
Lawrence Berkeley National Laboratory
LBL Publications

Title

Enabling Agile Analysis of I/O Performance Data with PyDarshan

Permalink

https://escholarship.org/uc/item/2zb9s2g7

ISBN

9798400707858

Authors

Luettgau, Jakob
Snyder, Shane
Reddy, Tyler
et al.

Publication Date

2023-11-12

DOI

10.1145/3624062.3624207

Copyright Information

This work is made available under the terms of a Creative Commons Attribution-
NonCommercial License, available at https://creativecommons.org/licenses/by-nc/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2zb9s2g7
https://escholarship.org/uc/item/2zb9s2g7#author
https://creativecommons.org/licenses/by-nc/4.0/
https://escholarship.org
http://www.cdlib.org/

Enabling Agile Analysis of I/O Performance Data with PyDarshan
Jakob Luettgau
luettgauj@acm.org

Inria
Rennes, France

Shane Snyder
ssnyder@mcs.anl.gov
Argonne National

Laboratory
Lemont, IL, USA

Tyler Reddy
treddy@lanl.gov

Los Alamos National
Laboratory

Los Alamos, NM
USA

Nikolaus Awtrey
Los Alamos National

Laboratory
Los Alamos, NM

USA

Kevin Harms
harms@alcf.anl.gov
Argonne National

Laboratory
Lemont, IL, USA

Jean Luca Bez
jlbez@lbl.gov

Lawrence Berkeley
National Laboratory
Berkeley, CA, USA

Rui Wang
rwang@anl.gov
Argonne National

Laboratory
Lemont, IL, USA

Rob Latham
robl@mcs.anl.gov
Argonne National

Laboratory
Lemont, IL, USA

Philip Carns
carns@mcs.anl.gov
Argonne National

Laboratory
Lemont, IL, USA

ABSTRACT
Modern scientific applications utilize numerous software and hard-
ware layers to efficiently access data. This approach poses a chal-
lenge for I/O optimization because of the need to instrument and
correlate information across those layers. The Darshan characteri-
zation tool seeks to address this challenge by providing efficient,
transparent, and compact runtime instrumentation of many com-
mon I/O interfaces. It also includes command-line tools to generate
actionable insights and summary reports. However, the extreme
diversity of today’s scientific applications means that not all appli-
cations are well served by one-size-fits-all analysis tools.

In this work we present PyDarshan, a Python-based library that
enables agile analysis of I/O performance data. PyDarshan caters
to both novice and advanced users by offering ready-to-use HTML
reports as well as a rich collection of APIs to facilitate custom
analyses. We present the design of PyDarshan and demonstrate its
effectiveness in four diverse real-world analysis use cases.

KEYWORDS
High-Performance Computing, Storage, Performance Analysis, In-
put/Output

ACM Reference Format:
Jakob Luettgau, Shane Snyder, Tyler Reddy, Nikolaus Awtrey, Kevin Harms,
Jean Luca Bez, RuiWang, Rob Latham, and Philip Carns. 2023. EnablingAgile
Analysis of I/O Performance Data with PyDarshan. In Workshops of The
International Conference on High Performance Computing, Network, Storage,
and Analysis (SC-W 2023), November 12–17, 2023, Denver, CO, USA. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3624062.3624207

1 INTRODUCTION
Understanding how applications and workflows access data is an
incredibly important aspect of computational workloads on HPC
platforms. This importance is amplified by the increasing fidelity

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.
SC-W 2023, November 12–17, 2023, Denver, CO, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0785-8/23/11. . . $15.00
https://doi.org/10.1145/3624062.3624207

and rate of data produced by scientific instruments and simula-
tions [9, 20, 40]. At the same time, newworkloads are emerging that
stress I/O systems differently from traditional applications [12, 22].
The variety of workloads present on modern platforms include
simulations, experimental data analysis, inference and training of
machine learning, and hybrid workloads incorporating elements
of each. Many applications run into I/O bottlenecks that require
understanding I/O behavior, especially as they scale. As a result,
better tools for I/O analysis are vital. In the short term, such tools
can directly improve application and workflow performance. In the
long term, such tools can provide insight into compute, network,
and storage utilization to inform the construction of efficient future
systems.

Scientific applications use many different programming inter-
faces for I/O, from high-level interfaces for conveniently describing
data to low-level interfaces that interact more directly with storage
hardware. In many cases, data is translated through multiple layers
on its way to a distributed storage system. This complexity makes
analyzing and optimizing application and workflow I/O a daunting
task requiring multilevel instrumentation. A common solution for
the instrumentation of HPC applications is Darshan [18], which
allows efficient instrumentation for profiling and tracing across
many I/O layers such as POSIX, STDIO, MPI-IO, HDF5, and Lustre.

Up to now, the infrastructure for analyzing Darshan data has
been limited to ad hoc scripts and C-coded tools. In this paper
we present PyDarshan, a library of tools designed to enable agile
analysis of I/O performance data captured using Darshan. Our
contributions with PyDarshan are the following:

• Connect Darshan performance data to a rich Python ecosystem
of data science, machine learning, and visualization libraries

• Promote interoperability of performance analysis tools by facili-
tating access to reusable analysis routines

• Enable more efficient access to Darshan data for the analysis of
large collections of Darshan logs and longitudinal studies

• Present multiple use cases to illustrate how PyDarshan capabili-
ties enable agile development of insightful I/O analysis tools

PyDarshan opens up the analysis of I/O behavior to a much
broader audience, allowing a deeper understanding of the impor-
tance and characteristics of I/O in scientific computing today and

https://orcid.org/0000-0002-3672-206X
https://orcid.org/0009-0008-5973-4195
https://orcid.org/0000-0003-2364-6157
https://orcid.org/0009-0000-0395-6284
https://orcid.org/0000-0002-3019-7532
https://orcid.org/0000-0002-3915-1135
https://orcid.org/0000-0001-8530-6487
https://orcid.org/0000-0002-5285-6375
https://orcid.org/0000-0002-3963-9923
https://doi.org/10.1145/3624062.3624207
https://doi.org/10.1145/3624062.3624207

in the future. PyDarshan is open source and available on GitHub1
and PyPi.2

2 PYDARSHAN DESIGN
In this section we introduce the design of PyDarshan and discuss
how it helps improve user experience, either through ready-to-
use analysis tools or through interfaces enabling specific custom
analysis needs. We begin the discussion with a brief overview of
Darshan’s existing architecture and then describe new analysis
capabilities introduced by PyDarshan and how they facilitate I/O
researchers and application teams to build interoperable tools or
conduct custom analyses.

2.1 Darshan
Darshan [18] consists of two components, as illustrated in Figure 1:
❶ An instrumentation runtime collects data on application I/O ac-
tivity and stores this data in Darshan log files, and ❷ a collection of
programmatic libraries and command-line (CLI) utilities provide ac-
cess to Darshan log data and perform a number of common analysis
tasks.

The runtime component can instrument applications without
needing to apply modifications to the application or library depen-
dencies. Across various I/O layers, Darshan transparently collects
statistics activity of HDF5, MPI-IO, STDIO, and POSIX interfaces
by intercepting API calls (e.g., using LD_PRELOAD), as illustrated
in Figure 1. For the Lustre parallel file system, Darshan collects
additional context, such as the file mapping to object storage tar-
gets (OSTs). Darshan’s runtime library is deliberately designed to
minimize runtime and log storage overhead to avoid perturbing the
application or the storage system [18]. Generally, Darshan data is
captured independently on each process or rank. If MPI is used for
parallel applications, data is gathered from all ranks at shutdown
time and combined into a single Darshan log file. In case a process
forks, independent Darshan log files will be generated for parent
and children processes. Darshan defers writing instrumentation
data until applications are shutting down by using MPI or Linux
process life-cycle hooks.

