
FFTX-IRIS: Towards Performance Portability and Heterogeneity
for SPIRAL Generated Code

Sanil Rao
Carnegie Mellon University
sanilr@andrew.cmu.edu

Mohammad Alaul Haque Monil
Oak Ridge National Laboratory

monilm@ornl.gov

Het Mankad
Carnegie Mellon University
hmankad@andrew.cmu.edu

Jeffrey S. Vetter
Oak Ridge National Laboratory

vetter@ornl.gov

Franz Franchetti
Carnegie Mellon University
franzf@andrew.cmu.edu

ABSTRACT
FFTX-IRIS is a dynamic system to efficiently utilize novel hetero-
geneous platforms. This system links two next-generation frame-
works, FFTX and IRIS, to navigate the complexity of different hard-
ware architectures. FFTX provides a runtime code generation frame-
work for high-performance Fast Fourier Transform kernels. IRIS
runtime provides portability and multi-device heterogeneity, al-
lowing computation on any available compute resource. Together,
FFTX-IRIS enables code generation, seamless portability, and per-
formance without user involvement. We show the design of the
FFTX-IRIS system along with an evaluation of various small FFT
benchmarks. We also demonstrate multi-device heterogeneity of
FFTX-IRIS with a larger stencil application.

KEYWORDS
Performance portability; Heterogeneity; FFT; SPIRAL; IRIS

ACM Reference Format:
Sanil Rao, Mohammad Alaul Haque Monil, Het Mankad, Jeffrey S. Vetter,
and Franz Franchetti. 2023. FFTX-IRIS: Towards Performance Portability
and Heterogeneity for SPIRAL Generated Code. In Workshops of The Inter-
national Conference on High Performance Computing, Network, Storage, and
Analysis (SC-W 2023), November 12–17, 2023, Denver, CO, USA. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3624062.3624242

1 INTRODUCTION
Modern applications’ computational demands are increasing ex-
ponentially. After Dennard scaling ended, heterogeneous systems
emerged as go-to solutions to meeting the ever-increasing compu-
tation need. As a result, heterogeneous systems are now ubiquitous
in all contemporary state-of-the-art high-performance computing
facilities. In a heterogeneous computing paradigm, multi-core and
many-core processors and accelerators from different manufactur-
ers co-exist in a single node. While adopting such heterogeneity
keeps the ongoing advances in computation power, it introduces
challenges in portability, utilization, and efficient execution.

This work is licensed under a Creative Commons Attribution International
4.0 License.

SC-W 2023, November 12–17, 2023, Denver, CO, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0785-8/23/11.
https://doi.org/10.1145/3624062.3624242

Harnessing meaningful performance from a wide range of avail-
able architectures has become necessary and requires rigorous
optimization effort and an in-depth understanding of the under-
lying architecture. For this reason, architecture-specific tuning of
complex kernels (such as FFTs) has been an active field of research.
Automated code generation frameworks, such as SPIRAL [5], aim
to deliver the promise of providing optimized code for a given ar-
chitecture. Since optimizations are architecture-specific, portability
to different kinds of heterogeneous systems becomes a concern.
Therefore, an additional layer that ensures portability to such code
synthesis and generation system is a must to alleviate the burden
on the users. In an ideal case, there should be an abstraction on top
of the code generation framework that hides the processor detail,
and at runtime, code is generated and executed for the processor
being used.

FFTX is one such abstraction layer. FFTX is a modern FFT library
providing common optimized FFT transforms on a wide variety
of hardware platforms. As a user-facing library, FFTX provides
familiar interfaces for different transforms that can be easily in-
tegrated into large applications. These interfaces then translate
to the SPIRAL code generation system, which provides optimized
kernels for specific hardware architectures. This entire process is
done transparently to the user. While FFTX provides an abstraction
on top of SPIRAL to ease the code generation process, there are
challenges ensuring portability to diverse architectures.

