
symPACK: A GPU-Capable Fan-Out Sparse Cholesky Solver
Julian Bellavita

Lawrence Berkeley National Lab
Berkeley, California, USA

jb2695@cornell.edu

Mathias Jacquelin
Cerebras Systems Inc.

Sunnyvale, California, USA
mathias.jacquelin@cerebras.net

Esmond G. Ng
Lawrence Berkeley National Lab

Berkeley, California, USA
egng@lbl.gov

Dan Bonachea
Lawrence Berkeley National Lab

Berkeley, California, USA
dobonachea@lbl.gov

Johnny Corbino
Lawrence Berkeley National Lab

Berkeley, California, USA
jcorbino@lbl.gov

Paul H. Hargrove
Lawrence Berkeley National Lab

Berkeley, California, USA
phhargrove@lbl.gov

ABSTRACT
Sparse symmetric positive definite systems of equations are ubiq-
uitous in scientific workloads and applications. Parallel sparse
Cholesky factorization is the method of choice for solving such lin-
ear systems. Therefore, the development of parallel sparse Cholesky
codes that can efficiently run on today’s large-scale heterogeneous
distributed-memory platforms is of vital importance. Modern su-
percomputers offer nodes that contain a mix of CPUs and GPUs. To
fully utilize the computing power of these nodes, scientific codes
must be adapted to offload expensive computations to GPUs.

We present symPACK, a GPU-capable parallel sparse Cholesky
solver that uses one-sided communication primitives and remote
procedure calls provided by the UPC++ library. We also utilize the
UPC++ “memory kinds” feature to enable efficient communication
of GPU-resident data. We show that on a number of large problems,
symPACK outperforms comparable state-of-the-art GPU-capable
Cholesky factorization codes by up to 14x on the NERSC Perlmutter
supercomputer.

CCS CONCEPTS
•Mathematics of computing→ Solvers; •Computingmethod-
ologies→Linear algebra algorithms;Hybrid symbolic-numeric
methods; • Software and its engineering→ Parallel program-
ming languages; Distributed programming languages; Software li-
braries and repositories.
ACM Reference Format:
Julian Bellavita, Mathias Jacquelin, Esmond G. Ng, Dan Bonachea, Johnny
Corbino, and Paul H. Hargrove. 2023. symPACK: A GPU-Capable Fan-Out
Sparse Cholesky Solver. In Workshops of The International Conference on
High Performance Computing, Network, Storage, and Analysis (SC-W 2023),
November 12–17, 2023, Denver, CO, USA. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3624062.3624600

1 INTRODUCTION
Large symmetric positive definite systems of linear equations arise
in the solution of many scientific and engineering problems. Such

This work is licensed under a Creative Commons Attribution International
4.0 License.

SC-W 2023, November 12–17, 2023, Denver, CO, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0785-8/23/11.
https://doi.org/10.1145/3624062.3624600

linear systems are solved using Cholesky factorization. Efficient
Cholesky factorization is therefore important for the overall perfor-
mance of scientific application codes. Modern supercomputers have
nodes that contain a mix of GPUs and CPUs, and it is critical for
scientific codes to effectively utilize the heterogeneous computing
resources of modern HPC nodes.

In this paper, we present symPACK, a GPU-capable parallel sparse
Cholesky solver that utilizes an asynchronous task paradigm and
one-sided communication functionality offered by the partitioned
global address space (PGAS) library UPC++ [5]. By using a task-
based formalism and dynamic scheduling techniques within a node,
symPACK achieves good strong scaling on modern supercomput-
ers. symPACK offloads sufficiently large computations to a GPU and
uses the UPC++ “memory kinds” feature to streamline communica-
tion of GPU-resident data. This enables symPACK to achieve high
performance and effectively take advantage of heterogeneous com-
puting resources, such as the GPU nodes on the Perlmutter [20]
supercomputer at NERSC [19].

An outline of the paper is as follows. In Section 2, we provide
some background on sparse Cholesky factorization. In Section 3, we
describe our implementation of symPACK. The GPU functionality
of symPACK is described in Section 4. Some numerical results are
presented in Section 5. We end with some directions for future work
in Section 6 and concluding remarks in Section 7.

2 BACKGROUND ON CHOLESKY
FACTORIZATION

In the following, we give some background on Cholesky factoriza-
tion and on how symmetry and sparsity can be taken into account.
We first review the basic Cholesky algorithm for dense matrices
and then detail how it can be modified to handle sparse matrices
efficiently. We also present fundamental notions on sparse matrix
computations before reviewing the work related to sparse Cholesky
factorization.

2.1 The basic algorithms
Let A = [𝑎𝑖, 𝑗] be an 𝑛-by-𝑛 symmetric positive definite matrix. The
Cholesky algorithm factors the matrix A into

A = LL𝑇 , (1)

where L = [ℓ𝑖, 𝑗] is a lower-triangularmatrix, and L𝑇 is the transpose
of L and is upper-triangular. The factorization thus allows symmetry
to be exploited, since only L needs to be computed and saved.

1171

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/0000-0003-1375-5720
https://orcid.org/0000-0002-3137-166X
https://orcid.org/0000-0002-4535-6348
https://orcid.org/0000-0002-0724-9349
https://orcid.org/0000-0002-2638-9216
https://orcid.org/0000-0001-6691-5287
https://doi.org/10.1145/3624062.3624600
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3624062.3624600
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3624062.3624600&domain=pdf&date_stamp=2023-11-12

SC-W 2023, November 12–17, 2023, Denver, CO, USA Julian Bellavita, Mathias Jacquelin, Esmond G. Ng, Dan Bonachea, Johnny Corbino, and Paul H. Hargrove

The basic Cholesky factorization algorithm, given in Alg. 1, can
be described as follows:

(1) Current column 𝑗 of L is computed using column 𝑗 of A.
(2) Column 𝑗 of L is used to update the remaining columns of

A.
If A is a dense matrix, then every column 𝑘 , 𝑘 > 𝑗 , is updated.

Once the factorization is computed, the solution to the original
linear system (A𝑥 = 𝑏) can be obtained by solving two triangular
linear systems using the Cholesky factor L like so:

L𝑦 = 𝑏, L𝑇 𝑥 = 𝑦 (2)

for column 𝑗 = 1 to 𝑛 do
ℓ𝑗, 𝑗 =

√
𝑎 𝑗, 𝑗

for row 𝑖 = 𝑗 + 1 to 𝑛 do
ℓ𝑖, 𝑗 = 𝑎𝑖, 𝑗/ℓ𝑗, 𝑗

end

for column 𝑘 = 𝑗 + 1 to 𝑛 do
for row 𝑖 = 𝑘 to 𝑛 do

𝑎𝑖,𝑘 = 𝑎𝑖,𝑘 − ℓ𝑖, 𝑗 · ℓ𝑘,𝑗
end

end
end

Algorithm 1: Basic Cholesky algorithm

2.2 Cholesky factorization of sparse matrices
For large-scale applications,A is often sparse, i.e., most of the entries
ofA are zero. It is well known that Cholesky factorization of a sparse
matrix creates fill, i.e., some of the zero entries will become nonzero.
One can reduce thememory and flops required to store and compute
L by only performing computations involving nonzero elements.
Techniques for controlling fill using reordering and efficient sparse
Cholesky factorization can be found in [11]. Here we mention two
components in sparse Cholesky factorization that are important in
our discussion in this paper.

An important observation in sparse Cholesky factorization is
that the columns of L will become denser and denser as the fac-
torization proceeds from the left to the right. It is not uncommon
to find groups of consecutive columns, referred to as supernodes,
that share essentially the same zero-nonzero structure. If columns
𝑖 , 𝑖 + 1, · · · , 𝑗 form a supernode, then the diagonal block of these
columns will be completely dense, and each row 𝑘 , 𝑗 + 1 ≤ 𝑘 ≤ 𝑛,
within the supernode is either entirely zero or entirely nonzero. Su-
pernodes are further partitioned into blocks, which are collections
of contiguous rows in a supernode that form a dense submatrix.
supernodes and blocks of a sample symmetric matrix are depicted
in Figure 1a.

The elimination tree of L is an important tool in sparse Cholesky
factorization. It is a directed acyclic graph that has 𝑛 vertices {𝑣1, 𝑣2,
· · · , 𝑣𝑛}, with 𝑣𝑖 corresponding to column 𝑖 of A. Suppose 𝑖 > 𝑗 .
There is an edge between 𝑣𝑖 and 𝑣 𝑗 in the elimination tree if and only
if ℓ𝑖 𝑗 is the first off-diagonal nonzero entry in column 𝑗 of L. Thus,
𝑣𝑖 is called the parent of 𝑣 𝑗 and 𝑣 𝑗 is a child of 𝑣𝑖 . The elimination
tree contains useful information regarding the sparsity structure of

L and dependencies among the columns of L. This information can
be used to construct a task graph for the factorization of A. Such
a task graph is typically composed of tasks that compute columns
of L and tasks that update columns of A. See [18] for details. By
collapsing the columns of a supernode in the elimination tree into a
single vertex, one gets the supernodal elimination tree. An example
of such a tree is depicted in Figure 1b.