Darshan log file data can be viewed using a collection of CLI util-
ities included with Darshan. These tools enable a range of common
capabilities such as log parsing, data anonymization, and generat-
ing PDF summary reports. With growing applications, thousands
of ranks, and growing bodies of Darshan logs collected by HPC
sites, these analysis tools increasingly run into performance and
memory constraints. The legacy approach for generating PDF re-
port relies on a complex analysis pipeline. Logs are translated into
an intermediate text format, parsed and analyzed in Perl, and then
transformed into user-facing document with TeX. This served as an
effective initial exploration of how to present I/O analysis data to
users, but it is not as efficient or flexible as new approaches enabled
by a now expansive, feature-rich Python software ecosystem.

2.2 PyDarshan
PyDarshan extends Darshan’s existing analysis capabilities with a
convenient Python interface and corresponding CLI utilities. The

1https://github.com/darshan-hpc/darshan
2https://pypi.org/project/darshan/

PFS Context

Application

HDF5

MPI-IO

POSIX-I/O

OSFS

D
ar

sh
an

 R
un

tim
e

Li
br

ar
y

Header
Job

Record
Name

Records
POSIX

Records
MPI I/O

Records
HDF5

Records
Lustre

Records

Darshan Log:

I/O Analysis Tools

PyDarshan

Darshan Utilities Library

Legacy CLI
Tools

PyDarshan
CLI Tools

Jupyter
Notebooks

Custom
Tools ...1

2

Figure 1: Existing architecture of Darshan, its log format, and
post-processing utilities. This includes PyDarshan as well as
extensions to facilitate custom tools or analysis in Jupyter
Notebooks. While most Darshan modules feature only inte-
ger and floating-point counters, other modules have been
added to capture traces or additional system information.

primary goal of PyDarshan is to enable advanced and customized
analysis that can be connected seamlessly to the rich ecosystem of
data science and machine learning libraries that support Python.
PyDarshan caters to many concepts from popular data science
libraries such as Numpy[23], Pandas[31], or XArray[24], which
many users are familiar with already and for which data science
and machine learning libraries provide tooling to consume for
analysis and model training. In the spirit of testing the new tools
ourselves, we migrated our report generation to using the Python
ecosystem that informed PyDarshan’s architecture. Instead of using
PDF reports, we switched to HTML-based reports, which are easier
to customize and are just as widely supported on most systems.
While the new reports are part of PyDarshan’s architecture, this
section will focus on the overall architecture, and we will revisit
the updated report generation in Section 3.1.

Figure 2 illustrates the architecture of PyDarshan. PyDarshan
internally uses the same Darshan C library to parse logs that is also
used by the original command-line utilities. A side effect of PyDar-
shan’s development is also the streamlining of the C library for use
by third-party tools. As a result, PyDarshan’s contributions span
three layers to interact with Darshan logs. We extend Darshan’s C
utility library and introduce two new APIs that progressively offer
more control to trade off efficiency and implementation effort:

❸ The High-Level PyDarshan Object Interface provides dedicated
objects for loaded data such as defined by the DarshanReport
and RecordCollections classes that offer introspection, auto-
matic statistics, report generation, and conversion to data for-
mats that allow easy reshaping for use with custom tools or
data science and machine learning libraries such as scikit-learn,
PyTorch, or TensorFlow.

❹ The Low-Level PyDarshan Log Backend Interface abstracts away
Darshan-specific implementation details by providing thin
wrappers around common functionality such as accessing meta-
data, name records, and module data. The low-level PyDarshan

https://github.com/darshan-hpc/darshan
https://pypi.org/project/darshan/

Header
Job

Record
Name

Records
POSIX

Records
MPI I/O
Records

HDF5
Records

Lustre
Records

Darshan Log Data:

Darshan Report Object Interface
metadata = {}, modules = {}, name_records = {}, records = {}

Low-level PyDarshan
CFFI Backend Interface

Generic Record Collections
(POSIX, MPI-IO, HDF5, ...)

id, rank, counters, fcounters

e.g., PyDarshan
DBMS Backend

Record Collection
Lustre

Striping, OSTs, ...

Other
Collections

(DXT, Heatmap)

Internal Record Exchange Representation

Darshan HTML
Summary Report

Custom Analyis Tools
(e.g., Jupyter Notebooks, Drishti, ...)

3

Darshan Utilities Library (C)

4

PyDarshan CLI Tools

...

Common Plots

...

Figure 2: Core components of PyDarshan, including theHigh-
level Interface, the Low-Level Python Interface, and the up-
dated C utility library to access the binary data.

log backend interface takes responsibility for translating Dar-
shan’s custom binary data format into Pythonic representations
such as dictionaries or Pandas dataframes.

The low-level Darshan C utility library is a low-level interface
whose primary responsibility is to extract raw data from Darshan
logs. The Darshan runtime library emits logs in a compressed,
write-optimized, binary format that emphasizes the minimization of
runtime instrumentation overhead above all other considerations. A
native C library implementation is the most straightforward way to
directly extract this data back into memory for subsequent analysis.
It also provides rudimentary aggregation capabilities that can be
performed efficiently as an inline component of data extraction. The
low-level C library interface is more complex and fragile than the
Pythonic APIs presented by PyDarshan, however, and we therefore
discourage its direct use in analysis utilities.

2.2.1 High-Level Python Object Interface. The High-Level Object
API aims to provide convenient and efficient access to Darshan
performance data and metadata while catering to context-aware
aggregation functions that are sensitive to the intricacies of perfor-
mance data in distributed storage systems. The High-Level Object
API is further designed to allow interactive exploration of Darshan
log data, for example, in Jupyter Notebook environments or in
custom tools.

To avoid reimplementing common filtering and reduction func-
tionality that already provide efficient or accelerated implementa-
tions, PyDarshan wraps log data into two primary object structures
that can be easily inspected through both standard Python facilities
and a special info() method:

• Darshan Report Objects are context-preserving containers for
multilevel performance data on which we can define a wide
range of common performance analyses

• Darshan Record Collections are iterable homogeneous containers
for data of the same type on which we can define transformations
and analysis that apply for particular record types

In particular, for record collections, we introduce to_df() and
to_dict() to convert Darshan log data into types that can be fed
into Python’s rich existing ecosystem of data science libraries. A
basic example illustrating PyDarshan’s usage is shown in Listing 1.

1 import darshan
2

3 # open a Darshan log file and read all data
4 with darshan.DarshanReport(filename , read_all=True) as

report:
5 # print the metadata dict for this log
6 print("metadata: ", report.metadata)
7 # print job runtime and nprocs
8 print("run_time: ", report.metadata['job']['run_time '

])
9 print("nprocs: ", report.metadata['job']['nprocs '])

10

11 # print modules contained in the report
12 print("modules: ", list(report.modules.keys()))
13

14 # export POSIX module records to DataFrame and print
15 posix_df = report.records['POSIX '].to_df()
16 display(posix_df)

Listing 1: Example of PyDarshan’s High-Level Object API.

We initially investigated loading most data into, for example,
Pandas DataFrames directly instead of wrapping them into custom
object types. Unfortunately, various instrumentation modules use
nested data structures that would invalidate standard aggregations
or increase PyDarshan’s memory footprint significantly when us-
ing a flat tabular representation. Even though most Darshan logs
primarily contain Darshan’s generic log records that are already
tabular in nature, an increasing number of modules require deeper
nested structures to capture sufficient context. Examples are Dar-
shan’s eXtended Tracing [39] or the Lustre module that records
how files are mapped to the OSTs of the Lustre parallel file system.
Nested structures in DataFrames are often inconvenient to access,
and flattened representations would introduce significant memory
overhead. As we will explain later, directly converting to Pandas
DataFrames also would have resulted in a significant performance
penalty, contradicting one of the purposes of PyDarshan: allowing
more convenient as well as fast and memory-efficient access to
Darshan log data.