Another dimension of the challenges of heterogeneous systems
stems from the utilization perspective. It is challenging for applica-
tion developers to manage the utilization of all available compute
devices, especially if those devices change between compute sys-
tems. This results in extra control logic and static partitioning of
the application for specific system configurations. This distracts
from the actual computation the application is trying to solve. State-
of-the-art runtime systems for heterogeneous systems such as IRIS
runtime [6] provide orchestration capabilities to ensure utilization
by introducing a task-based programming model and providing
seamless data transfers between different compute units. In the
task-based programming paradigm, a higher level of abstraction
of the computation is created by introducing tasks that can be ex-
ecuted in different heterogeneous compute units following given
scheduling logic. While task-level abstraction provides means for
portability and utilization of multi-device heterogeneity, expressing
the computing need in a task graph is application dependent and
requires effort from the users.

1635

https://doi.org/10.1145/3624062.3624242
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3624062.3624242
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3624062.3624242&domain=pdf&date_stamp=2023-11-12

SC-W 2023, November 12–17, 2023, Denver, CO, USA Sanil Rao, Mohammad Alaul Haque Monil, Het Mankad, Jeffrey S. Vetter, and Franz Franchetti

To address these challenges, we propose FFTX-IRIS, a dynamic
system for next-generation systems. FFTX-IRIS strives to tie two
worlds: 1) architecture-optimized code generation using SPIRAL,
and 2) ensuring portability and multi-device heterogeneity using
IRIS runtime. FFTX-IRIS handles the performance and portability
of modern applications in the backend while providing developers
with an architecture-agnostic library-style API resembling standard
APIs. Using SPIRAL and IRIS internally, FFTX-IRIS combines code
generation, automatic task representation of the computation, Just-
In-Time compilation, and dynamic runtime scheduling to use all
available computing platforms efficiently. This paper focuses on
showcasing the recent capabilities of FFTX-IRIS toward portability
and heterogeneity.

Contributions. This paper makes the following contributions:
• Combining code generation and task-based execution by
integrating FFTX and IRIS runtime to create a new system,
FFTX-IRIS.

• Automated task level abstraction for generated kernels by
SPIRAL.

• Demonstration of performance portability of benchmarks
written against FFTX-IRIS on different architectures, CPUs,
and GPUs from different vendors.

• Utilization of multi-device Heterogeneity of the benchmarks
written against FFTX-IRIS; different hardware architectures
are used at the same time to solve a single problem.

2 BACKGROUND
FFTX-IRIS consists of two key software frameworks, FFTX and
IRIS, with FFTX using a code generation system called SPIRAL
as its backend. We provide a brief overview of each framework
individually before showing by example, the new FFTX-IRIS design.

Figure 1: SPIRAL code generation system[5].

2.1 SPIRAL
SPIRAL is a code generation system that produces optimized C/C++
code for different types of multi dimensional linear transforms like
the discrete Fourier transform (DFT) and sine/cosine transforms
that are mainly used in the area of signal processing [5]. It uses a
mathematical declarative language called the Operator language
(OL) [4] that helps to capture the semantics of the given problem
specification. This is then broken down into a loop based structure

called the Σ-OL, which helps in generating an optimized C/C++
code for that given problem specification. Figure 1 shows the basic
task flow that is followed in SPIRAL to generate optimized code
for a given problem specification. In recent years, the scope of
SPIRAL has expanded to areas of scientific applications other than
signal processing, like graph algorithms, stencil algorithms used in
numerical partial differential equations (PDE), and cryptography.

2.2 FFTX
The FFTX project is a high-performance library designed to provide
common FFT transforms for new hardware architectures. Unlike
traditional libraries, FFTX uses a combination of a code generator,
SPIRAL[5], and Just-In-Time compilation as its library backend. In
this model, optimized kernels are generated using runtime param-
eters and compiled into running application. This is in contrast
to handwritten routines implementing library function calls. This
approach enables increased optimization and portability of applica-
tions across different hardware platforms.

2.3 IRIS Runtime
IRIS [2, 6] (see Figure 2) is a task-based programming model and
runtime for heterogeneous computing systems consisting of mul-
ticore CPUs, GPUs (NVIDIA, AMD), DSPs (Qualcomm Hexagon),
and FPGAs (Xilinx, Intel). It accepts the kernels written in OpenMP,
OpenCL, CUDA, HIP, XilinxCL, IntelCL, Hexagon C++, and Ope-
nACC programming languages. However, mapping the program-
ming language to the device compute unit is constrained. For ex-
ample, NVIDIA GPU compute devices can be used through kernels
written only in OpenCL and CUDA. The IRIS runtime has a task
scheduler that maps the application tasks to a compute device, and
the task kernels are executed using the compute unit-specific run-
time. It orchestrates multiple programming platforms in a system
into a single execution/programming environment. IRIS supports
OpenMP, CUDA, HIP, OpenCL, XilinxCL, IntelCL, and Hexagon
DSP runtimes while abstracting all underlying heterogeneous run-
times, providing task mapping, memory management, and schedul-
ing at runtime.

