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ABSTRACT
Current scientific workflow systems do not typically integrate

simulation-centric and data-centric aspects due to their very differ-

ent software/infrastructure requirements. A transparent integration

of such components into a single end-to-end workflow would lead

to a more efficient and automated way for generating insights from

large simulation data. This work presents a complex case study

related to extreme events analysis of future climate data that in-

tegrates in the same workflow numerical simulations, Big Data

analytics and Machine Learning models. The case study is being

implemented in the context of the eFlows4HPC project using the

project’s software stack for deployment and orchestration of the

workflow. The solution implemented in the project has shown to

simplify the development and execution of end-to-end climatework-

flows with heterogeneous software requirements. Moreover, such

an approach can, in the long term, increase the reuse of workflows

by scientists and their portability over different HPC infrastruc-

tures.

CCS CONCEPTS
• Software and its engineering → Data flow architectures;
• Applied computing→ Environmental sciences; • Computing
methodologies → Distributed algorithms; Machine learning.
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1 INTRODUCTION
The advent of novel computing solutions, jointly with the exponen-

tial growth of data, have caused in recent years a radical change in

the scientific discovery process in several domains, including cli-

mate sciences [6]. This led to the definition of a new data-centric sci-
entific discovery paradigm, alongside thewell-established simulation-
centric one, where data became a central component of science [30].

As the complexity of the computing infrastructures and the size

of datasets to be handled increase, scientific research has become

reliant on technologies able to efficiently handle such large scales

[28]. The high availability of data also pushed forward the use

of Machine Learning (ML) techniques in scientific research [32],

which further increased the plethora of tools available to scientists

and, in turn, the complexity of the workflows.

Current scientific workflows, however, do not typically integrate

simulation-centric and data-centric aspects of research due to their

very different, sometimes orthogonal, infrastructure requirements

[2]. End-to-end workflow solutions, capable of handling the whole

workflow from numerical model simulation to data processing and

visualization, would represent very valuable solutions for speeding

This is an accepted manuscript, the final version can be found at:https://dl.acm.org/doi/abs/10.1145/3624062.3624283
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up the research process and improving scientists’ productivity [3].

Such solutions would also allow supporting execution on software

stacks with different computing paradigms (i.e., High Performance

Computing (HPC) and Cloud). The integration of computing and

data-intensive components is, thus, seen as a critical to fully support

future scientific discovery [39].

In particular, in the climate science field, which is the main

domain targeted in this work, Earth System Models (ESMs) simula-

tions represent one of the most challenging HPC use cases. Indeed,

ESMs incur in very high computational cost, intensive Input/Out-

put patterns, very large data volumes produced, which, in turn,

drive the necessity for data-intensive post-processing to extract rel-

evant information and knowledge. ESMs simulations rely on large

compute-intensive infrastructure, while post-processing, analytics

and ML require more data-centric ones: a transparent and seamless

integration of components with such heterogeneous requirements

into a single end-to-end workflow is challenging but would lead

to a more efficient and automated way for generating climate data

products.

This work presents a complex workflow related to extreme

events analysis of future climate projections from a high-resolution

ESM. It introduces the solutions implemented for handling such

a challenging case study that integrates into a single end-to-end

workflow a numerical simulation, Big Data analytics and ML mod-

els. Such effort is being carried out in the context of the EuroHPC
eFlows4HPC project1, whose goal is to design and implement an

European platform that supports the development of workflows

integrating HPC processes, data analytics and artificial intelligence

[18]. It will deliver the eFlows4HPC software stack to enable the

integration of components with different deployment requirements,

spanning from HPC to Cloud computing, and develop the concept

of the HPC Workflows as a Service (HPCWaaS) to facilitate the use

and reuse of workflows across HPC infrastructures.

More in details, the main contribution of this paper can be sum-

marized as:

• Review the challenges, requirements and opportunities for

end-to-end climate science workflows;

• Design and implement an end-to-end workflow concerning

a complex case study for climate extremes processing on

ESM data. This workflow integrates multiple components

with heterogeneous software requirements;

• Present the advantages from the application of the eFlows4HPC

software stack and the HPCWaaS concept for a end-to-end

workflow in climate science.