Since Darshan log records are usually compressed, the uncom-
pressed data in Python could exceed the main memory available on
the host. For these occasions, we offer the read_all=False switch
when instantiating a report from a Darshan log. This suppresses
loading the log records for all modules as well as loading any name
records. In this mode, only metadata is loaded, enabling the inspec-
tion of logs with many billions of names or log records. The user

then has the choice to selectively load only specific modules or to
use an iterator that returns only one log record at a time.

We started the curation of specific aggregation functions and
common plots guarded against performing illegal reductions. Many
of PyDarshan’s aggregation helpers are designed to be useful be-
yond single log analysis and instead target the aggregation and
visualization of record collections mixed from multiple Darshan
logs, as we will demonstrate in Section 3.

2.2.2 Low-Level PyDarshan Log Backend Interface. The Low-Level
PyDarshan Log Backend Interface primarily serves as a helper
for the High-Level Object Interface and is responsible for loading
metadata and records from a Darshan log file. It also serves users
whowant to avoid the overhead of using the High-Level API. Its API
closely aligns with the Darshan C utility library but instead returns
Darshan log data in Python-friendly Numpy/Pandas/Dictionary
representations while granting the same fine-grained control for all
interactions with the log. A basic example illustrating PyDarshan’s
Log Backend API is shown in Listing 2.

For the Log Backend Interface, PyDarshan leverages Python’s
C Foreign Function Interface (CFFI), which allows calling into ex-
isting C libraries from Python. This often requires considerable
boilerplate to transform between C and Python data structures,
which the Log Backend Interface effectively hides from users. CFFI
in Python can be used in different modes. At this time, we are using
CFFI’S ABI in-line mode, which has the benefit of not requiring to
build dependencies such as compilers and linkers. Instead, merely a
header file and the shared library libdarshan-util.so are needed,
which are now part of all darshan-utils installations by default.

PyDarshan currently ships only with the CFFI-based Log Back-
end, but we found the decoupling of the high-level API as a standard
interface to base visualizations and common analysis useful. We
focused on the PyDarshan Log Backend because at the moment
Darshan data is typically read from Darshan log files directly. For
analysis, that has to aggregate across an entire site, a project, or a
particular user; however, this approach can have significant draw-
backs because every log file has to be opened and inspected to see
whether it matches a search criterion. As database-like metric stores
are becoming the norm for many deployments, we also anticipate
alternative backends.

1 import darshan.backend.cffi_backend as darshanll
2

3 log = darshanll.log_open("example.darshan")
4

5 # Access various job information
6 darshanll.log_get_job(log)
7 # Example Return:
8 # {'jobid ': 4478544 , 'uid ': 69615,
9 # 'start_time ': 1490000867 , 'end_time ': 1490000983 ,

10 # 'metadata ': {'lib_ver ': '3.1.3', 'h ': '
romio_no_indep_rw=true;cb_nodes =4'}}

11

12 # Access available modules and modules
13 darshanll.log_get_modules(log)
14 # Example Return:
15 # {'POSIX ': {'len ': 186, 'ver ': 3, 'idx ': 1},
16 # 'MPI -IO ': {'len ': 154, 'ver ': 2, 'idx ': 2},
17 # 'LUSTRE ': {'len ': 87, 'ver ': 1, 'idx ': 6},
18 # 'STDIO ': {'len ': 3234, 'ver ': 1, 'idx ': 7}}
19

20 # Access different record types as numpy arrays , with
integer and float counters separated

21 # Example Return: {'counters ': array([...], dtype=
uint64), 'fcounters ': array([...])}

22 posix_record = darshanll.log_get_record(log , "POSIX")
23 mpiio_record = darshanll.log_get_record(log , "MPI -IO"

)
24 stdio_record = darshanll.log_get_record(log , "STDIO")
25 # ...
26

27 darshanll.log_close(log)
28

Listing 2: Example using PyDarshan Log Backend API.

2.2.3 C Utility Library Extensions. To achieve efficient access to
Darshan log data and avoid duplication of parsing logic in two code
bases, PyDarshan extends and refactors some of Darshan’s original
C utility library used by Darshan’s original command-line tools.
Most of the API extensions grant access to otherwise opaque data
structures used only internally by Darshan utilities (such as the
hash tables used to map relations) so they can be easily consumed
and transformed for access from Python and other external tools.
In addition, facilities for fast data aggregation have been added for
generic log records. These low-level C interface extensions were
merged back into the original Darshan C utility suite.

We have identified additional optimizations that could be imple-
mented in the C library to better cater to the needs of PyDarshan
in future releases. In particular, we are looking to facilitate batched
and lazy loading capabilities that would benefit many data science
frameworks offering out-of-core computations as well as shuffling
data loaders often used in the context of machine learning. We will
continue the discussion of these and other planned changes and
future work in Section 5.

2.2.4 Python Packaging. We initially planned to keep PyDarshan
a Python-only package, expecting most users to use PyDarshan in
the same context in which the logs were generated, namely, the
HPC cluster. For this reason, the PyDarshan package in the Python
Package Index (PyPi) initially did not include a binary distribution,
to avoid problems across different target architectures. But because
many users reported that they would install PyDarshan on their per-
sonal computers, we have since started providing binarywheels that
ship together with a precompiled copy of libdarshan-util.so,
thus allowing use of PyDarshan on most platforms, either through
the provided binary wheels for Linux and MacOS or using Win-
dows Subsystem for Linux. This capability is particular helpful for
fostering engagement with new researchers and students who may
have access to Darshan logs but not the original HPC platform on
which they were generated.

3 ANALYSIS CASE STUDIES
In this section we discuss four use cases, developed by teams at
different organizations, that demonstrate the kinds of new analysis
and tools that are enabled by PyDarshan:

• Use Case 1: Enhancing single job summaries with HTML re-
ports and modular templates for more interactivity using a
large-scale run of the E3SM [20] climate code in Section 3.1

• Use Case 2: Enabling custom analysis tools building on top of
Darshan using the examples of DXT Explorer [11] and Drishti
[10] in Section 3.2

Job Metadata

Detailed Statistics
for POSIX Module

Per Module
Heatmap Plots

Detailed Statistics
for MPI-IO Module

Detailed Statistics
for PNETCDF Module

Detailed Statistics
for STDIO Module

Statistics by
Target Category

Summary by Module
and Operation Type

Information about
Execution Context

Log Metadata and
Module Index

Heatmap Plot
for MPI-IO

Summary statisitcs
by access type

Summary statisitcs
for entire module

Statistical breakdown by
operation type and
access patterns

Statistical breakdown by
access size

I/O Cost

Log Metadata

Figure 3: Overview of the PyDarshan job summary report. A zoomed-out view of the full HTML report is shown on the left
while key sections are highlighted on the right.

• Use Case 3: Customizing I/O analysis of workflows using the
example of ATLAS AthenaMP, a high-energy physics simula-
tion in Section 3.3

• Use Case 4: Enabling the analysis of large bodies of Darshan
logs with hundreds of thousands of jobs on the Cori and Theta
supercomputers in Section 3.4

3.1 Use Case 1: Enhancing Single Job
Summaries with New Views

In this first use case, we discuss how PyDarshan enhances the ca-
pabilities of the existing Darshan job summary tool and lowers the
burden for users to contribute. Specifically, building off the success
of the Python community, we can leverage diverse packages to
simplify the process of maintaining and extending Darshan sum-
mary report infrastructure (e.g., for interfacing with Darshan utility
libraries, plotting log data, generating report HTML code from
templates), leading to a much more developer-friendly experience.

The Darshan job summary tool is an important starting point
for many users because the detailed data captured by Darshan is
often cumbersome for users to aggregate and analyze directly. For
example, users are often concerned with high-level insights into
I/O behavior such as quantifying attained performance or detecting
potential bottlenecks, yet this information is not always straight-
forward to deduce from the raw instrumentation data captured by
Darshan. Analysis tools that can automatically extract log data and
summarize key insights into I/O behavior are critical to ensuring
that users can take advantage of the detailed I/O characterization
data Darshan provides. These tools can lead users to more readily
recognize and address I/O inefficiencies in their software, ideally
leading to more efficient usage of HPC systems and increased sci-
entific productivity.

