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ABSTRACT
For years, SIMD/vector units have enhanced the capabilities of
modern CPUs in High-Performance Computing (HPC) and mobile
technology. Typical commercially-available SIMD units process up
to 8 double-precision elements with one instruction. The optimal
vector width and its impact on CPU throughput due to memory
latency and bandwidth remain challenging research areas. This
study examines the behavior of four computational kernels on
a RISC-V core connected to a customizable vector unit, capable
of operating up to 256 double precision elements per instruction.
The four codes have been purposefully selected to represent non-
dense workloads: SpMV, BFS, PageRank, FFT. The experimental
setup allows us to measure their performance while varying the
vector length, the memory latency, and bandwidth. Our results not
only show that larger vector lengths allow for better tolerance of
limitations in the memory subsystem but also offer hope to code
developers beyond dense linear algebra.
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1 INTRODUCTION AND RELATEDWORK
Various approaches to vector computing exist, with the prevalent
“classical” Single Instruction, Multiple Data (SIMD) method em-
ployed by x86 architectures. Recently, two pivotal technological
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developments have driven the progression of research and software
advancement within the realm of vector computing: the Arm Scal-
able Vector Extension (SVE) and the NEC Aurora SX architecture.
Arm’s innovation introduces a more adaptable and sophisticated
approach to vectorizing code, supporting vector lengths of up to 32
double precision elements, with a register size of 2 kbits, as detailed
by Rico et al. in [9]. On the other hand, the NEC Aurora SX takes
an even more radical design stance, presenting a CPU equipped
with vector registers accommodating a staggering 256 double pre-
cision elements, spanning 16 kbits, as elaborated by Takahashi et
al. in [10].

These advancements raise significant inquiries concerning vec-
tor architectures, as explored by Ishii et al. in [3]. Key among these
are inquiries into the optimal vector length, the ideal vector register
size, and the most favorable memory performance metrics, encom-
passing both bandwidth and latency, that should complement a
vector architecture. Beyond the purely architectural questions, the
intricacies of simulating and benchmarking vector architectures
also come to the fore, as expounded upon by Ramirez et al. in [8].

Indeed, diverse scientific communities are now intently investi-
gating the potential of long-vector computing as ameans to speedup
their computational endeavors. Importantly, these pursuits often
extend beyond the confines of classical high-performance com-
puting (HPC) operations, as demonstrated e.g., by Valassi et al.
in [11] and by Diehl et al. in [1]. In our study, we embark on the
task of quantifying the precise influence of vector length, memory
bandwidth, and memory latency on distinct code implementations.
Our objective is to substantiate the claim that vector architectures,
particularly those leveraging extended vectors, offer robust solu-
tions for gaining performance while tolerating memory latency and
memory bandwidth.

Additionally, since our analysis delves into kernels characterized
by non-dense computations, we endeavor to convey a broader mes-
sage: the realm of scientific software encompasses domains beyond
those rooted in dense linear algebra and vector architectures offer
hope to all scientific application developers.

Lee et al., in [5] present an overview of the RISC-V technologies
leveraging the RISC-V Vector Extension available from the industry
and the academia. For the evaluation part of our work, we have
chosen to focus on the hardware development of a RISC-V-based
design that targets the HPC domain and is developed within the
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European Processor Initiative project. The system leverages a RISC-
V core coupled with a Vector Processing Unit implementing the
RISC-V Vector Extension RVV-v0.7.1 and it allows to configure
Vector Length (VL) and memory parameters.

The main contributions of this paper are: i) we present a flexible
FPGA-based setup (Software Development Vehicle) including a
RISC-V core connected to a configurable VPU on which we can
co-design hardware and software in a flexible and fast way; ii) we
quantify the effects of VL, memory latency, and memory bandwidth
on a real RISC-V CPU implemented on FPGA; iii) we study four
different kernels that are not-dense: SpMV, BFS, PR and FFT.

The rest of this paper is structured as follows: Section 2 presents
the experimental setup on which we performed the measurements
presented in this paper. Section 3 explains themethodology adopted,
the software setup and the codes selected for the benchmarking.
In Section 4 we provide details about the evaluation, reporting
performance measurements when varying VL, memory latency
and memory bandwidth. We conclude the paper with our findings
and comments in Section 5.

