
Laminar: A New Serverless Stream-based Framework with
Semantic Code Search and Code Completion

Zaynab Zahra
University of St. Andrews

St Andrews, UK
zz46@st-andrews.ac.uk

Zihao Li
University of St. Andrews

St Andrews, UK
zl81@st-andrews.ac.uk

Rosa Filgueira
University of St. Andrews

St Andrews, UK
rf208@st-andrews.ac.uk

ABSTRACT
This paper introduces Laminar, a novel serverless framework based
on dispel4py, a parallel stream-based dataflow library. Laminar ef-
ficiently manages streaming workflows and components through a
dedicated registry, offering a seamless serverless experience. Lever-
aging large lenguage models, Laminar enhances the framework
with semantic code search, code summarization, and code com-
pletion. This contribution enhances serverless computing by sim-
plifying the execution of streaming computations, managing data
streams more efficiently, and offering a valuable tool for both re-
searchers and practitioners.

KEYWORDS
serverless computing, streaming applications, semantic code search,
transformers, dispel4py, code completion, code summarization
ACM Reference Format:
Zaynab Zahra, Zihao Li, and Rosa Filgueira. 2023. Laminar: A New Server-
less Stream-based Framework with Semantic Code Search and Code Com-
pletion . In Proceedings of 18th Workshop on Workflows in Support of Large-
Scale Science (WORKS 2023). ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
In the rapidly evolving landscape of cloud computing, serverless
computing [15] has emerged as a transformative paradigm, of-
fering scalability, cost-effectiveness, and simplicity in deploying
applications. However, the surge in data-intensive applications and
the increasing demand for real-time processing present new chal-
lenges [23] for existing serverless frameworks. Firstly, traditional
serverless architectures struggle to efficiently handle the contin-
uous flow of streaming data, resulting in bottlenecks and latency
issues. Secondly, supporting stateful computations within a server-
less environment becomes complex due to the need to maintain
and manage the state across distributed and ephemeral instances.

To address these challenges we introduce Laminar 1, a novel
open-source Serverless Stream-based Processing Framework with

1https://github.com/dispel4pyserverless

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WORKS 2023, November 12 2023, Denver, CO
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Deep Learning Code Search. Unlike traditional serverless frame-
works, Laminar provides a comprehensive solution that seamlessly
handles data streams and supports stateful computations by lever-
aging the power of dispel4py Python library. dispel4py inher-
ent support for parallelism enables concurrent data processing,
while abstract workflow descriptions in Python empower users
to construct intricate stream processing pipelines. Similar to how
functions encapsulate specific tasks in traditional programming,
dispel4py Processing Elements (PEs) represent modular computa-
tional units within the Laminar serverless environment. Further-
more, Laminar goes beyond existing serverless frameworks by
providing novel deep learning search facilities to find relevant PEs.
The main contributions of this work are:

• Handling Data Streams and Stateful Computations: Laminar
bridges a gap in conventional serverless frameworks, pro-
viding native support for data streams and stateful computa-
tions through an intuitive workflow description system and
a streamlined registry.

• Endpoints: Laminar implements comprehensive server-client
architecture with endpoints to facilitate communication for
registering, executing, and managing PEs and workflows.

• Intuitive Client Functionality: Laminar introduces an intu-
itive client interface for convenient PE and workflow reg-
istration, execution, and management. It automates library
detection and passes the information to the server for remote
PE execution.

• Serverless Execution Engine: Leveraging the principles of
serverless computing, Laminar efficiently handles PE and
workflow execution by automatically provisioning resources
and installing the necessary libraries ensuring seamless server-
less operation.

• Registry: Laminar provides a robust functionality for regis-
tering workflows, including PEs and their properties. The
registry serves as a central repository, enhancing Laminar’s
efficiency and management of serverless components.

• Deep Learning Code Search Facilities: Laminar harnesses
the power of large language models, enhancing its capabili-
ties for advanced PE code search, code summarization, and
code completion. This integration significantly enhances
semantic code search functionality. We conducted evalua-
tions of multiple models to determine the optimal ones for
integration into Laminar.

The remainder of the paper is structured as follows. Section 2
presents background on technologies relevant for this work. Sec-
tion 3 details the features of Laminar. While Section 4 specifically
focuses on the different registry searches supported by Laminar.

ar
X

iv
:2

30
9.

00
58

4v
1

 [
cs

.D
C

]
 1

 S
ep

 2
02

3

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://github.com/dispel4pyserverless
https://doi.org/10.1145/nnnnnnn.nnnnnnn

WORKS 2023, November 12 2023, Denver, CO Zaynab Zahra, Zihao Li, and Rosa Filgueira

The practical utility of Laminar is demonstrated through two show-
cased use cases in Section 5. Section 6 presents different evaluations
performed with this framework. We contextualize our work by sur-
veying related studies in Section 7, and finally, we conclude and
outline future directions in Section 8.

2 BACKGROUND
In the following sections, we look into the background work that
is inherently established in this paper.

2.1 dispel4py
dispel4py [4, 18] is a parallel stream-based dataflow framework
designed for creating and executing data-intensive applications.
It provides an abstract and user-friendly approach to workflow
creation, including automatic parallelization, which allows users
to design, execute, and optimize workflows without requiring in-
depth knowledge of the underlying hardware or middleware. Key
concepts in dispel4py include:

• Processing Element (PE): The fundamental unit in dispel4py,
acting as a computational task within a workflow graph. PEs
connect through inputs and outputs for seamless stream-
based data flow. They can be stateful, retaining previous
inputs, or stateless, focusing on current data. Various PE
types are available for distinct roles: ProducerPE (one out-
put port), IterativePE (one input port, one output port),
ConsumerPE (one input port), GenericPE (custom-defined,
any number of ports).

• Instance: Refers to a PE execution within the computing
process. Multiple instances of a single PE can be assigned,
allowing workflow scaling.

• Connection: Defines data flow between PEs, determining
data consumption and production rates.

• Mappings: Maps workflows onto execution systems. These
include a Simple mapping for running workflows sequen-
tially, and parallel options such as MPI [6], Redis [2], and
Multiprocessing (Multi) 2, eliminating the need for manual
workflow modifications.

• Abstract Workflow: Represents logical connections between
PEs, outlining computational sequences and data transfor-
mations. It is what the user describes.

• Concrete Workflow: During enactment (after the user speci-
fies themapping to use and the number of processes), dispel4py
automatically builds the concrete (parallel 3) workflow,which
is a directed acyclic graph (DAG) based on the abstract work-
flow. The concrete workflow is the actual workflow executed
by the compute infrastructure.

• Grouping: Specifies how PEs communicate during input con-
nections. For example, group-by (see Listing 2), which be-
haves similarly to ‘MapReduce’, routing data units with the
same value in the specified element to the same PE instance.

To create dispel4py workflows, users implement PEs and con-
nect them in graphs. In Figure 1, an example workflow illustrates

2https://docs.python.org/3/library/multiprocessing.html
3All mappings, except Simple, trigger the generation of an automatic parallel concrete
workflow. This concrete workflow is capable of accommodating multiple parallel
patterns, including the farm and pipeline patterns.

three PEs distributed among five processes (e.g., one PE instance for
PE1 and two for PE2 to PE3) using theMulti mapping. Users design
the green abstract workflow, while the blue concrete workflow is
automatically generated during enactment.

Figure 1: Example of a dispel4pyworkflow, in which the user
has indicated to run it using the Multi mapping with five
processes. Each PE instance runs in a different process.

Listing 1 provides the code for the first Processing Element (PE1)
in the dispel4py workflow shown in Figure 1. Full workflow code
is available in Listing 3. Note that the core functionality of a PE is
encapsulated within the _process function.

class NumberProducer(ProducerPE):
def __init__(self):

ProducerPE.__init__(self)
def _process(self):

Generate a random number
result= random.randint(1, 1000)
Return the number as the output
return result

Listing 1: NumberProducer stateless PE, referred to as PE1 in
Figure 1, generates random numbers and streams them out.