Traditionally, Darshan has provided a Perl-based job summary
script to help summarize key I/O characteristics of a given Darshan
log file. This tool extracts relevant I/O data from an input log file,
aggregates this data across all instrumented files/processes, and
produces a PDF summarizing I/O behavior with graphs, tables,
annotations, and so on. Although this tool has proven helpful for
Darshan users looking to quickly gain a high-level overview of the
I/O behavior of their jobs, it has several shortcomings that limit its
efficiency and extensibility:

• Inefficient log data extraction relying on the raw text output of
the darshan-parser utility rather than the binary data format
provided by the Darshan utility library

• Lack of an extensible summary report template, instead using
a fixed LaTeX-based template, hindering the ability to extend
or otherwise reorganize summary reports

• Lack of an in-house plotting library, instead relying on manu-
ally copying relevant log data to files that can then be fed to
gnuplot scripts

To address these problems, we have completely reimplemented
the Darshan job summary tool to leverage PyDarshan and other
auxiliary Python packages. This tool leans heavily on the com-
mon PyDarshan infrastructure introduced in Section 2.2. To start,
a Darshan report object is instantiated that reads in all log data
and metadata required by the summary tool using bindings to the
Darshan C utility library. Next, the report content (figures, tables,

annotations) is generated from relevant log data, typically using
PyDarshan routines for producing common plots (using Matplotlib
and Seaborn) and tables (using Pandas). This report content is then
converted to HTML (e.g., using Base64 encoding for Matplotlib
figures, using Pandas to_html() method for tables) and registered
within different sections in the overall report structure. A Mako3
HTML template is used to programmatically integrate all report
content generated by the job summary tool into a single output
HTML report, with CSS grids used to help enforce organization
and styling of different sections/figures.

An overview of an example PyDarshan job summary report is
presented in Figure 3. The first section of the report contains impor-
tant metadata related to the job itself (date, runtime, command-line
args, etc.) and the corresponding Darshan log file (log file name, ac-
tive modules, etc.). Additional report sections provide information
on overall job I/O activity and I/O cost. Job I/O activity is summa-
rized using heatmap figures that indicate I/O intensity in terms
of total bytes read/written across ranks over time, with these fig-
ures included for multiple interfaces. These heatmap figures can be
generated either from Darshan’s new HEATMAP module or from
DXT trace data. I/O cost is presented as the average per-process
cost of different I/O components (read, write, metadata) relative
to application runtime. Subsequent sections contain detailed per-
module statistics allowing deeper insights into usage of different
interfaces and corresponding performance characteristics. The fi-
nal section provides details on the application’s overall usage of
different storage targets (file system mounts, standard streams, etc.).

3.2 Use Case 2: Enabling Custom Analysis
Views and Tools for Applications

In the second use case we discuss how PyDarshan facilitates the
development of custom tools such as DXT Explorer [11] and Drishti
I/O [8]. DXT Explorer is a powerful tool to navigate data provided
by Darshan’s eXtended Tracing (DXT) module. Drishti is a novel
interactive, user-oriented visualization and analysis framework de-
signed to face the existing challenges in understanding I/O metrics.

Identifying the root causes of I/O performance inefficiencies in
scientific applications requires a combination of detailed metrics
and an understanding of the complex HPC I/O stack. Despite the nu-
merous tools that collect I/O metrics on production supercomputer
systems, applications often require an I/O specialist to detect the
3https://www.makotemplates.org/

Parsing
PyDarshan

HPC Application
Darshan DXT

I/O Analysis
Behavior and I/O Phase

Interactive Plots
Plotly

Insights
Recommendations

Operation

Transfer Size

Spatiality

I/O Phases

Storage System

Figure 4: Drishti generates meaningful interactive visualiza-
tions and a set of recommendations based on the detected
I/O bottlenecks using PyDarshan to handle Darshan data.

root causes of performance bottlenecks when accessing data and
determine what to do to solve them. For end users, a gap exists be-
tween the currently available metrics, the issues they represent, and
the application of optimizations that would mitigate slowdowns.

Drishti4 is a novel interactive, user-oriented visualization and
analysis framework designed to face the existing challenges in un-
derstanding I/O metrics [8]. It combines the features from DXT
Explorer and Drishti I/O. From extracting I/O behavior and illustrat-
ing it for users to explore interactively, detecting I/O bottlenecks
automatically, and presenting a set of recommendations to avoid
them, Drishti seeks to streamline the process of identifying and
fixing I/O bottlenecks. The framework relies on automatically de-
tecting common root causes of I/O performance inefficiencies by
mapping rawmetrics into problems and providing natural language
feedback to users based on heuristics. Figure 4 illustrates Drishti’s
core components.

To avoid multiple conversions and overhead, instead of using the
Darshan command-line parser and then transforming that to a CSV
so data could be ingested by Drishti, we instead rely on PyDarshan
for direct access to Darshan’s counters and DXT trace data in the
form of Pandas DataFrames. PyDarshan returns a dictionary of
DataFrames containing all trace operations issued by each rank.
This data structure is not optimal for Drishti because it requires
an overall view of the application behavior. Hence, we take an
additional step to iterate through the dictionary of DataFrames and
merge them into a single DataFrame for analysis and interactive
visualization.

To illustrate Drishti’s core features, we analyze the AMReX [40]
application that relies on highly parallel adaptive mesh refinement
(AMR) algorithms to solve partial differential equations on block-
structured meshes. We ran AMReX with 512 ranks over 32 nodes
on the Cori supercomputer at NERSC, with a 1024 domain size,
a maximum allowable size of each subdomain used for parallel
decomposal as 8, 1 level, 6 components, 2 particles per cell, 10 plot
files, and a sleep time of 10 seconds between writes.

Figure 5 depicts the baseline execution of AMReX with the trig-
gered issues and Drishti’s recommendations. Because AMReX relies
on the HDF5 data format and it interleaves computation with I/O
phases, we have integrated the asynchronous I/O VOL Connector
[34] in an effort to hide some of the time spent in I/O through
nonblocking operations while the application makes progress in its
computation. Drishti reports also highlight that most write requests
that arrive at the parallel file system are < 1 MB for all 10 plot files.
Because the application issues larger requests that are broken down
into smaller ones directed at each storage server based on the strip-
ing policy, we have increased the stripe size to 16 MB. By applying
such optimizations we achieved a total speedup of 2.1× (from 211
to 100 seconds).

Drishti can also be used to provide insights into the overall user
behavior in a supercomputer, which we will revisit in Section 3.4
where we investigate how PyDarshan enables the analysis of large
bodies of Darshan logs.

4https://github.com/hpc-io/drishti

Figure 5: Interactive visualization of Darshan’s DXT MPI-IO
and DXT POSIX trace information and Drishti’s recommen-
dations report for AMReX.

3.3 Use Case 3: Enabling Custom Analysis for
Scientific Workflows

In this third use case we present the custom tooling on top of
PyDarshan that was developed by an application team to track the
I/O performance of a production high-energy physics workflow.
The example shows how existing PyDarshan analysis capabilities,
such as the POSIX access size plot and heatmap, can be repurposed
to provide insights on entire workflows rather than individual jobs.
It also demonstrates that many teams require insights and custom
plots that out-of-the-box tools cannot anticipate.

The ATLAS experiment [9] at the Large Hadron Collider (LHC)
at CERN studied here uses Athena [1] as its main simulation, recon-
struction, and analysis software framework and uses ROOT [16]
for its I/O and storage.

https://github.com/hpc-io/drishti

Core-3

Core-2

Core-1

Core-0

Worker 0:
Events: [0, 5, 8, ...]

Worker 1:
Events: [1, 7, 10, ...]

Worker 2:
Events: [4, 6, 9, ...]