The rest of this paper is organized as follows: Section 2 describes

some background work related to scientific workflows manage-

ment; Section 3 provides a characterization of challenges and op-

portunities for end-to-end workflows in climate sciences; Section

4 introduces the software solutions developed in the eFlows4HPC

project; Section 5 presents the case study for climate extreme events

from ESM simulation data and its main building blocks; Section 6

describes the workflow implementation and some insights from its

execution; finally, Section 7 draws the main conclusions from this

study and presents some aspects worth of future investigation.

1
eFlows4HPC website: https://eflows4hpc.eu/

2 BACKGROUNDWORK
Workflows allow scientists to code the tasks of a scientific proce-

dure into a precise and descriptive document that can be repeated

and executed in a systematic and automated manner. The workflow

definition can include a very large set of tasks, representing diverse

types of actions, such as scripts, execution of binary programs, in-

vocation of web services, data movement, etc. Dependencies among

tasks can be defined to control the data flow and the order in which

tasks are executed [26]. Additionally, scientific workflows can pro-

mote Open Science practices since the document can easily become

compliant with the FAIR principles (Findable, Accessible, Interop-

erable, Reusable [44]).

TheWorkflowManagement System (WMS) and its runtime repre-

sent the components devoted to interpreting the workflow descrip-

tion andmanaging its whole lifecycle according to the dependencies

specification among the tasks. To support compute/data-intensive

workloads, the WMS can schedule the execution of the workflow

tasks in parallel exploiting different techniques (e.g., independent

tasks or sub-workflows are executed concurrently) [33].

Most systems typically support workflows defined as Directed

Acyclic Graphs (DAGs) of tasks, where no cyclic dependencies

among tasks are allowed, although some solutions also support

cyclic interaction among them [23]. WMSs also differ in terms

of interfaces provided for workflow development and submission,

including graphical user interfaces (GUIs), textual interfaces and

more programmatic ones (APIs) [3]. Moreover, workflow systems

provide capabilities such as resilience and fault detection, optimized

scheduling/execution of tasks, provenance tracking, workflow vali-

dation and monitoring, which are some of the key functionalities

for supporting large-scale workflows [14].

Different WMSs are currently being employed in various scien-

tific disciplines, such as life sciences, solid Earth sciences, physics,

astrophysics and environmental sciences [27, 9, 8, 13, 3]. For ex-

ample, in the context of the ESM community some of the most

used solutions include Cylc [37], ecFlow
2
and AutoSubmit

3
. Such

solutions have different implementations and capabilities, but all

share the same main goal: supporting operations of large ESM sim-

ulations, mainly focusing on the execution of numerical models on

HPC facilities [35].

Comprehensive integration of HPC-based simulations, data ana-

lytics and ML processing with the current workflow solutions is not

trivial and novel solutions are needed [4]. In particular, some of the

challenges that need to be addressed in large scientific (and climate)

workflows involve: (i) simplifying the development of complex

workflows taking into account all the components of an end-to-end

ESM workflow, including simulations, Big Data and ML compo-

nents, (ii) supporting the execution on heterogeneous computing

environments (e.g., HPC and Cloud), and (iii) enabling flexibility

and dynamicity in the workflow execution.

2
ecFlow documentation: https://ecflow.readthedocs.io/en/latest/index.html

3
AutoSubmit documentation: https://www.bsc.es/research-and-development/softwa

re-and-apps/software-list/autosubmit/documentation
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https://ecflow.readthedocs.io/en/latest/index.html
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https://www.bsc.es/research-and-development/software-and-apps/software-list/autosubmit/documentation
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3 CHALLENGES, REQUIREMENTS AND
OPPORTUNITIES IN ESMWORKFLOWS

Typical ESM workflows can include different steps such as: input

data preparation, multiple numerical simulation runs, output data

post-processing, data analytics, and visualization [1]. Usually, ESM

simulation workflows focus on the model run and the storage of

output data, while data analytics, interactive analysis and visual-

ization are performed by scientists in a second stage using custom

tool and scripts. In some cases, a part of the analysis is already

performed online during model simulations with the goal of pre-

computing some relevant statistics or simple indicators useful for

validating the results (e.g., diagnostics) [45]. However, in-depth and

complex analyses of the simulation outputs, requiring for example

access to multiple variables and longer time ranges or including

advanced algorithms, are typically executed outside the ESM simu-

lation workflow.

It is important to remark that ESM simulations and data analytics

exhibit different needs in terms of software infrastructure, execution

time frame and I/O requirements.