CUDA
Runtime
Shared
Library

HIP
Runtime
Shared
Library

OpenMP
Kernel
Shared
Library Vendor

OpenCL
Vendor
OpenCL

CPU
NVIDIA

GPU
AMD
GPU

Intel
FPGA

Qualcomm
GPU

Task

Task

Task

Task

Task

Task

Task

Task

OpenCL ICD Loader

OpenCL
Kernel

HIP
Kernel

OpenMP
Kernel

CUDA
Kernel

OpenCL
Kernel

Shared Virtual Device Memory
DDR4 HBM2 HBM2 HBM2 LPDDR4

CPU

DDR4

Dynamic
Platform
Loader

Task
Scheduler

Task

Host

IR
IS

IRIS Host Code
(C/C++/Fortran/

Python)Ap
p

Po
lic
y

Po
lic
y

Po
lic
y

Po
lic
y

Qualcomm
DSP

LPDDR4

Hexagon
Runtime
Shared
Library

Task

Hexagon
Kernel

Level Zero
Runtime
Shared
Library

Intel
GPU

Task

SPIR-V
Kernel

HBM2

Compute Devices

Figure 2: IRIS run-time system for heterogeneous architec-
tures [2, 6].

1636

FFTX-IRIS: Towards Performance Portability and Heterogeneity for SPIRAL Generated Code SC-W 2023, November 12–17, 2023, Denver, CO, USA

3 RELATEDWORK
There are runtime systems that provide functionalities in terms of
heterogeneity, such as StarPU [1], OpenMP [11], OpenACC [10],
etc. These runtime systems support a set of architectures and often
lack the capabilities of executing a single problem on diverse het-
erogeneity (such as executing on multi-vendor GPUs at the same
time). Portable abstractions such as Kokkos [3] provide a solution
for portability but lack multi-device heterogeneity. So, a runtime
system that supports both portability through task abstraction and
multi-device heterogeneity is desired for seamless execution in
contemporary heterogeneous systems. IRIS runtime [6] mitigates
these challenges; hence, this work’s runtime is of interest.

There are DSL compilers that combine code generation and task-
based runtime systems, such as DISTAL[13] and spDISTAL[14].
These compilers expose language constructs to describe domain spe-
cific computations and their mappings onto distributed machines.
Using these constructs, optimized distributed code is generated by
the DSL compiler efficiently using machine resources. FFTX-IRIS
takes a different approach to integrate two ideas: 1) code generation
and 2) runtime scheduling, focusing on single-node systems. Kernel
generation is exposed through a user-facing library that translates
to the SPIRAL DSL. These kernels are generated at runtime for the
specific architectures present on the machine. IRIS then leverages
these kernels at runtime and automatically manages their execution
on the available devices. This process is completely transparent to
the end user.

4 FFTX-IRIS DESIGN
We describe the major objectives of the FFTX-IRIS system and also
walk through all major components and their interactions.

4.1 Objective
FFTX-IRIS is a framework that provides users with automatic paral-
lelization and task-level abstraction for efficient use of modern het-
erogeneous systems. This is done through a common frontend inter-
face that is hardware architecture agnostic and is sequential/single-
threaded by inspection of the source code. Under the hood, however,
is a translation to device-optimized code that can be seamlessly
executed across all available devices. This is all done dynamically
at runtime, enabling hardware portability.

4.2 Architecture Agnostic Frontend
Figure 3 shows a user-written Multi-Dimensional Discrete Fourier
Transform (MDDFT) application using a traditional C++ syntax.
The user declares the sizes for each dimension as well as create
some buffers for the input and output of the FFT. They then create
and instantiate the FFTXProblem[12] object (the library API of FFTX),
passing the memory object sizes and kernel name to the constructor.
Then, there is a call to the member function transform to perform
the computation. Finally, the result is printed to verify correctness.