Worker 3:
Events: [2, 4, 12, ...]

fin

fin

fin

fin

init OS-fork

Output
File

Output
File

Output
File

Output
File

fin

SERIAL: finalizePARALLEL: 4 workers event loop + finSERIAL: parent-init-fork

Figure 6: Schematic of the Atlas AthenaMP [17] workflow
with events distributed across 4 workers. The serial and par-
allel phases of the workflow are indicated at the bottom.

Athena was initially written to run serially. It was then extended
to support multiprocess parallelism for Run 2,5 so-called AthenaMP,
where independent parallel workers are forked from the main pro-
cess with a shared-memory allocation (see Figure 6). In this version
of the workflow, each worker produces its own output file. This
proves inefficient, however, because these individual worker files
have to eventually undergo a serial merging process, requiring them
each to be reread from file. In order to increase the efficiency of this
process, a SharedWriter process has been designed to be executed
alongside the other workers that retrieves the output data objects
from the workers’ memory and merges them on the fly. Parallel
compression was also implemented to further improve efficiency
after observing large overheads when scaling up to higher process
counts. To assist in these types of performance-tuning efforts go-
ing forward, Darshan is now being used to monitor various I/O
performance factors in Athena workflows.

To track load imbalances across the different workers and writers
in the workflow stages that use AthenaMP, heatmap records are
extracted from each Darshan log generated from the main/forked
processes. These heatmaps are aligned and combined into a single
heatmap DataFrame with the same format of what is used by the
PyDarshan heatmap plotting function, although with a slight modi-
fication. Instead of MPI ranks, the y-axis references different logical
units such as the workers and the shared writer of the workflow,
as illustrated in Figure 7, allowing for a comprehensive view of the
I/O activity of the entire workflow. The performance impacts of
previously discussed tuning decisions can be clearly observed in
Figure 7 (left), where the SharedWriter process spends the major-
ity of its time writing compared with Figure 7 (right) where the
parallel compression helps alleviate this bottleneck by reducing
the frequency of writing in the SharedWriter process. In this way,
these heatmap plots helped the team visualize and quickly spot
load imbalances between workers and SharedWriter in AthenaMP.

Understanding the breakdown of I/O operations by type (such
as read, write, open, stat, seek, mmap, and fsync) for each of the
workflow components is also useful for gaining insights into various
AthenaMP configurations. To do so, PyDarshan was used to read

5https://home.cern/tags/lhc-run-2

log records associated with workflow input and output files into a
DataFrame for both main and forked processes. Then, aggregations
are performed on each type of I/O operations before the data is
combined and fed into the custom stacked bar plot shown in Figure 8.
Because the total number of the operations could differ by a several
orders of magnitude, the fraction of each kind of operation is also
displayed in the bottom panel. This experiment processes 3,600
events per process and aggregates the total operations for each
of the workflow components (main, shared writer, workers) by
operation type. Figure 8 (left) demonstrates that all of the writes are
performed by the SharedWriter process while none are performed
by the workers. As expected, the workers all share the same general
I/O behavior characteristics. An equal number of writes and seeks
have been found in the SharedWriter process. There are about twice
as many seeks as reads in the workers, a result that requires further
understanding. Figure 8 (right) shows a small amount of extra reads
in the SharedWriter process when parallel compression is enabled.

3.4 Use Case 4: Analyzing Large Quantities of
Logs for System-Wide I/O Behavior

In this fourth use case we demonstrate how PyDarshan enables
the analysis of large amounts of log files, which was prohibitively
slow using the existing tools. This is important because Darshan is
enabled by default at many facilities, and applications have been
producing Darshan logs for years.

We first revisit Drishti from Section 3.2 but apply its analysis
to very large numbers of Darshan logs from two different super-
computers. In a second example we discuss a more specialized
investigation to quantify the amount of ROMIO MPI-IO coordina-
tion overhead. The two examples demonstrate how insights from
sitewide analysis can be used to inform user training and improve
storage systems as well as middleware designs.

3.4.1 Sitewide Analysis with Drishti to Understand Application Be-
havior. To inform the procurement or design of the next generation
of storage systems, we need to understand and quantify how users
and applications are using a system. For this use case we leverage
Drishti’s ability to flag I/O behaviors. Table 1 summarizes how
frequently each insight was triggered in Cori (NERSC) and Theta
(ANL) machines using a month’s worth of Darshan data. We an-
alyzed 517, 939 logs from Cori (April 2022) and 7, 595 from Theta
(October 2022). Interesting trends can be observed in both machines.
We highlight five examples from our analysis:

• High usage of the STDIO interface to transfer data (30% of the
jobs in Cori and 45% in Theta).

• Low usage of collective I/O operations in both systems (trig-
gered by 98% of the jobs in Cori and 85% in Theta).

• High number of small write/read requests using POSIX. In Cori,
62% of the jobs tracked with Darshan triggered this insight
for read requests and 59% for write requests. In Theta, that
represents 42% and 45% of the jobs, respectively.

• High number of misaligned memory and file accesses (66% of
the jobs in Cori and 65% in Theta).

• High number of sequential write operations in both systems
(66% in Cori and 56% of the jobs in Theta).

https://home.cern/tags/lhc-run-2

0

66
6

13
33

20
00

Time (s)

main
evt_counter

sharedWriter/merge
worker_0
worker_1
worker_2
worker_3
worker_4
worker_5
worker_6
worker_7

Pr
oc

Time bins: 200

Data@Perlmutter

athenaMP_shared (PHYS)
8procs/threads

100

101

102

103

104

105

106

107

Da
ta

 (B
):

wr
ite

, r
ea

d

(a) Shared Writer

0

66
6

13
33

20
00

Time (s)

main
evt_counter

sharedWriter/merge
worker_0
worker_1
worker_2
worker_3
worker_4
worker_5
worker_6
worker_7

Pr
oc

Time bins: 200

Data@Perlmutter

athenaMP_shared_parComp (PHYS)
8procs/threads

100

101

102

103

104

105

106

107

Da
ta

 (B
):

wr
ite

, r
ea

d

(b) Shared Writer (Compression)

Figure 7: Heatmap of data read and written by an ATLAS Run3 Derivation production job, including the 8 workers and the
single SharedWriter processes forked from the main AthenaMP process (left) and with parallel compression (right). For clarity,
we only display access to input and output files.

(a) Shared Writer (b) Shared Writer (Compression)

Figure 8: Number of POSIX operations (read, write, open, stat, seek, mmap, and fsync) in an ATLAS Run3 Derivation production
job, including the 8 workers and the single SharedWriter processes forked from the main AthenaMP process. For clarity, we
only display access to input and output files. The fraction of operations is shown in the bottom panels. The left one uses
SharedWriter only. The right one enables the parallel compression along with the SharedWriter.

Such insights are helpful to both facilities and the research
community in devising and implementing solutions to address
those challenges (e.g., policies, optimization techniques, schedul-
ing). Ather et al. [8] previously demonstrated Drishti’s performance.
When evaluated with hundreds of Darshan logs from Cori, Drishti
took, on average, ≈ 10 seconds to generate each report.

3.4.2 Custom Sitewide Analysis to Investigate I/O Middleware. As a
second example we perform large-scale log analysis using PyDar-
shan to quantify the coordination overheads in I/O middleware, for

the ROMIO MPI-IO implementation. The workhorse optimization
in ROMIOMPI-IO has been two-phase collective I/O [35]. Inside the
ROMIO library, clients exchange data among themselves to trans-
parently re-form the I/O into a more ideal workload. Two-phase
collective buffering has two major costs: a data exchange cost and
a coordination cost. Data exchange typically takes relatively little
time on the high-speed networks of these machines. Coordination
costs, when data exchange cannot occur before either the source
or target of the exchange has arrived and is ready to participate in
the collective, have so far proven challenging to quantify.