ESMs are based on numerical modelling requiring large HPC

infrastructure for running the simulation in parallel (i.e., using MPI

and OpenMP) in a reasonable amount of time. The time scale for

execution of such simulations may vary from a few hours up to

several weeks according to the spatial resolution, the complexity

of the physical processes modeled and the number of simulation

runs in the ensemble (group of runs of the same ESM with different

initial conditions) [15]. In terms of I/O, emphasis is usually placed

on maximizing writing performance of the model output.

Analysis of ESM data employs tools for statistical analytics, data

mining, interactive exploration, visualization, and more recently

High Performance Data Analytics (HPDA) and ML techniques for

extracting knowledge from large volumes of climate data. Such

applications are typically embarrassingly parallel and mainly based

on data-driven approaches where huge data volumes need to be

efficiently accessed and processed. Most of the software for data an-

alytics has been developed for being executed in highly distributed

storage infrastructures, typical of Cloud environments.

These different requirements have hindered the integration and

co-existence of compute-driven and data-driven components into

single applications. A more integrated approach would allow sup-

porting next-generation ESMs and improve the workflow in terms

of execution and energy consumption. In particular, the integration

of the compute and data-driven stages into a single end-to-end ESM

workflow could bring several advantages:

• Automating the whole workflow from ESM execution to

data analysis can speed up the generation of climate data

products improving scientist productivity. Additionally, the

workflow management systems can control the status of all

the tasks, thus supporting error management in a uniform

manner;

• End-to-end workflow systems can provide a standardized

way to develop workflows integrating the different ESM

simulation runs along with data analytics and ML com-

ponents. In turn, this can simplify the overall workflow

implementation process a support reusability in the climate

community;

• A single WMS can take into account the requirements of

the different tasks and transparently deploy their execution

on the most suitable computing and software infrastructure,

as well as enabling flexible and efficient scheduling of the

tasks composing the workflow;

• Seamless integration of ESM simulation and data processing

into a single workflow can allow for better optimization in

terms of data movement and access. Data could be, in fact,

kept in memory and moved to other nodes as the workflow

progresses through the various tasks.

4 THE EFLOWS4HPC SOFTWARE STACK
4.1 The HPCWaaS approach
eFlows4HPC aims to provide a software stack that facilitates the

development, deployment and execution of workflows combining

HPC simulation and modeling with artificial intelligence and data

analytics. With this goal, the project is also developing the concept

of the HPC Workflows as a Service (HPCWaaS), which leverages the

software stack components to provide a mechanism to facilitate

the use and reuse of workflows in HPC infrastructures.

Figure 1: Overview of the eFlows4HPC HPC Workflows as a
service (HPCWaaS) methodology.

Figure 1 describes how the proposed HPCWaaS methodology

works. It provides two interfaces: the one used byworkflow develop-

ers for developing the workflows descriptions and deploying them

in the HPC infrastructures; and another one used by the final user

for executing the workflows. The development interface is provided

by Alien4Cloud4, a GUI to describe the topology of components

involved in the workflow deployment and execution in an extended

TOSCA format [42]. The goal is that, given this topology and a HPC

cluster location, it can be used by Yorc5 (a TOSCA orchestrator) for

deploying the software and data required to execute the workflow.

The Software deployment is done by means of the Container Image
Creation service which automates the creation of the container im-

ages for workflows, including the code as well as all the required

software compiled for the target HPC platform [16]. On the other

hand, the management of the required data is done by the Data

4
Alien4Cloud documentation: https://alien4cloud.github.io/#/documentation/3.5.0/ge

tting_started/new_getting_started.html

5
Yorc Github: https://github.com/ystia/yorc

https://alien4cloud.github.io/#/documentation/3.5.0/getting_started/new_getting_started.html
https://alien4cloud.github.io/#/documentation/3.5.0/getting_started/new_getting_started.html
https://github.com/ystia/yorc
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Logistics Service6 which executes the required data pipelines either

at deployment or execution time. Once the workflow is deployed,

it is published to the HPCWaaS Execution API which allows final

users to run the deployed workflow as a simple REST invocation.

As a result of such invocation, the workflow execution is triggered

in the HPC system, with PyCOMPSs managing its run inside the

computing infrastructure.

4.2 Components
The eFlows4HPC software stack comprises several software com-

ponents
7
; this section focuses on the key components exploited

in the presented case study for extreme events analysis on ESM

projection data.