(a) Structure of Cholesky factor L (b) Supernodal elimination tree
of matrix A

Figure 1: Sparse matrix A partitioned into supernodes and
dense blocks. 𝑖 denotes the 𝑖-th supernode, • represents
original nonzero elements inA, while + denotes fill-in entries.
Colors correspond to the four distributed-memory nodes
onto which blocks are mapped in a 2D block-cyclic way.

2.3 Parallel sparse Cholesky factorization
In the following, we discuss the scheduling of computation in the nu-
merical factorization. The only constraints that have to be respected
are the numerical dependencies among the columns: column 𝑘 of A
has to be updated by column 𝑗 of L, for any 𝑗 < 𝑘 such that ℓ𝑘,𝑗 ≠ 0,
but the order in which the updates occur is mathematically irrele-
vant, as long as the updates are performed before column 𝑘 of A is
factored. There is therefore significant freedom in the scheduling
of computational tasks that factorization algorithms can exploit.

On sequential platforms, this has led to two well-known vari-
ants of the Cholesky factorization algorithm: left-looking and right-
looking schemes, which have been introduced in the context of
dense linear algebra [9]. In the left-looking algorithm, before col-
umn 𝑘 of A is factored, all updates coming from columns 𝑖 of L such
that 𝑖 < 𝑘 and ℓ𝑘,𝑖 ≠ 0 are first applied. In that sense, the algorithm
is “looking to the left” of column 𝑘 . In right-looking, after a column
𝑘 has been factored, every column 𝑖 such that 𝑘 < 𝑖 and ℓ𝑖,𝑘 ≠ 0 is
updated by column 𝑘 . The algorithm thus “looks to the right” of
column 𝑘 .

Distributed memory platforms add the question of where the
computations are going to be performed. Various parallel algo-
rithms have been proposed in the literature for Cholesky factoriza-
tion, such as MUMPS [1], which is based on the multifrontal approach
(a variant of right-looking), and PaStiX [14], which is right-looking.

In [2], the author classifies parallel Cholesky algorithms into
three families: fan-in, fan-out and fan-both.

1172

symPACK: A GPU-Capable Fan-Out Sparse Cholesky Solver SC-W 2023, November 12–17, 2023, Denver, CO, USA

The fan-in family includes all algorithms such that all updates
from a column 𝑘 to other columns 𝑖 , for 𝑘 < 𝑖 such that ℓ𝑖,𝑘 ≠ 0, are
computed on the processor owning column 𝑘 . When one of these
columns, say 𝑖 , will be factored, the processor owning 𝑖 will have
to “fan-in” (or collect) updates from previous columns.

The fan-out family includes algorithms that compute updates
from column 𝑘 to columns 𝑖 , for 𝑘 < 𝑖 such that ℓ𝑘,𝑖 ≠ 0, on
processors owning columns 𝑖 . Thismeans that the processor owning
column 𝑘 has to “fan-out” (or broadcast) column 𝑘 of the Cholesky
factor.

The fan-both family generalizes these two families to allow these
updates to be performed on any processor. This family relies on
computation maps to map computations to processors.

In a fan-both algorithm, two kinds of messages can be exchanged
throughout the factorization: factors and aggregate vectors. The first
type of message corresponds to the entries in a column after it has
been factorized, or in other words, to a portion of the output data
of the algorithm. The second type of message is a temporary buffer
in which a given 𝑝source will accumulate all its updates to a remote
target column residing on 𝑝target.

3 SYMPACK IMPLEMENTATION
As mentioned in the previous section, there are many ways to
schedule the computations as long as the precedence constraints
are satisfied. The Cholesky factorization in symPACK is inspired by
the fan-out algorithm. This section covers the symPACK factorization
algorithm in detail.

3.1 Supernode and Block Partitioning
symPACK’s symbolic factorization phase analyzes the sparsity struc-
ture of L in order to partition A’s columns into supernodes. After
this is done, the rows of each supernode are partitioned so that
they form blocks. Each block is essentially a dense submatrix of a
supernode. The primary advantage of this additional step is that
it allows computations to be performed via dense matrix-matrix
operations on each block, meaning one can take advantage of the
high performance offered by BLAS 3 and LAPACK routines. Block
partitioning also allows a 2D block-cyclic mapping of tasks onto
processors, which is expanded upon in Section 3.3.

The exact manner in which supernodes are partitioned into
blocks is as follows. For the 𝑗th supernode, we first create a diag-
onal block denoted as 𝐵 𝑗, 𝑗 , which is composed of all rows of the
supernode that contain a diagonal element. Let 𝑆 denote a set that
contains the indices of all such rows in A. Then, for supernode 𝑘
such that 𝑘 < 𝑗 , if supernode 𝑘 contains a nonzero element in any
row 𝑖 ∈ 𝑆 , then rows [𝑚𝑖𝑛(𝑆) :𝑚𝑎𝑥 (𝑆)] form a block in supernode
𝑘 denoted as 𝐵 𝑗,𝑘 . Another way to think about this scheme is that
for a block 𝐵 𝑗,𝑘 , 𝑘 denotes the supernode that the block is located in,
and 𝑗 denotes the supernode that contains the diagonal entries of
the rows of the block. The block partitioning process is summarized
in Algorithm 2, and Figure 1a shows an example block partitioning.

3.2 Task-based formulation
symPACK uses three types of tasks during its numerical factorization
phase: diagonal factorization, factorization, and update. Each task
operates on a single block of a supernode. We let A be an 𝑛-by-𝑛

Input: supernodes[], 𝑁
Output: blocks 𝐵∗,∗
for 𝑗 ← 1 to 𝑁 do

𝐵 𝑗, 𝑗 ← []
𝑆 ← {}
for row← 1 to size(supernodes[𝑗]) do

𝐵 𝑗, 𝑗 .append(supernodes[𝑗] [row])
𝑆.add(row)

end
for 𝑘 ← 1 to 𝑗 − 1 do

if supernodes[𝑘] [𝑖] ≠ 0 for any 𝑖 ∈ 𝑆 then
minRow← min(𝑆)
maxRow← max(𝑆)
𝐵 𝑗,𝑘 .append(supernodes[𝑘] [minRow :
maxRow])

end
end

end
Algorithm 2: Partition 𝑁 Supernodes into Blocks

symmetric positive definite matrix, and denote these tasks using
the following notation1:
• Diagonal Factorization 𝐷𝑖 : factorize the diagonal block lo-
cated in the 𝑖th supernode 𝐵𝑖,𝑖 using the LAPACK routine
POTRF.
• Factorization 𝐹𝑖, 𝑗 : factorize block 𝐵𝑖, 𝑗 using the BLAS 3 rou-
tine TRSM to solve the equation 𝐵𝑖, 𝑗𝐿𝑖, 𝑗 = 𝐿𝑗, 𝑗 , where 𝐿𝑖, 𝑗
denotes the block of the Cholesky factor corresponding to
𝐵𝑖, 𝑗 and 𝐿𝑗, 𝑗 is the diagonal block of the Cholesky factor
located in the 𝑗th supernode.
• Update 𝑈𝑖, 𝑗,𝑘 : compute updates to block 𝐵𝑖,𝑘 from block 𝐵𝑖, 𝑗 ,
where 𝑘 > 𝑗 . If 𝐵𝑖,𝑘 is located on the diagonal of A, this
update is done using the BLAS 3 routine SYRK, otherwise
the BLAS 3 routine GEMM is used.

These tasks cannot be scheduled arbitrarily. Before computing
column 𝑘 of the Cholesky factor L, all updates from the columns of
L to the left of 𝑘 must be applied to column 𝑘 of A. Additionally, the
diagonal of a column must be factorized before any other elements
in that column can be factorized. When applied to a supernodal
blocking scheme and the task descriptions provided earlier, this
logic sets up the following dependencies between tasks:
• The Diagonal Factorization task𝐷𝑖 must be completed before
Factorization tasks of the form 𝐹∗,𝑖 can be scheduled. This
is because the TRSM operation that is used to compute off-
diagonal factorized blocks uses the factorized diagonal block
as the RHS of the linear system.
• All Factorization tasks 𝐹𝑖, 𝑗 must be completed before Update
tasks of the form 𝑈𝑖, 𝑗,∗ can be computed. In other words,
a block must be factorized before it can be used to update
other blocks.
• All Update tasks of the form𝑈𝑖,∗,𝑘 must be completed before
Factorization tasks of the form 𝐹𝑖,𝑘 can be computed. In other
words, all possible updates that can be applied to a block
must be applied before a block can be factorized. Following

1We use MATLAB notation in this paper.

1173

SC-W 2023, November 12–17, 2023, Denver, CO, USA Julian Bellavita, Mathias Jacquelin, Esmond G. Ng, Dan Bonachea, Johnny Corbino, and Paul H. Hargrove

Figure 2: fan-out task dependencies for four columns 𝑗 , 𝑖, 𝑘 ,
and ℎ

the same logic, all Update tasks of the form 𝑈 𝑗,∗, 𝑗 must be
completed before Diagonal Factorization tasks of the form
𝐷 𝑗 can be computed.

