whereas other
data is assigned to sector 0 by default.

The kernel in Listing 1 computes the product𝑦 ← 𝑦 +𝐴𝑥 for vec-
tors 𝑥 and 𝑦, and a matrix𝐴, where the nonzero matrix values a[i],
are stored in row-major order and colidx[i] stores the column
index of the i-th nonzero matrix value. The outer loop iterates over
the matrix rows in parallel using the OpenMP worksharing-loop
construct. The inner loop uses the row pointers (rowptr) to range
over the nonzeros in each row. Nonzero matrix entries are multi-
plied by elements from the input vector x as determined by the
column indices and accumulated into the output vector y. This ap-
proach to parallelising CSR SpMV is considered standard, although
more sophisticated schemes, such as merge-based CSR SpMV [18],
can in principle be used tomitigate workload imbalance formatrices
where the number of nonzeros varies greatly between rows.

In the course of a single SpMV operation, only elements of the
vectors and the row pointers can be reused. The matrix data, which

consists of the nonzero matrix values and their column indices, are
used only once. Even in the case of repeated SpMV operations, the
working set is often too large to fit in cache anyway. Therefore, as-
signing the non-temporal matrix data (a and colidx) to a partition
of minimal size increases the effective cache space of the reusable
data in this code.

Listing 1: SpMV in CSR format using FCC’s sector cache com-
piler directives.

1 #pragma procedure scache_isolate_way L2=N2 [L1=N1]
2 #pragma procedure scache_isolate_assign a colidx
3 #pragma omp for
4 for (int r = 0; r < num_rows; r++)
5 for (int64_t i = rowptr[r]; i < rowptr[r+1]; i++)
6 y[r] += a[i] * x[colidx[i]];

2.2 Reuse distance
Reuse distance [4, 15], or stack distance, is a hardware-independent
metric for locality of reference of programs and has proven useful
to analyze cache behavior. Once computed, it allows one to assess
cache behavior for arbitrary cache sizes. This is an advantage over
certain other techniques, such as cache simulation (see, e.g., [26]),
which must be recomputed for each particular cache size.

Given a trace 𝑇 in the form of a sequence of memory accesses
𝑇 =𝑚0,𝑚1, . . . , the reuse distance RD(𝑟) of a reference𝑚𝑟 is the
number of unique memory locations referenced between a pair of
accesses to the same memory location, or∞ if the location𝑚𝑟 has
not been referenced before. In the following, we consider memory
locations and cache size as given at the granularity of cache lines.
For a fully associative Least Recently Used (LRU) cache with a
capacity of 𝑛 cache lines, a memory access results in a cache hit if
its reuse distance does not exceed the cache size:

miss(𝑟, 𝑛) =
{
1, RD(𝑟) ≥ 𝑛,
0, otherwise.

(1)

Furthermore, reuse distance with Eq. (1) remains a good approxi-
mation for set-associative caches with (pseudo)-LRU replacement,
especially for caches with high associativity [4]. Although the cache
replacement policies of the A64FX processor have not been fully
disclosed, we assume that a pseudo-LRU policy is used.

Typically, reuse distances are obtained via profiling by instru-
mentation of memory instructions and processing the resulting
memory trace. However, this involves a significant overhead, and,
recently, more lightweight techniques [21] have been developed
based on hardware event sampling and statistical methods.

In parallel programs, the cache behavior depends on the relative
timing of threads. Their memory references can be interleaved to
model the cache behavior of a shared cache with concurrent reuse
distance [23], which is defined as the number of distinct references
between a consecutive pair of references to the same memory loca-
tion among all threads sharing the cache. Its value depends on the
interleaving order and the number of threads sharing a cache.

3 METHODOLOGY
We propose a lightweight approach to estimate cache behavior of
SpMV based on reuse distance without requiring instrumentation,
while also including the effect of cache partitioning. Our method es-
timates reuse distance and cache misses based solely on the sparsity

1335

Modelling Data Locality of SpMV on the A64FX SC-W 2023, November 12–17, 2023, Denver, CO, USA

pattern of the input matrix and its dimensions. We first present an
analysis of situations where cache partitioning can be beneficial for
SpMV, and thereafter explain our method for obtaining the reuse
distance from the matrix sparsity pattern.

3.1 Cache partitioning for SpMV
To better understand how use of the sector cache impacts the CSR
SpMV kernel in Listing 1, we consider a commonly encountered
scenario where the SpMV operation 𝑦 ← 𝑦 + 𝐴𝑥 is performed
repeatedly. The aim is to model the cache behavior after a warm-up
iteration (i.e., no cold misses). The challenging part is estimating
cache misses due to references to x, because their locality depends
on the matrix sparsity pattern.

In the worst case, poor spatial and temporal locality may cause
an entire cache line to be transferred for each access to the x-
vector per nonzero. Because the cache line size of the A64FX is 256
bytes (instead of the typical 64 bytes), accesses to the x-vector may
account for up to 95 % of the data traffic volume (i.e., 256 bytes for
accessing the x-vector versus 12 bytes for accessing a and colidx
per nonzero).

In any case, cold misses occur during the first SpMV iteration.
The capacity misses in the next iterations are modeled based on
the following classification of matrices according to their input
dimensions:

(1) The matrix and vectors together fit into cache.
(2) The matrix and vectors together do not fit into cache, but x,

y and rowptr together fit into a cache partition.
(3) x, y and rowptr together do not fit into a cache partition,

while either
(a) x completely fits into a cache partition, or
(b) x does not fit into a cache partition.

Matrices in class (1) are expected to not benefit from cache parti-
tioning, since there are no capacity misses in this case.

Matrices from class (2) are expected to benefit most from cache
partitioning in iterative SpMV, because misses caused by accesses
to x, rowptr, and y are avoided due to the partitioning. Capacity
misses in this case are only due to a and colidx, which together
yields ⌈8𝐾/𝐿⌉ + ⌈4𝐾/𝐿⌉ misses for a cache with line size 𝐿, an𝑀-
by-𝑁 matrix with 𝐾 nonzeros, and 8- and 4-byte values used for
a and colidx, respectively. However, if cache partitioning is not
used, then ⌈8(𝑀 + 1)/𝐿⌉ + ⌈8𝑀/𝐿⌉ additional misses result from ac-
cesses to rowptr and y which both use 8-byte values. Furthermore,
references to x with reuse distance larger than the cache size also
cause additional capacity misses.