2.2 Serverless Computing
Serverless computing [22], also known as Function-as-a-Service
(FaaS), is a cloud computing paradigm that abstracts away server
management and infrastructure concerns from developers. In a
serverless architecture, developers focus solely on writing and de-
ploying individual functions or code snippets to the cloud, and
the cloud provider takes care of automatically provisioning, scal-
ing, and managing the underlying infrastructure needed to execute
those functions. This approach allows developers to focus on the
core logic of their applications, without worrying about server
maintenance, resource management, or scalability.

In a traditional cloud computing model, developers typically
need to manage virtual machines (VMs) or containers to run their
applications. This can be time-consuming and resource-intensive,
especially when handling fluctuating workloads. Serverless com-
puting, on the other hand, abstracts away the concept of servers

https://docs.python.org/3/library/multiprocessing.html

Laminar: A New Serverless Stream-based Framework with Semantic Code Search and Code Completion WORKS 2023, November 12 2023, Denver, CO

entirely, allowing developers to run their functions on demand
without the need to explicitly manage the infrastructure. Functions
are executed in stateless containers that are spun up and scaled
automatically, based on the incoming workload.

One of the key advantages of serverless computing is its cost-
effectiveness. Users are billed only for the actual execution time
of their functions, rather than for idle server time. This pay-per-
invocation pricing model can result in significant cost savings,
especially for applications with variable workloads.

2.3 Language Models and Transformers
The landscape of computer capabilities in comprehending human
languages, speaking, and reading has undergone a transformation
due to the advent of natural language processing models. Among
the state-of-the-art models, the transformer architecture has demon-
strated remarkable advancements [28]. However, the scope of these
models extends beyond human language and can be expanded to
incorporate abstract syntax trees, enabling them to understand
and compare code. In this work, we have applied three different
language models:

• UnixCoder[8] is a specialized transformer-based model de-
signed to convert Abstract Syntax Trees (ASTs) into sequen-
tial text representations [1]. This model enhances the seman-
tic representation of code fragments through embeddings,
achieved by employing multi-modal contrastive learning
(MCL) for comprehensive code semantic capture using ASTs,
and cross-modal generation (CMG) to align embeddings
across different programming languages via code comments.
In extensive experiments [8], UnixCoder outperformed state-
of-the-art models like CodeBERT [3], GraphCodeBERT [9]
and SYNCOBERT [25] in various code-related understanding
tasks, including semantic code search and clone detection.

• ReACC-py-retriever is a model developed for ReACC retrieval-
augmented code completion Framework [19]. The model
utilizes “external” context for the code completion task by
retrieving semantically and lexically similar codes from exist-
ing codebase. It has been pre-trained with a dual-encoder as
a retriever for partial code search, which retrieves code frag-
ments given a partial code. On the CodeXGLUE [20] bench-
mark, the model achieves a state-of-the-art performance in
the code completion task.

• CodeT5 [26] is a pre-trained encoder-decoder model that in-
corporates the token type information from code and allow
for multi-task learning on downstream tasks. CodeT5 is with
three code intelligence capabilities: 1) text-to-code generation
to generate code based on the natural language description ;
2) Code autocompletion, to complete the whole function of
code given the target function name; and 3) Code summa-
rization to generate the summary of a function in natural
language description. Among those tasks, CodeT5 achieves
state-of-the-art performance for code summarization task.

2.4 Semantic Code Search Paradigms
Semantic code search [7] is a critical functionality in Laminar, en-
abling text-to-code similarity queries over the registry. This NLP

technique allows searching for existing code snippets through nat-
ural language, which can greatly improve programming efficiency.
The objective is to identify matching codes in the search corpus
that correspond to the query.

Figure 2: The concept diagram of bi-encoder (left) and cross-
encoder (right) code search architecture.

We adopted the bi-encoder paradigm, as illustrated in Figure 2,
where each input (natural language query or a code description/
summarization) is independently mapped into a dense vector space.
Bi-encoders calculate embeddings for both inputs, enabling effi-
cient storage of embeddings for subsequent queries. In contrast,
cross-encoders perform full-attention over the input pairs of sen-
tences, resulting in better accuracy but reduced efficiency. The
bi-encoder architecture in Laminar is well-suited for applications
like PEs similarity, where fast querying of separate embeddings is
crucial. While bi-encoders are faster, cross-encoders achieve better
accuracy but may not be practical in certain scenarios. In summary,
the bi-encoder approach strikes a balance between efficiency and
effectiveness, making it an ideal choice for searches in Laminar.

2.5 Code Completion and Code Summarization
In the context of this work, Code completion [24] involves predicting
subsequent code tokens based on the given code context, contribut-
ing to enhanced programming productivity. Recent advancements
have demonstrated the efficacy of statistical language modeling
with transformers in improving code completion performance by
leveraging vast source code datasets.

Conversely, code summarization [29] refers to the generation of
concise and coherent natural language summaries or descriptions
that encapsulate the core functionality and behavior of a specific
segment of source code. This task aims to facilitate comprehension
and documentation by providing human-readable explanations for
intricate code snippets, functions, or methods.

In the Laminar framework, code completion serves the purpose
of allowing users to input incomplete PE snippets for completion
queries. The framework then retrieves similar PEs from our registry,
which functions as our search corpus. Moreover, code summariza-
tion is leveraged for storing descriptions of PEs within the registry
when users fail to provide them. This dual approach enhances the
overall usability and efficiency of the framework’s capabilities.

WORKS 2023, November 12 2023, Denver, CO Zaynab Zahra, Zihao Li, and Rosa Filgueira

clone-detection, as presented in [8]. Although the base model
provided by the authors through Hugging Face 4 lacks fine-tuning
tasks, we undertook our own fine-tuning process following instruc-
tions outlined in 5. This process involved utilizing the AdvTest
dataset [20], which comprises 280,634 pairs of (documentation,
function) sourced from CodeSearchNet [12]. Notably, the dataset
normalizes Python function and variable names to enhance model
understanding and generalization capabilities. Our fine-tuning ef-
forts led to the development of two models: unixcoder-code-search
and unixcoder-clone-detection. It is important to highlight that the
fine-tuned model was originally developed by the authors of this
owrk for another complementary study [17], which focused on
comparing repository similarities. Each of these models underwent
approximately 6 hours of fine-tuning on an NVIDIA A40 GPU
server..

3 LAMINAR OVERVIEW
This section presents an overview of the fundamental components
that constitute the Laminar architecture, each serving a distinct
purpose within the framework. The core elements encompass the
Registry, Server, Execution Engine, and Client, as detailed in Table 1.

Element Purpose Section
Registry Stores user, PE, and workflow information Section 3.1.
Server Coordinates system functionality Section 3.2.
Execution
Engine Enables serverless workflow execution Section 3.3

Client Interacts with server and users requests Section 3.4
Table 1: Laminar Core Elements

Depicted in Figure 3, Laminar architecture distinctly separates
the client, server, and execution functionalities. In this serverless
architecture, the back-end responds to client-triggered events (cap-
tured by the front-end) by executing code within an isolated envi-
ronment, like a remote computing infrastructure (e.g. Cloud system
or HPC cluster). This design ensures scalability and ephemeral-
ity, with the environment being dismantled upon completion to
optimize resource efficiency..