2 EXPERIMENTAL SETUP
In this section we describe our experimental setup called FPGA
Software Development Vehicle (FPGA-SDV), which is developed
within the European Processor Initiate (EPI) project1 and emulates
parts of the EPI European Accelerator (EPAC) design. The parts of
EPAC that we emulate on the FPGA design include:

• Atrevido, a RISC-V super-scalar core developed by SemiDy-
namics2.

• Vitruvius Vector Processing Unit (VPU) [7] developed by
BSC3, which is tightly coupled to the core, contains eight
lanes and is capable of operating on vectors of 256 double-
precision elements (i.e., 16384-bit wide vector registers). Each
lane includes a Floating Point Unit (FPU) developed by the
University of Zagreb [4].

• Network on Chip (NoC) with 2D Mesh topology developed
by EXTOLL4.

• Shared L2 Cache developed by FORTH-ICS5 which is tightly
coupled with aMESI-based coherence HomeNode developed
by Chalmers6, collectively called L2HN.

Figure 1 provides a simplified block diagram of each components
of FPGA-SDV: Atrevido in red, VPU+FPU in blue, NoC in yellow
and L2HN in purple.

Our setup comprises of a Virtex UltraScale+ HBM VCU128 PCIe
FPGA board7 and a AMD Ryzen5 5600 host server with 32 GB of
DDR4-3200 memory, both mounted on a Mini-ITX motherboard.
The server runs Ubuntu Server Linux 20.04 with local storage and a
mounted Network Filesystem. The VCU128 board includes a VU37P
FPGA device with 8 GB of integrated HBM memory and 4.5 GB of
external DDR4 memory. Figure 2 shows the connectivity between
the host server and the VCU128 board.

1European Processor Initiative. https://www.european-processor-initiative.eu/
2SemiDynamics. https://semidynamics.com/
3Barcelona Supercomputing Center. https://bsc.es/
4EXTOLL. http://extoll.de/
5FORTH-ICS CARV. https://www.ics.forth.gr/carv
6Chalmers University. https://www.chalmers.se/en/departments/cse/
7Xilinx VCU128. https://www.xilinx.com/products/boards-and-kits/vcu128.html

Figure 1: Simplified architecture of the FPGA-SDV

Figure 2: Connection between host server and VCU128 board:
schematic view

In this work we emulate on the FPGA one instance of Atrevido
with VPU and four instances of L2HN connected via a 2 × 2 Mesh
NoC. The host server communicates with the VCU128 primarily
through PCIe Gen3 x16, 1 Gbit Ethernet, and other low-speed in-
terfaces like JTAG and UART. A typical scenario for experimenting
with the FPGA-SDV includes the following steps:

• Use the host to program the VCU128 bitstream with the
emulated system via JTAG.

• Use the host PCIe interface to load Linux images into the
VCU128 DDR4 memory, perform any additional register con-
figurations like modifying the memory latency as described
in Section 2.2, and initiate boot on the emulated system.

• Access the emulated system’s Linux terminal via UART or
SSH via Ethernet.

• Mount a Network Filesystem (NFS) via Ethernet in order to
share files between the host and the emulated system, run
benchmarks, and perform tests.

2.1 Variable Vector Length
The RISC-V Vector Extension8 has some characteristics that differ-
entiate it from other vector extensions, such as Intel’s AVX or ARM
Neon. The VL is not constrained by the Instruction Set Architecture
(ISA); it is implementation-specific like ARM’s SVE extension. Ad-
ditionally, the VL can change on runtime. A code can execute some
instructions with a given VL and some other instructions with a
shorter or longer VL, which means that the architecture adapts
to the codes seamlessly without predicates or loop prologues/epi-
logues. This also allows the compiler to generate VL-agnostic code,

8RISC-V "V" Extension. https://github.com/riscv/riscv-v-spec/blob/master/v-spec.adoc
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meaning that the binaries do not need to know the machine’s max-
imum implemented VL, thus enabling portability.