Finally, when the matrix dimensions are large enough such that
x, rowptr, and y together do not fit into cache in case (3), only
cache misses due to accesses to x can be avoided. Thus, even if
cache partitioning is used, the same number of capacity misses due
to a, colidx, y and rowptr are incurred as in the previous case, i.e.,
⌈8𝐾/𝐿⌉ + ⌈4𝐾/𝐿⌉ + ⌈8(𝑀 + 1)/𝐿⌉ + ⌈8𝑀/𝐿⌉. At this point, it may
be better to additionally assign rowptr and y to the small partition,
leaving more space for x in the other. If x fits completely into the
other cache partition, then it incurs no capacity misses. Otherwise,
isolating x lowers the reuse distance of references to x, potentially
avoiding capacity misses.

0 1

2

3 4

5 6

(a)

(b)
a[0] a[1]

a[2]

a[3] a[4]

a[5]

col[0] x[1] col[1] x[2]

col[2] x[0]

col[3] x[2] col[4] x[3]

col[5] x[1] a[6] col[6] x[3]

row[0]

row[2]

row[3]

row[4]

y[0]

y[1]

y[2]

y[3]

Line 0

x[0-1]

Line 1

x[2-3]

(c) Line 2

y[0-1]

Line 3

y[2-3]

Line 4

a[0-1]

Line 5 Line 6

a[2-3] a[4-5]

Line 7

a[6]

Line 8

col[0-3]

Line 9

Line 10

col[4-6]

row[0-1]

Line 11

row[2-3]

Line 12

row[4]

row[1]

Figure 1: (a) Sparse matrix pattern with 7 nonzeros (b) Access
pattern of CSR SpMV (c) Cache memory layout of involved
data structures x, y, a, colidx and rowptr assuming a cache
line size of 16 bytes and alignment to cache line boundaries.

We also note that in the case of a segmented shared cache, shared
data may be replicated in the different segments. For example, the
last-level cache of the A64FX consists of four 8MiB segments, and
the total cache space occupied by xmay therefore vary between 8𝑁
and 4×8𝑁 , assuming an 𝑁 -element array of 8-byte floating-point
values.

3.2 Reuse distance analysis of SpMV with
partitioned caches

In this section, we explain how to estimate cache misses occurring
in SpMV from Listing 1, also in case of a partitioned cache. We also
describe our method for computing reuse distances. Reuse distance
allows us to model the total number of cache misses occurring in a
program with a cache of capacity 𝑛 by computing reuse distance for
eachmemory reference 𝑟 and using Eq. (1). This can be extended to a
partitioned cache by treating the partitions as separate caches with
capacities 𝑛0 and 𝑛1, such that 𝑛0+𝑛1 = 𝑛. The data is split between
the two partitions, and reuse distances are computed with respect
to the references assigned to each partition. In our considered case,
the references to a and colidx are counted in partition 1, others
are counted in partition 0:∑︁

𝑚𝑟 ∉{a,colidx}
miss(𝑟, 𝑛0)︸ ︷︷ ︸

partition 0

+
∑︁

𝑚𝑟 ∈{a,colidx}
miss(𝑟, 𝑛1)︸ ︷︷ ︸

partition 1

(2)

This equation corresponds to the partitioning policy from Listing 1.
Disabling the cache partitioning is a special case of Eq. (2), where
all references are counted in partition 0.

3.2.1 Computing reuse distances from the matrix sparsity pattern.
In order to compute the reuse distances of memory references
occurring in SpMV, we first obtain a memory trace. The trace is
generated from the sparsity pattern of the matrix, which is used to

1336

SC-W 2023, November 12–17, 2023, Denver, CO, USA Breiter and Trotter et al.

infer the memory access pattern that would be encountered during
SpMV without running the SpMV kernel itself. In other words,
cache line numbers are assigned to the elements in the involved data
structures, and the matrix sparsity pattern is processed to deduce
the memory locations that would be accessed when executing the
SpMV kernel. This requires two passes for the case without and
with partitioning: one pass where all references are accounted for
in a single partition, and another pass where the references are
divided into the partitions.

Fig. 1 shows an example of the approach described above. The
access pattern of the SpMV with an example matrix (Fig. 1 (a)) is
shown in Fig. 1 (b). The cache line numbers assigned to the elements
of the data structures are shown in Fig. 1 (c). Each data structure is
assumed to be aligned to a cache line boundary (i.e., 256 bytes for
the A64FX). Finally, the reuse distance can be computed from the
memory trace with a stack processing algorithm.

We use the stack processing algorithm by Kim et al. [13]. This al-
gorithm has the property that, as opposed to other stack processing
algorithms [2], the time complexity of computing reuse distance of
each memory reference is independent of their locality within the
memory trace. Note that, in principle, we could use another stack
processing algorithm. We chose the algorithm by Kim et al. because
of its constant time complexity per reference. We expect a more
realistic interleaving of references in a trace when considering a
shared cache in multi-threaded execution.

In the multi-threaded case, the memory trace is recorded in
parallel using the same number of threads as would be used in
the execution of the SpMV kernel. Each thread records the mem-
ory accesses of its assigned matrix rows. If a cache is shared by
multiple threads, the memory accesses of these threads must be in-
terleaved [23]. We achieve the interleaving using the queue-based
MCS lock [17] to order and collate memory accesses submitted
by different threads, because it provides starvation freedom and
fairness (FIFO ordering).

3.2.2 Approximating reuse distance solely from column indices. The
method described above needs two passes over the memory trace,
one for the partitioned case and one for the case without cache
partitioning. In this section, we describe an alternative method to
approximate SpMV reuse distances for both cases from a single
pass, only from the x-vector access pattern given by colidx. The
influence of references to the other data structures is inferred from
analytical considerations. Because the set of processed memory
references is smaller, this method is much faster than processing
the entire memory trace.