3.1 Registry
The Registry, hosted remotely on the web-based service 6, serves
as a central repository housing details about users, Processing
Elements (PEs), and dispel4py workflows. It includes descriptions
and various properties for each entity, as depicted in Figure 4 and
Table 2. Users are associated with both PEs andworkflows through a
one-way many-to-many relationship, ensuring that they are linked
to their respective registered PEs or workflows while maintaining
data privacy and preventing unauthorized access to information.
This design approach promotes the concept of PE and workflow
"owners" within the unified registry system, eliminating the need
for individual registries. When a user intends to register a PE that
is already associated with another user, the system includes the

4unixcoder-base
5https://github.com/microsoft/CodeBERT/tree/master/UniXcoder/downstream-
tasks/
6https://www.freesqldatabase.com/

Figure 3: Architectural Overview of Laminar

user as an additional user (or owner) of the PE or workflow, rather
than creating a duplicate entry. This process ensures that users
can efficiently access their registered PEs or workflows without
redundant data entries.

Figure 4: Registry Schema

The relationship between PEs and workflows is established as
a two-way many-to-many association. This design allows a PE to
be associated with multiple workflows, and conversely, a workflow
can consist of numerous PEs. This structure proves beneficial in
terms of data duplication and enhanced querying capabilities. For
instance, users often require the ability to identify all PEs belonging
to a specific workflow. With the current setup, retrieving all PEs
associated with a workflow becomes straightforward, simplifying
the querying process. This efficient relationship design streamlines
user interactions with the system’s API, as data pertaining to a
workflow can be accessed without the need for additional work.

3.1.1 PE Summarization and Embeddings. To enable seamless se-
mantic code search and code completion, the Registry incorporates
PE summarizations. These summarizations are generated by the
Client (refer to Section 4.2) when users do not provide a description

unixcoder-base
https://github.com/microsoft/CodeBERT/tree/master/UniXcoder/downstream-tasks/
https://github.com/microsoft/CodeBERT/tree/master/UniXcoder/downstream-tasks/
https://www.freesqldatabase.com/

Laminar: A New Serverless Stream-based Framework with Semantic Code Search and Code Completion WORKS 2023, November 12 2023, Denver, CO

Entity Properties
PE peId: A unique identifier for a PE entry

codeEmbedding: The code embedding of a PE
descEmbedding: The description embedding of a PE
description: A field indicating the PE’s functionality, pro-
vided by the user or automatically summarized
peCode: The serialized code for a PE
peImports: Import dependencies for a PE
peName: The class name of a PE

Workflow workflowId: A unique identifier for a Workflow entry
description: An optional field describing the functionality
of a Workflow
entryPoint: A unique name identifier for a Workflow
workflowCode: The serialized code for a Workflow
workflowName: The class name for a Workflow

User userId: A unique identifier for a user entry
password: User password
userName: A unique name identifier for a user

Table 2: Registry Entities and Properties

while registering a PE. As introduced in Table 2, the PE descrip-
tion property can include either the user-provided description or
an automatically generated summary using the CodeT5 Language
model. These PE summaries and descriptions form the cornerstone
of our semantic code search functionality.

Additionally, the Registry includes storage for PE code embed-
dings (codeEmbedding property) and PE description embeddings
(descEmbedding property). These embeddings are generated by
the Client (as discussed in Sections 4.3 and 4.2) during PE regis-
tration, contributing to enhanced performance outcomes. Storing
these embeddings allows us to perform efficient semantic code
searches and code completions without the need to re-calculate
them every time a user initiates a search. This re-use of embeddings
significantly enhances the responsiveness and performance of our
system, ensuring a seamless user experience while navigating and
querying the Registry.

3.2 Server
The Server is a foundational element within the Laminar architec-
ture, housing the core domain logic. Organized using the layered
design pattern, it consists of distinct tiers: Controller, Service,Model,
and Data Access Object (DAO) layers. These layers, pivotal to the
architecture, collectively empower the Server with modular and
structured functionality.

3.2.1 Controller Layer. At the top, the Controller layer acts as an in-
terface, handling client requests and orchestrating responses using
JSON for data exchange. The Laminar API in this layer serves as the
conduit for client-server interaction. We have different controllers
for different parts of the system (e.g. PE, Workflow, Execution, etc.)
Table 3 enumerates the API endpoints for each controller.3.2.2 Service Layer. Beneath, the Service layer houses the applica-
tion’s business logic. Here, data from the controller is processed,
detached from specific data storage details, and reliant on the DAO
layer for data access.

3.2.3 Data Access Object (DAO) layer. The DAO layer interacts
with the data store, executing essential CRUD operations—create,
read, update, delete—ensuring seamless data management.

Controller Endpoints
PE POST /registry/{user}/pe/add

GET /registry/{user}/pe/all
GET /registry/{user}/pe/id/{id}
GET /registry/{user}/pe/name/{name}
DELETE /registry/{user}/pe/remove/id/{id}
DELETE /registry/{user}/pe/remove/name/{name}

Workflow POST /registry/{user}/workflow/add
GET /registry/{user}/workflow/all
GET /registry/{user}/workflow/id/{id}
GET /registry/{user}/workflow/name/{name}
GET /registry/{user}/workflow/pes/id/{id}
GET /registry/{user}/workflow/pes/name/{name}
DELETE /registry/{user}/workflow/remove/id/{id}
DELETE /registry/{user}/workflow/remove/name/{name}
PUT /registry/{user}/workflow/{workflowId}/pe/{peId}

Execution POST /execution/{user}/run
Registry GET /registry/{user}/all

GET /registry/{user}/search/{search}/type/{type}
User GET /auth/all

POST /auth/login
POST /auth/register

Table 3: Laminar API Controllers and Endpoints

3.2.4 Model Layer. Lastly, the Model layer introduce an object-
oriented representation of system data, including Registry entity
definitions introduced in Section 3.1.

3.2.5 Error Handling. To further augment server-side operations,
tailored error handling has been implemented in the Server across
layers to address unforeseen and unauthorized behaviors, encom-
passing scenarios such as invalid login credentials. These meticu-
lously designed exceptions furnish critical insights, including type
identification, error codes, failed parameters, and supplementary
details, thereby enhancing user comprehension and overall expe-
rience. Additionally, conformity to a standardized JSON format
streamlines exception response formatting on the client side.

3.3 Execution Engine
The Execution Engine is the serverless core of Laminar, enabling
remote execution of workflows (or just singel PEs) with a single
API endpoint: /execution/user/run (see Table 3). This endpoint
is the gateway for execution requests, including workflows, PEs,
runtime configs, arguments, imports, and mappings.

Within a conda Python environment 7, the execution engine is
furnished with the dispel4py library and its essential packages.
This guarantees a smooth execution environment, sparing users
from remote environment management. An intelligent auto-import
mechanism scrutinizes the varied import dependencies of streaming
workflows, creating an all-inclusive requirement list transmitted to
the Execution Engine. It autonomously imports necessary prerequi-
sites, eliminating the need for user installations.

The Execution Engine handles additional resources essential for
workflow execution, such as data from various sources. Users can
compile these resources in a ’resources’ directory, managed by
the application for smooth serialization and deserialization during
execution. An additional enhancement is the autonomous identifi-
cation of the initial PE within a workflow, crucial for invoking the

7A conda environment is a self-contained directory that holds specific software pack-
ages and their dependencies, allowing for easy management and isolation of software
environments.

WORKS 2023, November 12 2023, Denver, CO Zaynab Zahra, Zihao Li, and Rosa Filgueira

mapping function that initiates workflow execution. While conven-
tional dispel4py often requires users to specify the initial PE, the
Execution Engine autonomously analyzes the workflow’s structure
to identify the suitable starting point, minimizing user involvement
in complex tasks, aligned with the Client’s design philosophy

Leveraging dispel4py, Laminar harnesses enhanced capabili-
ties. The Execution Engine enables streamlined parallel execution
of streaming workflows through diverse dispel4py parallel map-
pings. Users effortlessly select mappings via the Client, enhancing
application speed and resource utilization.

In the future we plan to expand Laminar’s capabilities by en-
abling the registration of multiple Execution Engines, a process
that currently involves manual intervention. This will significantly
improve convenience and management efficiency for users.