Inside the core we can find a custom Control and Status Register
(CSR) that contains the maximum VL of the machine. Usually this
value would be hard-coded in the hardware, but having it in a CSR
lets us programmatically modify it with lower values to run inter-
esting experiments. Lowering the VL may degrade performance,
but allows us to quantify its effect and see how it interacts with
other parameters of the core.

2.2 Latency Controller
The Latency Controller is a hardware module which can artificially
introduce additional latency to the DDR4 memory subsystem. In
our experimental setup the FPGA emulated Atrevido + VPU + NoC
+ 2 × 2 L2HN system runs at a lower frequency compared to DDR4
of the VCU128 FPGA, i.e., 50 MHz compared to 333 MHz. There-
fore, from the emulated system’s perspective the memory requests
appear to complete with lower latency compared to a typical pro-
duction system; the minimum memory access latency observed in
the FPGA emulated system at 50 MHz is approximately 50 clock
cycles. Thus, this module primarily serves two goals: (a) to emulate
the memory latency of a typical system and (b) evaluate how la-
tency affects the behavior and performance of benchmarks running
on the emulated system. Practically, the Latency Controller offers
two functionalities: (a) stalls reads and writes to DDR4 memory for
a user-defined number of clock cycles in a pipelined fashion, (b)
provides a software configurable interface so that users can modify
the memory latency in a programmable and dynamic way on the
emulated system without re-configuring the FPGA.

2.3 Bandwidth Limiter
The Bandwidth Limiter is a hardware module that can throttle
the bandwidth of the DDR4 memory subsystem. More specifically,
this module operates in time windows and permits only a limited
number of memory requests per time window. For example, to
throttle the bandwidth at 33% of the peak only two registers need
to be set: the value of the numerator to 1 and the value of the
denominator to 3 to achieve the fraction 1/3. Then, the module
allows only 1 memory request to be issued per time window, which
is 3 clock cycles. The Bandwidth Limiter operates similarly to the
Latency Controller and provides the same software configurable
interface for flexibility, so that users can experiment with different
bandwidth rates quickly without re-configuring the FPGA.

3 METHODOLOGY
The core inside the FPGA runs a regular Ubuntu Server 20.04 with
local storage and a mounted Network Filesystem. We compile our
codes using an LLVM-based compiler developed at the BSC9, which
can vectorize for RISC-V using either automatic vectorization or
manual vectorization via intrinsics or builtins. The codes we evalu-
ate have been vectorized using a combination of both methods; we
use automatic vectorization for short or simple regions of code and
intrinsics to perform fine-grained optimizations.

9https://repo.hca.bsc.es/gitlab/rferrer/llvm-epi

3.1 Codes Selected for the Evaluation
We employ four computationally relevant codes in our evaluation.
All of them are vectorized for RISC-V using the LLVM-based com-
piler with vectorization support.

First, we use a vectorized Sparse matrix-vector multiplication
(SPMV) targeting long-vector architectures [2]. The C sources can
be accessed upon request in BSC repositories10. The input used
for this evaluation is the “CAGE10” matrix11. SPMV is a relevant
code in High-Performance Computing (HPC) because it behaves
more similarly to real scientific applications than artificial bench-
marks due to its use of sparse data structures and being memory
bound. It is normally used to highlight the efficiency of the memory
subsystem of an architecture.

Secondly, we use long-vector implementations of two graph
algorithms, Breadth-First Search (BFS) and Page-Rank (PR) [13].
The C++ sources can also be accessed upon request12. Graph al-
gorithms are a relevant HPC topic in various fields like networks,
infrastructure, social circles, or internet webpages. BFS is one of
the best-known examples and a building block of many other algo-
rithms. PR presents slightly more computational intensity, and it is
used to assign scores to nodes in a graph. Web browsers such as
Google use it to determine a webpage’s relevance. Both codes used
a graph of 215 nodes for the evaluation.