An example of dependencies between Diagonal Factorization,
Factorization, and Update tasks can be seen in Figure 2. symPACK
derives a task graph of this form for a given problem using L’s
supernodal elimination tree and proceeds to partition it among the
given processors in a manner described in the following section.

3.3 Parallel algorithm
We now describe how a given task graph is partitioned among the 𝑃
processes available in a distributed-memory environment. symPACK
maps blocks to processes using a 2D block-cyclic distribution. Such
a distribution has the advantage of reducing the presence of serial
bottlenecks, as a 1D row or column cyclic distribution would assign
excessive work to each process. Let 𝑃𝑘 denote the 𝑘th process in
our distributed-memory environment.

Recall that each block is denoted as 𝐵𝑖, 𝑗 , where 𝑗 is the supernode
that the block is contained within, and 𝑖 is the supernode that
contains the diagonal entries of the rows within the block. 𝐵𝑖, 𝑗 is
mapped to a process using the𝑚𝑎𝑝 (𝑖, 𝑗) function, which maps the
block coordinates (𝑖, 𝑗) to a process identifier 𝑃𝑘 following a 2D
block-cyclic distribution.

Henceforth, we will use 𝑃𝑚𝑎𝑝 (𝑖, 𝑗) to denote the process that
𝐵𝑖, 𝑗 is mapped to. 𝑃𝑚𝑎𝑝 (𝑖, 𝑗) is responsible for all local computation
involving 𝐵𝑖, 𝑗 , meaning it must factorize 𝐵𝑖, 𝑗 and compute updates
to 𝐵𝑖, 𝑗 . Let 𝑇𝑘 denote the set of tasks assigned to 𝑃𝑘 . 𝑇𝑘 is then
defined according to the following:

𝑇𝑘 := {𝐹𝑖, 𝑗 |𝑚𝑎𝑝 (𝑖, 𝑗) = 𝑘} ∪ {𝑈𝑖,∗,𝑙 |𝑚𝑎𝑝 (𝑖, 𝑙) = 𝑘}
∪{𝐷𝑖 |𝑚𝑎𝑝 (𝑖, 𝑖) = 𝑘}

We now turn our attention to describing the communication
required in this scheme. Two sorts of messages are required: fac-
torized off-diagonal blocks of 𝐿, denoted 𝐿𝑖, 𝑗 where 𝑖 ≠ 𝑗 , and
factorized diagonal blocks of 𝐿, denoted 𝐿𝑗, 𝑗 .

Off-diagonal factorized blocks are needed for processes to com-
pute Update tasks involving said off-diagonal blocks, but it is not
always the case that the necessary factorized block is local to the
process computing the Update task. In this case, the process that
owns the factorized block will send it to the block performing the
update. More formally, let 𝑃𝐹 (𝑖,𝑗) denote the set of processes that

the factorized block computed by task 𝐹 (𝑖, 𝑗) will be sent to. 𝑃𝐹 (𝑖,𝑗)
is defined as follows:

𝑃𝐹 (𝑖,𝑗) := {𝑚𝑎𝑝 (𝑖, 𝑘) ≠𝑚𝑎𝑝 (𝑖, 𝑗) |𝑈𝑖, 𝑗,𝑘 is an Update task}
Diagonal factorized blocks𝐿𝑗, 𝑗 are used to compute all off-diagonal

factorized blocks 𝐿𝑖, 𝑗 in supernode 𝑗 . Therefore, if 𝐿𝑖, 𝑗 resides on
a different process than 𝐿𝑗, 𝑗 , then 𝐿𝑗, 𝑗 must be sent to the process
owning 𝐿𝑖, 𝑗 . Let 𝑃𝐷𝑖

denote the set of processes that the factorized
diagonal block computed by task 𝐷𝑖 must be sent to:

𝑃𝐷𝑖
:= {𝑚𝑎𝑝 (𝑖, 𝑗) ≠𝑚𝑎𝑝 (𝑖, 𝑖) |𝐹𝑖, 𝑗 is a Factorize task}

The remainder of this section concentrates on our communica-
tion paradigm, implemented with functionality provided by the
UPC++ library.

3.4 Communication Paradigm
symPACK uses the following data structures, where each process
has:
• a local task queue (LTQ), containing all the tasks statically
mapped onto this process and awaiting execution,
• a ready task queue (RTQ), containing all the tasks for which
precedence constraints have been satisfied and that can there-
fore be processed.

This is illustrated in Figure 3.
A task 𝑇𝑠,𝑡 is represented by a source block 𝑠 and a target block

𝑡 on which computations have to be applied. Each task also has
an incoming dependency counter, initially set to the number of
incoming edges in the task graph.

Similarly, a message 𝑀𝑠,𝑡 exchanged to satisfy the dependence
between tasks mapped onto distinct processes is labeled by the
source block 𝑠 of the sending task and the target block 𝑡 of the
receiving task.

The overall mechanism that we propose is the following: when-
ever a task is completed, processes owning dependent tasks are
notified that new input data is now available. As soon as a pro-
cess is done with its current computation, it periodically handles
each incoming notification by issuing a corresponding one-sided
RMA get to retrieve the relevant data. This communication pro-
ceeds asynchronously, and the incoming dependency counter of
the corresponding task is decremented when the non-blocking
communication later reaches completion.

When a task from the LTQ has all its dependencies satisfied (i.e.
when its dependency counter reaches zero) then it is moved to the
RTQ, and is now ready for execution. The process then picks a task
from the RTQ and executes it. If multiple tasks are available in the
RTQ, then the next task that will be processed is whichever one is at
the top of the queue. Evaluating different scheduling policies will
be a subject for future work.

We use the UPC++ PGAS library [5, 26] for communicating be-
tween distributed-memory compute nodes. UPC++ is built atop the
GASNet-EX [6, 12] communication library, and introduces several
parallel programming features useful for our implementation.

First, it provides global pointers for referencingmemory locations
on remote processes. Using the upcxx::rget() and upcxx::rput()
functions, one can perform Remote Memory Access (RMA) that

1174

symPACK: A GPU-Capable Fan-Out Sparse Cholesky Solver SC-W 2023, November 12–17, 2023, Denver, CO, USA

Figure 3: Task scheduling in symPACK. Update of task dependence in LTQ. Dynamic scheduling of local tasks in RTQ.

transfers the data between two processes in a one-sided way. More-
over, on modern HPC networks these transfers are handled by
RDMA offload hardware in the NIC and are generally performed
without any involvement from the remote processor.

Another useful feature is the ability to perform remote proce-
dure calls (RPC), whereby a process can submit a function for
execution on a remote process. This gets pushed into a queue
that the remote process executes when calling the UPC++ function
upcxx::progress().

symPACK: A GPU-Capable Fan-Out Sparse Cholesky Solver SC-W 2023, November 12–17, 2023, Denver, CO, USA

Figure 3: Task scheduling in symPACK. Update of task dependence in LTQ. Dynamic scheduling of local tasks in RTQ.

transfers the data between two processes in a one-sided way. More-
over, on modern HPC networks these transfers are handled by
RDMA offload hardware in the NIC and are generally performed
without any involvement from the remote processor.

Another useful feature is the ability to perform remote proce-
dure calls (RPC), whereby a process can submit a function for
execution on a remote process. This gets pushed into a queue
that the remote process executes when calling the UPC++ function
upcxx::progress().

Figure 4: Data exchange protocol in symPACK. Notifications
are performed using UPC++ asynchronous RPC, and the actual
data is fetched using non-blocking one-sided RMA get.

symPACK uses a data notification and communication algorithm
which is heavily based on these two features of UPC++. This algo-
rithm is depicted in Figure 4, where we suppose that at the end of a
computation, 𝑝source has produced some data that needs to be sent
out to 𝑝target.

First, 𝑝source notifies 𝑝target that some data has been produced
by sending it a global pointer ptr to the data along with some meta-
data meta. This is done by performing an RPC to a signal(ptr,meta)
function on 𝑝target directly from 𝑝source, and is referred to as step 1
in the diagram.

When 𝑝target finishes its current computation, it calls a poll func-
tion (step 2), whose main role is to watch for incoming communica-
tions and do the bookkeeping of task dependencies. This function
dispatches to the upcxx::progress() function to execute all en-
queued RPCs to the signal(ptr,meta) function, which enqueues ptr
and meta into a list. This corresponds to steps 3 and 4. The next
step in the poll function is to go through that list of global pointers
and issue a UPC++ RMA get operation to pull the data to the local
host or local GPU memory, as appropriate for where the dependent
computation will be scheduled (step 5). Once the RMA get operation
is completed, the poll function updates the dependencies of every
task𝑇𝑚 that will be using this data (which can be found by looking
at the meta-data meta). If all dependencies of a task are met, that
task is moved into the RTQ (at step 6). Finally, 𝑝target resumes its
work by selecting a task from RTQ.