3.4 Client
The Client component serves as a user-friendly Python application,
designed to ensure smooth engagement with the Laminar frame-
work. It adopts a dual-layer structure as is illustrated in Figure 5
comprising the client layer and the web_client layer, enhancing
accessibility and ease of use. As follows both layers are explained.

Figure 5: Dual-Layer Client Structure in Laminar Framework

3.4.1 Client Layer. This layer offers user-accessible functions for
tasks like registering PEs or workflows or executing workflows in a
serverless manner. Currently, we support the following functions 8:

(1) register: User cans register with a name and a password.
register(self, user_name:str, user_password:str)

Example:
client.register("zz46","password")

(2) login: Users can login with their details.
login(self,user_name:str,user_password:str)

Example:
client.login("zz46","password")

(3) register_PE: Users can register PEs to store in the Registry.
register_PE(self,pe:PE_TYPES,description:str=None)

Example:

8Full user manual with more examples can be found here https://tinyurl.com/355zps8p

client.register_PE(NumberProducer,
"Random numbers producer")

(4) register_Workflow: Similarly, workflows can also be registered.
register_Workflow(

self, workflow: WorkflowGraph,
workflow_name:str,
description:str=None

)

Example:
client.register_Workflow(

graph,
"isPrime",
"Workflow that prints random prime numbers"

)

(5) remove_PE: PEs in the Registry can be deleted if no longer required.
remove_PE(self,pe:Union[str,int])

Example:
client.remove_PE("NumberProducer")

(6) remove_Workflow: Users can delete workflows from the Registry.
remove_Workflow(self,workflow:Union[str,int])

Example:
client.remove_Workflow("IsPrime")

(7) get_PE: registered PEs can be retrieved for creating new workflows.
get_PE(self,pe:Union[str,int],describe:bool=False)

Example:
pe1 = client.get_PE("NumberProducer")

(8) get_Workflow: workflows can be retrieved for execution.
get_Workflow(

self,
workflow:Union[str,int],
describe:bool = False

)

Example:
graph = client.get_Workflow("IsPrime")

(9) get_PEs_By_Workflow: Users can get a list of PEs for a workflow.
get_PEs_By_Workflow(self,workflow:Union[str,int])

Example:
pes = client.get_PEs_By_Workflow("IsPrime")

(10) search_Registry: Search Registry for PEs and workflows. Section 4.
search_Registry(
self,
search:str,
search_type:_TYPES = "both",
query_type:_QUERY_TYPES = "text")

Example:
results= client.search_Registry("isPrime", "workflow")

(11) describe: It provides information on PEs and workflows based on
name and description properties.

https://tinyurl.com/355zps8p

Laminar: A New Serverless Stream-based Framework with Semantic Code Search and Code Completion WORKS 2023, November 12 2023, Denver, CO

describe(self, obj:any)

Example:
client.describe(IsPrime)

(12) get_Registry: Retrieves a list of all items stored in the Registry.
get_Registry(self)

Example:
registry = client.get_Registry()

(13) run: Users can execute workflows at the Execution Engine.
#process parameter indicates the mapping
It accepts: SIMPLE, MULTI, MPI, REDIS.

#input indicates the number of iterations
#for which the workflow will be running
run(

self, workflow:Union[str,int,WorkflowGraph],
input=None,
process=:_MAPPING_TYPES = "SIMPLE",
args=None,
resources:bool=False)

Example:
#Simple mapping is automatically inferred
when no mapping is specified.
Running the workflow for 5 iterations
client.run("IsPrime", input=5)

Note that users possess the flexibility to submit workflows using
the run function from the client (as demonstrated above), which
can involve multiple PEs as showcased in the use cases outlined in
Section 5. Alternatively, they have the option to create workflows
with a single PE, such as a ProducerPE or GenericPE, similar to
traditional FaaS frameworks. PEs, whether as components of a
workflow or individual units run through Laminar, can demonstrate
either stateful behavior like the CountWords PE in Listing 2, or
stateless behavior, as exhibited by the NumberProducer in Listing 1.
3.4.2 Web Client Layer. This layer holds an important role within
the Laminar framework. This intermediary layer acts as a conduit
for communication, orchestrating the flow of data and interac-
tions between the client-side processing and the server-side exe-
cution, as is shown in Figure 5. A significant aspect of this layer
is its versatility in handling multiple input types. For instance, the
workflow parameter of the run function introduced in 3.4.1 can
accept various input formats such as a workflow name (str), a
workflow ID (int), or workflow object WorkflowGraph for exe-
cution - workflow:Union[str,int,WorkflowGraph]. Combining
these capabilities enhances user experience and simplifies usage.

A notable challenge that we took in this layer was the code seri-
alization – a crucial step to package Workflows and PEs in a format
comprehensible to the execution engine. To tackle this, external
packages were utilized for serialization. cloudpickle library 9, cho-
sen after evaluating alternatives like pickle10 and dill11, emerged
as the preferred option. Its capability to serialize complex Python

9https://github.com/cloudpipe/cloudpickle
10https://docs.python.org/3/library/pickle.html
11https://pypi.org/project/dill/

class CountWords(GenericPE):
def __init__(self):

from collections import defaultdict
GenericPE.__init__(self)
#Add an input port named "input", from which
#it will receive tuples with shape (word, 1).
#Data is group-by (MapReduce)
#the first element (index 0) of the tuples
self._add_input("input", grouping=[0])

#Add an output port named "output"
self._add_output("output")

#Initialize a stateful variable
#to store word counts
self.count = defaultdict(int)

def _process(self, inputs):
import os
#Extract word and count from the input
word, count = inputs['input']
Update the count for the word
self.count[word] += count

Listing 2: Stateful PE using group-by for word count

objects, including classes and recursive structures, proved essential.
Furthermore, cloudpickle’s suitability for transmitting code over
networks to remote hosts aligned with the project’s needs.

Serialization also demanded consideration for storage in the
Registry. The serialized code, presented as a byte string, needed a
suitable format for storage. To ensure portability, a base64 encod-
ing12 was applied to convert the byte stream into a string format.
This serialization approach was leveraged consistently across vari-
ous code segments required for execution.

This layer also addresses the challenge of handling dependencies.
While cloudpickle handles import dependencies, an extra library,
findimports13, was used to analyze classes for imports. Users are
required to specify necessary imports within PEs to ensure the
execution environment has all the required imports for a success-
ful workflow execution. In summary, the web_client layer forms
the core for client-server interactions and smooths computations
throughout Laminar.

4 REGISTRY SEARCH AND EXPLORATION
The Client offers a comprehensive set of search and exploration
functionalities within the registry, facilitating efficient retrieval and
discovery of stored PEs and workflows. This section outlines the
different search mechanisms available within Laminar framework.

4.1 Text-Based Search
Text-based searches empower users to quickly locate relevant work-
flows based on textual information. The Client adeptly processes

12https://docs.python.org/3/library/base64.html
13https://pypi.org/project/findimports/

https://github.com/cloudpipe/cloudpickle
https://docs.python.org/3/library/pickle.html
https://pypi.org/project/dill/
https://docs.python.org/3/library/base64.html
https://pypi.org/project/findimports/

WORKS 2023, November 12 2023, Denver, CO Zaynab Zahra, Zihao Li, and Rosa Filgueira

user-input text queries and effectively matches them with work-
flows based on their names and descriptions. This functionality
includes support for partial matching14, enabling instances where
a user (see Figure 6) queries ‘prime’ and the system successfully
identifies a registered workflow named ‘isPrime’ (workflow ID 2),
thereby enhancing workflow search accuracy and user convenience.

client.search_Registry("prime", "workflow")

Output:

Figure 6: Text-based search for workflows containing the
term ’prime’ in their names or descriptions. The result is the
‘isPrime’ workflow with ID ‘2’.