Finally, we use a vectorized implementation of the Fast Fourier
Transform (FFT) kernel [12]. The C sources can be accessed upon
request13. For the evaluation, we selected an FFT size of 2048 ele-
ments. The FFT is a relevant code because it presents both arith-
metic intensity and complex memory access patterns, which makes
it a challenge for vector architectures. It is also used as a building
block in many scientific codes including signal or image processing,
numerical analysis, genomics, or astronomy.

3.2 Tools Used for Measurements
To obtain fine-grained measurements and mitigate OS noise, we
read the hardware counter that counts CPU cycles. We then cal-
culate the average of these measurements over five runs. As the
variation among the runs is below 3%, we have chosen to exclude
error bars to prevent unnecessary cluttering of the plots.

4 EVALUATION
In this section, we evaluate the behavior of the four codes when
we artificially introduce latency, throttle bandwidth, or alter the
maximum VL of our system. The analysis of vector architectures
often revolves around the benefit of operating many data elements
simultaneously, without giving much regard to their interaction
with the memory. Using long vectors, we can pack hundreds of
memory requests in a single instruction, thus dramatically reducing
the number of times we pay the latency to the memory, while also
highly utilizing the bandwidth since each transaction is moving
many more data elements compared to scalar accesses.

10https://repo.hca.bsc.es/gitlab/cgomez/spmv-long-vector
11https://sparse.tamu.edu/vanHeukelum/cage10
12https://repo.hca.bsc.es/gitlab/pvizcaino/graph-v
13https://repo.hca.bsc.es/gitlab/pvizcaino/fftv
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4.1 Adding latency
Using the tools described in Section 2.2, we can add an arbitrary
number of cycles to the latency between the L2 cache and the main
memory. This way, we can simulate a system with more congestion
(e.g., with more cores) or with a longer path to the memory and
study its effects on scalar and vectorized applications.

With these tests, we aim to showcase that long-vector architec-
tures are more resistant to memory latency than traditional scalar
machines. For each code, we study both the scalar and vector im-
plementations. For the vector ones, we also modify the maximum
VL of the system in order to study its relation with the latency.

Figure 3 contains four plots with the measured execution time for
each of the codes on the 𝑦-axis. The 𝑥-axis report the extra latency
cycles that have been added by the Latency Controller described in
Section 2.2. Each plot shows the scalar implementation in blue, and
the vector runs with increasing VL in a red gradient: the larger the
VL the darker the red. The values of VL considered are expressed in
units of double-precision elements: i.e., VL=8 means vector register
width of 512 bits (light red) while VL=256 means vector register
width of 16 kbits (dark red). This color pattern applied to the VL is
maintained for the rest of the document for an easier comparison
of the plots.

As anticipated, all the plots in Figure 3 demonstrate an increase
in execution time with the addition of extra latency. However, Fig-
ure 3 also distinctly illustrates the substantial advantage that the
vector code gains from a higher VL. When examining the slopes of
the data series, it is evident that as we decrease the VL, the slopes
become steeper. This implies that the scalar and low VL implemen-
tations are more adversely impacted (i.e., perform worse) by the
introduced latency, causing their performance to degrade more
rapidly compared to executions with larger VL values.

We propose an alternative data visualization to better study the
effect of the VL on the latency resistance in Figure 4. We show one
table per each code, with the different implementations (scalar and
with different VL values) as columns and the extra latency cycles as
rows. The values in each cell of the tables are the execution times
normalized against each implementation’s run with no additional
latency. This way, for each implementation, we show how many
times slower they run depending on the extra latency added. In
each table we color-code this slowdown from green for the best case
(lowest slowdown) to red for the worst case (highest slowdown).

Looking at the tables row by row, we can see that as we add
latency, the tables turn red as the slowdown increases. The key
observation is that for any added latency row, the slowdown dimin-
ishes when we increase the VL, with the minimum slowdown at
the right-most column.

Using the SPMV as an example, adding 32 cycles of latency the
scalar code runs 1.22× slower, while the vector implementationwith
𝑣𝑙 = 256 only runs 1.05× slower. This is even more pronounced
when adding 1024 cycles of latency, with a slowdown of 8.78×
compared to 3.39×.