In summary, symPACK functions by scheduling tasks for dense
supernode blocks mapped to processes according to a 2D block-
cyclic distribution. BLAS and LAPACK calls are used to perform
local computation, and the communication necessary to satisfy
dependencies between tasks is done via a combination of RPCs
that enqueue global pointers to remote nodes into a list and UPC++
RMA get operations that fetch data from said global pointers. Once
a task’s dependencies are satisfied, it is placed on the RTQ, where
it can be scheduled and executed. This process is repeated until
all tasks on all processes have been executed, at which point the
factorization is complete.

4 GPU FUNCTIONALITY
Modern distributed-memory HPC systems typically offer nodes
that include both CPUs and GPUs. In certain cases, GPUs are able
to achieve raw arithmetic performance far superior to that of CPUs.
This is thanks to GPU architectures naturally supporting extremely
high levels of parallelism. Thus, GPUs are crucial tools with which
we can achieve better performance for computationally intensive
scientific applications. symPACK offers GPU functionality, wherein

Figure 4: Data exchange protocol in symPACK. Notifications
are performed using UPC++ asynchronous RPC, and the actual
data is fetched using non-blocking one-sided RMA get.

symPACK uses a data notification and communication algorithm
which is heavily based on these two features of UPC++. This algo-
rithm is depicted in Figure 4, where we suppose that at the end of a
computation, 𝑝source has produced some data that needs to be sent
out to 𝑝target.

First, 𝑝source notifies 𝑝target that some data has been produced
by sending it a global pointer ptr to the data along with some meta-
data meta. This is done by performing an RPC to a signal(ptr,meta)
function on 𝑝target directly from 𝑝source, and is referred to as step 1
in the diagram.

When 𝑝target finishes its current computation, it calls a poll func-
tion (step 2), whose main role is to watch for incoming communica-
tions and do the bookkeeping of task dependencies. This function
dispatches to the upcxx::progress() function to execute all en-
queued RPCs to the signal(ptr,meta) function, which enqueues ptr
and meta into a list. This corresponds to steps 3 and 4. The next
step in the poll function is to go through that list of global pointers
and issue a UPC++ RMA get operation to pull the data to the local
host or local GPU memory, as appropriate for where the dependent
computation will be scheduled (step 5). Once the RMA get operation
is completed, the poll function updates the dependencies of every
task𝑇𝑚 that will be using this data (which can be found by looking
at the meta-data meta). If all dependencies of a task are met, that
task is moved into the RTQ (at step 6). Finally, 𝑝target resumes its
work by selecting a task from RTQ.

In summary, symPACK functions by scheduling tasks for dense
supernode blocks mapped to processes according to a 2D block-
cyclic distribution. BLAS and LAPACK calls are used to perform
local computation, and the communication necessary to satisfy
dependencies between tasks is done via a combination of RPCs
that enqueue global pointers to remote nodes into a list and UPC++
RMA get operations that fetch data from said global pointers. Once
a task’s dependencies are satisfied, it is placed on the RTQ, where
it can be scheduled and executed. This process is repeated until
all tasks on all processes have been executed, at which point the
factorization is complete.

4 GPU FUNCTIONALITY
Modern distributed-memory HPC systems typically offer nodes
that include both CPUs and GPUs. In certain cases, GPUs are able
to achieve raw arithmetic performance far superior to that of CPUs.
This is thanks to GPU architectures naturally supporting extremely
high levels of parallelism. Thus, GPUs are crucial tools with which
we can achieve better performance for computationally intensive
scientific applications. symPACK offers GPU functionality, wherein

1175

SC-W 2023, November 12–17, 2023, Denver, CO, USA Julian Bellavita, Mathias Jacquelin, Esmond G. Ng, Dan Bonachea, Johnny Corbino, and Paul H. Hargrove

certain computations are offloaded to a GPU for faster execution.
This section describes the GPU mode of symPACK.

4.1 Memory Kinds
While introducing support for GPU operations, symPACK utilized a
relatively new feature of UPC++ known as ’memory kinds’. Mem-
ory kinds allow the user to allocate buffers on devices using a
upcxx::device_allocator object, which produces a global pointer
to the allocated device memory that behaves similarly to a typical
global pointer to host memory. Memory kinds make it possible
to use UPC++ RMA operations to communicate using device mem-
ory in the same way one would handle communication involving
host memory. A UPC++ programmer can use the upcxx::copy()
function to uniformly move data between host or device memories
located anywhere in the system, in a device-agnostic manner. A par-
ticularly significant benefit of memory kinds is the ability to move
data directly between host memory that resides on one compute
node and device memory that resides on a different node separated
by a network, without the need for any intermediate copies staged
through host memory. For distributed applications that involve
many GPUs scattered across different nodes, this feature can sig-
nificantly decrease the amount of communication overhead in the
application.

Memory kinds are also highly portable. By using C++ templates
to specify the device kind (e.g. cuda_device, hip_device) where
one wishes to allocate memory, it is possible to use the same UPC++
code to interact with devices from different vendors. Code that is
written to communicate data resident on NVIDIA GPUs can be
modified to run on AMD GPUs by simply changing a template
parameter, or by using a wildcard parameter. For more information
on UPC++ memory kinds, the reader is referred to [4, 7, 27].

4.2 GPU Mode Functionality
When symPACK is initialized, each UPC++ process creates a device
allocator object using the upcxx::make_gpu_allocator() func-
tion. Although symPACK is not locked into any particular binding of
processes to devices, a recommended scheme is to bind processes
to devices in a cyclic manner. Using this strategy, in a node with 𝑑
devices, process 𝑝 will be bound to device 𝑝 𝑚𝑜𝑑 (𝑑). All processes
mapped to a given device allocate an equal portion of memory on
the device.

As explained earlier, the computation in symPACK is implemented
using calls to the BLAS routines GEMM, SYRK, and TRSM. Addi-
tionally, the LAPACK routine POTRF is used to factorize blocks
located on the diagonal ofA. High-performance implementations of
these routines for NVIDIA GPUs are available via the CuBLAS [21]
and CuSolver [22] libraries. symPACK uses these libraries to perform
the needed BLAS and LAPACK routines on the GPU.

The dimensions of different blocks in a supernode can vary dra-
matically, and as a result, the sizes of the buffers passed into the
computation routines can also vary. There are overheads associ-
ated with using a CUDA kernel to perform computation, which
include both the overheads of invoking and synchronizing the com-
putational kernel and any overheads of moving data to and from
the device. Because the former overheads are significant and rel-
atively insensitive to problem size, the net performance benefit

achievable using GPUs is more significant for larger computations.
Therefore, it is most advantageous to utilize the GPU exclusively
for computations involving adequately large buffers.

The GPU mode of symPACK uses a simple heuristic based on
buffer size to determine if a computation should be offloaded to
the GPU or not. If a given BLAS/LAPACK routine involves a suf-
ficiently large buffer, data is moved from host memory to device
memory using upcxx::copy(), and the corresponding GPU ver-
sion of the matrix computation is invoked. If the buffers involved
in a BLAS/LAPACK routine are small, then the CPU is used for the
computation instead. Each operation has a different size threshold
that determines when to offload the operation to the GPU. Different
thresholds for each operation are necessary because each oper-
ation has a different non-asymptotic arithmetic intensity. These
thresholds have default values that were determined via a simple
brute-force manual tuning effort, but since the optimal values of
these thresholds are likely to vary for different hardware, symPACK
also allows the user to specify each threshold manually. These
size thresholds ensure that the GPU is used only when doing so
is expected to be beneficial to performance. If the GPU were used
for every computation, the fixed overheads arising from many in-
vocations of CUDA kernels on small buffers would eliminate the
performance gains obtained from using the GPU for large compu-
tations. Thus, the GPU functionality is not a ’GPU-only’ algorithm;
it is instead a hybrid algorithm that takes advantage of the unique
processing capabilities that each type of hardware offers.

As described earlier, memory kinds allow the programmer to
move data between a host and a device that reside on different nodes.
symPACK takes advantage of this feature when sending factorized
diagonal blocks to remote nodes. If a factorized diagonal block is
sufficiently large and is to be sent to a remote node, it could naively
be fetched into host memory using upcxx::rget() followed by a
use of upcxx::copy() to move the block to the device. However,
since memory kinds make it possible to move data directly to a
device on a remote node, placing the block in remote host memory
before moving it to the device is unnecessary. Therefore, large-
enough factorized diagonal blocks are marked as ’GPU blocks’ and
are copied directly to a GPU-resident buffer on the remote node via
upcxx::copy(). This eliminates the need for the remote process
to use upcxx::rget() to fetch the data into host memory before
moving it to the device.

To handle scenarios where there is insufficient device memory
to accommodate a given computation, symPACK provides multiple
“fallback options” that allow the factorization to proceed. The de-
fault behavior is to simply perform the computation on the CPU.
However, for certain problems, a user may prefer to instantly ter-
minate the factorization and rerun it with more device memory
allocated to each process. For this reason, symPACK also provides a
fallback option that will throw an exception if a device allocation
fails due to insufficient memory.

While our implementation of GPU operations for symPACK cur-
rently only supports NVIDIA GPUs, it would be relatively easy to
introduce support for AMD or Intel GPUs, thanks to the portability
offered by UPC++ memory kinds. One would only need to write a
short function that initializes library handlers, and then replace the
calls to CuBLAS/CuSolver with calls to the vendor equivalents of
these libraries.