FFTXProblem is an abstract class that must be derived for the
specific transformation the user requires. These derived classes
hold different computations of interest to the application developer.
This example shows a derived MDDFTProblem.

1 #include <stdio.h>
2 #include <iostream>
3 #include <vector>
4 #include "iris.hpp"
5 #include "fftx.hpp"
6
7 int main(int argc, char** argv) {
8 int n,m,k;
9 n = 8;
10 m = 8;
11 k = 8;
12 std::vector<int> sizes{n,m,k};
13 double *Y, *X, *sym;
14 X = new double[n*m*k*2];
15 Y = new double[n*m*k*2];
16 sym = new double[n*m*k*2];
17 generateInputBuffer(X, sizes);
18 std::vector<void*> args{Y,X,sym};
19 MDDFTProblem mdp(args,sizes,"mddft");
20 mdp.transform();
21 for(int i = 0; i < n*m*k; i++) {
22 std::cout << Y[i] << std::endl;
23 }
24 return 0;
25 }

Figure 3: MDDFT Application using the FFTX-IRIS system

1 for(int i = 0; i < kernel_names.size(); i++) {
2 iris_task task;
3 iris_task_create(&task);
4
5 if((getIRISARCH().find("cuda") != std::string::npos
6 || getIRISARCH().find("hip") != std::string::npos)
7 && !findOpenMP()) {
8 std::vector<size_t> grid{
9 (size_t)kernel_params[i*6]*kernel_params[i*6+3],
10 (size_t)kernel_params[i*6+1]*kernel_params[i*6+4],
11 (size_t)kernel_params[i*6+2]*kernel_params[i*6+5]};
12
13 std::vector<size_t> block{
14 (size_t)kernel_params[i*6+3],
15 (size_t)kernel_params[i*6+4],
16 (size_t)kernel_params[i*6+5]};
17
18 iris_task_kernel(task, kernel_names.at(i).c_str(),
19 3, NULL, grid.data(), block.data(),
20 sig_types.size()+pointers,
21 params.data(), params_info.data());
22 } else{
23 iris_task_kernel(task, kernel_names.at(i).c_str(), 1,
24 NULL, &size, NULL, 3+pointers, params.data(),
25 params_info.data());
26 }
27
28 if(i == kernel_names.size() -1)
29 iris_task_dmem_flush_out(task, *(iris_mem*)params.at(0));
30
31 iris_task_submit(task, iris_any, NULL, 1);
32 }

Figure 4: IRIS task creation and execution for FFTX generated
kernels

4.3 Code Generation and Task Abstraction
FFTX-IRIS utilizes a combination of runtime code generation and
scheduling in order to transition from single-threaded code to par-
allel code with multi-device execution. This process occurs when
the member function transform is executed and is illustrated as a
block diagram in Figure 5.

1637

SC-W 2023, November 12–17, 2023, Denver, CO, USA Sanil Rao, Mohammad Alaul Haque Monil, Het Mankad, Jeffrey S. Vetter, and Franz Franchetti

Figure 5: FFTX-IRIS Design. FFTX provides the optimized architecture-specific kernels, and IRIS executes them on the target
device.

Code Generation. The transform member function houses a se-
quence of steps that translates a computation written in FFTX to
an optimized kernel. This first step is a call to semantics, a user-
provided function within the FFTXProblem. There, the user describes
the computation they are trying to perform using the FFTX internal
API. This internal API is then translated to the domain-specific
language of the SPIRAL code generation system. This translation
uses runtime information such as user-provided sizes to aid in code
optimization. Once fully translated, a child process calls SPIRAL,
which reads the translated user computation as input and generates
an optimized kernel, which is written to disk in the appropriate
format for IRIS.

Task Abstraction. FFTX uses a Just-In-Time compilation sys-
tem to compile and link SPIRAL generated code to a running
application. This would then execute the SPIRAL code by call-
ing the three hook functions: the spiral_init function for kernel
setup, the spiral_execute function for kernel invocation, and the
spiral_destory function for cleanup. With FFTX-IRIS, this process
is handled by the IRIS runtime system automatically, but the system
needs to be configured in the proper way. To do this, the generated
code is augmented with additional metadata. This metadata houses
information such as global memory arrays, kernel signature argu-
ments, number of device kernels, and kernel launch parameters in
the case of GPUs. This information removes the need to generate
the SPIRAL hook functions, so they are omitted.