In case of a partitioned cache where only x is assigned to one
partition, its reuse distances can be computed directly from the
memory trace consisting only of references to x. However, we
consider the case where a and colidx are assigned one partition
and all the other data structures are assigned the second partition.
Thus, x shares its cache partition with rowptr and y. This increases
the reuse distances compared to assigning only x to a partition on
average by a factor of 𝑠1 = (16 ×𝑀/𝐾 + 8)/8. In case of not using
cache partitioning, this factor increases to 𝑠2 = (16 ×𝑀/𝐾 + 20)/8,
because of the additional references to a and colidx (compare
Fig. 1 (b)). These scaling factors are the ratio of the average number
of bytes accessed per element of x and the data type size of x.

Using these scaling factors, we can approximate the reuse distances
of references to x for all three cases: (1) assigning a and colidx
partition 0, (2) not using cache partitioning at all, and (3) assigning
only x to partition 0 (not considered in this paper). Whether or not
references to the other data structures hit in cache is determined
based on the considerations from Section 3.1.

In the following, we refer to the approach discussed in Sec-
tion 3.2.2 asmethod (B) and refer to the approach from Section 3.2.1
as method (A). The advantage of using method (B) is that fewer
memory references have to be processed and multiple cases are
covered in a single stack processing pass. The disadvantage is a loss
of accuracy, especially for matrices with a low average number and
high coefficient of variation of nonzeros per row. We will discuss
this in Section 4.5.

4 EVALUATION AND EXPERIMENTAL
RESULTS

This section first describes our experimental setup and a perfor-
mance comparison of our SpMV to prior work [1]. Afterwards, we
discuss the impact of the sector cache on measured cache misses
and performance in SpMV. Finally, we evaluate the our model by
comparison to the cache miss measurements.

4.1 Experimental setup
The A64FX is a 48-core processor with private 64 KiB 4-way L1D
caches grouped into four NUMA domains. Each NUMA domain
has an 8 MiB 16-way last-level L2 cache, shared by 12 cores each,
and is connected to an HBM2 module [10]. The theoretical peak
memory bandwidth of the A64FX is 1024GB/s, and a bandwidth
utilization of over 800GB/s can in practice be sustained [25].

The experiments in this study were carried out on a Fujitsu
PrimeHPC FX1000 system on the Wisteria-BDEC01 cluster at The
University of Tokyo. Our code was compiled using FCC 4.9.0 with
the compiler options -Kfast, -Kopenmp and -Kocl.

Moreover, to pin each thread to its own core, we set the environ-
ment variables OMP_PROC_BIND=close and OMP_PLACES=cores.
In addition, we perform NUMA-aware memory allocations by
aligning allocations to a page and performing correct “first
touch” initialisation of the data. Furthermore, huge pages
are enabled by setting XOS_MMM_L_HPAGE_TYPE=hugetlbfs
and a demand paging policy is enabled with
XOS_MMM_L_PAGING_POLICY=demand:demand:demand.

To enable the sector cache features, we also set the environ-
ment variables FLIB_HPCFUNC=TRUE, FLIB_SCCR_CNTL=TRUE and
FLIB_L1_SCCR_CNTL=FALSE.

Finally, a collection of 490 square, non-complex matrices from
SuiteSparse [6] with more than 1 million and fewer than 1 billion
nonzeros are used in the following experiments. The smallest matrix
is about 11MiB, which exceeds the size of a single 8MiB segment
of the L2 cache.

4.2 Performance of sparse matrix-vector
multiplication on A64FX

First, we measure the performance of the SpMV kernel from List-
ing 1 on the A64FX processor using 48 threads without using the

1337

Modelling Data Locality of SpMV on the A64FX SC-W 2023, November 12–17, 2023, Denver, CO, USA

Table 1: Performance (in Gflop/s) of CSR SpMV using 48
threads on A64FX.

Non- Gflop/s
Matrix Rows zeros Ours [1]

pdb1HYS 0.036M 4.3M 82.9 40.2
Hamrle3 1.447M 5.5M 15.9 9.4
G3_circuit 1.585M 7.7M 10.8 11.2
shipsec1 0.141M 7.8M 94.0 16.7
pwtk 0.218M 11.5M 87.3 94.5
kkt_power 2.063M 14.6M 8.6 14.3
Si41Ge41H72 0.186M 15.0M 71.6 70.3
bundle_adj 0.513M 20.2M 7.6 66.6
msdoor 0.416M 20.2M 50.6 53.3
Fault_639 0.639M 28.6M 75.7 77.5
af_shell10 1.508M 52.7M 94.0 92.3
Serena 1.391M 64.5M 65.6 70.5
bone010 0.987M 71.7M 110.8 118.9
audikw_1 0.944M 77.7M 45.1 102.8
channel-500.. 4.802M 85.4M 42.1 47.0
nlpkkt120 3.542M 96.8M 75.7 77.2
delaunay_n24 16.777M 100.6M 5.8 22.7
ML_Geer 1.504M 110.9M 117.8 120.5

sector cache. Table 1 shows the performance of matrices from
SuiteSparse used by Alappat et al. [1] next to our results.

As expected, the performance depends highly on the sparsity
pattern of the matrix, ranging from about 5 to 120 Gflop/s. These
results agree with the performance reported by Alappat et al. [1], al-
though the performance of a fewmatrices differs considerably and is
therefore worth noting. In particular, for kkt_power, bundle_adj,
audikw_1 and delaunay_n24, we observe only 10–50 % of the per-
formance reported by Alappat et al. However, in these cases Alap-
pat et al. apply a combination of two performance optimizations
not considered here, namely reordering using the Reverse Cuthill-
McKee algorithm and a load balancing of the number of nonzeros
per thread. On the other hand, we observe speedups of approx-
imately 2 and 4 for the matrices pdb1HYS and shipsec1, respec-
tively, which we found to be caused by using a demand paging
policy for all three memory areas, whereas Alappat et al. instead
used prepaging for the .bss area (i.e., XOS_MMM_L_PAGING_POLICY
is set to prepage:demand:demand).