4.2 Limiting bandwidth
The second use of the tools from Section 2.3 is limiting the band-
width, from 64 Bytes per cycle downwards. This lets us study how
vectors use the bandwidth provided by the system.

Figure 3: Execution time of the four evaluated codes depend-
ing on the added latency, with blue series for scalar imple-
mentations and a red gradient series for vector implementa-
tions with increasing VL

A scalar architecture normally needs many CPUs sending re-
quests to the memory to fully saturate the bandwidth that the
system can provide. On the other hand, long vectors can reach this
saturation quicker using only one core, making a more efficient use
of the system with a lower number of cores.

Figure 5 shows the same four codes as before, once again with
a blue series for the scalar implementation and a red gradient of
series for the vector implementations with increasing VL values.
The 𝑥-axis represents the maximum bandwidth we limit with our
Bandwidth Limiter tool. The values of the 𝑥-axis are expressed in
Bytes per cycles, ranging from 1 to 64 Bytes per cycles in steps of
power of 2. The 𝑦-axis is the execution time normalized against
the same run with a maximum bandwidth of 1 Byte per cycle. This
means that lower values on the 𝑦-axis are preferred since they
represent a shorter execution time.
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Figure 4: Execution time of the four evaluated codes normal-
ized to their run with 0 extra latency for each implemen-
tation. The color gradient goes from minimum slowdown
(green) to maximum slowdown (red) for each table

The plots on Figure 5 showcase that the scalar versions do not
take advantage of bandwidths higher than 1 or 2 Bytes/Cycle. This
is seen as the time curve from the scalar implementations (blue) flat-
tening and creating a plateau at those values. The vector code with
𝑣𝑙 = 8 behaves similarly to the scalar code, taking little advantage
of bandwidths higher than 2 or 4 Bytes/Cycles On the other hand,
as we increase the maximum VL of the machine (darker series in
the plots), the plateau of the execution time is reached with higher
bandwidth values. This implies that codes with larger VL benefit
more from having a system with higher bandwidth. In other words,
Figure 5 shows that a single core with a vector unit supporting
larger VL takes more benefits from being connected to a memory
subsystem with higher bandwidth than a scalar core (or a core with
shorter VL).

Figure 5: Execution time of the four codes depending on the
limited bandwidth, normalized to the run with a limit of 1
Byte/Cycle per each implementation

5 CONCLUSIONS
In this paper we presented an FPGA setup, called FPGA-SDV imple-
menting a scalar RISC-V core coupled with a configurable vector
unit with 8 lanes able to process vector of up to 256 double pre-
cision elements (16 kbits). The setup is configured so that a user
can configure the maximum vector length (applying values from
8 up to 256 double-precision elements), the memory bandwidth
(with values from 1 to 64 Bytes per cycle), and the memory latency
(adding an arbitrary number of extra-cycles of latency for accessing
the main memory).

We used this setup to evaluate four kernels that are relevant in
HPC but are not strictly related to dense-algebraic workflow: we
considered SPMV, BFS, PR, and FFT.

On those non-dense codes, we showcase two often overlooked
benefits of long vector architectures: i) tolerate memory latency; ii)
taking advantage of higher memory bandwidths with a single core;
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We highlight the potential of the FPGA-SDV methodology to
prove these benefits. The flexibility of our system lets us easily
tweak architectural parameters on real hardware, such as the maxi-
mum vector length, the bandwidth of the system, or the latency to
the main memory. Coupling these features with the methodology
described in our previous paper [6] allow us to study HPC-relevant
codes and to implement a co-design cycle that provides valuable
insights to scientists developers, compiler/system software devel-
opers, and hardware architects.

When we degrade the performance of the codes by adding extra
memory latency to our system, we observed that the vectorized im-
plementations are less impaired than the scalar ones. This difference
is accentuated when the vector implementations use a large vector
length, thus showing that long vectors are more resistant to high la-
tencies. In our experimental setup, we also observed that while the
single core scalar implementations do not benefit from a bandwidth
higher than 1 or 2 Bytes/Cycle, the long vector implementations
can naturally use bandwidths of 32 or 64 Bytes/Cycle.
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