1176

symPACK: A GPU-Capable Fan-Out Sparse Cholesky Solver SC-W 2023, November 12–17, 2023, Denver, CO, USA

5 PERFORMANCE EVALUATION
In this section, we present the performance of the sparse Cholesky
factorization and triangular solve routines implemented in symPACK.
Our experiments were conducted on the GPU partition of the
NERSC Perlmutter supercomputer [20]. Each Perlmutter GPU node
contains one AMD EPYC 7763 “Milan” CPU with 64 cores, four
NVIDIA A100 “Ampere” GPUs, and four HPE Slingshot 11 “Cassini”
200Gbps network cards connected to a 3-hop dragonfly network
fabric (see [20] for details).

We evaluate the performance of symPACK using a set of matrices
from the SuiteSparse Matrix Collection [8]. A description of each
matrix can be found in Table 1. The Flan_1565 and boneS10 matrices
were chosen because of their size, and thermal2 was chosen because
of its irregular sparsity structure and its high level of sparsity. We
chose to focus primarily on large problems for our experiments
because large-scale multi-node runs are typically only done on large
matrices. In this paper, we analyze the performance of symPACK in
a distributed-memory setting only. In addition, all experiments are
conducted without multi-threading (which is commonly referred to
as “flat-MPI”). In our experiments, a fill-reducing ordering computed
using Scotch [23] is applied to the original matrix in order to reduce
the number of fill-in entries in L. The Scotch library contains an
implementation of the nested dissection algorithm [10] to compute
a permutation that reduces the number of fill-in entries in the
Cholesky factor.

Matrices from SuiteSparse matrix collection
Name Description 𝑛 𝑛𝑛𝑧

Flan_1565 3D model of a steel flange 1,564,794 114,165,372
boneS10 3D trabecular bone 914,898 40,878,708
thermal2 steady state thermal 1,228,045 8,580,313

Table 1: Characteristics of symmetric matrices used in the
experiments. 𝑛 denotes the number of rows/columns in the
matrix, and 𝑛𝑛𝑧 denotes the number of nonzero elements in
the matrix.

5.1 Impact of Memory Kinds
Use of memory kinds in RMA operations informs UPC++ (and the
underlying GASNet-EX communication layer) that a given buffer
resides in memory associated with a particular device type, allow-
ing the library to ensure that the most efficient access methods are
used for communication. The current GASNet-EX release (v2023.3.0)
includes accelerated memory kinds support for platforms includ-
ing GPUs from NVIDIA or AMD paired with Mellanox InfiniBand
or HPE Slingshot network hardware. When pairing a supported
network with an NVIDIA GPU, GASNet-EX can utilize the tech-
nology known as “GPUDirect RDMA” (GDR), which enables the
network adapter to directly access the GPU memory (such as for
RMA puts and gets) without the need to interrupt the CPU or use
host memory to stage the transfer through any intermediate buffers.
This zero-copy capability yields a significant acceleration of eligible
transfers.

Fig. 5 shows the bandwidth of upcxx::copy() on NERSC Perl-
mutter for one particular RMA transfer variant across various pay-
load sizes on a log-log plot. The figure compares performance
of UPC++ using a “Reference” implementation of memory kinds

Figure 5: Microbenchmark comparison of one-way point-
to-point communication bandwidth for non-blocking RMA
gets involving GPU-resident buffers using GPUDirect RDMA
technology versus the same transfer staged through an in-
termediate buffer in host memory.

that stages transfers involving GPU memory through intermediate
buffers in host memory, versus the zero-copy GDR-accelerated im-
plementation (“Native” series). An equivalent MPI RMA benchmark
using GPU-enabled HPE Cray MPICH is also included for compari-
son. The results demonstrate that GASNet-EXmemory kinds enable
substantial improvement in the performance of upcxx::copy();
taking it from substantially under-performing relative to the MPI
equivalent, to delivering comparable performance. The bandwidth
ratio measured between Native and Referencememory kinds ranges
from 5.9x (at 8 KiB payload) to 2.3x (for payloads over 1 MiB). The
bandwidth gap measured between UPC++ Native memory kinds
and MPI is much smaller and within 20% across the entire range of
payloads measured.

For more information on UPC++ memory kinds acceleration and
resulting performance improvements, the reader is referred to [13,
27].

5.2 Workload distribution between CPUs and
GPUs

As mentioned in Section 4, a simple heuristic based on buffer size is
used to determine whether a given operation should be computed
on the CPU or on the GPU. Figure 6 shows howmany operations are
performed on each type of hardware for a factorization and trian-
gular solve of the Flan_1565 matrix. These numbers were gathered
using the default heuristic parameters on a run with 4 UPC++ pro-
cesses and 4 GPUs on NERSC Perlmutter. Only data from rank 0 is
shown, but the number and distribution of operations is roughly the
same across all ranks, so the rank 0 data is generally representative
of the entire workload.

For all four operation types, the majority of the operations hap-
pen on the CPU, indicating that the majority of the blocks obtained
by examining the supernodal factorization of Flan_1565 are small-
to medium-sized. The relatively few number of operations involving
large blocks are offloaded to the GPU.

1177

SC-W 2023, November 12–17, 2023, Denver, CO, USA Julian Bellavita, Mathias Jacquelin, Esmond G. Ng, Dan Bonachea, Johnny Corbino, and Paul H. Hargrove

Figure 6: Number of times each operation is performed on
the CPU versus on the GPU for a symPACK factorization and
solve of the Flan_1565 matrix using 4 UPC++ processes and 4
GPUs. Only data from rank 0 is shown.

5.3 Strong scaling comparison of factorization
and solve

In the next set of experiments, we evaluate the strong scaling of
symPACK’s GPU functionality on a set of large problems. We com-
pare its performance to the GPU functionality of PaStiX 6.2.2 [14],
a state-of-the-art parallel symmetric solver based on a right-looking
supernodal formulation. Another well-known comparable solver is
MUMPS [1], but it does not currently offer GPU functionality. There-
fore, a comparison with PaStiX is more interesting. The same ma-
trix ordering computed by Scotch is used for both solvers.

PaStiXwas built using the runtime scheduler StarPU [3]. PaStiX
also offers support for another runtime scheduler, PaRSEC, which
we considered. However, we ran into difficulties compiling the
PaStiX-specific fork of PaRSEC on Perlmutter, and the PaStiX docu-
mentation does not outline any explicit advantages to using PaRSEC
over StarPU. Additionally, PaRSEC only works with PaStiX 6.0.2.
Therefore, StarPU seemed to be a reasonable choice for our pur-
poses.

Figures 7, 9, and 11 show factorization times for the Flan_1565,
boneS10, and thermal2 matrices respectively. For each node count
on the x-axis, the data point indicates the best performance achieved
by that solver using all of the hardware resources available on that
many Perlmutter nodes. For each node count, the experiments were
run with a varying number of processes per node, and the result
from the run that yielded the best performance for a given node
count is reported. For certain problems, symPACK benefits from
mapping more than one UPC++ process to each device because us-
ing more processes gives each core fewer small- to medium-sized
computations to perform on the CPU, which can benefit perfor-
mance substantially for certain sparsity structures. See the Artifact
Description / Artifact Evaluation (AD/AE) for more information.

On each problem and for all node counts measured, symPACK
significantly outperforms PaStiX, demonstrating the efficacy of

Figure 7: Strong scaling of symPACK’s Cholesky factorization
on Flan_1565

Figure 8: Strong scaling of symPACK’s triangular solve on
Flan_1565

our communication paradigm, our device offloading heuristic, and
our utilization of memory kinds. Although PaStiX appears to ex-
hibit better relative strong scaling that symPACK for some problems,
this is likely only because the single node performance of PaStiX
is significantly below that of symPACK, and not because of any
algorithmic advantages that PaStiX offers. symPACK still exhibits
superior absolute performance in all cases. Figures 8, 10, and 12
show solve times for each matrix. As with the factorization phase,
symPACK outperforms PaStiX for all problems and node counts
measured. Notably, for the thermal2 matrix, PaStiX’s solve rou-
tine performs worse as the node count increases. This could be
in part due to thermal2’s highly irregular sparsity structure (for

1178

symPACK: A GPU-Capable Fan-Out Sparse Cholesky Solver SC-W 2023, November 12–17, 2023, Denver, CO, USA

Figure 9: Strong scaling of symPACK’s Cholesky factorization
on boneS10

Figure 10: Strong scaling of symPACK’s triangular solve on
boneS10

details, see [25]). Overall, symPACK demonstrates significant, con-
sistent performance improvements over PaStiX for the Cholesky
factorization and triangular solve routines.

The speedups symPACK offers over PaStiX for a single factor-
ization and solve are on the order of seconds. However for an
application that needs multiple factorizations in succession, the
overall benefit imparted by symPACK could be substantial. One such
application is the method for solving eigenvalue problems described
in [24]. Another such application is PEXSI [16, 17], a library that
can be used for electronic structure calculations and for evaluating
specific elements of a matrix inverse without explicitly inverting
the matrix.