Before the IRIS system is initialized, the metadata generated by
SPIRAL is parsed and stored in buffers such that IRIS can properly
schedule and execute kernels. The most important operation is
the setup of the IRIS memory objects that act as mirrors to the
original memory objects passed to the FFTXProblem constructor, as
well as intermediate memory objects required by SPIRAL. These
IRIS memory objects will perform any memory transfers between
various devices without user involvement. Once complete, IRIS
iterates over all generated kernels, adding them as tasks before
submitting them to be executed, and writes the result back to the

output memory object provided by the user. Figure 4 shows IRIS
task generation and kernel invocation.

4.4 Enabling Portability and Heterogeneity
The design of FFTX-IRIS as a dynamic system allows execution
on a wide variety of systems and architectures. Code generation
through FFTX is done dynamically by parsing the IRIS_ARCHS
environment variable. This means that SPIRAL will only generate
kernels for the architectures that the system has available. Addition-
ally, providing necessary metadata at code generation time means
that setup buffers are populated with only what is required for
the execution of that specific kernel. This allows an application
binary compiled with a standard C++ compiler to execute on many
compute platforms, providing full portability.

FFTX-IRIS enables heterogeneity by generating kernels for all
available architectures in an IRIS-compatible format. SPIRAL gener-
ates kernels with only the required input and output pointers. This
enables IRIS to determine memory flow and create dependencies be-
tween tasks intelligently. IRIS can then draw upon the appropriate
hardware kernel to execute by following the scheduling algorithm.

4.5 Memory Management
Generating IRIS-compatible kernels in SPIRAL required modifica-
tions of the traditional SPIRAL code generation flow, specifically
with regard to memory objects. In most SPIRAL generated kernels
intermediate, device local pointers are created that reside statically
on a device and are initialized using the init_spiral hook function.
These intermediates are used in place of the user-provided pointers,
which act as the initial input and final output pointers only.

In order for IRIS to expose complete heterogeneity, IRIS must
control all classes of memory objects: read-only, write-only, and
read/write. IRIS cannot assign tasks to arbitrary devices if generated
intermediates are local and device-specific. Therefore, the SPIRAL-
generated code is modified to remove this restriction. FFTX-IRIS
omits the generation of these arrays as device arrays and moves

1638

FFTX-IRIS: Towards Performance Portability and Heterogeneity for SPIRAL Generated Code SC-W 2023, November 12–17, 2023, Denver, CO, USA

Table 1: Heterogeneous systems used in this research.

System Equinox Explorer Zenith
Total 4 GPUs Total 2 GPUs Total 2 GPUs

GPUs 4× NVIDIA V100 2× AMD MI50 1 NVIDIA GeForce RTX 3090
1 AMD Radeon RX 6900

CPU Intel Xeon E5-1698, 20 cores AMD EPYC 7702, 128 cores AMD Ryzen Threadripper, 32 cores
Compiler GNU-11.4.0 GNU-8.5.0 GNU-8.5.0

CUDA and ROCm versions CUDA-11.7 ROCm-5.1.0 CUDA-11.7 and ROCm-5.1.2

(a) (b)

(c) (d)

Figure 6: Portability of single transform.

the pointers into the relevant kernel signatures as needed. The
metadata is further augmented to direct iris on the type of these
pointers and their size.

At runtime, IRIS executes tasks based on a given scheduler. IRIS
has different schedulers (such as 𝑖𝑟𝑖𝑠_𝑎𝑛𝑦, 𝑖𝑟𝑖𝑠_𝑎𝑙𝑙). When a kernel
is scheduled, IRIS looks at the heterogeneous memory objects asso-
ciated with that kernel, locates where the latest copy is, and then
launches host-to-device or device-to-device data transfers. IRIS run-
time performs all memory management without any interaction
from the users.