4.2.1 PyCOMPSs. PyCOMPSs [41] is a task-based programming

model that focuses on making the development of parallel applica-

tions easier for distributed computing. Its syntax uses annotations

to identify the methods that will become tasks at execution time

and a small API for synchronization. To declare a task, a Python

function is annotated with the @task decorator which includes the

directionality clauses for the function parameters (i.e., IN indicates

data used by the task, OUT indicates data created in the task, IN-
OUT indicates data modified in the task). The annotated Python

script is interpreted by the COMPSs Runtime [5] which converts

the script to a parallel workflow. Every time an annotated method

(task) is invoked from the script, the COMPSs runtime creates a

node in a task-graph and looks for data dependencies with previous

existing tasks according to the declared data directionality. The

runtime is then able to exploit the potential parallelism of the task

graph by scheduling those tasks that do not have data dependen-

cies between them. The runtime is also able to execute tasks in an

asynchronous fashion, starting new tasks once their predecessors

end. The COMPSs runtime handles all data transfers automatically,

by moving data on-demand between the computing nodes of the

infrastructure. However, when a task result is needed in the main

program, data need to be sent (synchronized) to the computing

node where the main program is executed once the task ends.

PyCOMPSs tasks can also support heterogeneous computing.

Developers can define tasks targeting different processors and ac-

celerators (such as numpy or cupy) using the@constraint decorator,
or integrate with other programming paradigms including other

decorators (such as@mpi). With regards to fault tolerance, a mech-

anism at task level is provided, where the programmer can indicate

in a decorator the behavior to implement in case of task failure

(i.e., ignore the failure of the task and continue, stop the whole

workflow, etc.) [17]. A checkpointing mechanism at task level has

also been implemented, which enables to recover a failed execution

from the last checkpointed task [43].

PyCOMPSs applications are platform agnostic so they can be

executed in different types of infrastructures: clouds, large clusters

(or supercomputers) and container-managed clusters [38]. They are

deployed following the master-worker paradigm, where the master

runs the main python script and the workers run the tasks in the

different computing nodes.

6
Data Logistics Service: https://gitlab.jsc.fz-juelich.de/eflows4hpc-wp2/data-logistics-

service

7
eFlows4HPC software stack: https://eflows4hpc.readthedocs.io/en/latest/

4.2.2 PyOphidia. PyOphidia represents a Python module for large-

scale data analytics on scientific multi-dimensional data [21]. It

provides the Python bindings for the Ophidia framework, an open

source software solution for scientific data analytics developed

by CMCC [24]. The Ophidia framework joins parallel computing

paradigms and big data management approaches for supporting

scientific HPDA. It implements an array-based storage mode, lever-

aging the datacube abstractions from data warehouse systems, and

a hierarchical storage organization for partitioning and distribut-

ing large multi-dimensional scientific datasets over multiple nodes.

It provides, among the others, features for time series processing,

data reduction, subsetting, statistical analysis, data intercomparison,

NetCDF I/O, datacube manipulation, and metadata management.

Although Ophidia core features are related to analysis of ESM data,

it has successfully been used also in other scientific contexts (e.g.,

astronomy, seismology, biodiversity [25]).

From an architectural perspective, the Ophidia framework fol-

lows a client-server approach, where the client-side components

(e.g., PyOphidia) dispatch the execution of the data processing tasks

on the server-side, deployed near the HPC or Cloud infrastructure.

The server-side part of the framework includes a main front-end

service, the Ophidia Server, and the computing components, the

runtime and the in-memory I/O Servers. The front-end server and

the computing components are usually deployed on different nodes

of the infrastructure. Furthermore, the number of Ophidia comput-

ing components can be scaled up, also dynamically, over multiple

nodes of the infrastructure to address more intensive data analytics

workloads [19]. To this end, the framework supports integration

with different HPC scheduling systems.