Table 1: Summary of insights triggered by Drishti in Cori (April 2022) and Theta (October 2022) Darshan instrumented jobs.
Cori Theta

Level Interface Detected Behavior Jobs Total (%) Jobs Total (%)

HIGH STDIO High STDIO usage (> 10% of total transfer size uses STDIO) 158592 30.61 3430 45.16

INFO POSIX Write operation count intensive (> 10% more writes than reads) 75742 14.62 2695 35.48
INFO POSIX Read operation count intensive (> 10% more reads than writes) 267228 51.59 2282 30.04
INFO POSIX Write size intensive (> 10% more bytes written then read) 136664 26.38 1197 15.76
INFO POSIX Read size intensive (> 10% more bytes read then written) 207346 40.03 3201 42.14
HIGH POSIX High number of small (< 1𝑀𝐵) read requests (> 10% of total read requests) 322130 62.19 3203 42.17
HIGH POSIX High number of small (< 1𝑀𝐵) write requests (> 10% of total write requests) 309868 59.82 3386 44.58
HIGH POSIX High number of misaligned memory requests (> 10%) 191214 36.91 5012 65.99
HIGH POSIX High number of misaligned file requests (> 10%) 344503 66.51 4974 65.49
WARN POSIX Redundant reads 13113 2.53 605 7.96
WARN POSIX Redundant writes 1407 0.27 40 0.52
HIGH POSIX High number of random read requests (> 20%) 174148 33.62 738 9.71
OK POSIX High number of sequential read operations (≥ 80%) 169283 32.68 4273 56.26
HIGH POSIX High number of random write requests (> 20%) 2038 0.39 10 0.13
OK POSIX High number of sequential write operations (≥ 80%) 342581 66.14 4275 56.28
HIGH POSIX High number of small (< 1𝑀𝐵) reads to shared-files (> 10% of total reads) 273274 52.76 2286 30.09
HIGH POSIX High number of small (< 1𝑀𝐵) writes to shared-files (> 10% of total writes) 46384 8.95 1300 17.11
HIGH POSIX High metadata time (at least one rank spends > 30 seconds) 19443 3.75 364 4.79
HIGH POSIX Data transfer imbalance between ranks causing stragglers (> 15% difference) 286811 55.37 3136 41.29
HIGH POSIX Time imbalance between ranks causing stragglers (> 15% difference) 201206 38.84 2559 33.69
HIGH POSIX Write imbalance (> 30%) when accessing individual files 3178 0.61 578 7.61
HIGH POSIX Read imbalance (> 30%) when accessing individual files 5265 1.01 652 8.58

WARN MPI-IO No MPI-IO calls detected from Darshan logs 511731 98.80 6518 85.81
HIGH MPI-IO Detected MPI-IO but no collective read operation 3162 0.61 31 0.40
HIGH MPI-IO Detected MPI-IO but no collective write operation 612 0.11 1 0.013
OK MPI-IO Detected MPI-IO and collective read operations 1329 0.25 743 9.78
OK MPI-IO Detected MPI-IO and collective write operations 3266 0.63 1009 13.28
WARN MPI-IO Detected MPI-IO but no non-blocking read operations 6208 1.19 1077 14.18
WARN MPI-IO Detected MPI-IO but no non-blocking write operations 6208 1.19 1077 14.18

We developed a skew-indicative heuristic in an attempt to quan-
tify coordination costs. Consider Figure 9. Some processes will not
do any I/O due to I/O aggregation in the two-phase buffering al-
gorithm, but all processes participate in data exchange. Should a
process enter the collective late, as Rank 1 does, the other MPI
processes will spend longer in the “exchange” phase waiting for the
slow process to contribute data. Additionally, if the total amount of

MPI_FILE_WRITE_ALL
EXCHANGE

WRITE EXCHANGE

WRITERank 0

Rank 1

Rank 2 MPI_FILE_WRITE_ALL
EXCHANGE

EXCHANGE
MPI_FILE_WRITE_ALL

EXCHANGE

WRITE EXCHANGE

WRITE

Time

Figure 9: A collective MPI-IO call consists of data exchange
followed by a write. If processes are not well synchronized,
data exchange can take longer than expected. Skew can hap-
pen internally as well if one process spends longer in I/O
than others.

data to be read or written is larger than an internal buffer, the two-
phase collective buffering algorithm will carry out this exchange
and write process multiple times. Each round of this optimization
cannot begin until the prior finishes. Because these I/O aggregators
are writing to a shared resource, one process (such as Rank 0 in
the figure) likely will spend a longer time in write than others—for
example, because that process is stuck obtaining a lock from the
underlying file system. This additional I/O time will delay other
processes completing their exchange phase.

In situations where all processes enter the collective simultane-
ously we would expect POSIX I/O time on these I/O aggregators to
dominate the cost of a collective I/O write. Synthetic benchmarks
behave in this way, for example. If processes are imbalanced or
otherwise late in participating in the collective, we would expect
to see that reflected in a high MPI-IO time. Rank 0 cannot proceed
with writing until the data exchange with Rank 1 takes place.

Darshan logs can capture this discrepancy. Darshan collects a
variety of statistics and timers from a program, including “slowest
rank time” for both MPI-IO and POSIX. If the slowest MPI time is
higher than the slowest POSIX time, that difference suggests higher
time in the data exchange phase, which in turn suggests skewed
processes.

Figure 10: CDF plot depicting how often Darshan reported
skew when writing to or reading from a file; for example,
21% of files reported a skew of two seconds or less.

We scanned all Darshan logs on the ALCF Theta machine for
the arbitrarily chosen month of October 2020, applying our skew-
indicative heuristic. In Fig. 10, we plot the cumulative distribution
of our heuristic for the 377 applications that used MPI-IO to read or
write at least one file. We find that on a per-file basis about 21% (458
out of 2,172 files accessed – programs operated on one or more files)
exhibited skew of less than 2 seconds. One application reported
over 400 seconds of skew. We expected to see some degree of skew,
but this result surprised us. We plan on following up with these
applications to better understand these skew results.

4 RELATEDWORK
We group related work into three categories: (1) instrumentation
solutions that provide their own ecosystem of analysis tools; (2)
tools that strive for interoperability either by abstracting across
different solutions or to build a bridge to advanced analysis such
as data science or machine learning library; and (3) observability
approaches popular in distributed-systems and cloud environments.

Various instrumentation solutions such as Score-P [26], Caliper
[14], or Recorder [36] provide thin Python bindings to access the
log data. Some of these do also capture I/O activity on different
levels, such as POSIX and MPI-IO, similar to Darshan.

In order to interpret performance data, having additional context
about the system and the software environment is often vital. Dar-
shan attempts to capture some of this context for storage systems,
for example, through the Darshan Lustre module. Other tools such
as Adiak [5] introduce standardized system/application metadata
capture that also could be helpful to augment Darshan log data.

The collection of performance analysis tools is not a new idea;
tool suites exist for HPCToolkit [7, 28], Score-P [26], and TAU [33].
While customization is possible, there remains a relative high bar-
rier of integration with custom analysis. This is why PyDarshan
and other performance analysis tools [38] emphasize analysis in

Jupyter Notebooks. Hatchet [13] and Thicket [15], for example,
generalizes and develops prepared analysis and visualization for
multidimensional performance data. Similar to PyDarshan, Thicket
attempts to preserve data relationships but with a focus on compar-
ing or aggregating from call trees across executions that can have
arbitrary metrics attached.

Especially in cloud computing, standards for telemetry collection
and analysis tools for distributed systems are emerging [4, 25, 29,
30]. As HPC and cloud technologies converge and containerization
becomes more widely available, HPC centers are exploring lever-
aging the same technologies and tools. On the instrumentation
side, the kernel-level eBPF [2, 21], promises additional control and
granularity also useful for interception and counting of individual
I/O calls. At the time of writing, however, we are unaware of a
Darshan-like interface to standardized counters and data structures
for I/O analysis, nor is it clear how kernel-level monitoring would
be mapped down to individual application-specific reports.