5 EXPERIMENTS
This section evaluates FFTX-IRIS in different scenarios of portabil-
ity and multi-device heterogeneity. First, we introduce systems and

applications/benchmarks. Next, two aspects of FFTX-IRIS are eval-
uated: portability to various processors/systems and multi-device
heterogeneity using a complex application.
5.1 Systems
Table 1 shows the heterogeneous systems used in this research,
which are from the ExCL cluster of Oak Ridge National Labora-
tory. The 𝐸𝑞𝑢𝑖𝑛𝑜𝑥 node is an NVIDIA V100 DGX, whereas the
𝐸𝑥𝑝𝑙𝑜𝑟𝑒𝑟 node has two AMD MI50 GPUs. The most interesting
node is 𝑍𝑒𝑛𝑖𝑡ℎ, which has two GPUs, one from AMD and the other
from NVIDIA, representing future heterogeneous systems for di-
verse heterogeneity.

5.2 Applications and Benchmarks
Single Transform. FFTX provides a number of single transform
APIs for common FFTs that developers use in their applications.

1639

SC-W 2023, November 12–17, 2023, Denver, CO, USA Sanil Rao, Mohammad Alaul Haque Monil, Het Mankad, Jeffrey S. Vetter, and Franz Franchetti

These single transforms perform just the associated computation
of that class of FFT. In general, FFT algorithms come in stages
where the input signal is modified for a certain stage and stored
back to be modified in a later stage. The computation within a
stage and the number of stages vary depending on the input size
and dimensionality, determining which FFT algorithm should be
utilized. For this reason, it is difficult to have a general call per
transform class, so FFT libraries have a specific planning phase to
capture parameters and choose an algorithm, and execution phase
to operate on the provided data.

A Partial Differential Equation Based Model. A number of
scientific applications are based on different types of PDE models.
These models usually follow complex algorithms that provide us
with a scope to explore different high-performance techniques that,
in turn, can be used to reduce their computational cost. Thus, they
work as a good example to test the FFTX-IRIS system. For this work,
we have chosen the example of the 2D Euler equations that are
used in gas dynamics [7]. Our implementation in this work is based
on an algorithm developed in [9]. It is part of the ongoing work of
generating stencil codes for PDE applications using SPIRAL as a
backend for a domain-specific language frontend called Proto. The
new domain specific language is called Protox. Some of the initial
results of this work can be found in [8]. An auto-generated DAG for
the algorithm used to solve the 2D Euler equation numerically can
be seen in Figure 7. We can observe that this algorithm provides
the chance to test the heterogeneity as forks in DAG can occur
simultaneously.

5.3 Portability of Single Transform Benchmarks
We demonstrate portability of FFTX-IRIS by taking two well-known
single transform benchmarks, forward MDDFT and inverse MD-
PRDFT, and executing them on a few target systems with different
available architectures. Each transform has three execution kernels
that are sequentially dependent, with two intermediate pointers
swapping between input and output. It is important to highlight
that both the source code and executable binary did not change
as we moved between machines; only the environment variable
IRIS_ARCHs was modified to expose the available devices on each
system. The binary was compiled with a standard 𝑔𝑐𝑐 compiler on
𝐸𝑞𝑢𝑖𝑛𝑜𝑥 .

The performance shown in Figure 6 highlights how different
machine configurations can influence the performance of a single
application. We see that for the forward MDDFT benchmark, the
best performance is on 𝑍𝑒𝑛𝑖𝑡ℎ, while the inverse MDPRDFT bench-
mark performs best on 𝐸𝑥𝑝𝑙𝑜𝑟𝑒𝑟 . This is due to FFTX-optimized
kernels being tuned for AMD architectures, which both systems
have. On 𝑍𝑒𝑛𝑖𝑡ℎ in particular, IRIS is able to utilize both an NVIDIA
GPU and an AMD GPU for its computation, allocating memory on
the appropriate device automatically. This removes the burden from
the developer while still maintaining performance. This portability
enables exploration into determining better machine configurations
and opportunities to further optimize kernels for underperforming
machines.

main

ConsToPrim1 (amd)
0.000045

Deconvolve (nvidia)
0.000026

Convolve (nvidia)
0.000025

UpwindX (amd)
0.000035

UpwindY (amd)
0.000066

GetFluxX (amd)
0.000079

DeconvolveFaceX (amd)
0.000071

GetFluxY (nvidia)
0.000027

DeconvolveFaceY (amd)
0.000023

FluxX (nvidia)
0.000028

FluxY (nvidia)
0.000140

FluxDivX (nvidia)
0.000126

FluxDivY (nvidia)
0.000027

CropX (nvidia)
0.000135

CropY (nvidia)
0.000121

RHS (nvidia)
0.000125

exit
0.087440

Figure 7: Heterogeneous execution of ProtoX on Zenith.
GREEN ellipses represent execution on AMD GPUs and
CYAN ellipses represent execution on NVIDIA GPUs.