4.2.3 CMCC-CM3 Earth System Model. Although the ESM is not

properly part of the eFlows4HPC software stack, it is one of the key

components of the extreme events analysis workflow and it can be

orchestrated by the PyCOMPSs runtime. The ESM considered in the

case study is the latest version of the CMCC global coupled model:

the CMCC-CM3 climate model. It is based on the Community Earth
System Model (CESM) project8 operated at the National Centre for

Atmospheric Research (NCAR) in the United States, and used to

run Coupled Model Intercomparison Project, phase 6 (CMIP6) [22]

simulations following both simulation scenarios and HighResMIP

protocols [29]. The CMCC-CM3 oceanic component is based on

the Nucleus for European Modelling of the Ocean (NEMO) model,

version 4.0, while the atmospheric component is the Community

Atmosphere Model version 6 (CAM6). The adopted spatial resolu-

tion is ¼degree, corresponding to 25 km x 25 km of grid spacing in

both atmosphere and ocean components. Every few minutes the

heat, momentum and mass fluxes are sent from the atmosphere to

the ocean and the sea surface temperature, the sea ice cover and the

surface velocities are sent from the ocean to the atmosphere. In this

way the fully coupled system is able to evolve in time, without any

external support except for the greenhouse gases concentrations,

that are provided year by year through I/O, corresponding to histor-

ical concentrations and/or future plausible projections. CMCC-CM3

is the model in preparation for the next CMIP7 effort
9
.

8
CESM: http://www.cesm.ucar.edu

9
CMIP7: https://wcrp-cmip.org/cmip7/

https://gitlab.jsc.fz-juelich.de/eflows4hpc-wp2/data-logistics-service
https://gitlab.jsc.fz-juelich.de/eflows4hpc-wp2/data-logistics-service
https://eflows4hpc.readthedocs.io/en/latest/
http://www.cesm.ucar.edu
https://wcrp-cmip.org/cmip7/
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Figure 2: High-level view of the workflow for the climate extreme events case study. Deployment and submission of the
workflow is handled by Alien4Cloud, while the actual workflow execution is orchestrated by PyCOMPSs.

5 A CASE STUDY FOR CLIMATE EXTREME
EVENTS ON ESM FUTURE DATA

5.1 General workflow
The selected case study targets the analysis of climate extreme

events (such as heat waves and tropical cyclones) from ESM pro-

jection outcomes. Understanding how climate change affects such

events is very important for policy makers to develop mitigation

strategies and monitoring systems, since extreme events can have

severe impacts on the economy and people’s life [7, 12]. The In-

tergovernmental Panel on Climate Change (IPCC) has dedicated

a chapter of the sixth Assessment Report (AR6) on the changes in

weather and climate extremes highlighting, in most cases, an in-

crease in their intensities and frequencies [40].

From a technical standpoint, due to their rare nature, analysis

of extreme events requires processing of huge amounts of data.

To this end, HPDA can help in preparing the data for the analysis

and running descriptive analytics in parallel, while novel ML-based

approaches can improve, in terms of efficiency and accuracy, the

prediction and localization of such extreme events [34].

Combining into a single workflow the numerical ESM execution

(i.e., CMCC-CM3 model) together with the extraction of knowledge

based on HPDA and ML techniques is quite challenging, due to

the types of diverse software that need to be managed during the

workflow lifecycle. Nevertheless, their integration into a single end-

to-end workflow can help in reducing the overall execution time

as different tasks of the workflow can be executed concurrently.

In this way, as the model starts to produce its output, the data

processing required for statistical analysis and ML model inference

can seamlessly be executed on different HPC nodes.

PyCOMPSs was exploited for implementing the case study work-

flow as a Python application. Several tasks were defined to handle

the different stages of the workflow and integrate the required soft-

ware: the CMCC-CM3 model, PyOphidia for climate data analytics,

Keras [11] and Tensorflow [36] for the ML models, as well as a set

of additional Python dependencies.

The resulting workflow description, stored in the eFlows4HPC

workflow registry, is accessed via the HPCWaaS interface and exe-

cuted on a selected HPC infrastructure. Figure 2 shows a high-level

view of the case study workflow. More in details, the whole process

consists of the following steps:

(1) Starting from theworkflowdescription and the yaml TOSCA

file describing the application architecture in terms of the

software and data requirements, the Alien4Cloud inter-

face is used for defying the application parameters and the

HPC endpoint, deploying the environment for the work-

flow (through the Yorc orchestrator, see Section 4.1) and

starting its execution;

(2) The PyCOMPSs application execution is triggered on the

HPC infrastructure and the different tasks within the appli-

cation are orchestrated according to their dependencies;

(3) The first task being executed consists of the CMCC-CM3

model simulation. This task runs iteratively for producing

the output data (one NetCDF file for each day of simulation)

until the simulation run is completed;