4.3 Impact of sector cache on memory traffic
Using the Performance Monitoring Units (PMUs) on the A64FX
and the PAPI library [19], we measure the number of L1 and L2
cache misses incurred by the CSR SpMV kernel. The kernel is exe-
cuted using 48 threads and PMU measurements are recorded per
thread. The hardware event L1D_CACHE_REFILL is used to mea-
sure L1 cache misses, whereas L2 cache misses are measured by
counting L2D_CACHE_REFILL and subtracting L2D_SWAP_DM and
L2D_CACHE_MIBMCH_PRF, as described in [8, 10]. L2 demand misses,
misses not caused by prefetching, are counted using the event
L2D_CACHE_REFILL_DM. After measuring cache misses for the base-
line without the sector cache, we thereafter enable the sector cache

−40

−20

0

20

40

60

80

100

120

2 3 4 5 6

di
ffe

re
nc

e
in

L2
ca

ch
e

m
is

se
s

[%
]

L2 ways

L1 ways: none
L1 ways: 1
L1 ways: 2
L1 ways: 3

Figure 2: Distributions over 490 matrices of cache miss reduc-
tion or increase in SpMV for different sector cache configura-
tions on Fujitsu A64FX. Lower and upper quartiles are indi-
cated by the lower and upper ends of each box, whereas the
median is shown as a horizontal line within a box. Whiskers
indicate the interquartile range and outliers are plotted as
individual points.

for the L2 cache and vary the number of L2 cache ways allocated to
sector 1 (i.e., non-reusable data) from 2 to 6. This is combined with
either disabling the L1 sector cache or allocating 1 to 3 L1 cache
ways for non-reusable data. Fig. 2 shows the relative difference in
L2 cache misses for different sector cache configurations compared
to a baseline where the sector cache is disabled. Note that the im-
pact of sector cache configurations may vary for different matrices.
Therefore, a boxplot is presented for each cache configuration, thus
showing the results as a distribution over all 490 matrices.

First, we note that configuration of the L2 sector cache is more
important than the L1 sector cache. Second, we find that 4 or 5
L2 cache ways should in general be assigned to sector 1 (i.e., non-
reusable data) to achieve a reduction in L2 cache misses for most
matrices. The reduction in the total number of L2 cache misses is
typically about 5 %.

Assigning more cache ways yields worse cache behavior for a
small number of outliers. On the other hand, when using fewer
cache ways, more cache misses are incurred for most matrices. This
is surprising, since we expected using a minimum partition size
(i.e., 2 L2 cache ways) for the non-temporal data would lead to
best results. It turns out that a combination of a small sector and
aggressive hardware prefetching of the non-reusable data (a and
colidx) causes already prefetched data to be evicted prematurely.
This effect was previously described by Alappat et al. [1]. We also
confirmed the cause by reducing the prefetch distance of the A64FX
hardware prefetcher, which can be adjusted in software on the
A64FX using the hardware prefetch assistance, another part of the
Fujitsu HPC extension [9]. After reducing the prefetch distance, we
found that allocating only 2 L2 cache ways for sector 1 produced
similar results to using 4 L2 cache ways.

We also found that the same effect occurs in the L1 cache using
cache partitioning. We conclude that this is the reason why the
L1 sector cache does not improve cache behavior. Nevertheless,

1338

SC-W 2023, November 12–17, 2023, Denver, CO, USA Breiter and Trotter et al.

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

2 3 4 5 6

sp
ee

du
p

L2 ways

No L1 ways 1 L1 ways 2 L1 ways

Figure 3: Speedup (or slowdown) of SpMV for different sector
cache configurations on Fujitsu A64FX.

adjusting the prefetch distance of the L1 hardware prefetcher may
alleviate this issue, enabling even further cache behavior improve-
ments in SpMV using the L1 sector cache, but investigating this is
left for future work.

4.4 Impact of sector cache on SpMV
performance

Next, we assess the impact of various sector cache configurations
on the performance of the SpMV kernel. We have already measured
a baseline SpMV performance without sector cache. Thus, we now
measure the performance again after enabling the sector cache for
the L2 cache, while varying the number of L2 cache ways that are
set aside for non-reusable data from 2 to 6. The L1 cache is either
disabled or 1 to 2 L1 cache ways are allocated toward non-reusable
data. These results are shown in Fig. 3 as distributions of speedups
over the baseline (i.e., without sector cache) for all 490 matrices.

Generally speaking, enabling only the L2 sector cache and us-
ing 5 L2 cache ways for non-reusable data yields the best overall
performance. In this situation, more than 75 % of matrices achieve
performance equal to or better than the baseline, and 25% of the
matrices yield a performance improvement of about 10 % or more.
The highest speedup attained is about 1.6×.

It was not beneficial to enable the L1 sector cache, and we found
performance to degrade further with more L1 cache ways allocated
to non-reusable data. This is already seen for 2 L1 cache ways,
and we found that using 3 L1 cache ways for non-reusable data
exacerbates the problem further resulting in slowdowns of 0.2× in
the worst case. The explanation is the hardware prefetching and
premature eviction of data as discussed in Section 4.3.

Fig. 4 shows the speedup versus the size of the 𝑥 vector for the
case of assigning 5 L2 ways to non-reusable data. Additionally, the
figure distinguishes between the different matrix classes described
in Section 3.1 (classes (1), (2), (3a) and (3b) are indicated by red
crosses, blue squares, green circles and purple triangles, respec-
tively). First, for matrices in class (1), matrix and vectors both fit
in the L2 cache, and the performance is mostly within 5% of the

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

0.01 0.1 1 10 100

L1 L2

sp
ee

du
p

matrix columns (millions)

class (1)
class (2)

class (3a)
class (3b)

Figure 4: Speedup (or slowdown) versus vector size for SpMV
for sector cache with 5 L2 ways. See Section 3.1 for a descrip-
tion of the different classes used to categorise matrices.