5 CONCLUSION AND FUTUREWORK
In this work we introduced PyDarshan, a Python-based library to
enable agile analysis of I/O performance data. PyDarshan caters to
both novice and advanced users by offering ready-to-use HTML
reports as well as different APIs to conduct custom analyses, for
example, in Jupyter Notebooks. In four use cases we discuss how
PyDarshan (1) improves single log analysis, (2) enables third-party
developers to build new custom tools for I/O analysis on top of
PyDarshan, (3) allows building I/O analysis tools for workflows,
and (4) makes analysis of large quantities of jobs feasible because
of more efficient access to Darshan log data.

In future work, we are looking to further optimize the underlying
Darshan log data representation to improve analysis performance.
The current Darshan binary log format and low-level utility library
have two key drawbacks. The Python bindings must currently load
a single record at a time into memory (thus introducing excessive
function call and language binding overhead), and there is no a
priori indication of the number records stored in a binary log file
(making it difficult to plan an efficient memory layout up front).

We are considering several options to mitigate these problems.
One option is to explore the feasibility of converting Darshan logs
into Parquet files [32], which may allow us to more directly read
in rectangular DataFrames through an Arrow-like memory repre-
sentation. For example, Pandas [31, 37] has functions for directly
reading parquet files into DataFrames.

Also of interest, in the more distant future, is the adoption of the
in-development DataFrame API standard 6, so that we may allow
consumers of PyDarshan to interchange the DataFrame framework
in use. This may allow usage of the Polars library[6] in place of
Pandas when parallel out-of-core analyses are required, the Dask li-
brary [19, 27] if distributing DataFrames over a cluster is desired, or
cuDF [3] for GPU-based analyses of PyDarshan record DataFrames.

ACKNOWLEDGMENTS
This research used resources of the Argonne Leadership Comput-
ing Facility at Argonne National Laboratory, which is supported
by the Office of Science of the U.S. Department of Energy under
6https://data-apis.org/dataframe-api/draft/

https://data-apis.org/dataframe-api/draft/

contract DE-AC02-06CH11357. This research was supported by the
Exascale Computing Project (17-SC-20-SC), a collaborative effort of
the U.S. Department of Energy Office of Science and the National
Nuclear Security Administration. This research was also supported
by the U.S. Department of Energy (DOE), Office of Science, Office
of Advanced Scientific Computing Research (ASCR) under con-
tract number DE-AC02-05CH11231 with LBNL. This research used
resources of the National Energy Research Scientific Computing
Center under Contract No. DE-AC02-05CH11231.

REFERENCES
[1] 2021. The ATLAS Collaboration Software and Firmware. Technical Report ATL-

SOFT-PUB-2021-001. CERN, Geneva. ATL-SOFT-PUB-2021-001ATL-SOFT-
PUB-2021-001

[2] 2023. BPF Compiler Collection (BCC). IO Visor Project. https://github.com/
iovisor/bcc

[3] 2023. cuDF - GPU DataFrames. RAPIDS. https://github.com/rapidsai/cudf
[4] 2023. Grafana: The Open and Composable Observability and Data Visualization

Platform. Grafana Labs. https://github.com/grafana/grafana
[5] 2023. LLNL/Adiak. Lawrence Livermore National Laboratory. https://github.

com/LLNL/Adiak
[6] 2023. Pola-Rs/Polars. pola-rs. https://github.com/pola-rs/polars
[7] Laksono Adhianto, Sinchan Banerjee, Mike Fagan, Mark Krentel, Gabriel Marin,

John Mellor-Crummey, and Nathan R Tallent. 2010. HPCToolkit: Tools for Perfor-
mance Analysis of Optimized Parallel Programs. Concurrency and Computation:
Practice and Experience 22, 6 (2010), 685–701.

[8] Hammad Ather, Jean Luca Bez, Boyana Norris, and Suren Byna. 2023. Illuminat-
ing The I/O Optimization Path Of Scientific Applications. In High Performance
Computing: 38th International Conference, ISC High Performance 2023, Hamburg,
Germany, May 21–25, 2023, Proceedings. Springer-Verlag, Berlin, Heidelberg, 22–
41. https://doi.org/10.1007/978-3-031-32041-5_2

[9] ATLAS Collaboration. 2008. The ATLAS Experiment at the CERN Large Hadron
Collider. JINST 3 (2008), S08003. https://doi.org/10.1088/1748-0221/3/08/S08003

[10] Jean Luca Bez, Hammad Ather, and Suren Byna. 2022. Drishti: Guiding End-Users
in the I/O Optimization Journey. In 2022 IEEE/ACM International Parallel Data
Systems Workshop (PDSW). 1–6. https://doi.org/10.1109/PDSW56643.2022.00006

[11] Jean Luca Bez, Houjun Tang, Bing Xie, David Williams-Young, Rob Latham, Rob
Ross, Sarp Oral, and Suren Byna. 2021. I/O Bottleneck Detection and Tuning:
Connecting the Dots Using Interactive Log Analysis. In 2021 IEEE/ACM Sixth
Int. Parallel Data Systems Workshop (PDSW). 15–22. https://doi.org/10.1109/
PDSW54622.2021.00008

[12] Shishir Bharathi, Ann Chervenak, Ewa Deelman, Gaurang Mehta, Mei-Hui Su,
and Karan Vahi. 2008. Characterization of Scientific Workflows. In 2008 Third
Workshop on Workflows in Support of Large-Scale Science. IEEE, Austin, TX, USA,
1–10. https://doi.org/10.1109/WORKS.2008.4723958

[13] Abhinav Bhatele, Stephanie Brink, and Todd Gamblin. 2019. Hatchet: Pruning
the Overgrowth in Parallel Profiles. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis. ACM, Denver
Colorado, 1–21. https://doi.org/10.1145/3295500.3356219

[14] David Boehme, Todd Gamblin, David Beckingsale, Peer-Timo Bremer, Alfredo
Gimenez, Matthew LeGendre, Olga Pearce, and Martin Schulz. 2016. Caliper:
Performance Introspection for HPC Software Stacks. In SC ’16: Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis. 550–560. https://doi.org/10.1109/SC.2016.46

[15] Stephanie Brink, Michael McKinsey, David Boehme, Connor Scully-Allison, Ian
Lumsden, Daryl Hawkins, Treece Burgess, Katherine E Isaacs, Vanessa Lama,
Michela Taufer, Jakob Luettgau, and Olga Pearce. 2023. Thicket: Seeing the
Performance Experiment Forest for the Individual Run Trees. (2023).

[16] Rene Brun, Fons Rademakers, Philippe Canal, Axel Naumann, Olivier Couet,
Lorenzo Moneta, Vassil Vassilev, Sergey Linev, Danilo Piparo, Gerardo GA-
NIS, Bertrand Bellenot, Enrico Guiraud, Guilherme Amadio, wverkerke, Pere
Mato, TimurP, Matevž Tadel, wlav, Enric Tejedor, Jakob Blomer, Andrei Gheata,
Stephan Hageboeck, Stefan Roiser, marsupial, Stefan Wunsch, Oksana Shadura,
Anirudha Bose, CristinaCristescu, Xavier Valls, and Raphael Isemann. 2019. Root-
Project/Root: V6.18/02. Zenodo. https://doi.org/10.5281/zenodo.3895860

[17] Paolo Calafiura, Charles Leggett, Rolf Seuster, Vakhtang Tsulaia, Peter Van Gem-
meren, and on behalf of the ATLAS Collaboration. 2015. Running ATLAS Work-
loads within Massively Parallel Distributed Applications Using Athena Multi-
Process Framework (AthenaMP). Journal of Physics: Conference Series 664, 7 (Dec.
2015), 072050. https://doi.org/10.1088/1742-6596/664/7/072050

[18] Philip Carns, Kevin Harms, William Allcock, and Charles Bacon. 2011. Under-
standing and Improving Computational Science Storage Access through Contin-
uous Characterization. ACM Transactions on Storage (2011), 25.