(4) Concurrently with the model run, as soon as full year of

NetCDF files is available, the data analytics and ML tasks

are executed on the new daily variables produced by the

simulation for performing:

(a) The computation of the Heat/Cold Waves indicators;

(b) The localization of Tropical Cyclones via i) pre-trained

ML model(s) and ii) a deterministic algorithm for Trop-

ical Cyclones tracking;

more details on these two steps are reported in the following

subsections;

(5) As the processing in step 4 progresses, the output of the

analysis is then validated and stored on disk as NetCDF

files;

(6) Once the model simulation and the related processing is

completed, maps can be produced starting from the results

stored on disk (or retained inmemory). It must be noted that

intermediate maps with the results of the extreme event

analysis for single years of data can be already produced

during step 5, while the final plots/maps are produced from

the whole set of final validated results.

(7) As the PyCOMPSs application is completed, the workflow

is undeployed and the status is returned to the Alien4Cloud

interface.
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Figure 3: Graph representation of the climate extreme events workflow produced at run time by PyCOMPSs. Each circle
represents a workflow task. Different color represent the different function/method defined in the Python code.

The overall workflow graph structure produced by PyCOMPSs

at run time is shown in Figure 3. Each circle in the figure repre-

sents a different task implemented in the Python workflow and

orchestrated by PyCOMPSs. For the sake of readability, the graph

shows a simplified version of the workflow running for a single

year of simulation data; in case of multiple years, the number of

tasks (i.e., circles) would be repeated with the exception of the first

four ones related to ESM run and preliminary data loading (from

#1 to #4). As it can be seen, even in this simplified version, the

workflow structure is quite complex and multiple dependencies are

defined among the different tasks with the aim of efficiently reusing

data between the different steps of the workflow. The following

subsections provide additional details on main building blocks of

the climate extreme events workflow.

5.2 ESM execution
The CMCC-CM3 simulation block represents the first step in the

general graph (blue circle with #1 in Figure 3). It produces daily

NetCDF files of size 271 MB with dimensions of 768 (latitudes)

x 1152 (longitudes) x 4 (6-hourly timesteps) including around 20

single precision floating point variables (e.g., precipitation rate, sea

level pressure, temperature, wind speed, etc.). The execution of

the subsequent steps of the workflow starts when the files for a

whole year are available in the directory (i.e., nearly 100 GB). In the

meantime, the simulation will continue running for producing the

data for the other years. Supporting concurrent execution of the

ESM simulation and post-processing is key since the projection time

span of the climate simulation can consist of multiple tens of years

(e.g., 30-35 years) and require several days (up to a few months) to

complete, according to the HPC infrastructure used. For enabling

the concurrent execution of tasks, a streaming interface available

in PyCOMPSs has been leveraged to monitor the file production

progress and detect when a (full) new year of data is available (red

circle with #4).

5.3 Heat/Cold Waves indices computation
As soon as a full year of the CMCC-CM3 output is available, pipelines

of data analytics operators are executed for the computation of mul-

tiple extreme climate events indices for heat waves and cold spells

(or cold waves). A heat wave is a period of unusually hot weather

that typically lasts six or more days. To be considered a heat wave,

the maximum temperature must be 5 °C higher than the historical

averages (e.g., computed over a 20-year period) for a given area;

conversely for a cold wave the minimum temperature must be 5

°C lower than the historical averages [31]. In particular the indices

computed are maps with: (i) the longest heat/cold wave duration

per year (green tasks with #9 and #12 in Figure 3), (ii) the number

of heat/cold waves per year (yellow tasks with #10 and #13) and (ii)

the frequency of yearly heat/cold waves (red tasks with #11 and

#14).

As the amount of data to handle is large, HPDA operators from

the Ophidia framework are used for processing and aggregating the

dataset in parallel. Moreover, since Ophidia can store the datasets in

memory between different operators’ execution [20], the baseline

values with the long-term historical averages can be loaded only

once and used throughout the workflows for the computation of

the indices, reducing the number of read operations from storage.

The complete sub-workflow includes the steps for loading and

post-processing the model data (in particular the minimum and

maximum temperature variables), for computing the indices and for

producing the output as NetCDF files and maps. Figure 4 shows an

example of an HeatWave indicator resulting from the sub-workflow

execution.