5.4 Multi-Device Heterogeneity for ProtoX
Figure 7 shows the FFTX-IRIS generated DAG for the ProtoX ap-
plication. Even though FFTX-IRIS strives to generate a complete
task graph automatically, some application-specific instructions
were included to construct a correct graph. Figure 7 shows the
available task-level parallelism where multiple processors can be
used at the same time to accelerate the execution. We ran ProtoX
on 𝑍𝑒𝑛𝑖𝑡ℎ to demonstrate that FFTX-IRIS can schedule tasks from a
single application to different heterogeneous devices — in this case,
NVIDIA and AMDGPUs. The𝐺𝑅𝐸𝐸𝑁 and𝐶𝑌𝐴𝑁 ellipses represent
execution on AMD and NVIDIA GPUs, respectively. Although the
DAG in Figure 7 shows execution on different GPUs, there is still
room for optimization. This is due to the random scheduler from
IRIS. However, this study demonstrates multi-device heterogeneity
and opens the door for efficient scheduling through performance
models. FFTX-IRIS aims to look into scheduling in the future.

5.5 FFTX-IRIS Overhead
Introducing a dynamic system like FFTX-IRIS comes at the cost of
additional overhead. Code generation and task scheduling occur at
runtime, consuming additional cycles to execute application com-
putation kernels automatically. From a code generation standpoint,
there is significant overhead when generating the kernels for the
first time. This overhead is generally a one-time cost, as the kernel
can be cached and called upon for all subsequent runs. Because of
memory management, the runtime system overheads are slightly
higher than vendor-specific runtime systems. IRIS performs extra
booking keeping to place and moves memory dynamically. This is
an active area of exploration that is being optimized.

1640

FFTX-IRIS: Towards Performance Portability and Heterogeneity for SPIRAL Generated Code SC-W 2023, November 12–17, 2023, Denver, CO, USA

6 CONCLUSION
FFTX-IRIS is a novel software framework for accelerating applica-
tions on heterogeneous platforms. It takes two independent frame-
works, FFTX and IRIS, and seamlessly integrates them to provide
increased performance on many new hardware platforms. FFTX is
the user-facing kernel framework, providing optimized computa-
tion kernels through the SPIRAL code generation system. IRIS is the
backend heterogeneous runtime system executing SPIRAL gener-
ated kernels on any and all available target platforms. FFTX-IRIS is
transparent to the user, obfuscating unnecessary and complicated
application porting. Moving forward, FFTX-IRIS will be able to
support increased heterogeneity by running on multiple platforms
at the same time.

ACKNOWLEDGMENTS
This work is funded, in part, by Bluestone, a X-Stack project in the
DOE Advanced Scientific Computing Office with program manager
Hal Finkel. This research used resources of the Experimental Com-
puting Laboratory (ExCL) at the Oak Ridge National Laboratory,
which is supported by the Office of Science of the U.S. Department
of Energy under Contract No. DE-AC05-00OR22725.

REFERENCES
[1] C. Augonnet, S. Thibault, R. Namyst, and P. A. Wacrenier. 2011. StarPU: a

unified platform for task scheduling on heterogeneous multicore architectures.
Concurrency and Computation: Practice and Experience 23, 2 (2011), 187–198.

[2] Anthony M. Cabrera, Seth Hitefield, Jungwon Kim, Seyong Lee, Narasinga Rao
Miniskar, and Jeffrey S. Vetter. 2021. Toward Performance Portable Programming
for Heterogeneous Systems on a Chip: A Case Study with Qualcomm Snapdragon
SoC. In 2021 IEEE High Performance Extreme Computing Conference, HPEC 2021,
Waltham, MA, USA, September 20-24, 2021. IEEE, 1–7. https://doi.org/10.1109/
HPEC49654.2021.9622794

[3] H Carter Edwards, Christian R Trott, and Daniel Sunderland. 2014. Kokkos:
Enablingmanycore performance portability through polymorphicmemory access
patterns. Journal of parallel and distributed computing 74, 12 (2014), 3202–3216.