Figure 11: Strong scaling of symPACK’s Cholesky factorization
on thermal2

Figure 12: Strong scaling of symPACK’s triangular solve on
thermal2

6 FUTUREWORK
There are several areas where future work is warranted. In order
to allow symPACK to encompass a broader range of GPU hardware,
it is essential to consider introducing support for AMD and Intel
GPUs to complement the currently offered support for NVIDIA
GPUs. Additionally, there is a need to conduct experiments with
various intra-node scheduling heuristics. Fine-tuning the mecha-
nisms responsible for task distribution and management within
a node seems likely to improve performance and efficiency. It is
also of interest to benchmark symPACK on a wider variety of input
problems. In particular, it will be interesting to see how symPACK
performs on smaller problem sizes, as well as on problems with

1179

SC-W 2023, November 12–17, 2023, Denver, CO, USA Julian Bellavita, Mathias Jacquelin, Esmond G. Ng, Dan Bonachea, Johnny Corbino, and Paul H. Hargrove

varying sparsity levels. Lastly, it is worth exploring the develop-
ment of a hardware-agnostic analytical framework for determining
the optimal GPU threshold sizes for each operation, and it is also
worth investigating the potential use and benefits of autotuning in
this area.

7 CONCLUSION
In this paper, we presented a GPU-capable solver, symPACK, which
uses features of the UPC++ PGAS library to implement a novel
communication paradigm and optimized data movement strategy
for transferring data between hosts and devices on remote nodes.
We describe a task-based formalism for Cholesky factorization that
considers dense blocks of individual supernodes as the fundamental
units of computation. We show that on a number of large problems,
including one with an irregular structure, symPACK significantly
outperforms a comparable GPU-capable state-of-the-art Cholesky
solver by up to 14x, validating the efficacy of our approach.

ACKNOWLEDGMENTS
This research was supported by the Exascale Computing Project (17-
SC-20-SC), a collaborative effort of the U.S. Department of Energy
Office of Science and the National Nuclear Security Administration,
and by the U.S. Department of Energy, Office of Science, Scientific
Discovery through Advanced Computing (SciDAC) program under
Contract No. DE-AC02-05CH11231 at Lawrence Berkeley National
Laboratory.

This research used resources of the National Energy Research
Scientific Computing Center, a DOE Office of Science User Facility
supported by the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC02-05CH11231.

With permission from the authors, some sections of this paper
are based on [15].

REFERENCES
[1] P. Amestoy, I. Duff, J.-Y. L’Excellent, and J. Koster. 2001. A Fully Asynchronous

Multifrontal Solver Using Distributed Dynamic Scheduling. SIAM J. Matrix Anal.
and Appl. 23 (2001), 15–41. https://doi.org/10.1137/S0895479899358194

[2] C Cleveland Ashcraft. 1996. A taxonomy of column-based Cholesky factorizations.
Ph. D. Dissertation. Yale University.

[3] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacre-
nier. 2011. StarPU: A Unified Platform for Task Scheduling on Heteroge-
neous Multicore Architectures. CCPE - Concurrency and Computation: Practice
and Experience, Special Issue: Euro-Par 2009 23 (Feb. 2011), 187–198. Issue 2.
https://doi.org/10.1002/cpe.1631

[4] John Bachan, Scott B. Baden, Dan Bonachea, Johnny Corbino, Max Grossman,
Paul H. Hargrove, Steven Hofmeyr, Mathias Jacquelin, Amir Kamil, Brian van
Straalen, and Daniel Waters. 2023. UPC++ v1.0 Programmer’s Guide, Revision
2023.3.0. Technical Report LBNL-2001517. Lawrence Berkeley National Labora-
tory. https://doi.org/10.25344/S43591

[5] John Bachan, Scott B. Baden, Steven Hofmeyr, Mathias Jacquelin, Amir Kamil,
Dan Bonachea, Paul H. Hargrove, and Hadia Ahmed. 2019. UPC++: A High-
Performance Communication Framework for Asynchronous Computation. In Pro-
ceedings of the International Parallel & Distributed Processing Symposium (IPDPS)
(Rio de Janeiro, Brazil). IEEE, USA, 11 pages. https://doi.org/10.25344/S4V88H

[6] Dan Bonachea and Paul H. Hargrove. 2018. GASNet-EX: A High-Performance,
Portable Communication Library for Exascale. In Proceedings of Languages and
Compilers for Parallel Computing (LCPC’18) (LNCS, Vol. 11882). Springer, Cham,
138–158. https://doi.org/10.25344/S4QP4W

[7] Dan Bonachea and Amir Kamil. 2023. UPC++ v1.0 Specification, Revision 2023.3.0.
Technical Report LBNL-2001516. Lawrence Berkeley National Laboratory. https:
//doi.org/10.25344/S46W2J

[8] Timothy A. Davis and Yifan Hu. 2011. The University of Florida Sparse Matrix
Collection. Transactions on Mathematical Software 38, 1, Article 1 (Dec 2011),
25 pages. https://doi.org/10.1145/2049662.2049663

[9] Jack J Dongarra, Sven J Hammarling, and Danny C Sorensen. 1987. LAPACK
Working Note #2. Argonne National Laboratory, Mathematics and Computer
Science Division, Technical Memorandum No. 99.

[10] Alan George. 1973. Nested dissection of a regular finite element mesh. SIAM J.
Numer. Anal. 10, 2 (1973), 345–363. https://doi.org/10.1137/0710032

[11] A. George and J. W-H. Liu. 1981. Computer Solution of Large Sparse Positive
Definite Systems. Prentice-Hall Inc., Englewood Cliffs, New Jersey.

[12] Paul H. Hargrove and Dan Bonachea. 2022. GASNet-EX RMA Communica-
tion Performance on Recent Supercomputing Systems. In IEEE/ACM Parallel
Applications Workshop, Alternatives To MPI+X (PAW-ATM) (Dallas, TX, USA).
eScholarship, California, USA, 7 pages. https://doi.org/10.25344/S40C7D

[13] Paul H. Hargrove, Dan Bonachea, Colin Maclean, and Daniel Waters. 2021.
GASNet-EX Memory Kinds: Support for Device Memory in PGAS Program-
ming Models. In International Conference for High Performance Computing, Net-
working, Storage, and Analysis (St. Louis, MO, USA) (SC). ACM/IEEE, USA, 6.
https://doi.org/10.25344/S4P306

[14] Pascal Hénon, Pierre Ramet, and Jean Roman. 2002. PASTIX: a high-performance
parallel direct solver for sparse symmetric positive definite systems. Parallel
Comput. 28, 2 (2002), 301–321. https://doi.org/10.1016/S0167-8191(01)00141-7

[15] Mathias Jacquelin, Yili Zheng, Esmond Ng, and Katherine Yelick. 2016. An
Asynchronous Task-based Fan-Both Sparse Cholesky Solver. arXiv manuscript.
https://doi.org/10.48550/arXiv.1608.00044 arXiv:1608.00044 [cs.MS]

[16] L. Lin, M. Chen, C. Yang, and L. He. 2013. Accelerating atomic orbital-based
electronic structure calculation via pole expansion and selected inversion. J.
Phys. Condens. Matter 25, 29 (2013), 14 pages. https://doi.org/10.1088/0953-
8984/25/29/295501

[17] L. Lin, J. Lu, L. Ying, R. Car, and W. E. 2009. Fast algorithm for extracting
the diagonal of the inverse matrix with application to the electronic structure
analysis of metallic systems. Comm. Math. Sci. 7, 3 (2009), 755–777. https:
//doi.org/10.4310/CMS.2009.v7.n3.a12

[18] J.W-H. Liu. 1990. The role of elimination trees in sparse factorization. SIAM. J. Ma-
trix Anal. & Appl. 11 (1990), 134–172. https://doi.org/10.1137/0611010

[19] National Energy Research Scientific Computing Center (NERSC). 2023. https:
//www.nersc.gov

[20] NERSC Perlmutter System Architecture. 2023. https://docs.nersc.gov/systems/
perlmutter/architecture/#gpu-nodes

[21] NVIDIA Corporation. 2023. cuBLAS. https://docs.nvidia.com/cuda/cublas.
[22] NVIDIA Corporation. 2023. cuSOLVER. https://docs.nvidia.com/cuda/cusolver.
[23] François Pellegrini and Jean Roman. 1996. Scotch: A software package for static

mapping by dual recursive bipartitioning of process and architecture graphs.
In High-Performance Computing and Networking, Vol. 1067. Springer, Berlin,
Heidelberg, 493–498. https://doi.org/10.1007/3-540-61142-8_588

[24] Tetsuya Sakurai and Hiroshi Sugiura. 2003. A projection method for generalized
eigenvalue problems using numerical integration. J. Comput. Appl. Math. 159, 1
(2003), 119–128. https://doi.org/10.1016/S0377-0427(03)00565-X

[25] SuiteSparse Matrix Collection. 2023. https://sparse.tamu.edu/.
[26] UPC++ website. 2023. https://upcxx.lbl.gov.
[27] Daniel Waters, Colin A. MacLean, Dan Bonachea, and Paul H. Hargrove. 2021.