5.4 Tropical Cyclones detection and tracking
Tropical Cyclones (TCs) are complex phenomena driven by a com-

bination of atmospheric and oceanic processes. ESMs allow simu-

lating these physical interactions, providing valuable insights into

their genesis, intensification and tracks. However, detecting such ex-

tremes in large climate datasets remains a challenging task, mainly
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Figure 4: Heat Wave Number indicator computed on a year
of simulation data produced by the CMCC-CM3 model. For
each point of the map the number of heat waves occurred
during the year is displayed.

due to the large data volumes to be handled and the limitations of

traditional tracking schemes [10]. Machine learning approaches can

be used for extracting significant spatial features related to the pres-

ence of TCs in gridded climate data. Integrating ESM simulations

and a ML-enabled TC localization algorithm in a comprehensive

end-to-end workflow would support the assessment of TCs im-

pacts, as well as the indication of their frequency, intensity, and

distribution on simulation data.

The ML-enabled TC localization approach implemented in this

case study allows identifying the presence of TC given a set of

input climate variables simulated by ESM (i.e., temperature, sea

pressure level, wind speed, vorticity) and localizing its center (or

"eye") in terms of its geographical coordinates (i.e., latitude and lon-

gitude). A convolutional neural network (CNN) previously trained

on historical data can be used for localizing the TCs centers. The

sub-workflow involves different tasks for: (i) post-processing of

model simulations (i.e., regridding the CMCC-CM3 file, tiling of data

into non-overlapping patches, feature scaling, etc.), (ii) inference

through the pre-trained CNNs and (iii) geo-referencing predicted

TC center coordinates onto a global map, providing visualization

utilities (respectively represented by the green #15, magenta #16 and

purple #17 circles in Figure 3). Moreover, the workflow for climate

extreme events can execute deterministic TC tracking schemes to

further validate the results.

6 TEST BED IMPLEMENTATION AND ADDED
VALUE OF THE EFLOWS4HPC SOLUTION

The case study was executed in a geographically distributed testbed

with the HPCWaaS interface running on a service node at the

Barcelona Supercomputing Center (BSC) at Barcelona, Spain, while

the entire workflowwas executed on the Zeus supercomputer at the

Euro-Mediterranean Center on Climate Change (CMCC) at Lecce,

Italy. Zeus is one of the HPC systems available at the CMCC super-

computing center
10
. It delivers 1.2 PetaFlops of peak performance

and is composed of 348 nodes with a total of 12,528 processors and

33.4 TB of main memory. The cluster exploits a GPFS parallel file

system and IBM Spectrum LSF as scheduling system.

10
CMCC SuperComputing Center: https://www.cmcc.it/super-computing-center-scc

The Alien4Cloud service running at BSC was used to deploy the

environment at the Zeus CMCC cluster and submit the workflow by

remotely interacting with the cluster scheduling system according

to the configuration defined in the TOSCA topology. PyCOMPSs

orchestrates the execution of the single workflow tasks on Zeus,

following the steps reported in Section 5.

In this first setup of the testbed all the components were running

on Zeus either bare-metal or by using Python environments. How-

ever, through the HPCWaaS solution, containers (e.g., Singularity)

with the software required by the workflow, when supported by

the systems, can be exploited for running the application.

The implementation of the case study on extreme events anal-

ysis from climate simulation proved to be challenging since the

different steps of the workflow exhibit different software and ex-

ecution requirements. Nevertheless, the use of the eFlows4HPC

software stack allowed to simplify the development process and

the management of the ed-to-end workflow.

From a developer point of view, the different tasks of the work-

flow can be coded simply as Python functions and annotated with

PyCOMPSs decorators. Listing 1 shows an extract of the sub-workflow

code for heat/cold waves computation including a couple of tasks

for the indices computation (defined in Section 5.3).

1 @task(returns=object)
2 def IndexDurationMax(client , duration , filename):
3 cube.Cube.client = client
4 #Maximum lenght of heat/cold waves in a year
5 Max = duration.reduce(operation='max' ,...,

description="Max Duration cube")
6 Max.exportnc2(output_path=OUTPUT_PATH ,

output_name=filename)
7 return Max
8

9 @task(returns=object)
10 def IndexDurationNumber(client , duration , filename

):
11 cube.Cube.client = client
12 #Number of heat/cold waves in a year
13 Mask = duration.apply(query="oph_predicate('

OPH_INT ','OPH_INT ',measure ,'x
','>0','1','0')", ...)