[19] Dask Development Team. 2016. Dask: Library for Dynamic Task Scheduling.
https://dask.org

[20] DOE E3SM Project. 2021. Energy Exascale Earth System Model v2.0. [Computer
Software] https://doi.org/10.11578/E3SM/dc.20210927.1. https://doi.org/10.11578/
E3SM/dc.20210927.1

[21] eBPF authors. 2023. eBPF Website - Dynamically Program the Kernel for Efficient
Networking, Observability, Tracing, and Security. https://ebpf.io

[22] Rafael Ferreira da Silva, Rosa Filgueira, Ilia Pietri, Ming Jiang, Rizos Sakellariou,
and Ewa Deelman. 2017. A Characterization of Workflow Management Systems
for Extreme-Scale Applications. Future Generation Computer Systems 75 (Oct.
2017), 228–238. https://doi.org/10.1016/j.future.2017.02.026

[23] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers,
Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van
Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del Río, Mark Wiebe,
Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren
Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. 2020.
Array programming with NumPy. Nature 585, 7825 (Sept. 2020), 357–362. https:
//doi.org/10.1038/s41586-020-2649-2

[24] S. Hoyer and J. Hamman. 2016. xarray: N-D labeled arrays and datasets in Python.
in prep, J. Open Res. Software (2016).

[25] jaegertracing.io. 2019. Jaeger: Open Source, End-to-End Distributed Tracing.
https://www.jaegertracing.io/

[26] Andreas Knüpfer, Christian Rössel, Dieter an Mey, Scott Biersdorff, Kai Diethelm,
Dominic Eschweiler, Markus Geimer, Michael Gerndt, Daniel Lorenz, Allen D.
Malony, Wolfgang E. Nagel, Yury Oleynik, Peter Philippen, Pavel Saviankou, Dirk
Schmidl, Sameer Shende, Ronny Tschüter, MichaelWagner, BertWesarg, and Felix
Wolf. 2011. Score-p: A Joint Performance Measurement Run-Time Infrastructure
for Periscope, Scalasca, TAU, and Vampir. In Tools for High Performance Computing
2011 - Proceedings of the 5th International Workshop on Parallel Tools for High
Performance Computing, ZIH, Dresden, September 2011, Holger Brunst, Matthias S.
Müller, Wolfgang E. Nagel, and Michael M. Resch (Eds.). Springer. https://doi.
org/10.1007/978-3-642-31476-6_7

[27] Matthew Rocklin. 2015. Dask: Parallel Computation with Blocked Algorithms
and Task Scheduling. In Proceedings of the 14th Python in Science Conference,
Kathryn Huff and James Bergstra (Eds.). 130–136.

[28] John Mellor-Crummey. 2003. HPCToolkit: Multi-platform Tools for Profile-Based
Performance Analysis. In 5th International Workshop on Automatic Performance
Analysis (APART).

[29] OpenTelemetry. 2019. OpenTelemetry: High-quality, Ubiquitous, and Portable
Telemetry to Enable Effective Observability. https://opentelemetry.io/

[30] OpenZipkin. 2015. OpenZipkin: A Distributed Tracing System. https://zipkin.io/
[31] The pandas development team. 2020. Pandas-Dev/Pandas: Pandas. Zenodo.

https://doi.org/10.5281/zenodo.3509134
[32] Parquet Contributers. 2023. Apache Parquet Documentation. https://parquet.

apache.org/docs/
[33] Sameer S. Shende and Allen D. Malony. 2006. The Tau Parallel Performance

System. International Journal of High Performance Computing Applications 20, 2
(May 2006), 287–311. https://doi.org/10.1177/1094342006064482

[34] Houjun Tang, Quincey Koziol, John Ravi, and Suren Byna. 2022. Transparent
Asynchronous Parallel I/O Using Background Threads. IEEE TPDS 33, 4 (2022),
891–902. https://doi.org/10.1109/TPDS.2021.3090322

[35] Rajeev Thakur and Alok Choudhary. 1995. Accessing Sections of Out-of-Core
Arrays Using an Extended Two-Phase Method. Technical Report SCCS-685. NPAC,
Syracuse University.

[36] Chen Wang, Jinghan Sun, Marc Snir, Kathryn Mohror, and Elsa Gonsiorowski.
2020. Recorder 2.0: Efficient Parallel I/O Tracing and Analysis. In 2020 IEEE
International Parallel and Distributed Processing Symposium Workshops (IPDPSW).
1–8. https://doi.org/10.1109/IPDPSW50202.2020.00176

[37] Wes McKinney. 2010. Data Structures for Statistical Computing in Python. In
Proceedings of the 9th Python in Science Conference, Stéfan van derWalt and Jarrod
Millman (Eds.). 56–61. https://doi.org/10.25080/Majora-92bf1922-00a

[38] Katy Williams, Alex Bigelow, and Katherine Isaacs. 2019. Visualizing a Moving
Target: A Design Study on Task Parallel Programs in the Presence of Evolving
Data and Concerns. IEEE transactions on visualization and computer graphics PP
(Aug. 2019). https://doi.org/10.1109/TVCG.2019.2934285

[39] Cong Xu, Shane Snyder, Omkar Kulkarni, Vishwanath Venkatesan, Philip Carns,
Suren Byna, Robert Sisneros, and Kalyana Chadalavada. 2017. DXT: Darshan
eXtended Tracing. (2017).

[40] Weiqun Zhang, Andrew Myers, Kevin Gott, Ann Almgren, and John Bell. 2021.
AMReX: Block-structured Adaptive Mesh Refinement for Multiphysics Applica-
tions. The International Journal of High Performance Computing Applications 35,
6 (2021), 508–526. https://doi.org/10.1177/10943420211022811

ATL-SOFT-PUB-2021-001 ATL-SOFT-PUB-2021-001
ATL-SOFT-PUB-2021-001 ATL-SOFT-PUB-2021-001
https://github.com/iovisor/bcc
https://github.com/iovisor/bcc
https://github.com/rapidsai/cudf
https://github.com/grafana/grafana
https://github.com/LLNL/Adiak
https://github.com/LLNL/Adiak
https://github.com/pola-rs/polars
https://doi.org/10.1007/978-3-031-32041-5_2
https://doi.org/10.1088/1748-0221/3/08/S08003
https://doi.org/10.1109/PDSW56643.2022.00006
https://doi.org/10.1109/PDSW54622.2021.00008
https://doi.org/10.1109/PDSW54622.2021.00008
https://doi.org/10.1109/WORKS.2008.4723958
https://doi.org/10.1145/3295500.3356219
https://doi.org/10.1109/SC.2016.46
https://doi.org/10.5281/zenodo.3895860
https://doi.org/10.1088/1742-6596/664/7/072050
https://dask.org
https://doi.org/10.11578/E3SM/dc.20210927.1
https://doi.org/10.11578/E3SM/dc.20210927.1
https://ebpf.io
https://doi.org/10.1016/j.future.2017.02.026
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://www.jaegertracing.io/
https://doi.org/10.1007/978-3-642-31476-6_7
https://doi.org/10.1007/978-3-642-31476-6_7
https://opentelemetry.io/
https://zipkin.io/
https://doi.org/10.5281/zenodo.3509134
https://parquet.apache.org/docs/
https://parquet.apache.org/docs/
https://doi.org/10.1177/1094342006064482
https://doi.org/10.1109/TPDS.2021.3090322
https://doi.org/10.1109/IPDPSW50202.2020.00176
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.1109/TVCG.2019.2934285
https://doi.org/10.1177/10943420211022811

	Abstract
	1 Introduction
	2 PyDarshan Design
	2.1 Darshan
	2.2 PyDarshan

	3 Analysis Case Studies
	3.1 Use Case 1: Enhancing Single Job Summaries with New Views
	3.2 Use Case 2: Enabling Custom Analysis Views and Tools for Applications
	3.3 Use Case 3: Enabling Custom Analysis for Scientific Workflows
	3.4 Use Case 4: Analyzing Large Quantities of Logs for System-Wide I/O Behavior

	4 Related Work
	5 Conclusion and Future Work
	Acknowledgments
	References