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

−100 0 100

sp
ee

du
p

difference in L2 cache misses (demand) [%]

class (2)
class (3a)
class (3b)

Figure 5: Speedup (or slowdown) versus difference in L2 de-
mand misses of SpMV for sector cache with 5 L2 ways and
working sets exceeding the L2 cache size. See Section 3.1 for
a description of the different classes used to categorise ma-
trices.

baseline. In some cases, however, the difference may be up to 20 %,
possibly caused by the sector cache either increasing or reducing
conflict misses. Second, when only the matrix no longer fits in L2
cache, i.e., class (2), then the sector cache almost always yields a
performance improvement. The improvement is mostly up to 20 %,
but this class also includes those cases where the speedup is highest,
as expected. Finally, for matrices in class (3), the reusable data no
longer fits in sector 0. The impact of the sector cache gradually
lessens as the matrix dimensions increase and a smaller portion of
the x vector fits in sector 0.

It is expected that the matrices experiencing higher speedup will
suffer fewer demand cache misses after enabling the sector cache.
These demand misses are associated with the irregular memory

1339

Modelling Data Locality of SpMV on the A64FX SC-W 2023, November 12–17, 2023, Denver, CO, USA

accesses to the x-vector or conflict misses. Fig. 5 shows the rela-
tionship between SpMV speedup and the difference in L2 demand
misses after enabling the sector cache with 5 L2 ways. In most cases,
a speedup is accompanied by a reduction in L2 demand misses. A
few cases experience a slowdown together with a reduction in L2
demand misses, in which case the performance may instead be
limited by other factors, such as L1 cache traffic. Note that the
matrices achieving the highest speedups of 1.2× or more also have
a reduction of L2 demand misses of about 30–80%.

Our measurements show that only a few matrices approach the
memory bandwidth limitation of about 800GB/s on the A64FX,
whereas the performance of many matrices is not directly limited
by memory bandwidth. For example, the top 20 matrices in terms
of memory bandwidth utilization range from 513GB/s to 783GB/s
without the sector cache. However, none of the top 20 matrices in
terms of speedup exceeds 400GB/s bandwidth utilization. Their
bandwidth utilization ranges from 74GB/s to 376GB/s without the
sector cache, and even increases in most cases when the sector
cache is enabled, even though the number of L2 cache misses is
reduced. This indicates that other factors, such as the latency of
handling demand misses, are limiting performance on the A64FX.

Memory bandwidth utilization can be measured with perfor-
mance events on the A64FX using the following formula [8, 10]:
Bandwidth [GB/s] = 10−9 × (L2D_CACHE_REFILL + L2D_CACHE_WB
− L2D_SWAP_DM − L2D_CACHE_MIBMCH_PRF) × 256 / time

4.5 Accuracy of the cache miss model
To assess the accuracy of the cache miss model from Section 3.2,
we use the Mean Absolute Percentage Error (MAPE),

MAPE =
100
𝑁

𝑁∑︁
𝑖=1

����𝑥𝑖 − 𝑥𝑖𝑥𝑖

����, (3)

where 𝑥𝑖 and 𝑥𝑖 denote the measured and predicted number of L2
cache misses (see Eq. 2) for the 𝑖-th matrix, respectively.

Table 2 and Table 3 show the MAPE as well as the standard
deviation of the absolute percentage error for the model’s L2 cache
miss prediction of method (A) and (B) in sequential and parallel
iterative SpMV and varying cache partition sizes. We include only
matrices above the L2 cache size (8 MiB sequential, 32 MiB parallel),
since those are the cases where a high number of cache misses is
expected. Otherwise, the MAPE is distorted by cases with few or
no cache misses that are dominated by measurement noise, and
thus becomes less meaningful.

4.5.1 Summary. In general, the accuracy of the cache miss pre-
dictions are mostly within about 5–10%, though the accuracy de-
pends on several factors and certain cases yield higher errors. Over-
all, the error using method (B) is just slightly worse compared to
method (A) when the L2 sector cache is enabled. In this case, the
error of method (A) and method (B) is about 2.5 % and 3% in se-
quential SpMV and about 3 % and 4% in the parallel case using a
reasonable high number of cache ways for the non-temporal data,
respectively. Method (B) has a high error predicting cache misses
without cache partitioning compared to method (A).

The average overhead (𝑡𝐴/𝑡𝐵) of computing reuse distance with
method (A) compared to method (B) is 4.21× and and 3.02× for 1

Table 2: Mean and standard deviation of the absolute percent-
age error for predicting L2 cache misses in sequential SpMV.

method (A) method (B)
L2 Sector Cache Mean Std Mean Std

No Sector Cache 2.48 % 4.00 % 6.47 % 15.98 %
2 L2 ways 2.69 % 6.06 % 2.72 % 5.23 %
3 L2 ways 1.54 % 3.32 % 2.28 % 5.23 %
4 L2 ways 2.71 % 5.42 % 2.89 % 5.24 %
5 L2 ways 2.49 % 4.48 % 2.95 % 5.07 %
6 L2 ways 2.51 % 4.17 % 3.14 % 5.51 %
7 L2 ways 2.72 % 4.52 % 3.54 % 6.31 %

and 48 threads respectively. The average run-time of method (B) is
6.54s and 9.22s.

4.5.2 Accuracy for sequential SpMV. The model predicts the num-
ber of L2 cache misses in SpMV to within an accuracy of a few
percent, both with and without the sector cache and for various
partition sizes. Method (A) andmethod (B) perform similarly for pre-
dicting cache misses using cache partitioning. However, method (B)
performs significantly worse without cache partitioning compared
to method (A). This is caused by (1) the higher required scaling fac-
tor without cache partitioning and (2) due to a low average number
(`𝐾) and high coefficient of variation (𝐶𝑉𝐾 = 𝜎𝐾/`𝐾) of nonzeros
per row. Note the relatively high standard deviation of the absolute
percentage error, caused by few outliers with very high prediction
error. Considering only the 254 matrices with `𝐾 ≥ 8 and 𝜎𝐾 ≤ 1,
the MAPE and standard deviation reduces to 3.25 % and 2.34 % for
method (B) without partitioning.