14 Count = Mask.reduce(operation='sum', ...,
description="Number of durations cube")

15 Mask.delete ()
16 Count.exportnc2(output_path=OUTPUT_PATH ,

output_name=filename)
17 return Count

Listing 1: Python code snippet from the sub-workflows
for heat/cold waves indices computation. @task decorator
from PyCOMPSs is used for defining workflow tasks, while
PyOphidia is used to perform data reduction operators.

Using Python as the workflow programming language made the

case study implementation and the integration of climate process-

ing modules with libraries for Big Data and ML frameworks easier.

Through this integration, multiple levels of parallelism can be eas-

ily supported, as PyCOMPS can automate concurrent execution

of independent tasks on different NetCDF files produced by the

simulation, while PyOphidia can run climate analytics in parallel

https://www.cmcc.it/super-computing-center-scc
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on each set of files. Moreover, in the implemented workflow, tasks

related to climate indices computation and TC localization can start

as soon as enough data are available from the model and run con-

currently with the ESM simulation. The results from the analysis

are, thus, available to the scientist while the simulation progresses.

From an end user point of view, once theworkflow is coded, it can

be easily scheduled and run on the HPC infrastructure through the

Alien4Cloud GUI, relieving the user from the burden of setting up

the environment. Input arguments can be specified to configure the

workflow, while the execution of the tasks for indices computation

and TC centers localization can dynamically adapt to the number of

files produced by the ESM. In this way, climate scientists can focus

more on the results of the simulations and related analysis, rather

than handling complex workflows and setting up the software

environment.

The HPCWaaS approach from eFlows4HPC can also increase

the portability and reusability of the workflows by supporting the

execution of workflows on different HPC centers. The workflow

can be, in fact, reused by scientists and run on a different HPC

systems without too much effort, since the software requirements

will be handled by Yorc following the related TOSCA description.

Moreover, the HPCWaaS solution can also support the execution

of different components of the workflow in a geographically dis-

tributed setup. Although the current version of the climate extreme

events workflow was completely executed on a single HPC sys-

tem, we plan to extend the implementation in the future to support

a distributed execution of different tasks by leveraging the Data

Logistics Service from the eFlows4HPC software stack for data

movement. To this extent, the different parts of the workflow could

be run on different infrastructures according to their requirements,

using, for instance, large HPC systems for the ESM simulation, data-

oriented/Cloud systems for Big Data processing and GPU-partitions

for the ML-based models.

7 CONCLUSIONS AND FUTUREWORK
This work addresses the challenges related to end-to-end work-

flows on HPC infrastructures in the climate domain. It presents a

challenging case study, developed in the context of the eFlows4HPC

project, on climate extreme events analysis and predictions inte-

grating into a single workflow high-resolution ESM simulations

and data-driven analyses.

Current solutions in the context of climate science have limi-

tations in fully supporting workflows integrating numerical sim-

ulation, Big Data analytics and ML models, mainly due to their

different software and execution requirements. The eFlows4HPC

project aims at providing a software stack for enabling the inte-

gration of components with diverse deployment requirements and

supporting the use and reuse of workflows over different HPC

infrastructures through the HPCWaaS concept.

The proposed case study was implemented as a Python applica-

tion exploiting components from the eFlows4HPC software stack

together with other well-known and community-based modules,

resulting in a simpler development and management of its work-

flow. Additionally, the HPCWaaS interface allowed the end-users

(i.e., the climate scientists) to run the workflow on a HPC system

without the need to directly interact with the infrastructure, further

improving the overall productivity.

Hence, software solutions/approaches like those described for the
extreme events case study could be exploited in the future to effectively
support other end-to-end workflows in climate sciences and to take
advantage of Big Data and Machine Learning in operational scenar-
ios. Such approaches will lead to (i) quicker and more automated

generation of insights and indices from the simulation outputs and

(ii) a higher reuse and portability of such complex climate sciences

workflows on different HPC infrastructures.

Future work will focus on extending the presented case study

to validate the end-to-end workflow in a distributed infrastructure,

where the different tasks are executed on heterogeneous systems

(e.g., HPC/Cloud, CPUs/GPUs). Another path worth of investigation

concerns the use of software containers for enabling fully portable

workflows on different systems and the assessment of their impact

on the climate simulation and processing performance.
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