Demonstrating UPC++/Kokkos Interoperability in a Heat Conduction Simulation.
In IEEE/ACM Parallel Applications Workshop, Alternatives To MPI+X (PAW-ATM)
(St. Louis, MO, USA). eScholarship, California, USA, 5 pages. https://doi.org/10.
25344/S4630V

1180

https://doi.org/10.1137/S0895479899358194
https://doi.org/10.1002/cpe.1631
https://doi.org/10.25344/S43591
https://doi.org/10.25344/S4V88H
https://doi.org/10.25344/S4QP4W
https://doi.org/10.25344/S46W2J
https://doi.org/10.25344/S46W2J
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1137/0710032
https://doi.org/10.25344/S40C7D
https://doi.org/10.25344/S4P306
https://doi.org/10.1016/S0167-8191(01)00141-7
https://doi.org/10.48550/arXiv.1608.00044
https://arxiv.org/abs/1608.00044
https://doi.org/10.1088/0953-8984/25/29/295501
https://doi.org/10.1088/0953-8984/25/29/295501
https://doi.org/10.4310/CMS.2009.v7.n3.a12
https://doi.org/10.4310/CMS.2009.v7.n3.a12
https://doi.org/10.1137/0611010
https://www.nersc.gov
https://www.nersc.gov
https://docs.nersc.gov/systems/perlmutter/architecture/#gpu-nodes
https://docs.nersc.gov/systems/perlmutter/architecture/#gpu-nodes
https://docs.nvidia.com/cuda/cublas
https://docs.nvidia.com/cuda/cusolver
https://doi.org/10.1007/3-540-61142-8_588
https://doi.org/10.1016/S0377-0427(03)00565-X
https://sparse.tamu.edu/
https://upcxx.lbl.gov
https://doi.org/10.25344/S4630V
https://doi.org/10.25344/S4630V

symPACK: A GPU-Capable Fan-Out Sparse Cholesky Solver SC-W 2023, November 12–17, 2023, Denver, CO, USA

Appendix: ARTIFACT DESCRIPTION / ARTIFACT EVALUATION (AD/AE)
This section describes the methodology used for the experiments presented in this paper, in accordance with the SC23 Reproducibility
Initiative.

A.1 Artifact Identification
Authors: Julian Bellavita†, Esmond G. Ng†, Mathias Jacquelin∗, Dan Bonachea†, Johnny Corbino†, Paul H. Hargrove†

† Lawrence Berkeley National Laboratory
∗ Cerebras Systems, Inc.

Description: This paper presents symPACK, a parallel sparse GPU-capable Cholesky solver built using the UPC++ PGAS programming model.
The primary contribution of the paper is a description and evaluation of the computational artifact presented in this work, namely the
symPACK solver. The symPACK source code was used in combination with its library dependencies to produce the performance data shown in
the experiments presented in this paper. Performance results are compared to a baseline established using the PaStiX solver running on the
same hardware and inputs.

A.2 Reproducibility of Experiments
A.2.1 Software Requirements.
The following artifacts were used to perform the experiments documented in this paper:
• UPC++ library, version 2022.3.0 or later: https://upcxx.lbl.gov
– Experiments for the paper used UPC++ version 2023.3.0
• symPACK source code: https://github.com/symPACK/symPACK
– See commit 9c24de6 on the master branch, also available here: https://doi.org/10.25344/S4PAWATM23_SYMPACK.TAR.GZ
– The benchmarking program is driver/run_sympack2D.
• PaStiX 6.2.2 source code: https://solverstack.gitlabpages.inria.fr/pastix/
– The benchmarking program is example/simple.c. The iterative refinement option present in the default version of the bench-
marking program was deactivated prior to compilation (comment out line 125).

– StarPU version 1.4.1 was used as the runtime scheduler: https://starpu.gitlabpages.inria.fr/
• Scotch version 7.0.3 : https://www.labri.fr/perso/pelegrin/scotch/
• OSU MPI Microbenchmarks, version 7.2 : https://mvapich.cse.ohio-state.edu/benchmarks/

A.2.2 Experimental Platform.
All experiments presented in the paper were run on the Perlmutter supercomputer at NERSC, using Perlmutter’s GPU nodes [20]. Here is
relevant hardware information for each GPU node:
• Single-socket 64-core 2.45GHz AMD EPYC 7763 “Milan” CPU
• 4x HPE Slingshot 11 NICs
• 256 GB of DDR4 DRAM
• 4x NVIDIA A100 (Ampere) GPUs

The following system modules were loaded on Perlmutter during execution of the experiments:
• contrib upcxx-cuda/2023.3.0
• craype-x86-milan
• craype-network-ofi
• libfabric/1.15.2.0
• PrgEnv-gnu/8.3.3
• cray-libsci/23.02.1.1
• cray-dsmml/0.2.2
• cray-mpich/8.1.25
• craype/2.7.20
• gcc/11.2.0
• cpe/23.03
• xalt/2.10.2
• cudatoolkit/11.7
• craype-accel-nvidia80
• gpu/1.0

A.2.3 Memory Kinds Microbenchmark Experiment Workflow (Figure 5).
The OSU Microbenchmarks were built according to its install instructions to use HPE Cray MPICH, notably including configure options:
CC=cc CXX=CC –enable-cuda. Performance was obtained from the osu_get_bw test ("MPI uni-directional get flood bandwidth").

1181

https://upcxx.lbl.gov
https://github.com/symPACK/symPACK
https://github.com/symPACK/symPACK/commit/9c24de6
https://doi.org/10.25344/S4PAWATM23_SYMPACK.TAR.GZ
https://solverstack.gitlabpages.inria.fr/pastix/
https://starpu.gitlabpages.inria.fr/
https://www.labri.fr/perso/pelegrin/scotch/
https://mvapich.cse.ohio-state.edu/benchmarks/

SC-W 2023, November 12–17, 2023, Denver, CO, USA Julian Bellavita, Mathias Jacquelin, Esmond G. Ng, Dan Bonachea, Johnny Corbino, and Paul H. Hargrove

UPC++ was built according to its HPE-Cray-EX-specific install instructions (embedded in INSTALL.md), notably including configure
options CC=cc CXX=CC –with-ofi-provider=cxi –with-cuda. The "Reference" memory kinds series was obtained from a separate UPC++
install with additional configure option –disable-kind-cuda-uva that disables GDR support in GASNet-EX and activates the reference
implementation of UPC++ memory kinds. Performance for both UPC++ series was obtained from the bench/gpu_microbenchmark.cpp
microbenchmark included in the UPC++ source distribution.
The following environment variables were used while running the experiment:

export MPICH_GPU_SUPPORT_ENABLED=1
export UPCXX_SHARED_HEAP_SIZE=16G
export FI_MR_CACHE_MAX_SIZE=-1

These respectively enable GPU support in HPE Cray MPI, configure the UPC++ shared heap to a size sufficient for the needs of the benchmark
program, and enable a defect workaround in the system-level HPE CXI libfabric provider that underpins both MPI and UPC++/GASNet-EX.
All other variables and settings used the center-provided defaults.
Benchmarks were run within a single batch job on two nodes with one process per node, with each process using one GPU and one NIC (the
latter is a current limitation in both software stacks). In each test the active process issued RMA get operations into local GPU memory, from
remote host memory located on the passive peer. Each test used a window size of 64 RMA gets per synchronization (i.e., MPI_Win_flush()
or upcxx::future::wait()), with a total of 40 windows per payload size. Launch commands were of the form:

srun -n2 -N2 -c8 --gpus-per-task=1 --gpu-bind=closest \
osu_get_bw -m 8:4194304 -w create -s flush -d cuda -i 2560 H D

srun -n2 -N2 -c8 --gpus-per-task=1 --gpu-bind=closest \
gpu_microbenchmark -c -g -uni -flood -gg -gs -sg -ss -t 40 -w 64

gpu_microbenchmark reports bandwidth results in units of GiB/s (230 bytes/second), whereas osu_get_bw reports bandwidth results in
units of MB/s (106 bytes/second). All results were converted to units of MiB/s (220 bytes/second) for the graph.
The execution time for this experiment workflow should be no more than 30 minutes (excluding queuing delays).