4.5.3 Accuracy for parallel SpMV. For partition sizes of 4 L2 ways
or more, the error using 48 threads is low and similar to the error
in the sequential case. These results justify our approach for com-
puting concurrent reuse distance as described in Section 3.2. The
accuracy is worse for small partitions in the parallel case, because
setting a too small partition can lead to the eviction of already
prefetched cache lines before their first use as discussed in Sec-
tion 4.3. In the sequential case, this issue does not occur using
the L2 sector cache, because the cache partition is not shared by
multiple threads. The more threads, the more space is occupied by
non-reusable data that is prefetched before use.

Again, method (A) and method (B) perform similarly in the par-
titioned case, and method (B) performs significantly worse without
partitioning compared to method (A). Considering only matrices
with `𝐾 ≥ 8 and 𝜎𝐾 ≤ 1, the MAPE and standard deviation is 7.02 %
and 22.67 % respectively for method (B) without partitioning.

4.5.4 Accuracy of L1 cache miss prediction. The MAPE of method
(A) and method (B) of L1 cache miss predictions is 8.40 % and 15.27 %
in the sequential case without partitioning, and 8.91 % and 13.66 %
in the parallel case, respectively. A high MAPE is expected on the
A64FX, considering the low associativity of its L1 caches.

4.5.5 Discussion. Cache misses due to limited associativity and
hardware prefetching are not taken into account with our cache
miss model. Additionally, the model assumes a LRU policy, and an

1340

SC-W 2023, November 12–17, 2023, Denver, CO, USA Breiter and Trotter et al.

Table 3: Mean and standard deviation of the absolute percent-
age error for predicting L2 cache misses in parallel SpMV
using 48 threads (matrices > L2 cache).

method (A) method (B)
L2 Sector Cache Mean Std Mean Std

No Sector Cache 3.47 % 4.34 % 10.80 % 29.04 %
2 L2 ways 15.11 % 6.46 % 15.79 % 9.85 %
3 L2 ways 8.69 % 4.70 % 9.68 % 8.98 %
4 L2 ways 4.79 % 3.61 % 5.60 % 7.39 %
5 L2 ways 3.14 % 3.65 % 4.03 % 6.71 %
6 L2 ways 2.56 % 3.35 % 3.70 % 6.74 %
7 L2 ways 2.63 % 3.96 % 4.07 % 7.75 %

interleaving of memory references that may not accurately repre-
sent actual parallel executions is performed. These factors generally
limit the accuracy of modelling cache behavior with reuse distance.

For many matrices of class (2) and (3) in our data set, the ma-
jority of cache misses is caused by the easy-to-predict traffic due
to streaming the matrix data. However, some matrices show poor
spatial and temporal locality in the x-vector due to their irregular-
ity, which means that the x-vector traffic constitutes a substantial
part of the overall traffic. Thus, using the MAPE to aggregate re-
sults over the entire set of matrices may not accurately reflect the
model’s ability to predict the difficult cases.

However, for the case of sequential SpMV without the sector
cache, the model using method (A) indicates that there are 42 out of
490 matrices where the x-vector causes 50 % or more of the overall
traffic. Using only these hard-to-predict matrices, the MAPE for the
L2 cache misses with and without using the sector cache is 8.14 %
and 10.14 % respectively.

An alternative way to evaluate the model’s accuracy would be to
ignore regular data traffic from the matrix, and to only compare the
model’s prediction of cache misses due to x-vector accesses with
appropriate performance event measurements for the related cache
misses. Such performance event measurements require differentiat-
ing between cache misses caused by accesses to the x-vector and
others, which may be feasible using event-based sampling.

5 RELATEDWORK
Our paper is related to prior work on the following topics: per-
formance analysis and optimization on the A64FX, SpMV, cache
partitioning, cache miss models, and reuse distance analysis.

Earlier studies on the A64FX have focused on benchmarking and
comparison to x86 [3] or other ARM CPUs [12], or in-depth com-
parison of the Fujitsu C compiler to LLVM and GNU compilers [7]
for the A64FX.

Alappat et al. [1] apply the sector cache to dense matrix-vector
multiplication on A64FX and observe a speedup of 2.8× for vector
sizes in the range 2–6MB. They also consider a CSR SpMV kernel,
finding that the sector cache mostly provided no benefit at all, apart
from only minor improvements of up to about 10 % in rare cases.
Our study, on the other hand, finds that such an improvement of
about 10 % is fairly common and can be expected for about half of
the 490 matrices we selected from SuiteSparse. In contrast to the

authors, we find that allotting 5 instead of 4 L2 cache ways to the
matrix data improves performance most in general. Additionally,
we do not find that using the L1 sector cache further improves
cache behavior without considering hardware prefetch distances.
Alappat et al. also consider other sparse storage formats, including
SELL-C-𝜎 [1] which achieved better performance on the A64FX
than CSR. However, the authors did not investigate using the sector
cache with this storage format.

One of the first works to model shared cache behavior of multi-
threaded SpMV was done by Song et al. [24]. The authors use a
concept similar to reuse distance computed from per-thread mem-
ory traces, and statistically infer the number of cache misses of
co-running threads. The average error for their considered two
sparse matrices is 2.41 % compared to the simulation of a fully
associative shared cache using two co-running threads. Lu et al. de-
veloped a reuse distance- and profiling-based framework [14] that
performs automatic software cache partitioning using a technique
called page coloring for serial programs. The authors improved
SpMV performance in a conjugate gradient benchmark, reducing
cache misses up to 35 % with cache partitioning. Breiter et al. [5],
developed a profiling tool based on dynamic binary instrumenta-
tion, recognizing code regions where the sector cache should be
applied. While cache miss reductions of 15–45% were measured
for benchmark problems involving dense matrices or structured
grids, a sparse, conjugate gradient benchmark showed marginal
reductions in L2 cache misses of about 1 %.