4.2 Semantic Code Search
In the domain of semantic code search, LaminarClient employs a
sophisticated process to enable contextually-aware searches for
Processing Elements (PEs) based on their user-provided descrip-
tions. This powerful capability enables the discovery of PEs that
align with user requirements. If no description is provided dur-
ing PE registration, the Client employs a workaround: it employs
code summarization to automatically generate summaries based
on the PE’s code itself. This automatic summarization utilizes the
codet5-base-multi-sum model15, which has been evaluated in
comparison to other models for Python code summarization in a
recent study [27], resulting in the selection of this model due to its
superior performance.

Whether manually input or automatically generated, PE descrip-
tions are transformed into high-dimensional vectors that encap-
sulate their semantic information, facilitating efficient similarity
analysis. This is accomplished using the fine-tuned unixcoder-code-
search model16, specialized for code search tasks, as detailed in [8].
Our team fine-tuned this model as an extension of our work [17],
adhering to the guidelines outlined in 17, and leveraging the Ad-
vTest dataset [20]. Its performance was benchmarked against the
Unixcoder base model (see Section 6.2.1).

It is noteworthy that the embeddings for PE descriptions are
calculated just once, during the registration process. These embed-
dings are then stored within the Registry (refer to Section 3.1) under
the descEmbedding property.

Upon user query submission, Laminar transforms the query us-
ing the unixcoder-code-search model, calculating cosine similarity
against all registered PE description embeddings. This approach,
14User input text and stored workflow textual information are normalized during a
preprocessing step.
15A fine-tuned variant of the Code T5 model, trained on the CodeSearchNet dataset,
available at https://huggingface.co/Salesforce/codet5-base-multi-sum
16https://huggingface.co/Lazyhope/unixcoder-nine-advtest
17https://github.com/microsoft/CodeBERT/tree/master/UniXcoder/downstream-
tasks/

rooted in the bi-encoders paradigm (explained in Section 2.4), en-
hances search accuracy and context. The depicted scenario in Fig-
ure 7 showcases a user who has registered 22 PEs and fiveworkflows
(two detailed in Section 5). In this instance, a semantic search for the
text ‘A PE that checks if a number is prime‘ is conducted, resulting
in ranked PEs based on similarity scores.

client.search_Registry("A PE that checks if
a number is prime",
"pe","text")

Output:

Figure 7: Semantic search of registered PEs. Automated de-
scriptions generated by Laminar for PEs with peIDs 3 and 10

This feature enhances the user experience, allowing natural lan-
guage input to be intelligently matched with relevant PEs. Users
later can retrieve (e.g using get_PE() client function) a registered
PE for creating new workflows.

4.3 Code Completion
Efficient and accurate code completion forms a pivotal corner-
stone in the toolkit of not only developers but also scientists and
research software engineers. Laminar integrates the ReACC-py-
retriever model (introduced in Section 2.3) to tackle code completion
tasks head-on. This functionality empowers users to explore and
retrieve relevant Processing Elements (PEs) based on their input.
This input can be a partial or complete code query for a specific PE.
Our selection of the ReACC-py-retriever model is the result of an
evaluation against alternative models for the same task (refer to
Section 6.2.2 for details).

Much like the process for semantic code search, the Client con-
structs embeddings for each PE’s code using the ReACC-py-retriever
model. These embeddings are subsequently stored in the registry,
thoughtfully organized under the codeEmbedding property.

When a user seeks to execute a query using a code snippet rele-
vant to a specific PE, the Client generates an embedding for the pro-
vided query code snippet, employing the same ReACC-py-retriever
model. The Laminar calculates the cosine similarity between the
query’s embedding and the embeddings of all registered PEs’ codes.
This comparison leads to the identification of PEs whose code snip-
pets closely resonate with the user’s query.

Laminar enhances the coding experience by offering relevant
and contextually appropriate PEs. The system accommodates code
snippets that may not necessarily warrant completion; they might
manifest as fragments of functionality. Laminar extracts the most
relevant or fitting code snippet to augment the user’s input.
client.search_Registry("random.randint(1, 1000)",

"pe","code")

Output:

https://huggingface.co/Salesforce/codet5-base-multi-sum
https://huggingface.co/Lazyhope/unixcoder-nine-advtest
https://github.com/microsoft/CodeBERT/tree/master/UniXcoder/downstream-tasks/
https://github.com/microsoft/CodeBERT/tree/master/UniXcoder/downstream-tasks/

Laminar: A New Serverless Stream-based Framework with Semantic Code Search and Code Completion WORKS 2023, November 12 2023, Denver, CO

Figure 8: Semantic code completion for registered PEs rele-
vant to the code "random.randint(1, 1000)"

Figure 8 shows the process of semantic code completion for
registered Processing Elements (PEs) is illustrated. The scenario
involves searching for PEs that are relevant to the code snippet
random.randint(1, 1000). This code snippet serves as a query
for code completion, seeking registered PEs whose code segments
are similar to the provided snippet. The results are presented in
ascending order of similarity score.

Subsequently, users can retrieve their desired PEs, such as the
one with the highest similarity score, to incorporate it into a new
workflow or create a new PE by reusing code segments. This feature
expedites development, eases cognitive load, and notably minimizes
the chances of errors during new PE creation.

5 COMPUTATIONAL SHOWCASES
In this section we are going to introduce two dispel4pyworkflows
to showcase Laminar functionality.

5.1 IsPrime workflow
The IsPrime workflow (Listing3) continuously streams random
numbers using the ‘NumberProducer’ PE. It assesses their primality
with the ‘IsPrime’ PE and prints the prime numbers using ‘Print-
Prime’ PE. This exemplifies data flow and processing, connecting
PEs to identify and print prime numbers. The workflow is depicted
by the green graph in Figure 1.

Figure 9: Output sent from the Execution Engine to the Client

When executing the IsPrime workflow in Laminar, a mapping
strategy must be specified. In this case (shown in Listing 4), we
use the Multi (process) parallel mapping. The configuration in-
volves five iterations (input) with five processes (num). The first
PE generates five random numbers, of which only two are prime in
this scenario. Importantly, the run() function streamlines not only

class NumberProducer(ProducerPE):
def __init__(self):

ProducerPE.__init__(self)
def _process(self):

Generate a random number
result= random.randint(1, 1000)
Return the number as the output
return result

class IsPrime(IterativePE):
def __init__(self):

IterativePE.__init__(self)
def _process(self, num):

print("before checking data - %s - \\
is prime or not" %num)

#Check if the given input (num) is prime
if all(num % i != 0 for \\

i in range(2, num)):
#Only if the input is prime,
#the value is return as an output
return num

class PrintPrime(ConsumerPE):
def __init__(self):

ConsumerPE.__init__(self)
def _process(self, num):

Print the input (num)
print("the num %s is prime" % num)

Create instances of the defined PEs
pe1 = NumberProducer()
pe2 = IsPrime()
pe3 = PrintPrime()

#Create a workflow graph
graph = WorkflowGraph()

#Construct the graph, connecting the PEs
#and their inputs and outputs
graph.connect(pe1, \\

'output', pe2, 'input')
graph.connect(pe2, \\

'output', pe3, 'input')

Listing 3: IsPrime workflow, which corresponds to the ab-
stract (green) graph shown in Figure 1.

client.run(graph,input=5,process=MULTI,
args={'num':5})

Listing 4: Executing IsPrime within Laminar using the spec-
ified parameters, which correspond to the concrete (blue)
graph shown in Figure 1

serverless workflow execution but also automates the registration
of the workflow and its PEs.

WORKS 2023, November 12 2023, Denver, CO Zaynab Zahra, Zihao Li, and Rosa Filgueira

Upon receiving the workflow and its configuration, the Execution
Engine initiates execution with the specified mapping (Multi in
this case). This configuration automatically adjusts the concrete
workflow based on the number of processes chosen, eliminating the
need for user intervention. The resulting output (shown in Figure 9)
is then forwarded to the Client by the Execution Engine.