A.2.4 symPACK Experiment Workflow (Figures 6 .. 12).
The following matrices used in our experiments were obtained from [8]:
• Flan_1565: https://sparse.tamu.edu/Janna/Flan_1565
• boneS10: https://sparse.tamu.edu/Oberwolfach/boneS10
• thermal2: https://sparse.tamu.edu/Schmid/thermal2

The Rutherford-Boeing format was used for the runs of symPACK, and the Matrix Market format was used for the runs of PaStiX. The
Flan_1565, boneS10, and thermal2 matrices were used in our experiments. Additionally, both symPACK and PaStiX were built with and used
the Scotch ordering library. All experiments were run using an exclusive batch allocation of 1..64 Perlmutter GPU compute nodes.
The following environment variables were set during all experimental runs to workaround a performance defect in the vendor’s libfabric
CXI provider underlying both MPI and UPC++/GASNet-EX:

export FI_MR_CACHE_MAX_SIZE=-1
export FI_MR_CACHE_MAX_COUNT=-1

All other variables and settings used the center-provided defaults.
The command line used to execute symPACK was of the form:

upcxx-srun -n <tasks> -N <nodes> --gpus-per-node 4 -shared-heap <heap_size> -- \
./run_sympack2D -in </path/to/matrix/> -nrhs 1 -ordering SCOTCH

Experiments were run with a varying number of tasks per node, and the best performance for each node count was reported as the final
result for that node count. Figure 6 was generated by adding the -gpu_v command-line option that outputs work distribution statistics.
The command line used to execute PaStiX was of the form:

srun -n <tasks> -N <nodes> --gpus-per-task 1 -c <cores_per_task> \
./simple -f 0 -s 3 -t 1 -g 1 --mm </path/to/matrix/>

As with symPACK, experiments were run with varying number of tasks per node, and the best performance for each node count was reported.
The plots in the paper show the solve and factorization times reported by symPACK and PaStiX for runs on 1-64 nodes for each of the three
test matrices.
The execution time for the experiment workflow for a single matrix should be no more than 30 minutes (excluding queuing delays).

A.3 Artifact Dependencies and Requirements
A.3.1 System Requirements.
Here are the general hardware and software requirements for replicating the experiments performed in the paper on a different system:
• Recent x64_64-compatible CPU architecture
• Recent CUDA-compatible NVIDIA GPU accelerators

1182

https://sparse.tamu.edu/Janna/Flan_1565
https://sparse.tamu.edu/Oberwolfach/boneS10
https://sparse.tamu.edu/Schmid/thermal2

symPACK: A GPU-Capable Fan-Out Sparse Cholesky Solver SC-W 2023, November 12–17, 2023, Denver, CO, USA

• Recent Linux operating system
• Working installation of an appropriate MPI library
• Working installation of appropriate BLAS, CBLAS and LAPACK libraries
• Working installation of the NVIDIA cuBLAS library
– This is included in the NVIDIA HPC SDK and CUDA Toolkits
– More details: https://developer.nvidia.com/cublas

A.3.2 Other Dependencies.
See Software Requirements section above for the list of software libraries and versions used in the experiments presented in the paper.
See §A.2.4 above for the input data sets.

A.4 Artifact Installation and Deployment Process
A.4.1 Configure and install the UPC++ library with CUDA support.
This step may be skipped on production systems where a CUDA-enabled UPC++ installation is already provided: consult https://upcxx.lbl.
gov/site for an incomplete list of installs on production facilities and system-specific instructions.
Installation details will vary depending on the given system. Follow the detailed instructions provided in the UPC++ library archive, also
available online here: https://upcxx.lbl.gov/wiki/INSTALL. Be sure to include –enable-cuda in the configure step.
This installation step should take no longer than 30 minutes, including time to read the relevant instructions.

A.4.2 Build and install the Scotch library.
To build and install Scotch, execute the following commands from the Scotch source directory:
mkdir build && cd build
cmake .. -DCMAKE_INSTALL_PREFIX=/path/to/install -DCMAKE_BUILD_TYPE=Release
make && make install

This installation step should take no longer than 10 minutes

A.4.3 Build the symPACK library with CUDA support.
To build and install symPACK, an installation of Scotch is required. Execute the following commands from the symPACK source directory:
mkdir build && cd build
export scotch_PREFIX=/path/to/scotch/install
cmake .. -DENABLE_CUDA=ON -DCMAKE_BUILD_TYPE=Release \

-DENABLE_SCOTCH=ON -DSCOTCH_INCLUDE_DIR=$scotch_PREFIX/include
make

This installation step should take no longer than 15 minutes.

A.4.4 Build StarPU (to replicate baseline comparison).
This optional step is not required by symPACK, but is required in order to replicate the PaStiX runs presented in the paper. To build and
install StarPU, execute the following commands from the StarPU source directory:
mkdir build && cd build
../configure --enable-fast --enable-mpi --prefix=/path/to/install \

--with-cuda-dir=/path/to/cuda/dir
make && make install

Note the StarPU configure script expects to find both the CUDA library and cuBLAS library in the same provided CUDA directory. If these
are actually installed in different places (as on Perlmutter), the recommended workaround is to embed this information using the configure
–with-cuda-lib-dir option, eg:
../configure ... --with-cuda-dir=/path/to/cuda/ \

'--with-cuda-lib-dir=/path/to/cuda/lib64/ -L/path/to/cublas/lib64/'

This installation step should take no longer than 20 minutes.

A.4.5 Build PaStiX with CUDA support (to replicate baseline comparison).
This optional step is not required by symPACK, but is required in order to replicate the PaStiX runs presented in the paper. To build and
install PaStiX, installations of StarPU and Scotch are required. Execute the following commands from the PaStiX source directory:
mkdir build && cd build
export STARPU_DIR=/path/to/starpu
export SCOTCH_DIR=/path/to/scotch
export PATH=$PATH:$STARPU_DIR/bin:$SCOTCH_DIR/bin
export PKG_CONFIG_PATH=$PKG_CONFIG_PATH:\

1183

https://developer.nvidia.com/cublas
https://upcxx.lbl.gov/site
https://upcxx.lbl.gov/site
https://upcxx.lbl.gov/wiki/INSTALL

SC-W 2023, November 12–17, 2023, Denver, CO, USA Julian Bellavita, Mathias Jacquelin, Esmond G. Ng, Dan Bonachea, Johnny Corbino, and Paul H. Hargrove

$STARPU_DIR/lib/pkgconfig:$SCOTCH_DIR/lib/pkgconfig
export LD_RUN_PATH=$LD_RUN_PATH:$STARPU_DIR/lib:$SCOTCH_DIR/lib
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$STARPU_DIR/lib:$SCOTCH_DIR/lib
export INCLUDE_PATH=$INCLUDE_PATH:$STARPU_DIR/include:$SCOTCH_DIR/include
cmake .. -DCMAKE_INSTALL_PREFIX=/path/to/install \

-DPASTIX_WITH_STARPU=ON -DPASTIX_WITH_MPI=ON -DPASTIX_WITH_CUDA=ON \
-DPASTIX_INT64=OFF -DPASTIX_ORDERING_SCOTCH=ON

make simple

On Perlmutter we observed the PaStiX CMake infrastructure did not correctly detect the vendor-provided CBLAS and LAPACK libraries
provided by the cray-libsci module (which should be preferred to third-party BLAS libraries). If you encounter errors on an HPE Cray EX
regarding MORSE::LAPACKE and MORSE::CBLAS, the recommended workaround is to ignore the CMake errors and proceed with the build
using these commands:
make simple # expected link error
perl -pi -e 's/-lMORSE::LAPACKE//;s/-lMORSE::CBLAS//' \

example/CMakeFiles/simple.dir/link.txt
make simple

This installation step should take no longer than 15 minutes.

A.4.6 Run the experiments on the computational resources.
See §A.2.3 and §A.2.4 above for detailed commands suitable for use on the GPU partition of the NERSC Perlmutter supercomputer. Job
launch commands will vary in system-specific ways on other systems.
The execution time for each experiment workflow (e.g. for a single matrix) should be no more than 30 minutes, excluding job queuing delays.

A.5 Other Notes
All experimental results presented in the paper used the GPU partition of NERSC Perlmutter, an HPE Cray EX supercomputer detailed
in §A.2.2. The paper’s central results are expected to generalize in a qualitative manner to sufficiently similar systems, but some variance
should be expected in detailed quantitative results on other systems.

1184

	Abstract
	1 Introduction
	2 Background on Cholesky factorization
	2.1 The basic algorithms
	2.2 Cholesky factorization of sparse matrices
	2.3 Parallel sparse Cholesky factorization

	3 symPACK Implementation
	3.1 Supernode and Block Partitioning
	3.2 Task-based formulation
	3.3 Parallel algorithm
	3.4 Communication Paradigm

	4 GPU Functionality
	4.1 Memory Kinds
	4.2 GPU Mode Functionality

	5 Performance evaluation
	5.1 Impact of Memory Kinds
	5.2 Workload distribution between CPUs and GPUs
	5.3 Strong scaling comparison of factorization and solve

	6 Future Work
	7 Conclusion
	Acknowledgments
	References
	Appendix: Artifact Description / Artifact Evaluation (AD/AE)
	A.1 Artifact Identification
	A.2 Reproducibility of Experiments
	A.2.1 Software Requirements
	A.2.2 Experimental Platform
	A.2.3 Memory Kinds Microbenchmark Experiment Workflow (Figure 5)
	A.2.4 symPACK Experiment Workflow (Figures 6 .. 12)

	A.3 Artifact Dependencies and Requirements
	A.3.1 System Requirements
	A.3.2 Other Dependencies

	A.4 Artifact Installation and Deployment Process
	A.4.1 Configure and install the UPC++ library with CUDA support
	A.4.2 Build and install the Scotch library
	A.4.3 Build the symPACK library with CUDA support
	A.4.4 Build StarPU (to replicate baseline comparison)
	A.4.5 Build PaStiX with CUDA support (to replicate baseline comparison)
	A.4.6 Run the experiments on the computational resources

	A.5 Other Notes