6 CONCLUSION
In this paper we have analyzed and measured cache behavior and
performance of CSR SpMV on the A64FX processor using a variety
of realistic sparse matrices. Additionally, we have studied how to
use the sector cache feature of the A64FX to reduce cache pollution
and improve performance for this important sparse kernel. We clas-
sifiedmatrices based on their dimensions, which provides additional
insight about when using the sector cache is beneficial. Detailed
measurements of cache performance events show the high corre-
lation between a reduction in demand cache misses and speedup
in SpMV due to using the sector cache. The matrix showing most
benefit has a speedup of about 1.6× when the number of demand
misses was reduced by about 80 %.

To gain even further insight, we proposed a method for reuse
distance analysis to provide accurate predictions for cache misses
resulting from irregular memory traffic that also includes the effect
of cache partitioning. The average prediction error of L2 cache
misses is around 2.5 % and 3 % for sequential and parallel SpMV
using 48 threads, respectively. Beyond explaining how to use the
A64FX’s sector cache for CSR SpMV, our proposed method for
SpMV cache miss estimation can be extended to other kernels or
other hardware architectures with different memory hierarchies.
We therefore think our approach is useful, for example in a co-
design process to determine optimized cache sizes, or to decide
whether to integrate a cache partitioning mechanism such as the
sector cache in future computing systems.

As future work, we plan to investigate the impact on demand
misses and performance of tuning the hardware prefetch distance
and using software prefetching in conjunction with the sector cache

1341

Modelling Data Locality of SpMV on the A64FX SC-W 2023, November 12–17, 2023, Denver, CO, USA

for SpMV kernels on the A64FX. Additionally, it is worth investigat-
ing how the sector cache can be applied in the case of other sparse
matrix storage formats or SpMV kernels, which can potentially
offer better performance on A64FX.

ACKNOWLEDGMENTS
This work was supported by the EuroHPC Joint Undertaking grant
agreement 956213 (SparCity), and the Federal Ministry of Education
and Research of Germany (project number 16HPC045). The research
presented in this paper has benefited from the Wisteria/BDEC-01
supercomputer at the University of Tokyo through JHPCN Joint
Research Project jh230041. This research has also made use of the
Experimental Infrastructure for Exploration of Exascale Computing
(eX3), which is financially supported by the Research Council of
Norway under contract 270053, and systems in the test environment
BEAST (Bavarian Energy Architecture & Software Testbed)1 at the
Leibniz Supercomputing Centre. The authors would like to thank
Christie Alappat for providing data related to the performance of
SpMV with the CSR storage format.

REFERENCES
[1] Christie Alappat, Nils Meyer, Jan Laukemann, Thomas Gruber, Georg Hager,

Gerhard Wellein, and Tilo Wettig. 2022. Execution-Cache-Memory modeling
and performance tuning of sparse matrix-vector multiplication and Lattice quan-
tum chromodynamics on A64FX. Concurrency and Computation: Practice and
Experience 34, 20 (2022), e6512.

[2] George Almási, Cǎlin Caşcaval, and David A Padua. 2002. Calculating stack
distances efficiently. In Proceedings of the 2002 workshop on Memory system
performance. 37–43.

[3] Fabio Banchelli, Kilian Peiro, Guillem Ramirez-Gargallo, Joan Vinyals, David
Vicente, Marta Garcia-Gasulla, and Filippo Mantovani. 2021. Cluster of emerging
technology: evaluation of a production HPC system based on A64FX. In 2021
IEEE International Conference on Cluster Computing (CLUSTER). IEEE Computer
Society, Los Alamitos, CA, USA, 741–750. https://doi.org/10.1109/Cluster48925.
2021.00110

[4] Kristof Beyls and Erik D’Hollander. 2001. Reuse Distance as a Metric for Cache
Behavior. In Proceedings of the IASTED International Conference on Parallel and
Distributed Computing and Systems. ISCA, Winona, MN, USA, 617–622.

[5] Sergej Breiter, Josef Weidendorfer, Minh Thanh Chung, and Karl Fürlinger. 2023.
A Profiling-Based Approach to Cache Partitioning of Program Data. In Parallel
and Distributed Computing, Applications and Technologies, Hiroyuki Takizawa,
Hong Shen, Toshihiro Hanawa, Jong Hyuk Park, Hui Tian, and Ryusuke Egawa
(Eds.). Springer Nature Switzerland, Cham, 453–463.

[6] Timothy A Davis and Yifan Hu. 2011. The University of Florida sparse matrix
collection. ACM Transactions on Mathematical Software (TOMS) 38, 1 (2011),
1–25.

[7] J. Domke. 2021. A64FX – Your Compiler You Must Decide!. In 2021 IEEE Interna-
tional Conference on Cluster Computing (CLUSTER). IEEE Computer Society, Los
Alamitos, CA, USA, 736–740. https://doi.org/10.1109/Cluster48925.2021.00109

[8] Fujitsu Limited 2020. A64FX PMU Events Errata (version 1.0 ed.). Fujitsu Limited.
https://github.com/fujitsu/A64FX/blob/master/doc/

[9] Fujitsu Limited 2020. A64FX specification Fujitsu HPC extension (version 1 ed.).
Fujitsu Limited. https://github.com/fujitsu/A64FX/blob/master/doc/

[10] Fujitsu Limited 2022. A64FX Microarchitecture Manual (version 1.8.1 ed.). Fujitsu
Limited. https://github.com/fujitsu/A64FX/blob/master/doc/

[11] Fujitsu Limited 2023. FUJITSU Software Compiler Package C User’s Guide (version
1.0l21 ed.). Fujitsu Limited. https://software.fujitsu.com/jp/manual/manualindex/
p22000026e.html

[12] A. Jackson, M. Weiland, N. Brown, A. Turner, and M. Parsons. 2020. Investigating
Applications on the A64FX. In 2020 IEEE International Conference on Cluster
Computing (CLUSTER). IEEE Computer Society, Los Alamitos, CA, USA, 549–558.
https://doi.org/10.1109/CLUSTER49012.2020.00078

[13] Yul H Kim et al. 1991. Implementing Stack Simulation for Highly-Associative
Memories. SIGMETRICS Perform. Eval. Rev. 19, 1 (1991), 212–213. https://doi.org/
10.1145/107972.107995

[14] Qingda Lu, Jiang Lin, et al. 2009. Soft-OLP: Improving Hardware Cache Per-
formance through Software-Controlled Object-Level Partitioning. In 2009 18th

1https://www.lrz.de/presse/ereignisse/2020-11-06_BEAST/

International Conference on Parallel Architectures and Compilation Techniques.
246–257. https://doi.org/10.1109/PACT.2009.35

[15] Richard L. Mattson, Jan Gecsei, Donald R. Slutz, and Irving L. Traiger. 1970.
Evaluation techniques for storage hierarchies. IBM Systems journal 9, 2 (1970),
78–117.