5.2 Astrophysics workflow: Internal Extinction
This workflow has been implemented to calculate the extinction
within the galaxies, which is a significant property in astrophysics [5].
This property reflects the dust extinction of the internal galaxies
and is used for measuring the optical luminosity18. This workflow
is reusable since it can be regarded as a prior step for other complex
tasks which require this property.

In Figure 10, the workflow involves four PEs. The readRaDec PE
loads coordinate data from an input file, while getVoTable down-
loads a relevant VOTable from the Virtual Observatory website
based on those coordinates. The filterColumns PE employs the
astropy library19 to parse and filter the VOTable data. Lastly, the
internalExt. PE calculates internal extinction using data from the
Filt PE. The complete workflow code is available here 20. Notably,
Laminar detects and installs necessary imports for PEs, ensuring
smooth operation within the Execution Engine.

Figure 10: Streaming workflow for calculating the internal
extinction of galaxies.

Listing 5, provides an example of how the workflow has been
stored with the Registry. Following this registration, the workflow
becomes accessible for retrieval at any desired moment, as depicted
in Listing 6. Ultimately, the workflow can be executed within the
serverless Execution Engine, as demonstrated in Listing 7. For this
instance, we have chosen to execute the workflow using the Redis
parallel mapping, utilizing ten processes for its execution.

client.register_Workflow(
graph,
"Astrophysics",
"A workflow to compute the
internal extinction of galaxies")

Listing 5: Registering the Astrophysics workflow

workflow = client.get_Workflow("Astrophysics")

Listing 6: Retrieving the Astrophysics workflow

18http://amiga.iaa.es/p/1-homepage.html
19Python library for astronomy: https://www.astropy.org/
20https://github.com/dispel4pyserverless/dispel4py-client/blob/main/CLIENT_
EXAMPLES/AstroPhysics.py

client.run(workflow,
input=[{"input":"resources/coordinates.txt"}],
process=REDIS,
args={'num':10}
resources=True)

Listing 7: Executing the Internal Extinction workflow
within Laminar, using Redis mapping and 10 processes.

As mentioned in Section 3.3, Laminar supports additional re-
sources that workflowsmay need. This is exemplified in the Internal
Extinctionworkflow (Listing 7), where the required input file, con-
taining relevant coordinate data (e.g., coordinates.txt’), is accessed
from the resources’ directory. Through a sequence of copying, seri-
alization, and deserialization steps, the file becomes accessible to
the Execution Engine for use during workflow execution.

6 EVALUATION
6.1 Laminar Performance
To evaluate the performance of Laminar, a latency analysis was con-
ducted, focusing on both the Simple (sequential) andMultimappings
(using 5 processes) of the Internal Extinction workflow introduced
in Section 5.2. This evaluation aimed to compare the execution
times between the original dispel4py and Laminar, utilizing both
local and remote Execution Engines. Notably, Laminar accommo-
dates both local and remote Execution Engines with some manual
adjustments, although in the future we will allow users to register
multiple Execution Engines from the Client.

For the remote deployment scenario, we encapsulated the Execu-
tion Engine within a Docker image 21, tailored for easy deployment
on diverse cloud platforms. In this experiment, we used the Azure
Container Registry 22 to host the image, executing it within an
Azure web app via Azure App Services 23. This setup provides scal-
ability and adaptability, creating an ideal environment for testing
the Laminar framework.

We conducted latency tests for Laminar and compared them to
regular dispel4py execution. The average execution time for each
method and mapping was recorded in seconds. Notably, these tests
involved direct execution without workflow registration. However,
it is important to note that for both local and remote Laminar
experiments, the Registry is hosted remotely on the web-based
service (see Section 3.1).

Property Local Ex. Engine Remote Ex. Engine
OS Ubuntu 20.04 LTS Unix 5.15.116.1

Kernel 5.10.16.3-microsoft-
standard-WSL2 N/A

CPU Intel(R) Core(TM) i5-
7200U CPU @ 2.50GHz

Intel(R) Xeon(R) CPU E5-
2673 v4 @ 2.30GHz

Memory 6.1Gi 1.6Gi
Table 4: Execution Engines Configuration

21https://hub.docker.com/r/zz46/execution
22https://azure.microsoft.com/en-gb/products/container-registry
23https://executionengined4py.azurewebsites.net/run

http://amiga.iaa.es/p/1-homepage.html
https://www.astropy.org/
https://github.com/dispel4pyserverless/dispel4py-client/blob/main/CLIENT_EXAMPLES/AstroPhysics.py
https://github.com/dispel4pyserverless/dispel4py-client/blob/main/CLIENT_EXAMPLES/AstroPhysics.py
https://hub.docker.com/r/zz46/execution
https://azure.microsoft.com/en-gb/products/container-registry
https://executionengined4py.azurewebsites.net/run

Laminar: A New Serverless Stream-based Framework with Semantic Code Search and Code Completion WORKS 2023, November 12 2023, Denver, CO

Execution Method
Mapping

Simple Multi
original dispel4py 642 sec. 7.32 sec.

Local Execution (with Laminar) 928.2 sec. 11.31 sec.
Remote Execution (with Laminar) 1002 sec. 12.94 sec.
Table 5: Execution times of the Internal Extinction

The results in Table 5 reveal a noticeable latency between the
original dispel4py execution (performed within the same comput-
ing environment as the one used for Laminar’s Local Execution
Engine) and the utilization of the Laminar framework. Laminar
engages in substantial processing, encompassing the retrieval of
workflows and their associated PEs from the Registry, their prepa-
ration for external execution, and an in-depth analysis to ensure
dependency management. Additionally, the framework automati-
cally installs the requisite Python libraries within the (local/remote)
Execution Engine. Furthermore, the request traverses an additional
layer at the server, contributing to the observed latency.

Conversely, examining the latency between local and remote
Execution Engines reveals no substantial increase. This suggests
that the framework can harness cloud technology to enhance its
performance and usability on a broader scale, without introducing
significant performance concerns.

6.2 Deep learning Models
6.2.1 Semantic Code Search. As discussed in Section 2.4, our choice
of the fine-tuned unixcoder-code-search model for generating em-
beddings plays a fundamental role in both PE description and user
text input for semantic code searches. This decision stems from the
model’s proven adeptness in capturing intricate code semantics.

To reinforce our selection, in this work we conducted additional
evaluations comparing the fine-tuned unixcoder-code-search model
with its base version 24. Using the Mean Reciprocal Rank (MRR) met-
ric, consistent with prior studies[8], we comprehensively assessed
the model’s performance. The detailed results of these evaluations
are presented in Table 6, providing further evidence of the model’s
effectiveness in enhancing semantic code search capabilities for
natural language queries, specifically in the context of zero-shot25
text-to-code search.

Model
Zero-shot Code Search
CosQA CSN

MRR
unixcoder-base 43.1 44.7

unixcoder-code-search 58.8 72.2
Table 6: Results on zero-shot text-to-code search

The evaluation employed two distinct datasets. CoSQA (Code
Search and Question Answering)[11] consists of 20,604 labeled
pairs of natural language queries and codes, annotated by at least 3
human annotators. The CSN dataset[10] is derived from the broader
CodeSearchNet dataset, with curated filtering of low-quality queries.
24https://huggingface.co/microsoft/unixcoder-base
25Zero-shot refers to the capability of a model to perform a search tasks without being
explicitly trained on the specific queries or examples involved in the search.

The MRR values for both models validate the superior performance
of the fine-tuned unixcoder-code-search model.