[4] Franz Franchetti, Frédéric de Mesmay, Daniel McFarlin, and Markus Püschel.
2009. Operator Language: A Program Generation Framework for Fast Kernels.
In Domain-Specific Languages, Walid Mohamed Taha (Ed.). Springer Berlin Hei-
delberg, Berlin, Heidelberg, 385–409.

[5] Franz Franchetti, Tze-Meng Low, Thom Popovici, Richard Veras, Daniele G.
Spampinato, Jeremy Johnson, Markus Püschel, James C. Hoe, and José M. F.
Moura. 2018. SPIRAL: Extreme Performance Portability. Proceedings of the IEEE,
special issue on “From High Level Specification to High Performance Code” 106, 11
(2018).

[6] Jungwon Kim, Seyong Lee, Beau Johnston, and Jeffrey S. Vetter. 2021. IRIS:
A Portable Runtime System Exploiting Multiple Heterogeneous Programming
Systems. In 2021 IEEE High Performance Extreme Computing Conference, HPEC
2021, Waltham, MA, USA, September 20-24, 2021. IEEE, 1–8. https://doi.org/10.
1109/HPEC49654.2021.9622873

[7] Randall J. LeVeque. 2002. Finite Volume Methods for Hyperbolic Problems. Cam-
bridge University Press. https://doi.org/10.1017/CBO9780511791253

[8] H. Mankad, S. Rao, B. Van Straalen, P. Colella, and F. Franchetti. 2023. ProtoX: A
First Look. In 2023 IEEE High Performance Extreme Computing Conference (HPEC).

[9] Peter McCorquodale and Phillip Colella. 2011. A high-order finite-volumemethod
for conservation laws on locally refined grids. Communications in Applied Math-
ematics and Computational Science 6, 1 (2011), 1–25.

[10] OpenACC. 2015. OpenACC: Directives for Accelerators.
[11] OpenMP. 1999. OpenMP Reference.
[12] S. Rao, A. Kutuluru, P. Brouwer, S. McMillan, and F. Franchetti. 2020. GBTLX: A

First Look. In 2020 IEEE High Performance Extreme Computing Conference (HPEC).
1–7. https://doi.org/10.1109/HPEC43674.2020.9286231

[13] Rohan Yadav, Alex Aiken, and Fredrik Kjolstad. 2022. DISTAL: The Distributed
Tensor Algebra Compiler. In Proceedings of the 43rd ACM SIGPLAN International
Conference on Programming Language Design and Implementation (San Diego,
CA, USA) (PLDI 2022). Association for Computing Machinery, New York, NY,
USA, 286–300. https://doi.org/10.1145/3519939.3523437

[14] Rohan Yadav, Alex Aiken, and Fredrik Kjolstad. 2022. SpDISTAL: Compiling
Distributed Sparse Tensor Computations. In Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis
(Dallas, Texas) (SC ’22). IEEE Press, Article 59, 15 pages.

1641

https://doi.org/10.1109/HPEC49654.2021.9622794
https://doi.org/10.1109/HPEC49654.2021.9622794
https://doi.org/10.1109/HPEC49654.2021.9622873
https://doi.org/10.1109/HPEC49654.2021.9622873
https://doi.org/10.1017/CBO9780511791253
https://doi.org/10.1109/HPEC43674.2020.9286231
https://doi.org/10.1145/3519939.3523437

	Abstract
	1 Introduction
	2 Background
	2.1 SPIRAL
	2.2 FFTX
	2.3 IRIS Runtime

	3 Related Work
	4 FFTX-IRIS Design
	4.1 Objective
	4.2 Architecture Agnostic Frontend
	4.3 Code Generation and Task Abstraction
	4.4 Enabling Portability and Heterogeneity
	4.5 Memory Management

	5 Experiments
	5.1 Systems
	5.2 Applications and Benchmarks
	5.3 Portability of Single Transform Benchmarks
	5.4 Multi-Device Heterogeneity for ProtoX
	5.5 FFTX-IRIS Overhead

	6 Conclusion
	Acknowledgments
	References