[16] Simon McIntosh-Smith, James Price, Andrei Poenaru, and Tom Deakin. 2020.
Benchmarking the first generation of production quality Arm-based supercom-
puters. Concurrency and Computation: Practice and Experience 32, 20 (2020),
e5569.

[17] John M. Mellor-Crummey and Michael L. Scott. 1991. Synchronization without
Contention. SIGPLAN Not. 26, 4 (1991), 269–278. https://doi.org/10.1145/106973.
106999

[18] Duane Merrill and Michael Garland. 2016. Merge-Based Sparse Matrix-Vector
Multiplication (SpMV) Using the CSR Storage Format. In ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming. Association for Comput-
ing Machinery, New York, NY, USA, Article 43, 2 pages. https://doi.org/10.1145/
2851141.2851190

[19] Philip J Mucci, Shirley Browne, et al. 1999. PAPI: A portable interface to hardware
performance counters. In Proceedings of the department of defense HPCMP users
group conference, Vol. 710.

[20] Tetsuya Odajima, Yuetsu Kodama, Miwako Tsuji, Motohiko Matsuda, Yutaka
Maruyama, and Mitsuhisa Sato. 2020. Preliminary Performance Evaluation of
the Fujitsu A64FX Using HPC Applications. In 2020 IEEE International Conference
on Cluster Computing (CLUSTER). IEEE, IEEE Computer Society, Los Alamitos,
CA, USA, 523–530. https://doi.org/10.1109/CLUSTER49012.2020.00075

[21] Muhammad Aditya Sasongko, Milind Chabbi, et al. 2021. ReuseTracker: Fast Yet
Accurate Multicore Reuse Distance Analyzer. ACM Trans. Archit. Code Optim.
19, 1 (2021), 1–25. https://doi.org/10.1145/3484199

[22] Mitsuhisa Sato, Yuetsu Kodama, Miwako Tsuji, and Tesuya Odajima. 2022. Co-
Design and System for the Supercomputer “Fugaku”. IEEE Micro 42, 2 (2022),
26–34. https://doi.org/10.1109/MM.2021.3136882

[23] Derek L. Schuff, Benjamin S. Parsons, and Vijay S. Pai. 2010. Multicore-aware
reuse distance analysis. In 2010 IEEE International Symposium on Parallel &
Distributed Processing, Workshops and Phd Forum (IPDPSW). IEEE Computer
Society, Los Alamitos, CA, USA, 1–8. https://doi.org/10.1109/IPDPSW.2010.
5470780

[24] Fengguang Song, Shirley Moore, and Jack Dongarra. 2007. L2 Cache Modeling for
Scientific Applications on Chip Multi-Processors. In 2007 International Conference
on Parallel Processing (ICPP 2007). IEEE Computer Society, Los Alamitos, CA,
USA, 51–51. https://doi.org/10.1109/ICPP.2007.52

[25] Sarat Sreepathi and Mark Taylor. 2021. Early Evaluation of Fugaku A64FX Archi-
tecture Using Climate Workloads. In 2021 IEEE International Conference on Cluster
Computing (CLUSTER). IEEE, 719–727. https://doi.org/10.1109/Cluster48925.2021.
00107

[26] James D Trotter, Johannes Langguth, and Xing Cai. 2020. Cache simulation
for irregular memory traffic on multi-core CPUs: Case study on performance
models for sparse matrix–vector multiplication. J. Parallel and Distrib. Comput.
144 (2020), 189–205.

1342

https://doi.org/10.1109/Cluster48925.2021.00110
https://doi.org/10.1109/Cluster48925.2021.00110
https://doi.org/10.1109/Cluster48925.2021.00109
https://github.com/fujitsu/A64FX/blob/master/doc/
https://github.com/fujitsu/A64FX/blob/master/doc/
https://github.com/fujitsu/A64FX/blob/master/doc/
https://software.fujitsu.com/jp/manual/manualindex/p22000026e.html
https://software.fujitsu.com/jp/manual/manualindex/p22000026e.html
https://doi.org/10.1109/CLUSTER49012.2020.00078
https://doi.org/10.1145/107972.107995
https://doi.org/10.1145/107972.107995
https://www.lrz.de/presse/ereignisse/2020-11-06_BEAST/
https://doi.org/10.1109/PACT.2009.35
https://doi.org/10.1145/106973.106999
https://doi.org/10.1145/106973.106999
https://doi.org/10.1145/2851141.2851190
https://doi.org/10.1145/2851141.2851190
https://doi.org/10.1109/CLUSTER49012.2020.00075
https://doi.org/10.1145/3484199
https://doi.org/10.1109/MM.2021.3136882
https://doi.org/10.1109/IPDPSW.2010.5470780
https://doi.org/10.1109/IPDPSW.2010.5470780
https://doi.org/10.1109/ICPP.2007.52
https://doi.org/10.1109/Cluster48925.2021.00107
https://doi.org/10.1109/Cluster48925.2021.00107

	Abstract
	1 Introduction
	2 Background
	2.1 Cache partitioning on A64FX
	2.2 Reuse distance

	3 Methodology
	3.1 Cache partitioning for SpMV
	3.2 Reuse distance analysis of SpMV with partitioned caches

	4 Evaluation and experimental results
	4.1 Experimental setup
	4.2 Performance of sparse matrix-vector multiplication on A64FX
	4.3 Impact of sector cache on memory traffic
	4.4 Impact of sector cache on SpMV performance
	4.5 Accuracy of the cache miss model

	5 Related work
	6 Conclusion
	Acknowledgments
	References