6.2.2 Code Completion. The zero-shot clone detection evaluation
by ReACC[19] involved assessing a model’s ability to retrieve sim-
ilar code segments from a dataset using partial queries, yielding
positive outcomes. In this work we have explored different large
models for code completion (as discussed in Section 4.3), expanding
the assessment to cover a variety of candidates, including an Unix-
coder model fine-tuned by our team for clone detection (unixcoder-
clone-detection)26, the fine-tuned unix-code-search model, and two
state-of-the-art text embedding models: BAAI/bge-large-en27 and
thenlper/gte-large28. Additionally, we evaluated the CodeBERT [3]
and GraphCodeBERT [9] models, tailored specifically for source
code analysis and comprehension.

Model MAP@100 Precision at 1
CodeBERT 1.47 4.75

GraphCodeBERT 5.31 15.68
ReACC-retriever-py 9.60 27.04
thenlper/gte-large 1.9 7
BAAI/bge-large-en 8.17 20

unixcoder-clone-detection 10.4 17
unixcoder-code-search 8.53 22.84

Table 7: Zero-shot clone detection evaluation results

For this evaluation, we utilized the CodeNet Python dataset[21],
comprising around 14 million code samples as solutions to diverse
coding problems. Our analysis employed two key metrics: MAP@100
(Mean Average Precision at 100) and Precision at 1. MAP@100
computes the average precision of the top 100 retrieved items for
each query and then calculates the mean across all queries. In
contrast, Precision at 1 gauges themodel’s accuracy in retrieving
the most relevant item as the top recommendation. The detailed
results of this evaluation are presented in Table 7. Since our primary
interest lies in code completion, we place greater importance on the
values obtained for Precision at 1. This metric directly signifies
the model’s proficiency in retrieving the most similar code from the
dataset. As a result, we have chosen the ReACC-retriever-py model
for code retrieval due to its robust Precision performance.

7 RELATEDWORK
Several frameworks in the field of Function-as-a-Service (FaaS) and
serverless computing have paved the way for advancements similar
to Laminar. We discuss some of the key related frameworks below:

• FuncX [16] specializes in stateless function executionswithin
distributed computing environments. However, it lacks the
ability to handle streaming data and support stateful com-
putations, distinguishing it from Laminar’s stream-based
processing capabilities.

• PyWren [13] is an open-source FaaS platform for distribut-
ing Python functions over the cloud. Like FuncX, it supports
stateless function execution and distributed computing, but

26https://huggingface.co/Lazyhope/unixcoder-clone-detection
27https://huggingface.co/BAAI/bge-large-en
28https://huggingface.co/thenlper/gte-large

https://huggingface.co/microsoft/unixcoder-base
https://huggingface.co/Lazyhope/unixcoder-clone-detection
https://huggingface.co/BAAI/bge-large-en
https://huggingface.co/thenlper/gte-large

WORKS 2023, November 12 2023, Denver, CO Zaynab Zahra, Zihao Li, and Rosa Filgueira

lacks integrated streaming data management and deep learn-
ing code search features proposed in our work.

• Apache OpenWhisk 29 is an open-source FaaS platform
known for its flexibility and scalability in event-driven func-
tion execution. However, it does not inherently cater to the
unique demands of streaming data processing and deep learn-
ing code search as does Laminar.

• Apache Flink [14] excels in distributed stream processing
with low latency and high throughput, but lacks Laminar’s
integrated serverless approach.

• OpenFaaS 30 deploys event-driven functions using Docker
and Kubernetes, yet lacks Laminar’s comprehensive stream
processing and deep learning code search capabilities.

8 CONCLUSIONS AND FUTUREWORK
We present Laminar, a novel serverless stream-based framework
with integrated deep learning search features. Unlike conventional
serverless platforms, Laminar efficiently manages streaming data,
accommodates stateless and stateful computations, and automati-
cally parallelizes streaming applications across various enactment
engines. Leveraging the dispel4py library, Laminar surpasses ex-
isting frameworks by providing a distinct approach to streaming
workflow and PE management, complete with automatic library de-
tection and installation. This relieves users frommanual installation
and management of the execution engine’s dependencies.

Moreover, Laminar integrates advanced large language models,
introducing powerful deep learning code search and completion
capabilities. This integration enables sophisticated PE code search
through both code and natural language, facilitating seamless ex-
ploration and utilization of an extensive repository of PE func-
tionalities. The framework also incorporates code summarization,
automating PE functionality summaries and enhancing semantic
search. Moving forward, we aim to integrate Laminar with popu-
lar cloud providers, enable multiple Execution Engine registration,
explore dynamic resource provisioning and container management
strategies and enhance deep learning search for workflows.

REFERENCES
[1] 2023. A comprehensive review of State-of-The-Art methods for Java code gener-

ation from Natural Language Text. Natural Language Processing Journal 3 (2023),
100013. https://doi.org/10.1016/j.nlp.2023.100013

[2] Dirk Eddelbuettel. 2022. A Brief Introduction to Redis. arXiv:2203.06559 [stat.CO]
[3] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming

Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020.
CodeBERT: A Pre-Trained Model for Programming and Natural Languages.
arXiv:2002.08155 [cs.CL]

[4] Rosa Filgueira, Amrey Krause, Malcolm Atkinson, Iraklis Klampanos, and Alexan-
der Moreno. 2016. dispel4py: A Python Framework for Data-Intensive Scientific
Computing. International Journal of High Performance Computing Applications
(IJHPCA) (2016).

[5] Rosa Filgueira, Amrey Krause, Alessandro Spinuso, Iraklis Klampanos, Peter
Danecek, and Malcolm Atkinson. 2015. Dispel4py: An Open-Source Python
library for Data-Intensive Seismology. EGUGA (2015), 6790.

[6] Message P Forum. 1994. MPI: A Message-Passing Interface Standard. Technical
Report. USA.

[7] Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. 2018. Deep Code Search. In
Proceedings of the 40th International Conference on Software Engineering (Gothen-
burg, Sweden) (ICSE ’18). Association for Computing Machinery, New York, NY,
USA, 933–944. https://doi.org/10.1145/3180155.3180167

29https://openwhisk.apache.org/documentation.html
30https://docs.openfaas.com/

[8] Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming Zhou, and Jian Yin. 2022.
UniXcoder: Unified Cross-Modal Pre-training for Code Representation. In Pro-
ceedings of the 60th AnnualMeeting of the Association for Computational Linguistics
(Volume 1: Long Papers), ACL 2022, Dublin, Ireland, May 22-27, 2022, Smaranda
Muresan, Preslav Nakov, and Aline Villavicencio (Eds.). Association for Compu-
tational Linguistics, 7212–7225. https://doi.org/10.18653/v1/2022.acl-long.499

[9] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long
Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, Michele Tufano, Shao Kun
Deng, Colin Clement, Dawn Drain, Neel Sundaresan, Jian Yin, Daxin Jiang, and
Ming Zhou. 2020. GraphCodeBERT: Pre-training Code Representations with
Data Flow. https://doi.org/10.48550/ARXIV.2009.08366

[10] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long
Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, Michele Tufano, Shao Kun
Deng, Colin Clement, Dawn Drain, Neel Sundaresan, Jian Yin, Daxin Jiang, and
Ming Zhou. 2021. GraphCodeBERT: Pre-training Code Representations with
Data Flow. arXiv:2009.08366 [cs.SE]

[11] Junjie Huang, Duyu Tang, Linjun Shou, Ming Gong, Ke Xu, Daxin Jiang, Ming
Zhou, and Nan Duan. 2021. CoSQA: 20, 000+ Web Queries for Code Search
and Question Answering. CoRR abs/2105.13239 (2021). arXiv:2105.13239 https:
//arxiv.org/abs/2105.13239

[12] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc
Brockschmidt. 2019. CodeSearchNet Challenge: Evaluating the State of Semantic
Code Search. https://doi.org/10.48550/ARXIV.1909.09436

[13] Eric Jonas, Shivaram Venkataraman, Ion Stoica, and Benjamin Recht. 2017. Oc-
cupy the Cloud: Distributed Computing for the 99%. CoRR abs/1702.04024 (2017).
arXiv:1702.04024 http://arxiv.org/abs/1702.04024

[14] P Carbone Asterios Katsifodimos, S Ewen Volker Markl, and S Haridi Kostas
Tzoumas. 2015. Apache FlinkTM: Stream and batch processing in a single engine.
Bull. IEEE Comput. Soc. Tech. Comm. Data Eng 36, 4 (2015).

[15] Manoj Kumar. 2019. Serverless architectures review, future trend and the solu-
tions to open problems. American Journal of Software Engineering 6, 1 (2019),
1–10.

[16] Zhuozhao Li, Ryan Chard, Yadu Babuji, Ben Galewsky, Tyler J. Skluzacek, Kirill
Nagaitsev, Anna Woodard, Ben Blaiszik, Josh Bryan, Daniel S. Katz, Ian Foster,
and Kyle Chard. 2022. funcX: Federated Function as a Service for Science. IEEE
Transactions on Parallel and Distributed Systems 33, 12 (dec 2022), 4948–4963.
https://doi.org/10.1109/tpds.2022.3208767

[17] Zihao lI and Rosa Filgueira. 2023. Mapping the repository landscape: harnessing
similaritywith RepoSim and RepoSnipy. In 2023 IEEE 19th International Conference
on e-Science (e-Science). IEEE. https://www.escience-conference.org/2023/ 19th
IEEE International Conference on eScience, eScience ; Conference date: 09-10-
2023 Through 13-10-2023.

[18] Liang Liang, Rosa Filgueira, Yan Yan, and Thomas Heinis. 2022. Scalable
adaptive optimizations for stream-based workflows in multi-HPC-clusters and
cloud infrastructures. Future Generation Computer Systems 128 (2022), 102–116.
https://doi.org/10.1016/j.future.2021.09.036

[19] Shuai Lu, Nan Duan, Hojae Han, Daya Guo, Seung won Hwang, and Alexey Svy-
atkovskiy. 2022. ReACC: A Retrieval-Augmented Code Completion Framework.
arXiv:2203.07722 [cs.SE]

[20] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio
Blanco, Colin B. Clement, Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong
Zhou, Linjun Shou, Long Zhou, Michele Tufano, Ming Gong, Ming Zhou, Nan
Duan, Neel Sundaresan, Shao Kun Deng, Shengyu Fu, and Shujie Liu. 2021.
CodeXGLUE: A Machine Learning Benchmark Dataset for Code Understanding
and Generation. CoRR abs/2102.04664 (2021).

[21] Ruchir Puri, David S. Kung, Geert Janssen, Wei Zhang, Giacomo Domeniconi,
Vladimir Zolotov, Julian Dolby, Jie Chen, Mihir Choudhury, Lindsey Decker,
Veronika Thost, Luca Buratti, Saurabh Pujar, Shyam Ramji, Ulrich Finkler, Susan
Malaika, and Frederick Reiss. 2021. CodeNet: A Large-Scale AI for Code Dataset
for Learning a Diversity of Coding Tasks. arXiv:2105.12655 [cs.SE]

[22] Johann Schleier-Smith, Vikram Sreekanti, Anurag Khandelwal, Joao Carreira,
Neeraja J. Yadwadkar, Raluca Ada Popa, Joseph E. Gonzalez, Ion Stoica, and
David A. Patterson. 2021. What Serverless Computing is and Should Become:
The next Phase of Cloud Computing. Commun. ACM 64, 5 (apr 2021), 76–84.
https://doi.org/10.1145/3406011

[23] Hossein Shafiei, Ahmad Khonsari, and Payam Mousavi. 2022. Serverless comput-
ing: a survey of opportunities, challenges, and applications. Comput. Surveys 54,
11s (2022), 1–32.

[24] Shuai Wang, Jinyang Liu, Ye Qiu, Zhiyi Ma, Junfei Liu, and Zhonghai Wu. 2019.
Deep learning based code completion models for programming codes. In Proceed-
ings of the 2019 3rd International Symposium on Computer Science and Intelligent
Control. 1–9.

[25] Xin Wang, Yasheng Wang, Fei Mi, Pingyi Zhou, Yao Wan, Xiao Liu, Li Li, Hao
Wu, Jin Liu, and Xin Jiang. 2021. SynCoBERT: Syntax-Guided Multi-Modal
Contrastive Pre-Training for Code Representation. https://doi.org/10.48550/
ARXIV.2108.04556

https://doi.org/10.1016/j.nlp.2023.100013
https://arxiv.org/abs/2203.06559
https://arxiv.org/abs/2002.08155
https://doi.org/10.1145/3180155.3180167
https://openwhisk.apache.org/documentation.html
https://docs.openfaas.com/
https://doi.org/10.18653/v1/2022.acl-long.499
https://doi.org/10.48550/ARXIV.2009.08366
https://arxiv.org/abs/2009.08366
https://arxiv.org/abs/2105.13239
https://arxiv.org/abs/2105.13239
https://arxiv.org/abs/2105.13239
https://doi.org/10.48550/ARXIV.1909.09436
https://arxiv.org/abs/1702.04024
http://arxiv.org/abs/1702.04024
https://doi.org/10.1109/tpds.2022.3208767
https://www.escience-conference.org/2023/
https://doi.org/10.1016/j.future.2021.09.036
https://arxiv.org/abs/2203.07722
https://arxiv.org/abs/2105.12655
https://doi.org/10.1145/3406011
https://doi.org/10.48550/ARXIV.2108.04556
https://doi.org/10.48550/ARXIV.2108.04556

Laminar: A New Serverless Stream-based Framework with Semantic Code Search and Code Completion WORKS 2023, November 12 2023, Denver, CO

[26] Yue Wang, Weishi Wang, Shafiq Joty, and Steven C. H. Hoi. 2021. CodeT5:
Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Under-
standing and Generation. https://doi.org/10.48550/ARXIV.2109.00859

[27] ChristopherWilliams and Rosa Filgueira. 2023. RepoGraph: a novel semantic code
exploration tool for python repositories based on knowledge graphs and deep
learning. In 2023 IEEE 19th International Conference on e-Science (e-Science). IEEE.
https://www.escience-conference.org/2023/ 19th IEEE International Conference
on eScience, eScience ; Conference date: 09-10-2023 Through 13-10-2023.

[28] ThomasWolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, and Jamie
Brew. 2019. HuggingFace’s Transformers: State-of-the-art Natural Language
Processing. CoRR abs/1910.03771 (2019). arXiv:1910.03771

[29] Chunyan Zhang, Junchao Wang, Qinglei Zhou, Ting Xu, Ke Tang, Hairen Gui,
and Fudong Liu. 2022. A Survey of Automatic Source Code Summarization.
Symmetry 14, 3 (2022). https://www.mdpi.com/2073-8994/14/3/471

https://doi.org/10.48550/ARXIV.2109.00859
https://www.escience-conference.org/2023/
https://arxiv.org/abs/1910.03771
https://www.mdpi.com/2073-8994/14/3/471

	Abstract
	1 Introduction
	2 Background
	2.1 dispel4py
	2.2 Serverless Computing
	2.3 Language Models and Transformers
	2.4 Semantic Code Search Paradigms
	2.5 Code Completion and Code Summarization

	3 Laminar Overview
	3.1 Registry
	3.2 Server
	3.3 Execution Engine
	3.4 Client

	4 Registry Search and Exploration
	4.1 Text-Based Search
	4.2 Semantic Code Search
	4.3 Code Completion

	5 Computational Showcases
	5.1 IsPrime workflow
	5.2 Astrophysics workflow: Internal Extinction

	6 Evaluation
	6.1 Laminar Performance
	6.2 Deep learning Models

	7 Related Work
	8 Conclusions and Future Work
	References

